

University of Groningen

cis-Dihydroxylation and Epoxidation of Alkenes by Manganese Catalysts - Selectivity, Reactivity and Mechanism

Boer, Johannes Wietse de

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Boer, J. W. D. (2008). cis-Dihydroxylation and Epoxidation of Alkenes by Manganese Catalysts -Selectivity, Reactivity and Mechanism [Groningen]: University of Groningen

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

cis-Dihydroxylation and Epoxidation of Alkenes by Manganese Catalysts Selectivity, Reactivity and Mechanism

Johannes W. de Boer

© 2008 Johannes W. de Boer, Groningen

Printed by PrintPartners Ipskamp BV, Enschede, the Netherlands.

The work described in this thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, the Netherlands.

The work described in this thesis was financially supported by the Dutch Economy, Ecology, Technology (EET) programme (EETK01106), a joint programme of the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, and the Ministry of Housing, Spatial Planning and the Environment.

ISBN 978-90-367-3335-9 (printed version) ISBN 978-90-367-3336-6 (electronic version)

RIJKSUNIVERSITEIT GRONINGEN

cis-Dihydroxylation and Epoxidation of Alkenes by Manganese Catalysts Selectivity, Reactivity and Mechanism

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 22 februari 2008 om 16.15 uur

door

Johannes Wietse de Boer

geboren op 28 april 1979 te Dokkum

Promotor :	Prof. dr. B.L. Feringa
Copromotor :	Dr. R. Hage
Beoordelingscommissie :	Prof. dr. J.B.F.N. Engberts Prof. dr. L. Que, Jr. Prof. dr. J. Reedijk

Contents

Preface

Chanter 1	
Enantioselective epoxidation and <i>cis</i> -dihydroxylation catalysts	13
1.1 Epoxidation	14
1.1.1 Titanium	14
1.1.2 Mn-porphyrins	16
1.1.3 Mn-salen	18
1.1.4 Mn-salts	20
1.1.5 Metal free epoxidation catalysts	21
1.2 Cis-dihydroxylation	22
1.2.1 Os-catalyzed <i>cis</i> -dihydroxylation	22
1.2.2 Fe-catalyzed <i>cis</i> -dihydroxylation and epoxidation	24
1.3 Summary and conclusions	29
1.4 References	29
Chapter 2	
Dinuclear manganese systems - from catalases to oxidation catalysis	33
2.1 Dinuclear manganese catalase enzymes	34
2.2 Structural, functional and spectroscopic models for catalase enzymes	38
2.2.1 Tacn based structural models	39
2.2.2 Bpea based catalase mimics	40
2.2.3 Bpia based catalase mimics	41
2.2.4 Benzimidazolyl based catalase mimics	42
2.2.5 Salph based catalase mimics	45
2.3 From catalase to oxidation catalysis	40
2.3.1 Complexes based on Mn-N2PyMePhOH	4/
2.3.2 Complexes based on Mn-tptin and related ligands	40
2.5.5 Complexes based on win-titlach	40
2.5 References	40
	77
Chapter 3	
Tuning the selectivity of Mn-tmtacn by the use of carboxylic acid additives	53
3.1 Suppressing catalase type activity with additives	22
3.2 Aldehydes and carboxylic acids as additives	56
3.2.1 Cts-dinydroxylation	- 30 - 57
2.2 Deracida	50
3.4 Reactivity dependence on solvent	- 59 - 60
3.5 Time course of the reaction	61
3.6 Dependence of activity and selectivity on the carboxylic acid	64
3.7 Me ₄ dtne	66
3.8 Substrate scope	67
3.8.1 Alkenes	67
3.8.2 Benzyl alcohol oxidation and C-H bond activation	69
3.9 Summary	69
3.10 References	71

