

 University of Groningen

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems
van Hateren, Johannes

Published in:
Neural computation

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hateren, J. H. V. (2008). Fast Recursive Filters for Simulating Nonlinear Dynamic Systems. Neural
computation, 20(7), 1821-1846.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/fast-recursive-filters-for-simulating-nonlinear-dynamic-systems(b766fb84-3446-4fb8-814f-507db949eacf).html

LETTER Communicated by Markus Diesmann

Fast Recursive Filters for Simulating Nonlinear
Dynamic Systems

J. H. van Hateren
j.h.van.hateren@rug.nl
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts
and Sciences, Amsterdam, and Institute for Mathematics and Computing Science,
University of Groningen, The Netherlands

A fast and accurate computational scheme for simulating nonlinear dy-
namic systems is presented. The scheme assumes that the system can be
represented by a combination of components of only two different types:
first-order low-pass filters and static nonlinearities. The parameters of
these filters and nonlinearities may depend on system variables, and the
topology of the system may be complex, including feedback. Several ex-
amples taken from neuroscience are given: phototransduction, photopig-
ment bleaching, and spike generation according to the Hodgkin-Huxley
equations. The scheme uses two slightly different forms of autoregres-
sive filters, with an implicit delay of zero for feedforward control and
an implicit delay of half a sample distance for feedback control. On a
fairly complex model of the macaque retinal horizontal cell, it computes,
for a given level of accuracy, one to two orders of magnitude faster than
the fourth-order Runge-Kutta. The computational scheme has minimal
memory requirements and is also suited for computation on a stream
processor, such as a graphical processing unit.

1 Introduction

Nonlinear systems are ubiquitous in neuroscience, and simulations of con-
crete neural systems often involve large numbers of neurons or neural
components. In particular, if model performance needs to be compared
with and fitted to measured neural responses, computing times can become
quite restrictive. For such applications, efficient computational schemes are
necessary. In this letter, I present such a highly efficient scheme, which has
recently been used for simulating image processing by the primate outer
retina (van Hateren, 2006, 2007). The scheme is particularly suited for data-
driven applications, where the time step of integration is dictated by the
sampling interval of the analog-to-digital or digital-to-analog conversion.
It assumes that the system can be decomposed into components of only
two types: static nonlinearities and first-order low-pass filters. Interestingly,
these components are also the most common ones used in neuromorphic

Neural Computation 20, 1821–1846 (2008) C© 2008 Massachusetts Institute of Technology

1822 J. van Hateren

VLSI circuits (Mead, 1989). In the scheme presented here, the components
need not have fixed parameters but are allowed to depend on the system
state. They are arranged in a possibly complex topography, typically in-
volving several feedback loops. The efficiency of the scheme is produced
by using very fast recursive filters for the first-order low-pass filters. I will
show that it is best to use slightly different forms of the filter algorithm for
feedforward and feedback processing loops.

No attempt is made to rigorously analyze the convergence or optimality
of the scheme, which would be difficult to do for arbitrary nonlinear sys-
tems. The scheme should therefore be viewed as a practical solution that
works well for the examples I give here but may need specific testing and
benchmarking on new problems.

The scheme I present can be efficiently implemented on stream proces-
sors. Recently there has been growing interest in using such processors for
high-performance computing (e.g., Göddeke, Robert Strzodka, & Turek,
2007; Ahrenberg, Benzie, Magnor, & Watson, 2006; Guerrero-Rivera, Mor-
rison, Diesmann, & Pearce, 2006). In particular, the arrival of affordable
graphical processing units (GPUs) with raw computating power more than
an order of magnitude higher than that of CPUs is driving this interest
(see http://www.gpgpu.org). Current GPUs typically have about 100 pro-
cessors that can work in parallel on data in the card’s memory. Once the
data and the (C-like) programs are loaded into the card, the card computes
essentially independent of the CPU. Results subsequently can be uploaded
to the CPU for further processing. GPUs are especially suited for simulat-
ing problems, such as in retinal image processing, that can be written as
parallel, local operations on a two-dimensional grid.

Stream processors are, unlike CPUs, data driven and not instruction
driven. They process the incoming data as they become available and there-
fore usually need algorithms with fixed, or at least predictable, computing
times. The processing scheme I present in this letter has a fixed computing
time. Moreover, it has low computational cost and low memory require-
ments, because it deals only with current and previous values of input,
state variables, and output. The output is produced without delays that are
not part of the model, that is, at the same time step as the current input, and
the scheme is thus also suited for real-time applications.

The letter is organized as follows. First, I present a fairly complete
overview of methods to simulate a first-order low-pass filter with a min-
imal recursive filter. Subsequently, I give several examples of how spe-
cific neural systems—in particular, several subsystems of retinal processing
and spike generation following the Hodgkin-Huxley equations—can be
decomposed into suitable components. Computed results of the various
forms of recursive filters are compared with benchmark calculations us-
ing a standard Matlab solver. I show that for a practical, fairly complex
model, the most efficient algorithm (modified Tustin) outperforms a con-
ventional fourth-order Runge-Kutta integration by one to two orders of

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1823

magnitude. Finally, I discuss the merits and limits of the approach taken
here.

2 Discrete Simulation of a First-Order Low-Pass Filter

Much of the material presented in this section is not new. However, I
found that most of it is scattered throughout the literature, and I there-
fore give a fairly complete overview. Table 1 summarizes the filters and
their properties.

In the continuous time domain, the equation

dy
dt

+ 1
τ

y = 1
τ

x (2.1)

describes a first-order low-pass filter transforming an input function x(t)
into an output function y(t), where τ is the time constant and the coefficient
in front of x is chosen such that the filter has unit DC gain: y = x if the input
is a constant. In the examples below, I usually write this equation in the
standard form:

τẏ = x − y. (2.2)

Fourier-transforming this equation gives as the transfer function of this
filter

H(ω) = ỹ
x̃

= 1
1 + iωτ

, (2.3)

where the tilde denotes Fourier transforms. The impulse response of the
filter is

h(t) = 1
τ

e−t/τ for t ≥ 0

= 0 for t < 0.
(2.4)

We assume now that x(t) is available only at discrete times tn = n�, as
xn = x(n�), and that we require y(t) at the same times, as yn = y(n�). Here
� is the time between samples. In conformation with the most common
integration schemes, we further assume that for calculating the current
value of the output, only the current value of the input, the previous value
of the output, and possibly the previous value of the input are available.
We therefore seek real coefficients a1, b0, and b1 such that

yn = −a1 yn−1 + b0xn + b1xn−1 (2.5)

1824 J. van Hateren

Ta
bl

e
1:

A
ut

or
eg

re
ss

iv
e

Fi
lt

er
s

A
pp

ro
xi

m
at

in
g

τ
ẏ

=
x

−
y

by
y n

=
−a

1
y n

−1
+

b 0
x n

+
b 1

x n
−1

,w
it

h
Sa

m
pl

e
D

is
ta

nc
e

�
,a

nd
τ

′ ≡
τ
/
�

.

