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Chapter 6

Construction of Malaria Gene Expression
Network Using Partial Correlations

Raya Khanin and Ernst Wit

Department of Statistics, University of Glasgow, Glasgow, UK
e-mail: raya@stats.gla.ac.uk

Abstract In this paper we model the gene expression network of Plasmodium fal-
ciparum using the time-course microarray dataset [Bozdech, Z., et al.,
PLoS Biol., 1(1) (2003), E5] A gene expression network is constructed
based on a novel method that combines two types of correlations be-
tween each pair of genes: standard Pearson and partial correlations.
A link is established between two genes if both correlation coefficients
are higher than their corresponding thresholds. The values for thresholds
are sought so that the topology of the resulting network satisfies sev-
eral criteria. The sought network has to be sparse, small-world (with any
two genes being connected by a path of a few links only), scale-free-like
(wherein a small number of genes have a large number of links and many
genes have only a few connections). Similar to gene networks of other
organisms the highly connected genes (hubs) in the constructed network
tend to have essential cell functions. To verify the proposed method and
to compare the results, a scale-free-like, small-world gene expression
network was also constructed using another dataset [Le Roch, K.G.,
et al., Science, 301(5639) (2003), 1503–1508], confirming the lethality
and centrality property of malaria hubs.

Keywords: gene expression network, partial correlation, scale-free-like network

1. INTRODUCTION

The objective of this study is to construct a gene expression network of Plas-
modium falciparum using the time-course microarray data-set from Bozdech
et al. [3]. Unravelling the topology of the malaria gene network is relevant to
understanding cell function and the invasion cycle of the parasite. We use a
graph-theoretical approach where nodes in the network stand for genes and
edges between two nodes stand for links representing relationships or associa-
tions between the two genes. In the network, the genes (nodes) are connected
if certain criteria, such as co-expression, are satisfied.
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Analyses of gene co-expression networks have shown a correlation between
the essentiality of a gene and the number of connections that the gene has:
highly connected genes (hubs) are often essential (involved in central bio-
logical functions) and evolutionarily conserved [2,16]. For Plasmodium fal-
ciparum more than 60% of predicted 5409 open reading frames lack sequence
similarity to genes from any other known organism [3]. In addition, 65% of
all annotated genes encode hypothetical proteins of unknown functions. This
makes ascribing putative roles for such genes a challenging task. One of the
potential benefits of gene network analysis is to obtain clues on the putative
roles of such genes of unknown function based on the gene connectivities,
positions in the network, and the other genes with which they have links.

It is of some interest to see whether the gene network analysis can give some
support to the hypothesis advanced in [3] on a regulatory network wherein a
comparatively small number of transcription factors with overlapping binding
site specificities could account for the entire cascade. The authors speculated
further that disruption of a key regulatory element (lethal gene) might have a
profound inhibitory effect on the entire network [3]. Such lethal genes are most
likely to be among the highly connected nodes in the malaria network.

For the study of the malaria gene regulatory network, we used two datasets.
The first is the overview dataset from the complete intra-erythrocytic develop-
mental cycle (IDC) transcriptome of Plasmodium falciparum measured at 46
time-points [3]. To verify results, we have also used a time-course dataset mea-
sured at nine time-points in human and mosquito stages of malaria parasite’s
life-cycle [10]. We will further refer to this dataset as the validation dataset.

2. NETWORK CONSTRUCTION FROM
TOPOLOGICAL CONSTRAINTS

We aim to construct a network of malaria gene interactions, using global
topology constraints, which have been found to be characteristic for other bi-
ological networks. These constraints include network sparseness, the small-
world property, and the existence of a few highly connected nodes and many
genes with a few connections.

