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Figure S1: a, Overlay of the glycine betaine binding pocket of BetP (grey) and the periplasmic glycine betaine binding protein ProX15 from E. coli 
(yellow). Corresponding side chains are labeled with respect to their orientation in the Trp box. b, Sequence homology between BetP and ProX in 
the 4-helix bundle TM3, TM4/TM8, TM9 of BetP. c, 23 aromatic side chains in the central 4-helix bundle TM3, TM4/TM8, TM9 line the substrate 
pathway (light yellow). The assembly of aromatic residues in BCC transporters may be related to the broad spectrum of different osmolytes that 
can be transported. Assuming that BCC transporters exhibit the same overall fold with a rather narrow substrate pathway, a general solution for 
osmolyte transport would be to provide several aromatic boxes along the pathway. Clearly, such pathway composition creates surface properties 
ensuring that a wide variety of osmolytes can be transported without interaction with the protein backbone.
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Figure S2: Amino acid sequence alignment of C. glutamicum BetP with five transporters of the BCCT family: Na+/glycine betaine transporter OpuD 
from B. subtilis, Na+/glycine betaine transporter ButA from Tetragenococcus halophila, H+/choline transporter BetT from E. coli, Na+/ectoine transporter 
EctP from C. glutamicum, and carnitine/γ-butyrobetaine antiporter CaiT from E. coli using ClustalW multiple sequence alignment displayed by ESPript 
2.2 (http://espript.ibcp.fr/ESPript). Strictly conserved residues are displayed in red. α-helices of the BetP structure are shown as cylinders in top of the 
BetP sequence. Residues potentially involved in coordinating sodium ions are marked with triangles shown in blue (Na1) or cyan (Na2). The conserved 
G-x-G-x-G motif of sodium-coupled transporters in the BCCT family in TM3 is yellow. The magenta stars indicate residues involved in glycine betaine-
binding. Orange colored residues in TM8 and TM9 show additional substrate-binding sites, residues involved in trimer formation or regulatory 
interactions are labeled with an orange circle.
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Figure S3: a, Transport activity determined from the initial slopes of [14C]glycine betaine uptake time curves of BetP mutants. 
Activity is expressed as percentage of WT control (100%) at optimal osmolarity. The expression levels of mutants were assessed by 
immuno-blotting against the N-terminal StrepII tag and activity was normalized accordingly. b, Location of functionally important 
residues in the BetP monomer. 
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Figure S4: Potential sodium ion binding sites in BetP assigned via structural superposition with LeuTAa. View from the cytoplasm with sodium ions in 
magenta and black dotted lines indicate the coordination between the atoms of residues involved in Na+ binding. The helices TM3i, TM3e, TM4, TM5, 
TM7, TM8 and TM10 are displayed in light-grey. The sodium ions were not included in the refinement process.
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Figure S5: a, Glycine betaine uptake of BetPΔN29 was measured in DHPF C. glutamicum cells (, maximal uptake rate 11 nmol glycine 
betaine/min mg dry cells) and in E. coli polar lipid proteoliposomes (, 268 nmol glycine betaine/min mg protein) in dependence on the 
external osmolality adjusted with NaCl (cells) or proline (proteoliposomes) in the external buffer (25 mM KPi, pH 7,5; 100 mM NaCl). 
BetP WT was measured as a control in DHPF C. glutamicum cells (,100.8 nmol glycine betaine/min mg dry cells) and in E. coli polar lipid 
proteoliposomes (, 771 nmol glycine betaine/min mg protein). Uptake was started by adding 250 μM [14C]-glycine betaine. Maximum 
uptake at optimum conditions of external osmolality was taken as 100%. Inset: Micrograph of a freeze fractured proteoliposomes suspension 
of BetPΔN29 reconstituted into E. coli polar lipids at a lipid to protein ratio of 30 to 1 (mol/mol).
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Figure S6: Sequence alignments of the first helix of the first repeat of different transporters of the BCCT, NSS, SSS and NCS-1 family by ClustalW multiple 
sequence alignment displayed by ESPript 2.2 (http://espript.ibcp.fr/ESPript). Conserved glycines are indicated by orange triangles. 
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Figure S7: Central cavity of the BetP trimer. Aromatic side chains of helix 7 and TM2 point into 
unmodelled Fo-Fc density (shown in green at 1.8σ), representing bound lipid or detergent. 
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Figure S8: Electron density shown in blue at 1.3σ after solvent flattening with SOLOMON6 in SHARP/autoSHARP5. The electron density represents 
the initial map after SAD phasing, hence it is not averaged using the NCS nor corrected for anisotropy nor any negative B-factor is applied. The 
anomalous difference map for the selenium sites is shown in red at 3.5σ. The arrow points towards the C-terminal domain making the crystal 
contact to the adjacent trimer.
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Tables  

Table 1 | Data collection, phasing and refinement statistics 

  Se-BetPN29 
Data collection   
Space group  P212121 
Cell dimensions     
    a, b, c (Å)  118.09, 129.42, 182.94 
    α, β, γ  (º)  90, 90, 90 
  Peak 

Wavelength  0.9794 
Resolution (Å)  39.47 – 3.35   

(3.55-3.35) 
Rmerge  9.9  (64.8) 
I/σI  23.2  (1.0) 
Completeness (%)  90.7  (44.1) 
Redundancy  18.9 (1.7) 
   
Refinement   
Resolution (Å)  39.47 – 3.35  

(3.55-3.35) 
No. reflections  37151 (2967) 
Rwork/ Rfree  25.68/26.49 

(24.12/23.95) 
No. atoms  11737 
    Protein  11353 
    Ligand/ion  384 
    Water  - 
B-factors  64.34 
    Protein  - 
    Ligand/ion  - 
    Water  - 
R.m.s deviations   
    Bond lengths (Å)   0.002 
    Bond angles (º)  0.34 
 

Table 2 | Structure comparison with DaliLite16  

Structure comparison RMSD 

(Å) 

BetP repeat 1 BetP repeat 2 3.5 

LeuT repeat 1 LeuT repeat 2 5.2 
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SGLT repeat 1 SGLT repeat 2 4.3 

Mhp1 repeat 1 Mhp1 repeat 2 4.3 

Scaffold  

BetP scaffold LeuT scaffold 3.7 

BetP scaffold SGLT scaffold 3.9 

BetP scaffold Mhp1 scaffold 3.8 

LeuT scaffold SGLT scaffold 3.5 

SGLT scaffold Mhp1 scaffold 3.4 

Mhp1 scaffold LeuT scaffold 2.5 

BetP TM10-TM12 LeuT TM8-TM10 3.1 

BetP TM10-TM12 SGLT TM9-TM11 3.8 

4-helix bundle 

BetP 4-helix bundle LeuT 4-helix bundle 3.2 

BetP 4-helix bundle SGLT 4-helix bundle 3.1 

BetP 4-helix bundle Mhp1 4-helix bundle 3.4 

LeuT 4-helix bundle SGLT 4-helix bundle 3.5 

SGLT 4-helix bundle Mhp1 4-helix bundle 3.6 

Mhp1 4-helix bundle LeuT 4-helix bundle 3.2 

Scaffold comparison used for superposition in Fig.4  

BetP TM6-7 TM11-12 LeuT TM4-5 TM9-10 2.9 

BetP TM6-7 TM11-12 SGLT TM5-6 TM10-11 2.5 
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