Fo
rw

ar
d

B
ac

kw
ar

d
Tr

ap
ez

oi
d

al
E

xp
on

en
ti

al
Z

er
o-

O
rd

er
Fi

rs
t-

O
rd

er
M

od
ifi

ed
Sc

he
m

e
E

ul
er

E
ul

er
R

ul
e

E
ul

er
H

ol
d

H
ol

d
Tu

st
in

’s
M

et
ho

d

A
ls

o
kn

ow
n

as
Tu

st
in

’s
m

et
ho

d
E

xp
on

en
ti

al
St

ep
-i

nv
ar

ia
nt

R
am

p-
in

va
ri

an
t

B
ili

ne
ar

tr
an

sf
or

m
at

io
n

in
te

gr
at

io
n

ap
pr

ox
im

at
io

n
ap

pr
ox

im
at

io
n

C
ra

nk
-N

ic
ho

ls
on

E
xa

ct
in

te
gr

at
io

n
Tr

ia
ng

ul
ar

ru
le

−a
1

(1
−

1/
τ

′)
τ

′ /
(τ

′ +
1)

(τ
′ −

0.
5)

/
(τ

′ +
0.

5)
e−

1/
τ
′

e−
1/

τ
′

e−
1/

τ
′

(τ
′ −

0.
5)

/
(τ

′ +
0.

5)
(w

ei
gh

to
f

y n
−1

,
pr

ev
io

us
ou

tp
ut

)
b 0

–
1/

(τ
′ +

1)
0.

5/
(τ

′ +
0.

5)
–

1
−

e−
1/

τ
′

1
−

τ
′ +

τ
′ e

−1
/
τ
′

1/
(τ

′ +
0.

5)
(w

ei
gh

to
f

x n
,

pr
es

en
ti

np
ut

)
b 1

1/
τ

′
–

0.
5/

(τ
′ +

0.
5)

1
−

e−
1/

τ
′

–
τ

′ −
(1

+
τ

′)e
−1

/
τ
′

–
(w

ei
gh

to
f

x n
−1

,
pr

ev
io

us
in

pu
t)

Im
pl

ic
it

d
el

ay
�

/
2

−�
/
2

0
�

/
2

−�
/
2

0
−�

/
2

Sy
m

bo
l

τ
0

τ
−

R
em

ar
ks

C
an

be
un

st
ab

le
Pr

ef
er

re
d

ch
oi

ce
Pr

ef
er

re
d

ch
oi

ce
fo

r
fe

ed
fo

rw
ar

d
fo

r
fe

ed
ba

ck

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1825

produces an output close to that expected from equation 2.2. The indices
and signs of the coefficients are chosen here in such a way that they are
consistent with common use in the digital processing community for de-
scribing IIR (infinite impulse response) or ARMA (autoregressive, moving
average) filters that relate the z-transforms of input and output (Oppenheim
& Schafer, 1975). I will not use the z-transform formalism here, but only
note that Fourier-transforming equation 2.5 and using the shift theorem
gives

ỹn = −a1 ỹne−iω� + b0 x̃n + b1 x̃ne−iω�, (2.6)

and therefore a transfer function

H(ω) = ỹn

x̃n
= b0 + b1z−1

1 + a1z−1 , (2.7)

where the operator z−1 = exp(−iω�) represents a delay of one sample.
The coefficients a1, b0, and b1 are not independent because of the addi-

tional constraint that the filter of equation 2.2 has unit DC gain. A constant
input c must then produce a constant output c, thus, equation 2.5 yields
c = −a1c + b0c + b1c and therefore

−a1 + b0 + b1 = 1. (2.8)

Because representing a general continuous system as in equation 2.2 by a
discrete system as in equation 2.5 can be only approximate (note that equa-
tions 2.3 and 2.7 cannot be made identical), there is no unique choice for
the coefficients a1, b0, and b1. Below I give an overview of several possibil-
ities, mostly available in the literature, and discuss their appropriateness
for the computational scheme I present. The first three methods discussed
below, forward Euler, backward Euler, and the trapezoidal rule, are derived
from general methods for approximating derivatives. The other methods
discussed are more specialized, dealing specifically with equation 2.2 and
differing with respect to how the input signal is assumed to behave between
the sampled values.

2.1 Forward Euler. Forward Euler (Press, Teukolsky, Vetterling, &
Flannery, 1992) is used quite often in neural simulations. Applied to
equation 2.2, it amounts to the approximation

yn ≈ yn−1 + ẏn−1 � = yn−1 + (xn−1 − yn−1) �/τ ; (2.9)

1826 J. van Hateren

Figure 1: (A) Starting sinusoid (continuous line) and function values at the sam-
ple times (filled circles, 16 samples per period). The function equals 1 at times
earlier than shown. (B) Continuous line: sinusoid of A filtered by equation 2.2
with τ ′ = 16, computed with Matlab ode45; open circles: result of filtering the
samples of A with equation 2.10, the recurrence equation that follows from for-
ward Euler. Output samples lag by approximately half a sample distance. (C)
As B, for backward Euler (see equation 2.12). Output samples lead by approxi-
mately half a sample distance. (D) As B, for trapezoidal (see equation 2.14).

hence, we get the recurrence equation,

yn = (1 − 1/τ ′)yn−1 + (1/τ ′)xn−1

with τ ′ = τ/�.
(2.10)

Here as well as below, I use τ ′, which is τ normalized by the sample dis-
tance, to keep the equations concise. Equation 2.10 suffers from two major
problems: first, it is not very accurate, and even unstable for small τ ′ (Press
et al., 1992), and second, it produces an implicit delay of �/2 for centered
samples. The second problem is illustrated in Figure 1. Figure 1A shows
a starting sinusoid, where the filled circles give the function values at the
sampling times. The continuous function of Figure 1A can subsequently be
filtered by equation 2.2 using a standard integration routine (Matlab ode45)
at a time resolution much better than � (obviously, in this simple case, the

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1827

result could have been obtained analytically, but we will encounter other ex-
amples below where this is not possible). Figure 1B shows the result (contin-
uous line). When the samples of the sinusoid are processed by equation 2.10,
the result lags by half a sampled distance (open circles in Figure 1B).

2.2 Backward Euler. Backward Euler (Press et al., 1992) applied to equa-
tion 2.1 yields

yn ≈ yn−1 + ẏ n� = yn−1 + (xn − yn)�/τ, (2.11)

hence

yn = [τ ′/(τ ′ + 1)]yn−1 + [1/(τ ′ + 1)]xn. (2.12)

Backward Euler is stable (Press et al., 1992) and slightly more accurate than
forward Euler, but suffers from the problem that it produces an implicit
delay of −�/2 for centered samples, that is, a phase advance. Figure 1C
illustrates this, where the continous curve is the correct result (identical
curve as the continuous curve in Figure 1B), and the open circles give the
result of applying equation 2.12.