An important measure of networks topology is the distribution of the num-
ber of connections per node. The number of connections per node is often
called the connectivity of a node or its degree. Therefore, the distribution is
referred to as the connectivity (or degree) distribution. Previously studied bio-
logical networks of interactions, including gene expression networks of other
organisms, have shown to have many nodes with few connections and a few
nodes with many connections (hubs) [1,2,11,16]. The existence of hubs has
often been cited as the most characteristic feature of biological networks and
in particular of the scale-free networks [1,2,16].
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Although, the networks are commonly referred as being scale-free, it is their
connectivity distribution that is considered to be scale-free. Precisely, distrib-
ution is defined as scale-free if its relative frequency distribution is given by a
power-law, p(k) ∼ k−γ , k � 1, where k stands for the connectivity of a node
and γ is the power-law exponent. It has recently been reported that the ev-
idence collected to support the scale-free property of biological networks is
questionable [15]. It has also been found that the connectivity distribution in
many inferred biological networks differs in a statistically significant way from
the power-law, and these networks are, strictly speaking, not scale-free [9]. In
addition, a plausible evolutionary mechanism such as evolutionary drift is not
compatible with scale-free distribution [13]. However, certain characteristics
of a scale-free network, such as a small-world property and the existence of
hubs, are valid for real genetic networks, and in the absence of consensus on an
alternative distribution, the power-law can be used for modelling purposes as a
first-order approximation. In particular, the connectivity distribution described
by a power-law can be useful for construction of global gene regulatory net-
works, whose structure is mainly unknown. In this paper, we will be looking
for the network connectivity distribution that resembles a power-law. We will
refer to such networks as scale-free-like.

A chi-squared statistic T = ∑k∗
k=1(Ok −Ek)

2/Ek ∼ χ2
k∗−2 has been used as

a measure of closeness of a network’s connectivity distribution to scale-free be-
haviour. Here Ok are the observed (constructed) values of connectivities from
the data, and Ek are the values estimated from the power-law, with γ estimated
by the maximum likelihood method as described below. The connectivity val-
ues over k∗, for which the expected number of connections is less than 5, are
pooled together. The smaller the value of the chi-squared statistic T the closer
the connectivity distribution resembles a power-law.

For several gene co-expression networks, whose connectivity distribution
has been modelled by the power-law, the power exponent γ has been reported
to be of the order of 1.0 [2,16]. We have determined the power-exponent, γ̂ ,
of the network under consideration, by the maximum likelihood method from
fitting the power-law distribution p(k) = k−γ

ζ(γ )
to the constructed connectivities

(or degrees). Here ζ(γ ) is the (truncated) Riemann zeta-function and k � 1.
The number of connections (connectivity), xi , for a node i is often obtained
from experimental or simulated data.

In a large network the number of connections of different nodes can be as-
sumed to be approximately independent. We have shown elsewhere [9] that
the assumption of independence of connectivities of all nodes in the network
can be weakened by assuming independence of connectivities of nodes in a
smaller sub-network. As a result, the likelihood function can be written as
L(γ |x) = ∏N

i=1 x
−γ

i /ζ(γ ), where N is the maximum connectivity. The log-
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likelihood l(γ |x) = −γ
∑N

i=1 logxi −N log ζ(γ ) is maximized by finding ze-
ros of its derivative using the standard Newton–Raphson method for finding
roots of the function.

Another important property gene expression networks have been shown to
possess is a small-world property. In simple terms, this property implies that
any two nodes can be connected with a path of only a few links. The small-
world property is often quantitatively characterized by a large average clus-
tering coefficient, C, which reflects the connectedness of the neighbours of a
given node between themselves. The clustering coefficient of a gene i is com-
puted by ci = 2ni/ki(ki − 1), where ni is the number of links connecting the
ki neighbours of gene i forming triangles and ki(ki − 1)/2 is the total number
of triangles that could pass through the node i. The average clustering coef-
ficient, C, of small-world networks is typically several orders of magnitude
higher than that of a random network of equivalent average connectivity and
size Cr ≈ k/Ngenes.

In addition, gene regulatory networks are known to be sparse because genes
influence and/or are being influenced by a limited number of other genes
[1]. This implies that average number of connections (connectivity) per gene
(node), k is not large. Theoretical studies found the values for average connec-
tivity in gene expression networks of different organisms to be of the order of
10–30 [11,16]. In this work, we will be looking for a network with the average
connectivity in this range.

3. METHOD FOR THE CONSTRUCTION OF
EXPRESSION NETWORK

The main thrust of this paper is to construct a malaria gene expression net-
work based on thresholding pairwise Pearson correlations and partial correla-
tions of gene profiles.

