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Abstract. In this brief note we discuss geodesic flows that correspond to cosmological
solutions in higher-dimensional supergravity. On the one hand, we explain that S-
brane solutions are in one-to-one correspondence with geodesic curves on the moduli
space through dimensional reduction over the brane worldvolume. On the other hand,
reduction over the transversal space gives rise to a scalar potential for the moduli and
the geodesic motion is deformed. Nonetheless, in most cases, the scalar flow becomes
geodesic asymptotically in which case the solution is described by a multi-field scaling
cosmology.

1. Cosmology and higher-dimensional supergravity

To study cosmology in string theory it is instructive, as a first approximation, to consider time-
dependent solutions in 10- and 11-dimensional supergravity. In a simple truncation this comes
down to studying time-dependent solutions of the following d-dimensional action

5= [ dlev=g{R - §(00)* - syer?r2}. (1)

where R is the usual Einstein—Hilbert term, ¢ is a dilaton and F,, = dA,_ is the field strength
of a (n — 1)-form gauge potential.

In order for a time-dependent solution to have an interpretation in terms of a four-dimensional
FLRW-universe, the space-time metric should at least contain two blocks, one block describing a
four-dimensional FLRW-universe and another block that can be considered as an internal space.
To interpret one block as an internal space requires compactness. Non-compact directions are
allowed if these directions are Killing directions such that they can be mod out by a discrete,
non-compact symmetry. As an example, consider the maximally symmetric spaces endowed
with the metric dEi. When k = +1 the space is a compact sphere, for k& = 0 the space is flat
space which can be turned into a torus via discrete identifications and for k = —1 the space
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describes a hyperboloid which can also be made compact by identification of the non-compact
directions. The Ansatz for a two-block solution is then

ds? = &2y datda? + 2PPDax2 (2)

where «, 3 are specific real numbers !, n is diag(— + ...+). For the moment we keep the
dimensions of the two blocks arbitrary. Several solutions of this kind have been constructed, see
for instance [1].

In a cosmological context we take the first part of the metric four-dimensional. For such
solutions it was noticed that, when a non-zero p-form flux is turned on, a period of four-
dimensional cosmic acceleration can be present for all values of k [2]. When there is no flux this
is only possible for k = —1 [3]. This observation sparked off lots of effort in the construction of
general time-dependent solutions of the above form and generalizations thereof.

The phenomenological value of these solutions is rather low due to several shortcomings
[4]. Nonetheless these solutions can serve as interesting and simple toy models with partial
phenomenological successes (such as the cosmic coincidence problem [5]).

Yet, another insight increased the relevance of these solutions. The above form of the metric
can be rewritten more suggestively by re-parametrizing time

ds? = 206, dazda® + 2PO[—di? + 12%2] . (3)

Now one block is flat Euclidean space and, when k = —1, the other block is a Minkowski space in
Milne coordinates. As suggested by Gutperle and Strominger such supergravity solutions could
correspond to specific time-dependent processes in string theory [6]. Because of the similarity
with stationary p-brane solutions the above time-dependent solutions are called spacelike branes
(S-branes). In this language the usual stationary p-branes are called timelike p-branes and are
characterized by a two-block solution where one block is the Lorentzian (p + 1)-dimensional
worldvolume whereas the other block is sliced with spheres and the functions in the metric only
depend on the radial coordinate r. Spacelike branes have an Euclidean (p 4 1)-dimensional
worldvolume whereas the transversal space is sliced with hyperboloids and the functions in the
metric depend only on time ¢.

2. Lower-dimensional descriptions of Sp-branes

The complexity of a time-dependent solution carried by non-trivial form fields is somewhat
smaller when the form fields are just scalars. This can be achieved in two different ways. Either
by reducing the solution over its transversal space (not including the time) or by reducing over
the Euclidean worlvolume. Below we present both cases.

2.1. (p + 2)-dimensional cosmology

From the expression (2) we notice that we can reduce the solution over a maximally symmetric
space dE%. One can generalize this to more complicated internal spaces. The reduced action
will be of the following kind

S = /dDz\/?g{R ~-1G,;(2)9"9,9'0,97 — V(<I>)} : (4)

The cosmological FLRW-solutions of this system lift up to higher-dimensional time-dependent
solutions (S-brane type solutions). This dimensional reduction procedure maps an Sp-brane to

! For ¢ to have standard kinetic term we choose o = m, 6= —%

the internal space and D is the number of non-compact dimensions.

