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Abstract A new elegant and simple algorithm for mutual exclusion of N processes is
proposed. It only requires shared variables in a memory model where shared variables need
not be accessed atomically. We prove mutual exclusion by reformulating the algorithm as
a transition system (automaton), and applying simulation of automata. The proof has been
verified with the higher-order interactive theorem prover PVS. Under an additional atomicity
assumption, the algorithm is starvation free, and we conjecture that no competing process is
passed by any other process more than once. This conjecture was verified by model checking
for systems with at most five processes.

1 Introduction

Resolving conflicting access to shared memory by concurrent processes is a fundamental
problem in distributed computing that goes back to [5]. Numerous solutions have been pro-
posed with various characteristics to solve this problem. Surveys of these solutions can be
found in [2,18,21]. Among them, Peterson’s algorithm [17] and Lamport’s Bakery algo-
rithm [12] are popular for their simplicity and other remarkable properties. As a result, many
variations have appeared in the literature for these two algorithms [1,3,11,21].

This paper proposes a simple and elegant algorithm for mutual exclusion for N processes.
Our algorithm may be considered as a variation of Peterson’s algorithm [17]. This algorithm
and its variations given in [1,11] use N − 1 stages for the processes to pass before accessing
the shared resource. Our algorithm has the property that the number of stages to be passed by a
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74 A. A. Aravind, W. H. Hesselink

process does not depend on N but only on the number of concurrently competing processes.
The algorithm is approximately FIFO. We concentrate on the proof of mutual exclusion,
which is verified mechanically. Progress is proved informally.

The setting is modeled as follows. There are N ≥ 2 processes that communicate via
shared variables and that repeatedly compete for a shared resource. The processes are thus
of the form:

process member(p : Process) =
loop

NCS; Intro; CS; Exit
end.

Here, NCS and CS are given program fragments that stand for the noncritical section and the
critical section, respectively. NCS need not terminate, CS is guaranteed to terminate. The aim
is to implement Intro and Exit in such a way that the number of processes in CS is guaranteed
to remain ≤ 1 (mutual exclusion). The progress requirement is that, when some processes
have entered Intro, eventually some process will enter CS. Freedom from starvation is the
condition that, if some process, say p, has entered Intro, then p will eventually enter CS.

In the following sketch of the algorithm, the processes are children and the critical section
is the eating of cake.

Sketch of the protocol as a children’s party. Several (N ) children are invited to a party.
The party is held in a room with N corners, numbered from 0 upward. When a child enters
the room, it goes to corner N − 1. A child in corner r that sees that there are not more than
k children in the room other than itself, may move to corner k if k < r . Corner 0 has a table
where the children eat a piece of cake. When a child has had its cake, it leaves the room to
go to the garden from which it may return to the room to get more cake.

Each corner with a positive number has a chair one child can sit on. Any child in this
corner can decide to climb onto the chair. If the chair is occupied and a child decides to climb
onto it, it first pushes the present occupant from the chair. A child pushed from the chair in
corner k goes to corner k −1. The children in the room are greedy and want to reach the cake
in corner 0. The organizers claim that there is always at most one child eating cake, and that
every child in the room will eventually get cake.

Counting children takes time, but a child need not count children that entered after it
started counting, and it may discount children that leave the room before it finished counting.
When a child has pushed another from a chair, it must climb the chair, although another child
may succeed earlier. After climbing a chair, a child that wants to count children needs to start
from scratch.

Results and overview. We prove mutual exclusion of the algorithm by means of history
variables and two abstraction steps with refinement functions. The proof has been verified
with the proof assistant PVS [16]. Progress is fairly easy to prove. This is done informally.
The above holds under weak atomicity conditions for the shared variables. Freedom from
starvation does not hold under these conditions, but can be proved to hold under stronger
atomicity conditions. Under these conditions, we even conjecture that every competing pro-
cess is not passed more than once by any other process. We have verified this for N ≤ 5 by
means of the model checker Spin [10].