2.3 Trapezoidal Rule. The trapezoidal rule (also known as
Crank-Nicholson; Rotter & Diesmann, 1999) is equivalent to the bilinear
transformation and Tustin’s method in digital signal processing (Oppen-
heim & Schafer, 1975). It combines forward and backward Euler,

yn ≈ yn−1 + 1
2

(ẏn−1 + ẏn)� = yn−1 + 1
2

(xn−1 − yn−1 + xn − yn)�/τ,

(2.13)

and leads to

yn = [(τ ′ − 0.5)/(τ ′ + 0.5)]yn−1 + [0.5/(τ ′ + 0.5)]xn

+ [0.5/(τ ′ + 0.5)]xn−1. (2.14)

The method is stable and accurate, and it produces a negligible implicit
delay (see Figure 1D).

2.4 Exponential Euler. A method that has gained some popularity in
the field of computational neuroscience (e.g., in the simulation package
Genesis; Bower & Beeman, 1998) is sometimes called exponential inte-
gration (MacGregor, 1987; Rotter & Diesmann, 1999) or exponential Euler
(Moore & Ramon, 1974; Rush & Larsen, 1978; Butera & McCarthy, 2004). It

1828 J. van Hateren

Figure 2: (A) Zero-order hold sampling model, where the sample values (dots)
taken from a function (dashed line) are held until a new sample arrives (con-
tinuous line). (B) A unit sample (continuous line and filled circles) is assumed
here to represent a block in the previous intersample interval (dashed line).
(C) Continuous line: sinusoid of Figure 1A filtered by equation 2.2 with τ ′ = 16,
computed with Matlab ode45; open circles: result of filtering the samples of
Figure 1A with equation 2.17, the recurrence equation that follows from the
ZOH processing scheme (i.e., assumed pulse shape of B).

assumes that the input is approximately constant, namely, equal to xn−1, on
the interval from (n − 1)� to n�. Equation 2.1 then has the exact solution
(see, e.g., appendix C.6 of Rotter & Diesmann, 1999)

yn = e−1/τ ′
yn−1 + (1 − e−1/τ ′

)xn−1. (2.15)

This method is closely related to forward Euler, as a comparison of equa-
tions 2.10 and 2.15 shows: for large τ ′ (time constant large compared with the
sample distance), the factors exp(−1/τ ′) ≈ 1 − 1/τ ′ and 1 − exp(−1/τ ′) ≈
1/τ ′ approximate those of forward Euler. The exponential Euler method is
stable and more accurate than forward Euler for small τ ′. However, it has
the same implicit delay of �/2 as forward Euler (not shown).

2.5 Zero-Order Hold. When analog-to-digital and digital-to-analog
converters are used, a choice has to be made for the assumed signal values
between the sample times. A simple, practical choice is to keep the value
of the last sample until a new sample arrives. This is called a zero-order
hold (ZOH), and for a sampled sinusoid, it assumes the continuous line
shown in Figure 2A. It involves an implicit delay of �/2. Digitally filtering
the samples of a ZOH system can compensate for this delay by assuming
that a unit sample at n = n0 (continuous line and filled circles in Figure 2B)
represents a block as shown by the dashed line in Figure 2B. The coefficients
a1, b0, and b1 for approximating equation 2.2 by equation 2.5 can be readily
obtained from the response to this pulse; these coefficients then also apply
to an arbitrary input signal, because the filter is linear and time invariant.

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1829

For samples n ≥ n0 + 2, the present and previous input are zero; thus the
terms with b0 and b1 do not contribute. Because equation 2.4 shows that
the output must decline exponentially, we find −a1 = e−�/τ = e−1/τ ′

. For
sample n = n0, the previous input and output are zero; thus, the terms with
a1 and b1 do not contribute. We then find b0 from the convolution of the
block s(t) (dashed line in Figure 2B) with the pulse response h(t) of the filter,
evaluated at sample n = n0:

b0 =
∫ ∞

−∞
h(t′)p(t − t′) dt′

∣∣∣∣
t=n0�

=
∫ �

0

1
τ

e−t′/τ · 1 dt′ = 1 − e−�/τ

= 1 − e−1/τ ′
. (2.16)

With equation 2.8, we then find b1 = 1 + a1 − b0 = 0. The recurrence equa-
tion therefore is

yn = e−1/τ ′
yn−1 + (1 − e−1/τ ′

)xn. (2.17)

Note that the difference with equation 2.15 is that here the current input
sample, xn, is used, whereas in equation 2.15, it is the previous input sample,
xn−1. Whereas equation 2.15 implies a delay of �/2, the present scheme has
a delay of −�/2, that is, a phase advance (see Figure 2C).

The filter in equation 2.17 is a special case of a general scheme of
representing linear filters by using the matrix exponential (e.g., Rotter &
Diesmann, 1999, where it is called exact integration). Such filters are con-
sistent with assuming a ZOH and therefore imply a delay of −�/2. Al-
though Rotter and Diesmann do not use a ZOH but rather a function
representation using Dirac δ-functions, a delay is implied by the choice
of integration interval in their equation 3, which excludes the previous
input sample and fully includes the present input sample. Had the integra-
tion interval been chosen symmetrical, the δ-functions at the previous and
present input samples would each have contributed by one-half, leading
to a scheme with 0.5(xn−1 + xn) as input, and therefore an implicit delay
of 0.

2.6 First-Order Hold. Another choice for the assumed function values
between samples is the first-order hold (FOH), where sample values are
connected by straight lines. It assumes that a unit sample at n = n0 (the con-
tinuous line and filled circles in Figure 3A) represents a triangular pulse as
shown by the dashed line in Figure 3A. The method is also called the
triangular or ramp-invariant approximation, and is in fact equivalent to as-
suming that a function can be represented by B-splines of order one (Unser,
1999, 2005). A general derivation of the recurrence relation, also valid for the
more general lead-lag system τy ẏ + y = τx ẋ + x of which equation 2.2 is a

1830 J. van Hateren

Figure 3: (A) A unit sample (continuous line and filled circle) is assumed here
to represent linear interpolation in the previous and next intersample intervals
(dashed line). (B) Continuous line: sinusoid of Figure 1A filtered by equation 2.2
with τ ′ = 16, computed with Matlab ode45; open circles: result of filtering the
samples of Figure 1A with equation 2.19, the recurrence equation that follows
from the FOH processing scheme (i.e., assumed pulse shape of A).

special case, is given by Brown (2000). A simple alternative derivation goes
similarly as given above for the ZOH. For samples n ≥ n0 + 2, the present
and previous input are zero, and we again find −a1 = e−1/τ ′

. For sample
n = n0, the previous input and output are zero, and now b0 equals

b0 =
∫ ∞

−∞
h(t′)p(t − t′) dt ′

∣∣∣∣
t=n0�

=
∫ �

0

1
τ

e−t′/τ
(

1 − t′

�

)
dt ′

= 1 − τ ′ + τ ′e−1/τ ′
. (2.18)

With equation 2.8, we then find b1 = 1 + a1 − b0 = τ ′ − (1 + τ ′) exp(−1/τ ′).
The recurrence equation therefore is

yn = e−1/τ ′
yn−1 + (

1 − τ ′ + τ ′e−1/τ ′)
xn + (

τ ′ − (1 + τ ′)e−1/τ ′)
xn−1.

