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Abstract— The quantities of coefficient of ergodicity and alge-
braic connectivity have been used to estimate the convergence
rates of discrete-time and continuous-time network consensus
algorithms respectively. Both of these two quantities are defined
with respect to network topologies without the symmetry assump-
tion, and they are applicable to the case when network topologies
change with time. We present results identifying deterministic
network topologies that optimize these quantities. We will also
propose heuristics that can accelerate convergence in random
networks by redirecting a small portion of the links assuming
that the network topology is controllable.

I. INTRODUCTION

Network consensus algorithms have been studied exten-
sively in the field of parallel and distributed computation for
decades [1], [2]. Recently these algorithms attracted much
attention because they can be exploited to distributively co-
ordinate groups of autonomous agents, such as mobile robot
teams, wireless sensor networks and UAV (Unmanned Aer-
ial Vehicles) formations. Consensus algorithms are discussed
using both discrete-time [3], [4] and continuous-time models
[5]. One sufficient condition for the asymptotic convergence of
consensus algorithms is that the directed graphs of the possibly
changing network topologies are “connected” repeatedly as
time goes to infinity.

Since autonomous agents are always constrained by limited
power and capacities of computation and communication,
there is much interest in studying the convergence rates of
consensus algorithms [6], [7], [8], [9]. To estimate convergence
rates of discrete-time consensus algorithms, eigenvalues of
the system matrix was used in [10], a technique that is not
applicable when network topologies are changing; and joint
spectral radius is used in [11] which requires formidable
computation. Following Hajnal’s pioneering work on infinite
products of nonhomogeneous matrices, we use coefficient of
ergodicity [12] in this paper which can be computed easily.
Similarly, we will use algebraic connectivity, first introduced in
[13] and extended to directed graphs in [14], to estimate con-
vergence rates of continuous-time consensus algorithms. Both
the coefficient of ergodicity and the algebraic connectivity
are suitable for estimating convergence rates in nonsymmetric
and dynamic networks. Note that most of the existing works
only consider symmetric network topologies, namely those

1This research was carried out when Ming Cao was a Research Intern at
IBM Thomas J. Watson Research Center during the summer of 2006.

modelled by undirected graphs, when estimating convergence
rates of continuous-time consensus algorithms.

With the rapid development of mobile network technology,
the topology of more and more autonomous agent systems
are controllable. Since the convergence rate will be largely
determined by network topologies, it is of great importance
to identify those topologies on which consensus algorithms
converge fast. Using coefficient of ergodicity and algebraic
connectivity as proxies for convergence rates, we show that the
union of star graphs is the optimal topology. In some cases, the
network topologies are initialized as random graphs and for
the sake of maneuvering cost, it will be infeasible to change
the topology into the optimal one which will inevitably involve
constructing or breaking many links. For small-world random
graphs, we propose a very simple heuristic that only redirects
a small portion of existing links and give experiment results to
show that the convergence rates can be improved substantially.

The rest of this paper is organized as follows. In section II,
we introduce the discrete-time and the continuous-time models
of network consensus algorithms. In section III, we define
the coefficient of ergodicity and the algebraic connectivity
for directed graphs. In section IV we prove that the union of
star graphs is the optimal topology as evaluated by both the
coefficient of ergodicity and the algebraic connectivity. And
in section V, we present our heuristic to accelerate consensus
algorithms on random graphs and simulation results.

II. NETWORK CONSENSUS ALGORITHMS

The network consensus problem is also called the “agree-
ment problem” in which we consider a network consisting
of n autonomous agents. All the agents are trying to agree
on a specific value of some quantity, denoted by xi for
agent i ∈ {1, . . . , n}. They can only communicate with their
physical or logical neighbors and the neighbor relationship is
not symmetric, namely that agent i is a neighbor of agent
j does not necessarily imply that agent j is a neighbor of
agent i. In the sequel, we will introduce two most commonly
used consensus algorithms using a discrete-time model and
a continuous-time model respectively. Suppose at time t, the
network topology can be described as a directed graph G(t)
with vertex set Vn = {1, . . . , n} and edge set E(G(t)), where
there is a directed edge (i, j) ∈ E(G(t)) if and only if agent i
is a neighbor of agent j. Let Ni(t) denote the set of indices of
agent i’s neighbors at time t. Throughout this paper, we will
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only consider the network topologies which can be described
by simple graphs. A graph is a simple graph if there is no self-
loop at each vertex and no multiple edges between any pair of
vertices [15]. Note that here the definition of the orientation of
directed edges is the opposite of that used in [14]; as a result
the graph discussed in this paper is the converse of that used
in [14].