The rest of the paper is organized as follows. We present the algorithm in Sect. 2. In
Sect. 3, we give a formal proof of mutual exclusion. In Sect. 4, we give an informal proof of
progress and discuss our model checking results on individual starvation. Section 5 describes
related works and concludes the paper.
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A queue based mutual exclusion algorithm 75

2 A heuristic approach to the algorithm

In this section, we present the algorithm by approximating it by simpler versions. We start
from scratch. So, the reader is asked to forget the children’s party for the moment. The first
version is a correct algorithm with a too coarse grain of atomicity. The second version has
adequate atomicity, but gives deadlock. The third version is the correct one.

The starting point is the idea that every competing process should give priority to all
processes that were competing at the moment this process started competing. This requires
two shared variables: act to record the set of currently competing processes and an array
with, for every process p, a set prio[p] for the set of processes process p gives priority to:

act : set of Process := ∅;
prio : array [Process] of set of Process.

The commands Intro and Exit are given by

Intro0(p) =
〈 prio[p] := act ; add p to act 〉;
await prio[p] = ∅.

Here the brackets 〈 〉 are used to indicate that the composition needs to be executed atomically.

Exit0(p) =
for all q do remove p from prio[q] enddo;
remove p from act.

This algorithm is correct: it guarantees mutual exclusion and every competing process will
enter the criticial section eventually. It is even FIFO: the processes enter the critical section
in the order they start competing. Unfortunately, with current architectures, this algorithm is
unimplementable because the big atomic action at the start of Intro is not offered by current
hardware, even if the set act can be implemented as a single machine word.

We therefore decide to regard act as a boolean array indexed by process numbers, and
to estimate act by private variables est, as declared in

est : set of Process.

Notice that we write private variables slanted whereas shared variables are in type writer
font. If v is a private variable (for all processes), we write v.p for the value of v of process
p outside of the code for p.

For any process p, the value est.p is the set of the processes q for which ¬act[q] has
not yet been observed by p. The await command is implemented by busy waiting.

Intro1(p) =
act[p] := true; est := Process \ {p};
while nonempty(est) do

for all q ∈ est do
if ¬act[q] then remove q from est endif

enddo
enddo.

Now Exit0 can be simplified to

Exit1(p) = (act[p] := false).

123



76 A. A. Aravind, W. H. Hesselink

Unfortunately, this version leads to deadlock when processes enter one after the other, and
the first one has not yet observed that the second one was not competing.

We therefore introduce a private integer variable level as a counter to see whether the
inner loop has decreased the number of elements of est. When deadlock would occur, several
processes would have the same level. In order to enforce progress at that point, some of these
should be allowed to decrease their level.

Intro2(p) =
act[p] := true; level := N − 1;
est := Process \ {p};
while level > 0 do

for all q ∈ est do
if ¬act[q] then remove q from est endif

enddo ;
ReconsiderLevel

enddo.

We introduce a shared variable turn so that turn[k] serves to enable one of the processes
to decrease its level below k. A process that cannot decrease its level beyond k may try to
enter turn[k]. We thus declare:

turn : array [1 . . N − 1] of Process.

We give every process a private boolean variable bb, initially false, to indicate that it has
entered turn[level]. When bb holds and the process has been removed from turn[level],
it can decrease its level. We thus get:

ReconsiderLevel :
if #est < level then

level := #est ; bb := false
elsif ¬ bb then

turn[level] := p ; bb := true;
est := Process \ {p};

elsif turn[level] �= p then
level– – ; bb := false

else skip endif .

ReconsiderLevel tries to decrease level. We use #S to denote the number of elements of a set
S. In the first alternative, level becomes the number of observed competitors. In the second
alternative, the process enters the turn of its level, sets the flag bb to remember this, and
resets est. In the third alternative, when it has set flag bb and yet differs from turn, it is
allowed to decrement level. Variable bb can be eliminated at the cost of code duplication.

The second alternative, called push, allows the process that was equal to turn[level] to
decrement its level in the third alternative. Resetting of est is needed to avoid too many pro-
cesses with low levels. Note however that a process that has set bb to true, does recalculate
est, and will decrease level when it finds #est < level.

We take Exit2 = Exit1. This algorithm turns out to be correct. Looking back to the chil-
dren’s party of the Introduction, the reader may recognize level as the number of the child’s
corner and turn[k] as the chair in corner k.