(2.19)

Figure 3B illustrates that the FOH has a negligible implicit delay.

2.7 Centered Step Invariant. The centered step-invariant approxima-
tion (e.g., Thong & McNames, 2002) is not often used and is given here only
for completeness; its performance is similar to that of FOH and trapezoidal.
It assumes that a unit sample at n = n0 represents a block that is, contrary to
the regular zero-order hold, centered on the sample time. This is equivalent
to assuming that a function can be represented by B-splines of order zero

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1831

(Unser, 1999). As before, we must have −a1 = e−1/τ ′
, and for b0 we get

b0 =
∫ ∞

−∞
h(t′)p(t − t′) dt ′

∣∣∣∣
t=n0�

=
∫ �/2

0

1
τ

e−t′/τ · 1 dt ′ = 1 − e−1/(2τ ′).

(2.20)

With equation 2.8, we then find b1 = 1 + a1 − b0 = exp(−1/(2τ ′)) −
exp(−1/τ ′). The recurrence equation therefore is

yn = e−1/τ ′
yn−1 + (1 − e−1/(2τ ′))xn + (e−1/(2τ ′) − e−1/τ ′

)xn−1. (2.21)

This method also has a negligible implicit delay (not shown).

2.8 Modified Tustin’s Method. Below I show that for implementing
nonlinear feedback systems, a delay of −�/2 is in fact favorable. One pos-
sibility is to use the ZOH for obtaining such a delay, but a modification of
Tustin’s method (the trapezoidal rule discussed above) is at least as good
and has coeffients that are simpler to compute. Whereas the trapezoidal rule
has no appreciable implicit delay, because it weighs the present and pre-
vious inputs equally (b0 = b1), it can be given a −�/2 delay by combining
these weights to apply to the present input only:

yn = [(τ ′ − 0.5)/(τ ′ + 0.5)]yn−1 + [1/(τ ′ + 0.5)]xn. (2.22)

The method is evaluated along with the other methods in the remainder of
this letter and will be shown to work very well for feedback systems. To my
knowledge, this modification of Tustin’s method has not been described in
the literature before.

3 Relationship Between Recursive Schemes for First-Order
Low-pass Filters

A Taylor expansion of the various forms of −a1 gives

−a1 = e−1/τ ′ = 1 − 1
τ ′ + 1

2τ ′2 − 1
6τ ′3 + . . .

for exponential Euler, ZOH, and FOH, (3.1)

−a1 = 1 − 1
τ ′ for forward Euler, (3.2)

−a1 = τ ′/(τ ′ + 1) = 1/(1 + 1/τ ′) = 1 − 1
τ ′ + 1

τ ′2 − 1
τ ′3

+ . . . for backward Euler, (3.3)

1832 J. van Hateren

−a1 = (τ ′ − 0.5)/(τ ′ + 0.5) =
(

1 − 1
2τ ′

) / (
1 + 1

2τ ′

)

=
(

1 − 1
2τ ′

) (
1 − 1

2τ ′ + 1
4τ ′2 − 1

8τ ′3 + . . .

)

= 1 − 1
τ ′ + 1

2τ ′2 − 1
4τ ′3

+ . . . for trapezoidal and modified Tustin. (3.4)

Compared to the theoretical exponential decline, equation 2.4, the expo-
nential Euler, ZOH, and FOH are fully correct; the forward and backward
Euler schemes are correct only up to the factor with (1/τ ′); and trapezoidal
and modified Tustin are correct up to the factor with (1/τ ′)2. The accuracy
of the last is related to the fact that (τ ′ − 0.5)/(τ ′ + 0.5) is a first-order Padé
approximation of exp(−1/τ ′) (Bechhoefer, 2005). Note that in the limit of
τ � �, all algorithms use approximately the same weight for the previous
output sample: 1 − 1/τ ′.

With respect to the weights acting on the input, the algorithms presented
above can be divided into three groups, depending on the implicit delay
they carry (see Table 1). If only the previous input sample is used (forward
and exponential Euler), there is a delay of �/2; if only the present input
sample is used (backward Euler, ZOH, and modified Tustin’s method), there
is a delay of −�/2; and if both the previous and present input samples are
used (trapezoidal and FOH), there is no delay. Below we analyze only the
groups with delays −�/2 and 0.

The coefficients b0 of the group with the phase advance (delay −�/2)
can be expanded as

b0 = 1 − e−1/τ ′ = 1
τ ′ − 1

2τ ′2 + 1
6τ ′3 + . . . for ZOH (3.5)

b0 = 1/(τ ′ + 1) = 1
τ ′

1
(1 + 1/τ ′)

= 1
τ ′ − 1

τ ′2 + 1
τ ′3 − . . . for backward Euler (3.6)

b0 = 1/(τ ′ + 0.5) =
(

1
τ ′

)/(
1 + 1

2τ ′

)
=

(
1
τ ′

)(
1 − 1

2τ ′ + 1
4τ ′2 − . . .

)

= 1
τ ′ − 1

2τ ′2 + 1
4τ ′3 − . . . for modified Tustin, (3.7)

where we find that ZOH and modified Tustin are more similar to each other
than to backward Euler.

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1833

Finally, the coefficients of the FOH can be compared with those of
trapezoidal:

b0 = 1 − τ ′ + τ ′e−1/τ ′ = 1 − τ ′ + τ ′
(

1 − 1
τ ′ + 1

2τ ′2 − 1
6τ ′3 + . . .

)

= 1
2τ ′ − 1

6τ ′2 + . . . for FOH (3.8)

b0 = 0.5/(τ ′ + 0.5) =
(

1
2τ ′

)/(
1 + 1

2τ ′

)
=

(
1

2τ ′

)(
1 − 1

2τ ′ + . . .

)

= 1
2τ ′ − 1

4τ ′2 + . . . for trapezoidal (3.9)

and

b1 = τ ′ − (1 + τ ′)e−1/τ ′ = τ ′ − (1 + τ ′)
(

1 − 1
τ ′ + 1

2τ ′2 − 1
6τ ′3 + . . .

)

= 1
2τ ′ − 1

3τ ′2 + . . . for FOH (3.10)

b1 = 0.5/(τ ′ + 0.5) = 1
2τ ′ − 1

4τ ′2 + . . . for trapezoidal. (3.11)

The coefficients start to differ in the factor with (1/τ ′)2. We will see in the
examples in section 4 that FOH and trapezoidal perform very similarly on
concrete problems.