The threshold parameters were sought so that the constructed network satis-
fies four global topological criteria, described above. (1) The network is sparse,
with an average connectivity, k, of the order of magnitude of 10; (2) the net-
work has the small-world property such that is characterized by a clustering
coefficient which is much higher than that of a random network with the same
average connectivity and size, Cr = 10/3000 = 0.003; (3) the connectivity
distribution is scale-free-like, i.e. it is as close as possible to the power-law, as
seen in yeast and other organisms [2,4,11,16]; and (4) the power-law exponent
γ̂ of the connectivity distribution is close to 1.0 as has been reported for other
gene expression networks [2,11,16].
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3.1. Pearson Correlation

There have been a number of studies where global gene networks are con-
structed from microarray data based on the Pearson correlation coefficients.
Two genes are considered linked in the co-expression network if their correla-
tion is higher than the threshold [2,16]. Sometimes one also takes into account
empirically calculated p-values for the correlations between two genes [4].
The Pearson correlation has been shown to play an important role in inferring
interactions between genes [7]. However, methods that are based only on stan-
dard correlations are too simplistic and inevitably overestimate the number of
links (connectivity) per gene. It is common knowledge that a high correlation
coefficient is indicative not only of nodes that have direct connections but also
of nodes with indirect connections. It is also plausible that some important true
connections are left out if the threshold is not low enough. However, lowering
the correlation threshold will significantly increase the number of potential
links, including many random ones.

In the case of the malaria time-course dataset, the problem of including too
many random links becomes even more transparent due to a very highly co-
ordinated expression of genes [3]. A network constructed from the overview
malaria dataset by thresholding correlations, while restricting the average con-
nectivity per node, k, results in very high threshold values, R. For example, to
obtain a network with k = 50 the threshold R = 0.935 is required. Restricting
the average connectivity to a lower value, k = 30, results in an even higher
value of threshold, R = 0.95. This is an unreasonably high value. Given the
noisy data, missing values and the complexity of biological networks, many
biologically relevant connections will not be included in such network.

For a slightly lower value of Pearson correlation cut-off, R = 0.8, the con-
structed network ceases to be sparse. In addition, its connectivity distribution
is not scale-free-like (Figure 1). In fact, this co-expression network includes
about 15% of all possible links, with an average number of links per node,
k = 470, being more than ten times higher than the average connectivity for
the gene networks of other organisms constructed by the same method. For
example, with k = 32, the sparse scale-free network of yeast was constructed
with only R = 0.6 [16].

3.2. Partial Correlation

Here we propose to use partial correlations to filter the more likely links
out of a much larger set of potential links with high standard correlations.
The partial correlation coefficient of two genes measures the strength of rela-
tion between these genes after the effect of other genes is removed or fixed,
therefore indicating whether two genes are directly or indirectly linked. The
partial correlations of different orders have been used in Gaussian Graphical
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Figure 1. Histogram of connectivities in a malaria co-expression network constructed with a
threshold P = 0.8 from overview dataset [3]. The average connectivity per node is k = 470
and the network is not scale-free. There are several highly connected genes and a much larger
number of genes links with connectivities in the medium range.

Models (GGM) to characterize strength of correlations between pairs of genes
in regulatory networks [12,14,17]. First-order partial correlations have been
used to elucidate the regulatory network of Arabidopsis thaliana [17] and Sac-
chromycces cerevisiae [12]. These authors consider all possible triangles of
three genes to explore the dependence between two of the genes conditioned
on the third. All these triangles are then combined to make inferences on the
complete network using either frequentist or latent random graph approaches.
Second-order partial correlations, conditioning each pair of genes on every
other pair of genes, have been applied to computer simulated networks and to
yeast gene expression data [5]. Another method uses full-order partial corre-
lations (conditioned on all other genes in the network) and the false discovery
rate (FDR) approach to infer edges of the gene network from both simulated
and real microarray data [14].

We propose to construct a gene expression network from a large gene
dataset by using both Pearson and (full-order) partial correlation coefficients
for each pair of genes. Namely, for each pair of genes (i, j) we compute the
Pearson correlation of their profiles, rij , and their partial correlation coeffi-
cient, qij . The partial correlation of genes i and j with respect to other genes
whose effect is removed (fixed) is given by

qij = ωij√
ωiiωjj

,
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Figure 2. Schematic figure of the drawbacks of a representation of gene regulatory relationships
by an undirected network. If in the inferred network, gene g3 is connected to genes g1 and g2
by undirected links (left), then it is impossible to distinguish between several scenarios in the
real network. For example, gene g1 regulates gene g3, which in turn regulates gene g2 (middle),
or gene g3 regulates genes g1 and g2 (right). Two other variants are possible.

where ωij = {rij }−1 is the inverse of the Pearson correlation matrix, {rij }. To
overcome the degeneracy problem of the correlation matrix {rij } for small
samples, partial correlation estimators based on the Moore–Penrose pseudo-
inverse of correlation matrix were introduced in [14]. In our work we follow
this approach and compute partial correlations by using the Moore–Penrose
pseudo-inverse of the correlation matrix via the cor2pcor( ) function from R-
package GeneTS [14]. Two genes (i, j) are connected by a link if their Pear-
son correlation is higher than a cut-off value, R, and their partial correlation is
higher than (or equal to) a cut-off value, Q:

i ↔ j : rij � R and qij � Q.