Mutual exclusion is expressed by the required invariant MX defined by

M X ≡ #cri t ≤ 1, (0)
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A queue based mutual exclusion algorithm 77

where crit is the set of processes that are at command CS. The idea of the proof is to generalize
MX to an invariant

J (k) : #A0(k) ≤ k,

for all natural numbers k, where A0(k) is the set of processes q that are in Intro or CS and have
level.q < k. Unfortunately, this invariant is difficult to prove. The problem is the nonatomic
counting of competitors. We shall solve this by introducing a history variable that holds a
lower bound for the set of observed competitors. In Sect. 3.5, we define containing sets A(k),
for which the analog of J (k) can be proved.

3 Nonatomic variables and correctness

The presentation of the algorithm implicitly suggests that the shared variables act[p] and
turn[k] can be written and read atomically. The algorithm allows us, however, to weaken
this assumption. This is important because concurrent hardware often guarantees atomicity of
variables only under specific assumptions. The algorithm remains correct when the variables
act[p] are safe in the sense of [13]. It even remains correct when the variable turn[k] are
write-safe. We shall introduce and formalize these concepts in Sect. 3.1.

The remainder of the section is devoted to the proof of mutual exclusion. In Sect. 3.2, we
reformulate the algorithm as a transition system or automaton QmxC. We treat the variables
act[p] as safe, and the variables turn[k] as write-safe. In Sect. 3.3, we reduce the concrete
automaton QmxC to an abstract automaton QmxA, by a refinement function from QmxC
to QmxA. In Sect. 3.4, automaton QmxA is extended with a history variable to QmxH,
by means of a forward simulation. Then we use a refinement function from QmxH to an
idealized automaton QmxI to remove the variables act and est and the associated actions.

QmxC → Qmx A −� Qmx H → Qmx I.

Mutual exclusion in QmxI is proved in Sect. 3.5. In Sect. 3.6, we use the composed simu-
lation from QmxC to QmxI to conclude that QmxC also satisfies mutual exclusion, and we
briefly describe how the proof assistant PVS is used to verify this proof.

3.1 Safe and write-safe shared variables

Let us call a shared variable an output variable (of process p) if it is only written by a single
process (p). Recall from [13] that an output variable is called safe if every read action that
does not overlap with any write action returns the most recently written value and every read
action that overlaps with a write action returns some (arbitrary) value of the correct type.

In our algorithm, the variables act[p] are output variables, and we shall prove that the
algorithm is correct under the assumption that these variables are safe. The shared variables
turn[k] are not output variables: different processes may concurrently write them. Safety
of these variables is therefore not applicable, but there is a relevant related assumption.

Let a shared variable x be called write-safe, if concurrent writing to x is allowed and has
the effect that x gets a value that was being written by (at least) one of the writing processes,
a read action not concurrent with any write actions gets the value written latest, and a read
action concurrent with one or more write actions yields an arbitrary value of the correct type.

We formalize safe output variables and write-safe shared variables in the same way, as
follows. A read action of a shared variable x to a private variable v is denoted v := x. It can
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78 A. A. Aravind, W. H. Hesselink

be regarded as atomic, since it does not influence the shared state. We only need to reckon
with the possibility that it overlaps with one or more write actions to x.

A write action of a private expression E to a safe output variable or write-safe shared
variable x is denoted

(flickering) x := E . (1)

We model this in relational semantics, such as TLA [14], by specifying that command (1)
has the relational meaning

pc+ = pc ∨ (pc+ = pc + 1 ∧ x+ = E). (2)

Here the superscript + is used for the values of the variables after the step, pc stands for
the location pointer, and by convention all shared or private variables apart from x or pc are
unchanged. In other words, command (1) is modeled as a repetition of arbitrary assignments
to x that ends with the actual assignment of E to x. The value of x during the repetition is
indeterminate. Liveness conditions are used to ensure that the repetition terminates, cf. [8].