« where n is the dimension of
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a FLRW-cosmology in p 4 2 dimensions. To describe our four-dimensional world we need an S2
brane and then our three-dimensional universe is the worldvolume of the S2 brane.

We mentioned that spacelike branes are rather similar to the usual timelike branes. In fact,
the above reasoning also applies to timelike branes. The dimensional reduction of a timelike
brane over its transversal space (apart from the radial coordinate) maps the brane to a domain
wall solution of the above action (4). Domain wall solutions and cosmologies are very similar
[9, 25] as we notice from the expression of the metric

ds? = ef(2)2dz? + g(2)?(ne) pdada’, (5)

where 7. is diag(—e,+,...,4). When € = —1 this is the metric for a cosmological solution and
z is the time direction. When € = +1 this is the metric for a stationary domain wall solution
and z is the distance from the wall.

An advantage with stationary solutions is that there exist supersymmetric ones which can
be constructed from first-order BPS-equations by imposing vanishing fermion variations. Since
time-dependent solutions are not supersymmetric in ordinary supergravity theories one would
guess that there is no similar first-order framework for cosmologies 2. But, interestingly, BPS-
equations do not only arise for supersymmetric configurations and their existence is more general
(for the case of time-dependent solutions, see [9, 10, 11]). Here we give the derivation as presented
in [12].

Assume the scalar potential V(®) can be written in terms of another scalar function W (®)
as follows

V=c {%Gijaiwajw - %W} , (6)

then the € will be an overall factor of a one-dimensional action S which can be written as a sum
of squares

_ 772 P y
S= e/dz 19 A W - 20 - 20| - = + Gl w P (7)
fg f
where a dot denotes a derivative w.r.t. z and we ignored the boundary term. If the terms within
brackets are zero, the action is stationary under variations, leading to the following first-order
equations of motions

fgW =2(D —2)g, '+ fGUO;W = 0. (8)

For ¢ = +1 these equations are the standard BPS equations for domain walls that arise
from demanding the susy-variation of the fermions to vanish. The function W is then the
superpotential that appears in the susy-variation rules and equation (6) with e = 41 is natural
for supergravity theories. For every W that obeys (6) we can find a corresponding DW-solution,
and if W is not related to the susy variations we call the solutions fake supersymmetric.

For e = —1 these first-order equations are named pseudo-BPS equations and W is named the
pseudo-superpotential because of the immediate analogy with BPS domain walls in supergravity

[9]-

2.2. The Sp-brane/S(-1)-brane map

All directions of d¥7 that appear in (2) are indeed Killing directions that can be reduced
over. However, the same applies to the flat worldvolume directions % of the Sp-brane in the
coordinate frame used in equation (3). The reduction of the Sp-brane solution does not generate

2 There exist exotic supergravity theories with wrong signs kinetic terms for which time-dependent solutions are
supersymmetric [7, 8]
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a scalar potential for the moduli since a scalar potential originates from the curvature of the
internal space and flux trough the internal space. Both of these are absent. The compactified
Lagrangian is of the form (4) with V' = 0. The metric of the lower-dimensional S(-1)-brane is
again FLRW-type

ds? = —f(t)%dt* + g(t)%dx}, (9)

and accordingly the moduli only depend on time.
From the scalar field Lagrangian we find that the scalars describe a geodesic flow on the
moduli space with as affine parameter h(t) defined by dh(t) = g' =P fdt. The metric solution
can be found easily
dt?
at—2(D-2) _ [

where a = |[v||?/(2(D — 1)(D —2)) and ||v||? is defined as the constant affine velocity along the
geodesic curve.

The S(—1)-brane solution is then completely specified when the geodesic curve is specified
[13]. This proves the one-to-one correspondence between geodesic curves and Sp-branes.

The same analysis can be carried out for timelike branes and the result is that one can
map a Dp-brane to a D(-1)-brane in a Euclidean theory (aka instanton) [14]. An important
difference with Sp-branes is that for Dp-branes the moduli space is non-Riemannian since the
metric has indefinite signature. We hope to report soon on an analysis of the geodesic curves
that correspond to Sp- and Dp-branes [15].

dsh = — +t2d%7 (10)

3. Asymptotic scaling behaviour

In this section we focus on the effective four-dimensional description of cosmological solutions
of the action (4) with V' # 0. Since explicit cosmological solutions are hard to find (for the
interesting and often more complex situations) it is useful to first study the asymptotic behaviour
of general solutions. Asymptotically many solutions become a simplified solution of the equations
of motion, which we call attractor solutions. Especially in the context of late-time cosmology one
is not interested in the details of the most general solutions and knowing the attractor solution
is sufficient for many purposes.