4 Examples of Nonlinear Dynamic Systems

In this section, I provide several examples of nonlinear dynamic systems
that are well suited to be simulated using autoregressive filters of the type
discussed above. I show for these examples how the systems can be rear-
ranged to contain only static nonlinearities and first-order low-pass filters.
Furthermore, I compare the results of several of the algorithms presented
above with an accurate numerical benchmark and discuss the speed and
accuracy of the various possibilities.

4.1 Phototransduction: Coupled Nonlinear ODEs. An example of a
system where coupled nonlinear differential equations can be represented
by a feedback system is the phototransduction system in the cones of the
vertebrate retina. I concentrate here on the main mechanism, which pro-
vides gain control and control of temporal bandwidth (van Hateren, 2005).

1834 J. van Hateren

For this purpose, a suitable form is given by

Ẋ = 1/(1 + C4) − β X (4.1)

Ċ = (X − C)/τC . (4.2)

The variable β is linearly related to the light intensity and can be considered
as the input to the system. The variable X represents the concentration of
an internal transmitter of the cone and can be considered as the output of
the system because it regulates the current across the cone’s membrane. The
variable C is an internal feedback variable, proportional to the intracellular
Ca2+ concentration.

We now rewrite the equations such that they get the form of equation 2.2:

τβẊ = q/(1 + C4) − X

with τβ = 1/β and q = 1/β (4.3)

τC Ċ = X − C. (4.4)

By defining a time constant τβ (actually not a constant, because it varies
with β) and an auxiliary variable q , we see that both equations formally
take a form similar to equation 2.2, where q now has the role of input to
equation 4.3, with the factor 1/(1 + C4) as a gain. We can thus represent these
equations by the system diagram shown in Figure 4A. The boxes containing
a τ there represent unit-gain first-order low-pass filters. From the system
diagram, it is clear that the divisive feedback uses its own result after that
has progressed through two low-pass filters and a static nonlinearity. The
following describes the algorithm associated with Figure 4A:

� Assume an initial steady state with β = β0, and obtain initial values
of all variables by solving (analytically or numerically) equations 4.3
and 4.4 for Ẋ = 0 and Ċ = 0.

� Repeat for each time step:
Read β as input. Compute a1, b0, and b1 for τβ = 1/β, and update X
by low-pass filtering it, taking (1/β)/(1 + C4) as input to the filter.
Use a precomputed a1, b0, and b1 for τC to update C by low-pass
filtering it, taking X as input to the filter. Write X as output.

Note that τβ is obtained from the current value of β. In principle, it might
have been based partly on the previous value of β as well, because β changes
in the interval between the previous and the current sample. However, for
τβ significantly larger than �, this is expected to be a second-order effect,
and the changing time constant is therefore treated in the simplest possible
way, as described in the algorithm above.

Because at each time step only the result of C that was obtained at the
previous time step can be used in the division by (1 + C4), the feedback path
would effectively get an (implicit) extra delay of � if calculated following

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1835

Figure 4: (A) System diagram of equations 4.3 and 4.4. Boxes containing a τ

are unit-gain first-order low-pass filters, possibly depending on input or state
variables (e.g., τβ depends on β). The other boxes represent static nonlinearities
given by the function definition inside the box. (B) Scheme equivalent to A,
where the required phase advance of one sample distance (�) for the feedback
is obtained by using two low-pass filters of type τ−, each providing a −�/2
delay (i.e., a �/2 phase advance). The box to the right represents a �/2 delay to
compensate for the phase advance of τ−

β . (C) Thin continuous line: response X of
equations 4.3 and 4.4, using τC = 3 ms, to β = β0(1 + 0.9 sin(2π f t)) for t ≥ 0 and
β = β0 for t < 0, with β0 = 0.025 (ms)−1 and f = 10 Hz, computed with Matlab
ode45; dashed line: result of filtering with the scheme of B, with � = 1 ms and
using the modified Tustin’s method for τ−. (D) Root-mean-square (rms) error
between the output when using the various recursive filters for the scheme of
B and the result of ode45 at its maximum accuracy setting. Input as in C . The
thin, straight lines are an aid for judging the scaling behavior of the various
methods, and have slopes of −1 and −2 in double-logarithmic coordinates.

this scheme. Such an extra delay will affect the results (and in extreme
cases may lead to spurious oscillations), which can be minimized only by
choosing � rather small. However, there is a way to alleviate this problem.
As we have seen above, several of the autoregressive schemes have an
implicit delay of −�/2. Because there are two low-pass filters concatenated
in the feedback loop, using such a scheme will produce a total delay of

1836 J. van Hateren

−�, exactly compensating for the implicit delay � of the feedback. In other
words, the divisor used at the point of divisive feedback will have the correct
current time. Because the forward low-pass filter, τβ , has a delay of −�/2, we
need to compensate that if we require that the output of the system have
the right phase. (This may not always be necessary, especially not when
the system is part of a larger system, where it would be more convenient
to correct the sum of all delays at the final output.) The required delay
of �/2 can be approximated by linear interpolation, that is, a recurrence
equation yn = 0.5xn−1 + 0.5xn. The linear interpolation implies a slight low-
pass filtering of the signal and is therefore accurate only if the sampling
rate is sufficiently high compared with the bandwidth of the signal. We can
then replace the scheme of Figure 4A by the one of Figure 4B, where τ−

indicates that we are using filters with a −�/2 delay (see Table 1).
How well do the recursive schemes of section 2 perform on this problem?

To evaluate that, the thin, continuous line in Figure 4C shows the response X
of equations 4.3 and 4.4 to a sinusoidal modulation of β, computed using the
Matlab routine ode45 at high time resolution and high precision settings.
The dashed line shows the result when using the scheme of Figure 4B with
the modified Tustin’s method used for τ− with � = 1 ms. How the accuracy
depends on � is evaluated in Figure 4D, which shows the rms (root mean
square) deviation from the ode45 benchmark as a function of �, not only for
the modified Tustin’s method but also for most of the other schemes. To get
a fair comparison, Figure 4A was used for schemes with implicit delays 0
and �/2, where for the latter, an explicit delay of −�/2 was added as a final
stage. As is clear, the ZOH and especially the modified Tustin’s method are
superior. They scale more favorably as a function of 1/�, and for a given
level of accuracy it is sufficient to use a � at least an order of magnitude
larger than for the other schemes. They therefore compute at least an order
of magnitude faster. Because of the simplicity and speed of computing the
coefficients of the modified Tustin’s method, this appears to be the scheme
to be recommended for this type of feedback system. Note, however, that
this scheme is accurate only when τ is at least a few times larger than �

(see equations 3.4 and 3.7), and breaks down completely for τ ′ < 1 (with
−a1 even becoming negative for τ ′ < 0.5).