We often combine an action on a shared variable atomically with some action S on private
variables. In the case of a flickering write action, we need to formalize that command S is
done precisely once. In terms of goto commands, therefore,

�0 : (flickering)x := E ; S ; goto �1 (3)

is modeled as the nondeterministic choice

�0 : x := arbitrary ; goto �0 (4)

[] x := E ; S ; goto �1.

3.2 Formalization as a transition system

To prove mutual exclusion in our algorithm, we first formalize it as a transition system, i.e.,
we reformulate the algorithm into a goto program with numbered atomic statements that
each refer to at most one shared variable. We assume that the output variables act[p] are
safe and that the variables turn[k] are write-safe.

We do not want to enforce an order of treating the processes in the inner for loop of Intro2,
but only that all elements of est are treated once. We therefore introduce, for each process, a
private variable

lis : set of Process

to hold the set of processes not yet treated in the inner for loop. We thus get:

cmember(p) =
10: NCS(p) ; goto 10 or 20.
20: (flickering) act[p] := true;

level := N − 1 ; est := Process \ {p} ; goto 21.
21: if level > 0 then lis := est ; goto 22

else goto 30 endif .
22: if nonempty(lis) then

extract some q from lis;
if ¬act[q] then remove q from est endif ;
goto 22

else goto 23 endif .
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A queue based mutual exclusion algorithm 79

23: if #est < level then level := #est ; bb := false
elsif ¬ bb then goto 24
elsif turn[level] �= p then level– – ; bb := false
else skip endif ;
goto 21.

24: (flickering) turn[level] := p;
bb := true ; est := Process \ {p} ; goto 21.

30: CS(p) ; goto 40.
40: (flickering) act[p] := false ; goto 10.

The nondeterministic choice in 10 expresses that NCS need not terminate. Intro2 is modeled
by commands 20 up to 24. The inner for loop is at 22. ReconsiderLevel is captured by 23 and
24. We need a separate location 24 for the process to return to while it is doing incomplete
assignments to turn. The initial state is characterized by

∀ q : pc.q = 10 ∧ ¬act[q] ∧ ¬ bb.q ,

while the values of turn, level, est, and lis can be arbitrary.
The algorithm is formalized in the parallel composition

QmxC = ||p cmember(p).

The state space XC of algorithm QmxC is spanned by the shared variables act and turn,
and the private variables level, lis, est, bb, and pc, where pc.q is the location counter of
process q .

Mutual exclusion for QmxC is expressed by MX as defined in (0) where crit is the set of
processes q with pc.q = 30. We postpone the proof of MX, but first establish the auxiliary
invariants:

I0: 22 ≤ pc.q < 30 ⇒ level.q > 0,
I1: pc.q = 30 ⇒ level.q = 0,
I2: pc.q > 20 ⇒ level.q ≥ 0.

The proof of invariance of I0 is trivial. The proof of invariance of I1 needs I2 at step 21. The
proof of invariance of I2 needs I0 at the third alternative of step 23.

Remark on atomicity As one of the referees noted, some of the instructions are encoded as
rather complicated conditional statements that are to be evaluated atomically. In concurrent
algorithms, separating a test of a condition from an assignment can give rise to critical race
conditions. Here this is not the case, because in every instruction there is at most one refer-
ence (read or write) to a shared variable, viz. to turn[level] in 23 and 24, and to a field of
act in 20, 22, and 40. It is well-known that inspection or modification of private variables
can be included in such a command. One way to justify this is by introducing ghost variables
as aliases of the private variables. These ghost variables are then inspected or modified in
the atomic command, while the inspection or modification of the actual private variables is
done in a completely private command just before or after the atomic command. One then
introduces and proves additional invariants asserting that the private variables are equal to
their ghost aliases at all relevant locations.