The general drawback of any inference approach that results in an undi-
rected network (such as a GGM) is that it gives no indication of causality.
A link connecting two genes does not indicate which gene in the pair is the
regulator and which is the regulated one, as illustrated in Figure 2. Although
lacking causality information, undirected networks are a very useful first level
representation of gene regulatory relationships on a genome wide level. Fur-
ther levels of representations are directed networks, where the direction of the
regulatory relationship is specified. This can eventually be extended by quan-
titative information, such as probabilities of connection in Bayesian networks
or kinetic parameters of regulation.

4. RESULTS

For the overview dataset, the values from multiple oligonucleotides repre-
senting the same gene were averaged, resulting in expression values for 3048
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Figure 3. Connectivity distribution of nodes in a malaria gene network constructed from the
overview dataset for different values of thresholds. (A), (B) Log distribution of connectivities
for r = 0.45;0.5;0.55 and P = 0.7 (A) and P = 0.8 (B). (C), (D) Distribution of observed
connectivities and fitted power-law N(k) ∼ k−γ for r = 0.5 and P = 0.8, γ̂ = 0.91 (C) and
P = 0.7, γ̂ = 0.84 (D).

genes. In the rest of the paper we will concentrate on reporting the results
for the overview dataset. The topology of the network constructed using the
validation dataset is very similar (see Tables S5 and S6 on the supplemental
web-page: www.stats.gla.ac.uk/~raya/Malaria/suppldata.html).

We have performed a grid search for the threshold values R and Q based on
topological criteria. We have found a range 0.45 � Q � 0.6 and 0.7 � R � 0.8
for which all four topological constraints are satisfied. The qualitative topolog-
ical properties of the malaria network are insensitive to the precise thresholds
within this range of values. Taking the thresholds within this range yields a
scale-free-like distribution of connectivities, which are qualitatively similar.
Figure 3 shows connectivity distributions, N(k), for several values of thresh-
olds R and Q. Values outside this region result in other types of networks.
Q � 0.4 results in networks whose connectivities do not obey a power-law
(Figure 4); while Q > 0.6 and/or R > 0.8 yield too few links (not shown).

Values of γ̂ are within the range 0.6–1.4 for different values of thresholds
Q and R. γ = 0.6 for the parameters R = 0.7, Q = 0.45 produce a network
with an average connectivity per node of k = 28 and maximum connectivity
kmax = 133, and γ̂ = 1.4 is for R = 0.8, Q = 0.6 with k = 4, kmax = 30. Other
values of parameters resulted in networks with average connectivities between
these two values (see Table S1 on the supplemental web-page).
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Figure 4. Histogram of connectivities in a malaria co-expression network constructed with
thresholds P = 0.7, r = 0.4 from overview dataset [3]. Lowering one of the thresholds outside
the accepted region results in a network whose behaviour is very different from scale-free.

The clustering coefficients have been found to be within the range C =
0.195 for R = 0.7, Q = 0.45 and C = 0.443 for R = 0.8, Q = 0.6. These
values are much higher than the value for random networks of equivalent aver-
age connectivity and size (C = 0.003), and they are consistent with the values
reported for other organisms (e.g., C = 0.6 for yeast [16] and other organ-
isms [2]).

4.1. Statistical Validation

To find whether a network constructed by thresholding the two types of
correlation coefficients is statistically meaningful or whether it can easily be
found by chance, we performed a permutation test. For each gene we reshuffle
the values at each time-point, constructing a gene profile of the same length,
with the same values but with a different time-order of these values. We then
recompute the correlation and partial correlation matrices and establish a link
between genes i and j if the thresholding conditions (R = 0.7, Q = 0.5) are
satisfied. In 100 permutation networks, two links are found on average for each
network (estimated standard error = 0.14) compared to several thousands in
the network inferred from the original dataset. This allows us to conclude that
the network inferred by the thresholding method is unlikely to have arisen by
chance.
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4.2. Biological Validation

The expression network constructed by the proposed method in Section 4.1
is worth investigating further for some proof-of-principle results. In the next
section we report results for the threshold values R = 0.7, Q = 0.5. These
parameters yield network statistics that are similar to previously studied net-
works with a maximum connectivity kmax = 101, average connectivity per
node k = 15, and the power-law exponent γ̂ = 0.84.