A. Discrete-time model

At time t = 1, 2, . . ., each agent i ∈ Vn will update its value
xi(t) to the average of its current value and the values of its
neighbors:

xi(t + 1) =
1

ni(t) + 1


xi(t) +

∑
j∈Ni(t)

xj(t)


 (1)

where ni(t) is the number of elements in Ni(t). The system
equation of the n-agent system can be concisely written into
its state form. Towards this end, define the system state to be
x = [x1 x2 · · · xn ]T . Then

x(t + 1) = P (G(t))x(t), t = 1, 2, . . . (2)

Here P (G) is the consensus matrix of graph G and is defined
as

P (G) ∆= (I + D)−1(I + AT ) (3)

where I is the identity matrix, D is the diagonal matrix each
entry of which is the in-degree of the corresponding vertex,
and A is the adjacency matrix of G. It is easy to check
that P (G) is always a stochastic matrix [16]. One sufficient
condition for the convergence of consensus algorithm (2) is
that each G(t) contains a spanning tree. For detailed discussion
about more relaxed sufficient conditions, we refer readers to
[4].

B. Continuous-time model

At time t > 0, each agent i ∈ Vn will change its value xi(t)
with respect to the differences between its current value and
the values of its neighbors:

ẋi(t) =
∑

j∈Ni(t)

(xj(t) − xi(t)) (4)

As before, define the system state of the n-agent system to be
x = [x1 x2 · · · xn ]T . Then

ẋ(t) = −L(G(t))x(t), t > 0 (5)

where L(G) is the Laplacian matrix of graph G and is defined
as

L(G) ∆= D − AT (6)

One sufficient condition for the convergence of consensus
algorithm (5) is that for all t > 0, the second smallest
eigenvalue in magnitude of L(G(t)) is always strictly greater
than zero. We refer readers to [5], [9] for a detailed discussion
about various sufficient conditions.

III. COEFFICIENT OF ERGODICITY

AND ALGEBRAIC CONNECTIVITY

In this section, we will define the coefficient of ergodicity
τ(G) and the algebraic connectivity α(G) for a directed graph
G. They will be used in the next section as the approxima-
tions of convergence rates to identify those graphs on which
consensus algorithms converge quickly. Let Gn denote the set
of directed simple graphs with vertex set Vn.

Definition 1: [12], [17] For a directed graph G ∈ Gn, its
coefficient of ergodicity τ(G) is defined as

τ(G) ∆=
1
2

max
i,j∈Vn

n∑
s=1

|pis − pjs| (7)

where P = {pij} is the consensus matrix of G. Since P is a
stochastic matrix, τ(G) can be written in a different form as

τ(G) = 1 − min
i,j∈Vn,i �=j

n∑
s=1

min{pis, pjs} (8)

Definition 2: [14] For a directed graph G ∈ Gn, its algebraic
connectivity α(G) is defined as

α(G) ∆= min
x∈IRn,x �=0,x⊥1

xT Lx

xT x
(9)

where L is the Laplacian matrix of G and 1 is the all ones n-
vector. The significance of τ and α is that maxt τ(G(t)) and
mint α(G(t)) can serve as lower bounds on the convergence
rates of Eq. (2) and Eq. (5) respectively.

Let Gn,m denote the subset of Gn which consists of those
simple graphs with m > 0 edges. Obviously, Gn,m is a finite
set, so we can define:

τ(Gn,m) = min
G∈Gn,m

τ(G) (10)

and
α(Gn,m) = max

G∈Gn,m

α(G) (11)

IV. OPTIMAL NETWORK TOPOLOGIES

We call a graph in Gn with n− 1 edges a star graph if we
can relabel its vertices in such a way so that vertex 1 has out-
degree n − 1 and every other vertex has in-degree 1. In such
a graph, vertex 1 is the root of the graph and the only vertex
having positive out-degree. We say G ∈ Gn is the union of
graphs G1, G2 ∈ Gn if G’s edge set is the union of the edge
sets of G1 and G2.