The same argument applies to the guarded commands in Sect. 3.3. In Sect. 3.4, we intro-
duce shared history variables lwb that are inspected or modified concurrently with act or
turn. This is allowed because lwb is a ghost variable that only serves in the proof, not in
the algorithm.
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3.3 The abstract algorithm

For the ease of the proof of MX, we eliminate the locations and the variable lis. The resulting
algorithm is much more nondeterministic. It may be regarded as a UNITY program, see [4].
To indicate process p’s status as noncompeting, we make level.p negative when process p
is in Exit or NCS. The resulting abstract algorithm is

QmxA = ||p amember(p),

where amember(p) is defined as the repeated nondeterministic choice:

amember(p) =
( entry(p) [] flickerAct(p) [] discard(p) []

move(p) [] toPush(p) [] flickerTurn(p) []
push(p) [] wait(p) [] exit(p) [] skip ) ∞,

where the atomic commands entry up to exit are given below. We remove NCS and CS as
irrelevant and express mutual exclusion MX: #crit ≤ 1 as in (0) with crit = {q | level.q = 0}.

We remove the program counters but introduce private variables cc (climbing chair) to
indicate that the process is at 24. The state space XA of algorithm QmxA is spanned by the
shared variables act and turn, and the private variables level, est, bb, and cc. The initial
state is characterized by:

∀ q : level.q < 0 ∧ ¬act[q] ∧ ¬ bb.q ∧ ¬ cc.q .

The atomic commands entry up to exit are defined as follows. The main part of command
20 is matched by:

entry(p) =
level < 0 →

act[p] := true ; level := N − 1;
est := Process \ {p}.

The flickering assignments to act[p] in 20 and 40 are matched by:

flickerAct(p) =
level < 0 → act[p] := arbitrary.

Here, we allow act[p] to remain flickering during the noncritical section of p because we
concentrate on safety of the algorithm. For progress, we need act[p] to become stably false
during the noncritical section.

The removal of q from est.p in line 22 is matched by:

discard(p) =
level > 0 →

extract if possible some q from est with ¬act[q].
The first alternative of 23 is matched by:

move(p) =
#est < level ∧ ¬cc →

level := #est ; bb := false.

The second alternative of 23 is matched by:

toPush(p) =
level > 0 ∧ ¬ bb ∧ ¬ cc →

cc := true.
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The third alternative of 23 is matched by:

wait(p) =
level > 0 ∧ bb ∧ turn[level] �= p →

level– – ; bb := false.

The main action at line 24 is matched by:

push(p) =
level > 0 ∧ cc →

turn[level] := p ; bb := true;
cc := false ; est := Process \ {p}.

The flickering at 24 is matched by:

flickerTurn(p) =
level > 0 ∧ cc →

turn[level] := arbitrary.

Command 30 is matched by:

exit(p) =
level = 0 → level := −1.

In order to prove that the goto program implements this abstract algorithm, we form a
refinement function [9], i.e., a function f : XC → XA such that every initial state of QmxC
is mapped to an initial state of QmxA and that, for every step (x, y) of algorithm QmxC, the
pair ( f (x), f (y)) is a step of QmxA. Function f removes the private variables lis and pc. It
gives cc.p the meaning that p is at 24, and it makes level.p < 0 when pc.p /∈ {21 . . . 30}:

f (x) = (#
act := x .act, turn := x .turn,
level := (λ q : if 21 ≤ x .pc.q ≤ 30

then x .level.q else − 1 endif),
est := x .est, bb := x .bb,
cc := (λ q : x .pc.q = 24) #).

The brackets (# and #) are record constructors, as used in PVS. We use x .act to refer to the
field act of state x ∈ XC, and x .level.q for the value of level of process q in state x (etc.).
The identifiers level and cc are private variables and can therefore be treated as functions.

We next show that every step of the concrete algorithm QmxC is matched by a step of the
abstract algorithm QmxA.

Step 10 of QmxC corresponds to a skip step of QmxA. Step 20 of QmxC corresponds to
entry or flickerAct of QmxA. Step 21 of QmxC corresponds to skip. Step 22 of QmxC corre-
sponds to skip or discard. The first, second, and third alternative of step 23 correspond to steps
move, toPush, and wait, respectively. In the cases of discard, move, toPush, and wait, we use
invariant I0 to ascertain level.p > 0. The fourth alternative of step 23 corresponds to skip.
The steps at 24 are matched by flickerTurn and push because of I0. Step 30 of QmxC corre-
sponds to step exit because of I1. Step 40 of QmxC corresponds to step flickerAct or to skip.