4.2.1. Lethality and Centrality of Malaria Genes. It has been previ-
ously reported that high degree nodes in gene expression networks constructed
for other organisms are more likely to correspond to essential and conserved
genes, i.e. to be involved in central biological functions of the cell [2]. In the
constructed network, among the top 66 hubs with connectivities from kmax/2
there are 13 genes with no manual annotation, 7 genes belong to the Plas-
tid genome, and 30 genes code for proteins with unknown functions (hypo-
thetical proteins). Therefore, only 16 hub-genes code for proteins with some
identifiable functions. Among them, 7 genes (PFI1340w, PFI1360c, PFI0385c,
PF13_0229, PF14_0373, PFA0345w, PF11_0298) are known to have essential
functions in cell growth, maintenance, and metabolism (according to GO an-
notation). In addition, a rhoptry protein (PFI0265c), a papain family cysteine
protease (PFI0135c), and an early transcribed membrane protein (PF10_0019)
are also in the list of the hub-genes. Among 5 hubs on chromosome 9, three
(PFI1340w, PFI1360c, and PFI0385c) are prescribed functions in cell growth,
maintenance and metabolism, and they are all connected among themselves
forming a triangular network motif. The largest reported ORF (MAL6P1.147)
also has a large number of links, half of maximum connectivity. Other 8 anno-
tated hubs out of 30 that code for hypothetical proteins are either conserved or
have homologues/similar to proteins in other organisms.

The list of 66 top hubs for the network constructed from the validation
dataset with R = 0.8, Q = 0.5 contains 20 genes (virtually all annotated hubs)
with cell growth/maintenance, cell communication, and other central cell func-
tions. For a full list of hubs in networks constructed for the overview and the
validation datasets see Tables S2 and S6 on the supplemental webpage.

As another proof-of-principle, we looked at how many hubs are in the set
of only 6% of all genes in the genome of Plasmodium falciparum that were
found to be common to all four stages of the parasite life cycle (supplemen-
tary Table 1 in [6]). This list contains primarily housekeeping genes and their
products, such as ribosomal proteins, transcription factors, and cytoskeletal
proteins. It turned out that 15 hubs from our list are among this set of common
genes found in [6]. This is about 30% of all hubs with manual annotation.

It is of interest to see whether genes with unknown functionality among the
hubs belong to classes of essential genes. We looked at how hubs that code
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for protein with unknown functions in the overview network clustered in the
experiments of Le Roch et al. [10], as it has been demonstrated for various or-
ganisms that genes that cluster together are more likely to have similar biolog-
ical functions. We found that among 25 genes coding for hypothetical proteins
that are present in the validation dataset, 10 genes belong to cluster 13, 5 to
cluster 12, and 5 to cluster 15 of [10]. Le Roch et al. [10] reported that genes
of known functions in clusters 12, 13 are mainly involved in cell-cycle regu-
lation and progression at trophozoite stage, while cluster 15 is characterized
as having genes with roles in cell invasion that are under evaluation as blood-
stage vaccine. Therefore, hubs of unknown functions in those clusters are more
likely to be of these essential functions. It is worth mentioning that, according
to the authors of [10], genes from clusters 12 and 13 may represent potential
targets for drugs focused on disruption of the highly replicating trophozoite
stage of the parasite, while additional candidate vaccine antigens could come
from the yet uncharacterized genes of cluster 15. This gives further support
to our conjecture that the hubs of unknown functions might be of important
biological functions and therefore warrant further investigation.

We believe that the above mentioned evidence demonstrates that the hubs
in the constructed malaria gene network tend to be essential. It will also be
interesting to investigate those genes among hubs that have not been manu-
ally annotated (see Table S3 that contains oligonucleotides of hubs from the
overview network with no manual annotation).