9

Chapter 4

Redox-state dependent coordination chemistry of the Mn-tmtacn family of	
complexes	73
4.1 Synthesis and characterisation of Mn_{μ}^{III} bis(μ -carboxylato) complexes	75
4.2 Synthesis and characterisation of Mn_2^{II} bis(μ -carboxylato) complexes	81
4.2.1 Magnetic susceptibility	82
4.2.2 ESR	83
4.2.3 FT-IR spectroscopy	84
4.3 Electrochemical properties of 2a-d	85
4.3.1 Cyclic voltammetry of 2a	85
4.3.2 Cyclic voltammetry of 2c	86
4.3.3 Cyclic voltammetry of 2b	87
4.3.4 Influence of $[CCl_3CO_2H]$ and $[H_2O]$ on the non-carboxylato	
bridging ligand	89
4.3.5 Interaction of 2a-d with H_2O_2	90
4.4 Formation of $[Mn_{2}^{III}(O)(RCO_{2})_{2}(tmtacn)_{2}]^{2+}$ complexes from	
$[Mn^{1V}_{2}(O)_{3}(tmtacn)_{2}]^{2^{+}}$	91
4.4.1 Electrochemical reduction in the presence of trichloroacetic acid	91
4.4.2 Electrochemical reduction in the presence of acetic acid	92
4.4.3 Chemical reduction	93
4.5 Ligand exchange in Mn_{2}^{m} complexes	96
4.6 Summary	99
4.6.1 Dinuclear Mn_2 bis(carboxylato) complexes	99
4.6.2 Redox driven ligand exchange of 1	100
4.7 Conclusions	101
4.8 References	101
Chapter 5 <i>Cis</i> -dihydroxylation and epoxidation of cyclooctene	
by Mn-tmtacn/CCl ₃ CO ₂ H - speciation analysis	103
5.1 Macroscopic parameters affecting the catalytic performance	105
5.1.1 CCl ₃ CO ₂ H as bridging ligand	105
5.1.2 [CCl ₃ CO ₂ H] dependence on activity and selectivity	108
5.1.3 Dependence of activity and selectivity on [2a]	109
5.1.4 Excess of CCl ₃ CO ₂ H	109
5.1.5 Initial oxidation state	111
5.1.6 Effect of water	112
$5.1.7 H_2O_2$ efficiency	114
5.2 Speciation analysis	115
5.2.1 Electrochemistry under catalytic conditions	117
5.3 ¹⁸ O labeling and ² D isotope effects	118
5.4 Mechanistic considerations	120

120 5.4 Mechanistic considerations 5.4 Hechanistic considerations 5.4.1 Speciation analysis 5.4.2 H₂O₂ activated species 5.5 Summary and conclusions 5.6 References 129

Chapter 6

Salicylic, L-ascorbic and oxalic acid additives	131
6.1 Salicylic acid	132
6.1.1 Catalytic oxidation of cyclooctene	132
6.1.2 Salicylic acid complexes	134
6.1.3 Spectroscopic examination	135
6.1.4 ¹⁸ O-labeling	136
6.1.5 Discussion of the role of salicylic acid	136
6.2 L-ascorbic acid	137
6.2.1 Catalytic oxidation of cyclooctene and 1-octene by 1/L-ascorbic acid	137
6.2.2 Spectroscopic examination	138
6.2.3 Discussion of the role of L-ascorbic acid	140
6.3 Oxalic acid	140
6.3.1 Catalytic oxidation of cyclooctene and 1-octene	140
6.3.2 Spectroscopic examination	142
6.3.3 ¹⁸ O-labeling	143
6.3.4 Discussion of the role of oxalic acid	144
6.4 Summary and conclusions	145
6.5 References	146
Chapter 7	
Enantioselective cis-dihydroxylation	147
7.1 Epoxidation catalysts based on chiral tacn derivatives	148
7.2 2,2-Dimethylchromene as substrate	150
7.3 Chiral carboxylic acids	153
7.3.1 Synthesis of chiral Mn_{2}^{m} bis(μ -carboxylato) complexes	153
7.3.2 Enantioselective <i>cis</i> -dihydroxylation	154
7.3.3 Screening chiral carboxylic acids	156
7.3.4 Intrinsic <i>cis</i> -dihydroxylation	160
7.3.5 Temperature dependence	163
7.4 Summary and conclusions	164
7.5 References	164
Chapter 8	
General discussion and future prospects	167
Annondix A	
Appendix A Substrates and products	175
Substrates and products	175
Appendix B	
Ligands and complexes	181
~ .	
Appendix C	10.5
Measurements	191
Samonyatting	201
Samenyaunig	201
Dankwoord	207