4.2 Photopigment Bleaching: Dynamics on Different Timescales. For
an example of a stiff set of differential equations, we look at the dynamics of
photopigment bleaching in human cones (Mahroo & Lamb, 2004; Lamb &
Pugh, 2004; van Hateren & Snippe, 2007). For present purposes, a suitable
form of the equations is

Ṙ = [I (1 − B − R) − R]/τR (4.5)

Ḃ = R/τR − 0.2
B + 0.2

B/τB . (4.6)

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1837

Here I is a (scaled) light intensity, R is the (normalized) amount of pho-
topigment excited by light, and B is the (normalized) amount of bleached
photopigment. The rate by which excited pigment is bleached is governed
by first-order kinetics (1/τR), whereas the reconversion of bleached pig-
ment to excitable pigment is governed by rate-limited dynamics (Mahroo
& Lamb, 2004): the second term on the right-hand side of equation
4.6 is consistent with first-order kinetics for small B but saturates for
large B. Equations 4.5 and 4.6 form a stiff set of equations because the
time constants τR = 3.4 · 10−3 s and τB = 25 s differ substantially. Through
the factor (1 − B − R), bleaching provides a slow gain control, controlling
the sensitivity of the eye in bright light conditions.

Rewriting the equations into the form of equation 2.2 gives

τR Ṙ = I (1 − B − R) − R (4.7)

τb Ḃ = gB R − B

with τb = τB
B + 0.2

0.2
and gB = τb/τR.

(4.8)

This processing scheme is depicted in Figure 5A, where τb and gB at time
tn are derived from B at time tn−1. Note that the phase advance of τ− is
sufficient for the loop involving τb , but provides only half of the required
phase advance for the direct loop. Figure 5B shows a benchmark calculation
using ode45 and the result of using the scheme of Figure 5A with the
modified Tustin’s method. The stimulus I steps at t = 0 from 10−5 to a
sinusoidal modulation around 10−3. Because an instantaneous step contains
considerable power in its high-frequency components, using a recursive
filter with a rather large � causes significant aliasing, which in this example
would noticeably affect the response right after the step. To reduce the effect
of aliasing, the step was assumed here to take 1 ms, that is, there is a linear
taper between t = 0 and 1 ms. Figure 5C compares the rms error of the
various schemes as a function of �. Again, the ZOH and the modified
Tustin’s method perform best, despite the fact that there is no complete
compensation of the feedback delay.

4.3 Spiking Neurons: Hodgkin-Huxley Equations. As a final example
of a highly nonlinear system with fast dynamics, we look at the Hodgkin-
Huxley equations for spike generation (Hodgkin & Huxley, 1952). Follow-
ing the formulation by Gerstner and Kistler (2002, Chapter 2.2), these equa-
tions are given by equations 4.9 to 4.12:

Cu̇ = −gNam3h(u − ENa) − gKn4(u − EK) − gL(u − EL) + I, (4.9)

where u is the membrane potential (in mV, defined relative to the rest-
ing potential), C the membrane capacitance (taken as 1 µF/cm2), the input

1838 J. van Hateren

Figure 5: (A) System diagram of equations 4.7 and 4.8. (B) Thin continuous
line: response R of equations 4.7 and 4.8, using τR = 3.4 ms and τB = 25 s, to I =
10−3(1 + 0.9 sin(2π f t)) for t ≥ 1 ms, I = 10−5 for t < 0, and I = 10−5 + (10−3 −
10−5)t for 0 ≤ t < 1 ms, with f = 10 Hz, computed with Matlab ode45; dashed
line: result of filtering with the scheme of A, with � = 1 ms and using the
modified Tustin’s method for τ−. (C) Root-mean-square (rms) error between
the various recursive filters used for the scheme of A and the result of ode45 at
its maximum accuracy setting. Input as in B. The thin straight line has a slope
of −1 in double-logarithmic coordinates.

variable I is externally applied current, and the other terms represent mem-
brane currents (consisting of a sodium, potassium, and leakage current).
The membrane currents are given by the reversal potentials for the ions
(in mV, defined relative to the resting potential: ENa = 115, EK = −12, and
EL = 10.6), by conductances (in mS/cm2, gNa = 120, gK = 36, and gL = 0.3),
and by variables n, m, and h, describing the gating of the ion channels by
the membrane potential:

ṅ =αn(1 − n) − βnn (4.10)

ṁ =αm(1 − m) − βmm (4.11)

ḣ =αh(1 − h) − βhh. (4.12)

The rate constants α and β are functions of u, the form of which
was determined empirically by Hodgkin and Huxley (1952): αn =
(0.1 − 0.01u)/[exp(1 − 0.1u) − 1], βn = 0.125 exp(−u/80], αm = (2.5 − 0.1u)/

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1839

[exp(2.5 − 0.1u) − 1], βm = 4 exp(−u/18], αh = 0.07 exp(−u/20), and βh =
1/[exp(3 − 0.1u) + 1].

Rewriting the equations into the form of equation 2.2 gives

τe u̇ = Re (I + Ie) − u

with Ie = gNam3hENa + gKn4 EK + gL EL

Re = 1/
(
gNam3h + gKn4 + gL

)
and τe = ReC (4.13)

τnṅ = n∞ − n

with τn = 1/(αn + βn) and n∞ = αn/(αn + βn) (4.14)

τmṁ = m∞ − m

with τm = 1/(αm + βm) and m∞ = αm/(αm + βm) (4.15)

τh ḣ = h∞ − h

with τh = 1/(αh + βh) and h∞ = αh/(αh + βh) (4.16)

This processing scheme is depicted in Figure 6A. The feedback is partly
additive (through the gated current Ie , which acts as a strong positive
feedback during the rising phase of the spike and as a negative feedback
during the potassium-driven afterhyperpolarization), partly multiplicative
(through the input resistance Re , which drops considerably during the spike
and is the main cause of the absolute refractory period of the neuron), and
partly through the time constant τe , causing fast dynamics during the spike.
Note that the system contains, for each of the three feedback variables,
two low-pass filters in series (τe and the one belonging to either n, m, or
h); thus, we can fully use the phase advance of τ− as in the example on
phototransduction. Figures 6C and 6D show a benchmark calculation us-
ing ode45 of the response (continuous line) to a current input as shown in
Figure 6B. This stimulus is again tapered at the beginning to reduce aliasing.
Some tapering is realistic, because normally the axon of a spiking neuron
(where spiking starts) will not be driven by instantaneous current steps,
but only by band-limited currents because of low-pass filtering by the cell
body and dendrites. Figure 6C shows the result of using the scheme of
Figure 6A with trapezoidal (obviously without the �/2 processing block),
and Figure 6D with the modified Tustin’s method. Figure 6E compares
the rms error of the various schemes as a function of �. Again, the ZOH
and the modified Tustin’s method perform best. In particular, the modified
Tustin’s method provides accurate results: even at a course � = 1/2 ms,
it misses no spikes in the example of Figure 6, and the timing precision
of the spikes is on the order of 0.1�. This contrasts with, for instance, a
scheme like trapezoidal, which needs � at least as small as 1/32 ms in or-
der not to miss spikes, and has a timing precision of the spikes on the order
of 10�.