4.2.2. Some Sub-networks in Malaria Gene Network. It might be
interesting to investigate further some sub-networks of the large malaria gene
network. As an example, we had a closer look at the glycolytic pathway, as it is
mentioned in [3] as the one that is well-preserved in malaria parasite. Among
9 genes from the microarray dataset that belong to this pathway as taken from
the http://plasmodb.org database, we found that they share 5 links among them-
selves. In fact, the probability of 9 randomly picked genes to have 5 links is
0.01% given the connectivity matrix. Given that some of the genes in this path-
way are not present in the dataset, this result is encouraging. Our analysis did
not pick up MAL61.160 as part of the glycolytic pathway. Instead, another pu-
tative copy, PF10_0363, was identified as a part of it, having 2 connections, as
well as gene PF10_0155 that has 4 connections.

As another example, we had a look at all major candidates for vaccination
(AMA1, EBA175, MSP1, MSP3, MSP7, RAP1, RESA1) studied in [3]. All
these genes are very well positioned in the network, having connectivities be-
tween 20 and 40, well above the average connectivity of k = 15. Interestingly,
these vaccine candidates are connected among themselves as well as with some
other merozoite invasion proteins (MSP6, MSP8). In addition, the neighbours
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Figure 5. Sketch of a sub-network of seven major malaria vaccine candidates. The sub-network
contains major vaccine candidates (AMA1, EBA175, MSP1, MSP3, MSP7, RAP1, RESA1)
that have been studied in [3] and some genes/proteins or groups according to our model. Small
boxes contain one gene/protein and larger boxes contain two or more related genes/proteins.
Only some links are shown. For a full list of links of the seven major malaria vaccine candidates
according to our model see Tables S4 on supplemental page.

of these vaccine candidates are enriched with myosin-like proteins, erythro-
cyte associated proteins, reticulocyte binding proteins, and zinc finger pro-
teins among others (Figure 5). For example, the erythrocyte-related group con-
tains erythrocyte binding antigenes (PF07_0128, MAL13P1.60), erythrocyte
surface antigene (PFA0110w), and erythrocyte binding proteins (PF08_0142,
PF08_0147). The myosin-like proteins group contains 4 genes (PF13_0233,
PFL225w, MAL6P1.286, PFL1435c). There are 4 genes in the reticulocyte-
binding proteins group (PF13_0198, PFL2520w, MAL13P1.176, PFD0100w).
The protein-kinase group includes PF130815w, PFC0945w, PFB00150c, and
Ser/Thr protein-kinase PFB0665w. The zinc-finger related group contains one
zinc-finger protein (PFE0895) and a cell-cycle regulator with zinc-finger do-
main (PFE1415w). There are a large number of hypothetical proteins that are
linked to the vaccine candidates in our network. Several of the hypothetical
proteins from the list are linked to two major vaccine candidates, while some
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hypothetical proteins (e.g., PF10_0352, PF07_0127, PFE0365c, PFC1045c,
PFD0715c) have links with three major vaccine candidates and are probably
worth having a closer look at. For a full list of the neighbours of these major
vaccine candidates see Table S4.

5. CONCLUSIONS

In this paper we have constructed a model of malaria gene expression net-
work by a novel method of thresholding two types of pair-wise correlation
coefficients: the Pearson correlation and the full-order partial correlation co-
efficients. The values for thresholds were determined by topological consid-
erations. Both types of correlations are essential in revealing the connections
of genes in the network. The constructed small-world, scale-free network has
hub-genes that tend to have essential cell functions, similar to other biological
networks. We propose that hubs with unknown functions warrant further in-
vestigation in the search for malaria vaccine. Finding hubs in the malaria gene
network is extremely important in guiding the search for the malaria vaccine.
Targeting a highly connecting node with a drug will result in inactivation of
a protein that could be fatal to the whole life-cycle of the malaria parasite,
whereas removing a less connected node will barely affect the whole system.

This model of malaria gene network is worth investigating further by look-
ing at various sub-networks consisting of genes that are known to be involved
in the same biological processes. Alternatively, one might want to look at the
neighbours of genes with unknown functions. This might help the process of
assigning putative functions to these genes. The links adjacency matrix of the
network studied in this paper can be found on the supplemental web-page:
www.stats.gla.ac.uk/~raya/Malaria/suppldata.html. To summarise, the thresh-
olding approach of two correlation coefficients that is proposed in this paper
suffices for the goal of studying statistical properties of a biological network
and also gives encouraging proof-of-principle results.
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