Now we will prove several results identifying those graphs
in Gn,m which achieve τ(Gn,m) and α(Gn,m).

Theorem 1: In the set Gn,k(n−1), where 1 ≤ k < n, the
union of k stars achieves τ(Gn,k(n−1)) = 1

k+1 .

Theorem 2: In the set Gn,k(n−1), where 1 ≤ k < n, the
union of k stars achieves α(Gn,k(n−1)) = k.

In the sequel, for x ∈ IR, let �x� denote the largest integer
less than or equal to x. We will first prove Theorem 1.
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Proof of Theorem 1: Let S ∈ Gn,k(n−1) denote the union of
k stars. Since for a given graph, its coefficient of ergodicity is
determined, we can compute according to the definition of
τ that τ(S) = 1

k+1 . Now we will prove by contradiction
that τ(Gn,k(n−1)) = τ(S). Suppose there exists a graph
H ∈ Gn,k(n−1) such that τ(H) < 1

k+1 . We will consider the
definition of τ in the form of equation (8) where rows u and v
are the pair of rows in P (H) achieving τ(H). Without loss of
generality, we assume d = di(u) ≥ di(v), where for a vertex
j ∈ Vn, di(j) denotes the in-degree of vertex j. Then each
nonzero element in row u is 1

d+1 . Let q(i, j), i, j ∈ Vn and
i �= j, denote the number of columns of P (H) each of which
has positive intersection elements with both row i and row j.

From the assumption τ(H) < 1
k+1 and the selection of u

and v, we know that for any w ∈ Vn

n∑
s=1

min{pus, pws} ≥
n∑

s=1

min{pus, pvs} >
k

k + 1
(12)

On the other hand, we have
n∑

s=1

min{pus, pws} ≤ q(u,w)
1

d + 1
≤ di(w) + 1

d + 1
(13)

We choose w to be the vertex of the minimum in-degree in
H, then

di(w) ≤
⌊

k(n − 1)
n

⌋
= k − 1 (14)

Combining inequalities (12), (13) and (14) together, we have
k

d+1 > k
k+1 , which implies d < k. Then there are at most k

non-zero elements in row u. Consequently, for each l ∈ Vn

with l �= u and l �= v, we have

k

di(l) + 1
≥

n∑
s=1

min{pus, pls} >
k

k + 1
(15)

where the second inequality sign holds because of (12).
The inequality (15) implies that

di(l) < k, l �= u and l �= v (16)

Combining with the fact that di(v) ≤ di(u) = d < k, we have
proved that all the vertices of the graph H have strictly less
than k incoming edges. So there are at most (k − 1)n edges
in H which contradicts the fact that H has k(n − 1) edges.
Hence, the graph H satisfying τ(H) < 1

k+1 does not exist. �

To prove Theorem 2, we list a few useful Lemmas about
α(G) that have been proved in [14].

Lemma 1: If G ∈ Gn is a star graph, then α(G) = 1.
Lemma 2: (Lemma 1 in [14]) For G1, G2 ∈ Gn,

α(G1 ∪ G2) ≥ α(G1) + α(G2) (17)
Lemma 3: (Corollary 1 in [14]) Let S be a nontrivial subset

of the vertex set Vn of G ∈ Gn. Then

α(G) ≤ e(S,S)
|S| + |S| (18)

where e(S,S) is the number of those edges which starts from
a vertex in S and ends at a vertex in S.

Now we will develop some new results.
Lemma 4: For a graph G ∈ Gn,m, we have

α(G) ≤
⌊m

n

⌋
+ 1 (19)

Proof of Lemma 4: Let v be the vertex of graph G having
the minimum in-degree di(v) which implies that di(v) is less
than or equal to the average vertex in-degree of G, namely
di(v) ≤ ⌊

m
n

⌋
. Let S = {v}. Then

e(S,S) = di(v) ≤
⌊m

n

⌋
|S| = 1

In view of Lemma 3, we arrive at inequality (19). �
Now we are in a position to prove Theorem 2.