1840 J. van Hateren

Figure 6: (A) System diagram of equations 4.13 to 4.16. (B) Driving current
density I , with I = 0 for t < 0, I = I0 sin2(0.5π t/t0) for 0 ≤ t < t0 ms, and I =
I0(1 − 0.5 sin2(0.5π f (t − t0))) for t ≥ t0, with t0 = 10 ms a taper, f = 10 Hz, and
I0 = 12 µA/cm2. (C) Thin continuous line: response u of equation 4.13 to the
stimulus defined at B, computed with Matlab ode45; dashed line: result of
filtering with the scheme of A, with � = 1/32 ms and using trapezoidal for
τ . (D) Thin continuous line: as in C ; dashed line: result of filtering with the
scheme of A, with � = 1/32 ms and using the modified Tustin’s method for τ−.
(E) Root-mean-square (rms) error between the various recursive filters used for
the scheme of A and the result of ode45 at its maximum accuracy setting. Input
as in B. The thin straight lines have slopes of −1 and −2 in double-logarithmic
coordinates.

4.4 When to Use τ− or τ 0. Two of the examples given above involve
feedback with exactly two low-pass filters in the forward and backward
branches of the feedback loop. For these schemes low-pass filters with
phase advance are clearly useful. However, for other topologies, this is not
necessarily the case. Figure 7 shows a few examples. When concatenating
low-pass filters and static nonlinearities (see Figure 7A), zero-delay filters τ 0

may be used as an alternative to using τ− and performing delay correction at
a later stage. In a feedforward structure as shown in Figure 7B, a zero-delay

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1841

Figure 7: (A) Concatenation of low-pass filters and nonlinearities (NL), where
zero-delay low-pass filters can be used. (B) In a feedforward loop as shown,
a zero-delay low-pass filter should be used. (C) In a feedback loop, the total
delay compensation needs to match the implicit delay � of the computational
feedback scheme.

filter must be used. Similarly, if a feedback scheme contains more than two
low-pass filters, some of the filters need to be zero delay (see Figure 7C).

If a system contains a feedback loop with only one low-pass filter in
either the feedforward or feedback branch, a filter τ− can provide only
half of the required phase advance. In those situations, as in the example on
photopigment bleaching given above, it is still helpful to use τ−, in addition
to making � sufficiently small. In principle, a phase advance (a delay of
−�/2) might be added by implementing it as a linear extrapolation yn =
1.5xn − 0.5xn−1. However, I have not tested such a scheme, which might
have stability problems.

Finally, if a feedback loop contains no low-pass filters at all, it is in fact
identical to a static nonlinearity and can usually be treated analytically or
by a precomputed lookup table.

4.5 Comparison with a Fourth-Order Runge-Kutta Integration
Scheme. Although this letter focuses on simple autoregressive filters work-
ing on data with a given step size, it is interesting to compare the perfor-
mance of the scheme with a standard integration method, such as fourth-
order Runge-Kutta (RK4; Press et al., 1992). Figure 8 shows the results for
RK4 and the modified Tustin’s method, applied to a fairly complex model of
the macaque retinal horizontal cell (van Hateren, 2005). This model consists
of cones connected to horizontal cells in a feedback circuit and constitutes a
cascade of a static nonlinearity, two nonlinear (divisive) feedback loops, and
a subtractive feedback loop. All loops contain, in various configurations,
low-pass filters and static nonlinearities. For details, such as parameter
values and the differential equations involved, see van Hateren (2005).

1842 J. van Hateren

Figure 8: (A) Root-mean-square (rms) error of computing the response (inset,
vertical bar = 2 mV) to a 40 ms light flash (horizontal bar inset) of the macaque
retinal horizontal cell model of van Hateren (2005). Both a fourth-order Runge-
Kutta scheme (RK4, fixed time step, routines rkdumb/rk4 of Numerical Recipes,
Press et al., 1992; the input is an analytical block function according to the
horizontal bar) and modified Tustin were implemented in a double-precision
Fortran90 program (Intel compiler, Linux, 3.0 GHz Xeon). Errors are calculated
relative to the result of modified Tustin at a time step � = 0.1 µs. The straight
lines have slopes of −1 and −2 on double-logarithmic coordinates. (B) Comput-
ing times for RK4 and modified Tustin at matched rms error. For the four sets of
data points, the time steps � for (RK4, modified Tustin) are (1 µs, 70 µs), (10 µs,
230 µs), (0.1 ms, 0.7 ms), and (1 ms, 2.5 ms). Ratios of computing times are 250, 70,
20, and 6. The straight lines have slopes of −1 and −0.5 on double-logarithmic
coordinates.

The inset in Figure 8A shows the response of the model horizontal cell to
a 40 ms light flash (horizontal bar) of contrast 2 given on a background of 100
td (see van Hateren, 2005, for details on the stimulus). The vertical scale bar
denotes 2 mV. This model was computed using either modified Tustin for
the components (as in the examples in this article) or RK4 for the entire set of
differential equations. It should be stressed that this use of RK4 is different
from the use of integrators, such as forward Euler, earlier in this letter, where
each low-pass filter was integrated separately. Here the RK4 algorithm is
used in the conventional way on the entire model at once. All rms errors are
calculated relative to the result of modified Tustin at a step size of 0.1 µs.
Identical results were obtained when calculating all errors relative to RK4
at 0.1 µs, be it that errors then saturate at (i.e., do not go below) 4.7 · 10−6

because of the limited accuracy of RK4 at 0.1 µs. Figure 8A shows the rms
error of RK4 and modified Tustin. For all step sizes shown, modified Tustin

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1843

outperforms RK4. The different scaling behavior is indicated by the two
lines with slopes of −1 and −2 on the double-logarithmic coordinates.

As argued by Morrison, Straube, Plesser, and Diesmann (2007), in many
situations, the most interesting measure of performance of an integration
method is the computing time required to achieve a given accuracy. This is
shown in Figure 8B for the two methods considered here. For this calcula-
tion, the step size of modified Tustin was adjusted such that the accuracy of
the result matched one of the RK4 calculations, and the corresponding com-
puting times of the methods are plotted. Depending on accuracy, modified
Tustin is typically one to two orders of magnitude faster than RK4. It should
be noted that the calculation at the largest rms error already required a step
size for modified Tustin (2.5 ms) that brought it well out of the range where
the condition that the step size should be a few times smaller than τ (see
equations 3.4 and 3.7) is valid, because the fastest low-pass filters in the
model have time constants of 3 to 4 ms (van Hateren, 2005). Nevertheless,
even under these conditions, modified Tustin is approximately six times
faster than RK4 at the same accuracy.