A typical class of attractor solutions are so-called scaling solutions [17]. Such solutions are
defined by the property that all terms contributing to the energy density maintain a fixed
ratio with respect to each other during evolution. For instance the kinetic energy scales as the
potential energy, Gijfbiqﬂ /V(®) = constant. As a consequence the scale factor is a power-law;
a(t) = t?. When the FLRW-space has non-zero spatial curvature (k # 0) the number p is
restricted to be p = 1. Scaling solutions are the unique FLRW-universes that possess a timelike
conformal Killing vector 3. Scaling solutions have been shown to appear in supergravity theories
and general Kaluza—Klein theories, see [18, 20, 19, 24] and references therein.

As we now show, an interesting relation emerges between scaling solutions and geodesic flows
[16]. The conditions for the correspondence between geodesics and scaling solutions were found
in [12] using the first-order formalism and the results of [23]. We briefly summarize this below.

The finite transformation associated with the conformal Killing vector leaves the equations
of motion invariant if the action S scales with a constant factor, which is exactly what happens
for scaling solutions since all terms in the Lagrangian scale like t=2. Under the finite conformal
transformation g, — e2>‘gW the action scales as a whole if

VeV, gTG DT — e GG DD (11)

3 This Killing vector comes from the following scaling: ¢ — At and © — A'“Pz where the z are the spacelike
coordinates. This coordinate re-scaling results in an overall scaling of the metric.
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Equations (11) imply that Giji)i(i)j remains invariant from which one deduces that d®*/d\ = &
must be a Killing vector on the targetspace or on any geodesic submanifold of the targetspace
[23].

In terms of ¢ = In7 the tangent vector & itself is Killing since then d®?/d\ = d®'/dIn.
Thus, a scaling solution is associated with an invariance of the equations of motion for a rescaling
of cosmic time and is therefore associated with a conformal Killing vector on space-time and a
Killing vector on the target space (or a totally geodesic subspace thereof).

Consider

V@‘bi = <i>jvj<i>¢ = (i)j{v(j(i)i) + V[j‘i)i]} 5 (12)

where we denote Cbi = lefbk The symmetric part is zero if we parametrize the curve with
t = In 7 since scaling makes ® a Killing vector. Also, V[;®; = 0 since the pseudo-BPS condition

makes ® a curl-free flow ®; = — f8;W. In the case @ is Killing on a totally geodesic submanifold
the above shows that ®!(t) is a geodesic on the totally geodesic submanifold which implies that
®i(t) is geodesic on the whole target space. We believe that scaling solutions that are not
geodesic are rather exceptional, see [21] for an example.

4. Discussion

In this note we reviewed the importance of geodesic motion on moduli spaces for the description
of cosmological solutions inspired from higher-dimensional supergravity. Higher-dimensional
time-dependent solutions correspond to spacelike p-branes which can be reduced over their
worldvolume. The resulting spacelike (—1)-brane is identified with a geodesic motion on the
moduli space that appears after the reduction. In another approach one reduces a spacelike brane
over its transversal space. Consequently, the spacelike brane becomes a cosmological solution of
lower-dimensional theory of gravity coupled to scalars with a non-zero scalar potential.

We pointed out that a similar description exists for timelike branes. The reduction of a
timelike brane over the worldvolume give rise to geodesic instanton solutions and the reduction
over the transversal space generates stationary domain wall solutions. This is summarized
schematically in the picture below.

Dp-brane in d dim. Sp-brane in d dim.

flat WV curved spherical flat WV curved hyperbolic
reduction reduction reduction reduction
D(—1) — instanton in Domain wall in S(—1) — brane in Cosmology in
(d—p—1) —dim.(V = 0) (p+2) — dim.(V # 0) (d—p—1) —dim.(V = 0) (p+2) — dim.(V #0)

The similarity between timelike and spacelike p-branes translates into the similarity between
domain walls and cosmologies after compactification over the transversal space. This similarity
inspires the use of ’superpotential’ techniques for studying cosmological solutions. We
demonstrated that this can be particularly useful for understanding the asymptotic structure of
a solution. More specifically we explained that scaling solutions (typically attractors) correspond
to geodesic flows if a superpotential exist .

4 We like to mention the results of [22] in this respect. There it was shown that cosmological solutions of the
action (4) can always be seen as geodesic trajectories on a target space that extends the scalar manifold.
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