Proof of Theorem 2: From Lemma 4, we know that

α(Gn,k(n−1)) ≤
⌊

k(n − 1)
n

⌋
+ 1 = k − 1 + 1 = k (20)

Now we consider the graph S ∈ Gn,k(n−1) which is the union
of k stars. Since S = T1 ∪ · · · ∪ Tk where Ti, 1 ≤ i ≤ k, are
stars, using Lemma 2 and Lemma 1 we have

α(S) ≥
k∑

i=1

α(Ti) = k (21)

From inequalities (20), (21) and the fact S ∈ Gn,k(n−1), we
know that

α(Gn,k(n−1)) = k (22)

and the graph S achieves the maximum value α(S) = k. �

V. ACCELERATED CONVERGENCE

IN SMALL-WORLD NETWORKS

We have shown that for a deterministic graph in the set
Gn,k(n−1), the graphs on which consensus algorithms converge
the fastest are the union of star graphs with the following
two properties: (1) As many as possible vertices have the
maximum out-degree of n − 1; and (2) the in-degree of each
vertex is around the average value of m

n . With the help of this
insight into the characteristics of the optimal graphs in the
set Gn,k(n−1), in this section we will define an operation on
random graphs called “designed rewiring” which redirects a
small portion of the edges of a given random graph and will
show by experiment results that this operation can accelerate
consensus algorithms effectively.

The topology of most of the networks running consensus
algorithms, such as wireless sensor networks, are modeled as
random graphs. The convergence of consensus algorithms have
been studied on some classes of special random graphs, such
as small-world and scale-free graphs [18], [19] and Ramanujan
graphs [20]. In this paper we will focus on accelerating
discrete-time consensus algorithms on small-world graphs
achieved by the “random rewiring” process parameterized by
0 < p < 1, where the random rewiring process [21] refers
to the following operations: Consider a regular lattice on a
ring in Gn, where each vertex i ∈ Vn is connected to its
k nearest neighbors in Ni; with probability p, each edge is
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Fig. 1. The evolution of standard deviation of x(t) on graphs H, S and T

randomly redirected to a vertex uniformly chosen from the set
V − {i} ∪ Ni.

We will consider the discrete-time consensus algorithm with
fixed network topology G in the form

x(k + 1) = P (G)x(k), k = 0, 1, 2, . . . (23)

where P (G) is the consensus matrix of graph G. Let H ∈ Gn,
n = 10, be the original lattice on the ring with k = 2. Let S be
the random graph achieved after the random rewiring operation
on H using p = 0.15. Now we will define the designed
rewiring operation on S. With probability one there are a pair
of vertices u and v in S having the maximum out-degree and
minimum in-degree respectively such that (u, v) is not an edge
of S. We randomly pick an edge ending at v and reattach its
starting end to u. What results is a new graph T which only
differs from S in one edge. We can compare the convergence
rates for system (23) with G being H, S and T respectively.
The initial value of x is given as xi(i) = x(n − i + 1) = i
for 1 ≤ i ≤ n

2 = 5. During each iteration, we compute the
standard deviation of x(t). We perform the experiments 100
times and plot the mean of the data in figure 1. Since all
three processes converge exponentially, we plot the natural
logarithm for the three processes in figure 2 in order to better
compare their convergence rates. As one can see from figures
1 and 2, the consensus algorithm converges faster on the small-
world graph S than on the lattice graph H, which agrees with
the analysis and experiments for the continuous case in [18],
[19], [20]. What we show here is that we achieved a even
faster convergence process on T by only redirecting one edge
in S via designed rewiring.

VI. CONCLUSION

In this paper, we use the coefficient of ergodicity and
the algebraic connectivity to study the convergence rates of
network consensus algorithms. We found network topologies
on which consensus algorithms converge quickly. We also
presented a technique called designed rewiring for random
graphs which accelerates convergence rates by redirecting only
a small portion of edges.
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