5 Discussion

The fast recursive scheme presented in this letter is particularly suited for
situations where computing time is restrictive, for example, when large
arrays of neurons need to be computed. The scheme is fast because each
component is updated at each time step with only a few floating-point op-
erations. The examples given show that it is already quite accurate with
fairly large time steps. It accomplishes this by computing feedback in a
way that makes use of the fact that several autoregressive implementations
of first-order low-pass filters produce an implicit phase advance of half a
sample distance. The computational scheme is associated with a simple di-
agrammatic representation that makes it relatively easy to get an intuitive
understanding of the dynamics and the processing flow and allows con-
venient symbolic manipulation (e.g., rearranging modules into equivalent
schemes).

Because the τ of the low-pass filters may depend on input and system
variables, the filter coefficients may require updating at each time step. This
may constitute a significant part of the computational load. Fortunately,
the coefficients for the trapezoidal rule (for τ 0) and the modified Tustin’s
method (for τ−) can be obtained with only a few floating-point operations.
These schemes also give results at least as accurate as any of the other
schemes and therefore should be considered as the first choice.

The scheme presented here is primarily intended for nonlinear filtering.
It could be used for arbitrary linear filtering as well, because any linear filter
can be approximated by a parallel arrangement of a number of low-pass
filters with different weights and time constants. However, I have not tested
how well it performs on such arrangements, and it seems likely that there are

1844 J. van Hateren

better ways to deal with arbitrary linear filters. One possibility is to use the
matrix exponential (Rotter & Diesmann, 1999), which is particularly suited
when the signal consists of (or can be approximated by) point processes, as
is common in calculating networks of spiking neurons. The matrix exponen-
tial can also be viewed as equivalent to a ZOH model and then needs a �/2
compensation depending on whether it is used in a feedforward branch or
as part of a nonlinear feedback branch. Another possibility is to use canned
routines, like c2d in Matlab, that provide coefficients for a recursive discrete
system corresponding to any rational continuous transfer function. For a
linear filter that is part of a nonlinear feedforward loop, the c2d routines
using FOH or Tustin’s method are required, whereas ZOH is required when
the linear filter is part of a feedback loop and a phase advance is wanted.

All calculations presented in this letter were done with double-precision
arithmetic. For strongly stiff problems, such a precision is necessary because
of the large difference in time constants; the time step needs to be small
enough to accommodate the shortest time constant, but such a short time
step results in considerable error buildup in the processing of the largest
time constant if single-precision arithmetic is used. However, I found that
for the examples discussed in this letter, single precision arithmetic already
gives accurate results. This is of interest because using single precision may
accelerate computation, depending on processor architecture. Moreover,
stream processors such as GPUs may not yet support double-precision
arithmetic (although double precision can be readily emulated Göddeke
et al., 2007—and GPUs with double precision are announced for early 2008).

I found that simulating the response of a large array of cones using the
cone model of van Hateren and Snippe (2007), of which the examples of
sections 4.1 and 4.2 are part, provides performance one to two orders of
magnitude higher on current GPUs than on current CPUs. Such perfor-
mance is of interest for developing and testing models of the human retina
(van Hateren, 2007) and also for using light adaptation in human cones
as an algorithm for rendering and compression high-dynamic range video
(van Hateren, 2006).

Acknowledgments

I thank Sietse van Netten and Herman Snippe for comments on the
manuscript.

References

Ahrenberg, L., Benzie, P., Magnor, M., & Watson, J. (2006). Computer generated
holography using parallel commodity graphics hardware. Optics Express, 14,
7636–7641.

Bechhoefer, J. (2005). Feedback for physicists: A tutorial essay on control. Rev. Mod.
Phys., 77, 783–838.

Fast Recursive Filters for Simulating Nonlinear Dynamic Systems 1845

Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural
models with the GEneral NEural SImulation System (2nd ed.). New York: Springer-
Verlag.

Brown, K. S. (2000). Lead-lag algorithms. Available online at http://www.mathpages.
com/home/kmath198/kmath198.htm.

Butera, R. J., & McCarthy, M. L. (2004). Analysis of real-time numerical integration
methods applied to dynamic clamp experiments. J. Neural Eng., 1, 187–194.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge
University Press.

Göddeke, D., Robert Strzodka, R., & Turek, S. (2007). Performance and accuracy
of hardware-oriented native-, emulated- and mixed-precision solvers in FEM
simulations. International Journal of Parallel, Emergent and Distributed Systems, 22,
221–256.

Guerrero-Rivera, R., Morrison, A., Diesmann, M., & Pearce, T. C. (2006). Pro-
grammable logic construction kits for hyper-real-time neuronal modeling. Neural
Comp., 18, 2651–2679.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol., 117,
500–544.

Lamb, T. D., & Pugh, E. N. (2004). Dark adaptation and the retinoid cycle of vision.
Progr. Ret. Eye Res., 23, 307–380.

MacGregor, R. J. (1987). Neural and brain modeling. San Diego: Academic Press.
Mahroo, O. A. R., & Lamb, T. D. (2004). Recovery of the human photopic elec-

troretinogram after bleaching exposures: Estimation of pigment regeneration
kinetics. J. Physiol., 554, 417–437.

Mead, C. (1989). Analog VLSI and neural systems. Reading, MA: Addison-Wesley.
Moore, J. W., & Ramon, F. (1974). On numerical integration of the Hodgkin and

Huxley equations for a membrane action potential. J. Theor. Biol., 45, 249–273.
Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold

integration with continuous spike times in discrete-time neural network simula-
tions. Neural Comp., 19, 47–79.

Oppenheim, A. V., & Schafer, R. W. (1975). Digital signal processing. Englewood Cliffs,
NJ: Prentice Hall.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical
recipes in Fortran. Cambridge: Cambridge University Press.

Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear
systems with applications to neuronal modeling. Biol. Cybern., 81, 381–402.

Rush, S., & Larsen, H. (1978). A practical algorithm for solving dynamic membrane
equations. IEEE Trans. Biomed. Eng., 36, 389–392.

Thong, T., & McNames J. (2002). Transforms for continuous time system model-
ing. In Proceedings of the 45th IEEE Midwest Symposium on Circuits and Systems
(pp. II-408–II-411). Piscataway, NJ: IEEE Press.

Unser, M. (1999). Splines—A perfect fit for signal and image processing. IEEE Signal
Process. Mag., 16, 22–38.

Unser, M. (2005). Cardinal exponential splines: Part II—Think analog, act digital.
IEEE Trans. Signal Process., 53, 1439–1449.

1846 J. van Hateren

van Hateren, J. H. (2005). A cellular and molecular model of response kinetics and
adaptation in primate cones and horizontal cells. J. Vision, 5, 331–347.

van Hateren, J. H. (2006). Encoding of high dynamic range video with a model of
human cones. ACM Transactions on Graphics, 25, 1380–1399.

van Hateren, J. H. (2007). A model of spatiotemporal signal processing by primate
cones and horizontal cells. J. Vision, 7(3), 3, 1–19.

van Hateren, J. H., & Snippe, H. P. (2007). Simulating human cones from mid-mesopic
up to high-photopic luminances. J. Vision, 7(4), 1, 1–11.

Received April 12, 2007; accepted August 29, 2007.

