
 

 

 University of Groningen

SQuAVisiT
Roubtsov, Serguei; Telea, Alexandru; Holten, Danny

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Roubtsov, S., Telea, A., & Holten, D. (2007). SQuAVisiT: A Software Quality Assessment and Visualisation
Toolset. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and
Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/squavisit(fc43eb4e-29fa-4b19-926a-3a4b6d5015b7).html


SQuAVisiT: A Software Quality Assessment and Visualisation Toolset
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Abstract

Software quality assessment of large COBOL industrial
legacy systems, both for maintenance or migration pur-
poses, mounts a serious challenge. We present the Software
Quality Assessment and Visualisation Toolset (SQuAVisiT),
which assists users in performing the above task. First, it
allows a fully automatic extraction of metrics, call informa-
tion, and code duplication from COBOL source code. This
information, stored into a database, can be easily converted
and exported to a set of visualization tools. We incorpo-
rated several such third-party tools for the visualization of
call relations and system structure, and metrics visualiza-
tion. These tools use novel visualization techniques such as
bundled edges, matrix plots, and table lens. We illustrate
the usage of our toolset with an industrial case study on
a COBOL system comprising about 3000 modules and 1.7
million lines of code.

1. Introduction

Legacy COBOL systems usually contain millions of
lines of code (LOC) spread over thousands of modules, de-
veloped by tens of people over many years, are often poorly
documented and, to a large extent, knowledge about them
is lost. Assessment of the code quality can help mainte-
nance activities for such code. For example, a low qual-
ity code component is a prime, but also difficult, candidate
for refactoring. A first step in quality assessment is typi-
cally the retrieval of structural and metric information, such
as call graphs and source-level metrics. Although many
tools such as parsers and fact extractors exist for this, this
is still a semi-automatic, delicate process. Besides, inter-
pretation of the retrieved facts, such as tens of thousands
of metrics and module interdependencies, is also difficult.
We combine automated software structure and quality in-
formation retrieval with visualisation of the obtained results
in one toolset, called SQuAVisiT: Software Quality Assess-
ment and Visualisation Toolset.

2. The Toolset

SQuAVisiT has two subsystems: one for quality assess-
ment and the other for visualisation.
The quality assessment (QuA) subsystem is structured

around a database which stores facts and metrics extracted
by a number of third-party plug-ins. One such plug-in is a
COBOL preprocessor and parser which also extracts basic
facts, such as number of LOC, McCabe’s cyclomatic com-
plexity, and call relations. We implemented this plug-in us-
ing the javacc parser generator [3], which should help us
targeting other languages besides COBOL. Another plug-in
integrates CCFinder [4], a state of the art code duplication
detection tool.
The visualization (Vis) subsystem couples the database

with a number of visualisation tools, also loosely integrated
as plug-ins. Four such tools are described below. TableVi-
sion [5] displays tables of hundreds of thousands of rows
containing extraction metrics. MatrixZoom [1] displays de-
pendency (e.g. call graphs) and structural (e.g. system hi-
erarchy) information using a matrix metaphor. ExtraVis [2]
displays the same dependency and structure data using a
bundled edges metaphor. Finally, GemX [4] displays code
duplication.

3. The Case Study

We used SQuAVisiT to study a large COBOL legacy sys-
tem of a large insurance fund: 3 thousand modules, 1.7 mil-
lion LOCs. The system provides support for a variety of
online requests and batch executions. The system is at the
starting point of migration to a new, presumably Java-based
business rules engine platform. At this point it is crucial to
assess the existing system to decide which system artifacts,
e.g. architecture, business rules or code, are reusable and
which are not, and what is the migration effort. We used
SQuAVisiT to parse, extract metrics and call relations from
the entire system in under 30 minutes on an ordinary PC.
Figure 1 shows the metrics using the table lens technique:
Every horizontal pixel line shows a different module, and
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every column a different metric. The modules are sorted by
descending McCabe metric value. This helped us locating
the most complex (top) modules, which were less than 5%
of the system.

5% most complex 

modules according 

to McCabe metric

Figure 1. Metric visualization. Modules are
sorted by descending McCabe metric value

Figure 2 shows the system structure, displayed as a set
of concentric rings (modules, units, layers from inside to
outside) and the calls as hierarchically bundled curves. This
helped us to discover calls from a high-level module to the
’Business rules’ layer. This violates a main design decision
saying that business rules can be called from low levels only
in order to make the system more maintainable.

a)

b)

Figure 2. Call graph visualisation: a) Partial
view on an execution subtree; b) Unexpected
calls found: high-level module of XOFC unit
(request handler) calls two ’Business rules’
layer modules

Visualization with Gemx (Fig. 3) showed widely spread

code duplication, especially at the ’Data’ and ’Business
rules’ layers. Manual code inspection has shown unappro-
priate business rules coding style. This makes the system
hard to maintain. Code reuse during migration will be pos-
sible only after necessary refinement.

Figure 3. Scatter plot of the ’Business rules’
layer. Widely spread black spots show code
duplication

4. Conclusions

Our main contribution underlines the potential of reusing
existing parsing, fact extraction, and visualization tools to
develop a versatile analysis framework supporting code un-
derstanding for migration of large systems. Even though we
used only simple metrics and extracted facts, the visualiza-
tion helped putting these in perspective and gaining useful
insights. We plan to extend our toolset with support for
C/C++ and more visualization methods.
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