3.4 Extending with a history variable

In order to prove mutual exclusion, we extend algorithm QmxA with a shared history var-
iable lwb that, for each process q , records the competing processes active since the latest
execution of entry(q) or push(q):

lwb : array [Process] of set of Process := (λ q : ∅).
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Such a history variable does not influence the computation, but is used only in the proof
of correctness. It is therefore allowed to include inspection and modification of lwb in the
atomic commands of the previous section. The reason for the namelwb is that the setlwb[q]
will serve as a lower bound for the private variable est.q . Array lwb will play the role of
array prio in version 0 of the algorithm in Sect. 2.

We define the set of competitors by Cp = {q | level.q ≥ 0}. This set is used to update
lwb[p] in entry and push. When process p exits, p is removed from lwb[q] for all q . This
can be done in the atomic step exit because lwb is only a history variable. We thus get:

entry(p) =
level < 0 →

lwb[p] := Cp; act[p] := true;
level := N − 1; est := Process \ {p}.

push(p) =
level > 0 ∧ cc →

turn[level] := p ; bb := true ; cc := false;
est := Process \ {p}; lwb[p] := Cp \ {p}.

exit(p) =
level = 0 →

for all q do remove p from lwb[q] enddo;
level := −1.

The other actions are lifted to the new state space without modification. The new state space
XH is the state space XA extended with lwb. This concludes the description of the extended
algorithm QmxH.

The relevance of lwb is expressed by the invariants:

K0: lwb[q] ⊆ est.q ,
K1: lwb[q] ⊆ Cp \ {q}.
In order to prove these invariants, we also note the invariant:

K2: level.q ≥ 0 ⇒ act[q].
The proof of K0 uses K1 and K2 in discard. The proofs of K1 and K2 are straightforward.

The next step is to realize that, at this point, the sets est are essentially superfluous. The
invariant K0 allows us to replace move by the nondeterministic version

moveND(p) =
#lwb[p] < level ∧ ¬ cc →

choose some m with #lwb[p] ≤ m < level;
level := m ; bb := false.

Note that move(p) corresponds to moveND(p) with m = #est.p.
Now the private variables est and the modifications of them in entry and push can be

removed. Therefore, the actions discard can be replaced by skip. Consequently, the shared
variable act can be removed and flickerAct can be replaced by skip.

Let XI be the state space spanned by the shared variables turn and lwb, and the private
variables level, bb, and cc. Let QmxI be the (idealized) algorithm determined by the actions
entry, moveND, toPush, wait, push, flickerTurn, and exit. Then the function g : XH → XI
defined by removing est and act is a refinement function from QmxH to QmxI because of
invariant K0 used for move.
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3.5 Proof of mutual exclusion in QmxI

We now prove mutual exclusion for the algorithm QmxI , as expressed by MX: #crit ≤ 1
with crit = {q | level.q = 0}.

As announced in Sect. 2, the starting point is the idea that the set A0(k) = {q ∈ Cp |
level.q < k} should always have at most k elements. This property, however, can easily be
falsified by moveND(p) when cc.p is false. We therefore adapt the definition to reckon with
this possibility.

For every natural number k, we define the set of processes

A(k) = {q ∈ Cp | level.q < k ∨ (¬ cc.q ∧ #lwb[q] < k) }.
Since A(1) contains the set crit , mutual exclusion MX is implied by the invariant J0(1) where
for any k ∈ N we define the invariant

J0(k) : #A(k) ≤ k.

This invariant is threatened by the action wait that decrements level. A process p that
executes wait, has executed push, and then some other process, say q , has established
turn[level.p] �= p by executing push or flickerTurn. This process q has the same level
as p and satisfies cc.q ∨ bb.q . In order to account for such processes, we form the slightly
bigger set:

B(k) = {q ∈ Cp | level.q < k + |cc.q ∨ bb.q|
∨ (¬ cc.q ∧ #lwb[q] < k) },

where, for any boolean value b, we define |b| = 1 or 0 when b is true or false, respectively.
We now propose the additional invariants

J1(k) : #B(k) ≤ k + |T (k)|,
where T (k) is defined by

T (k) ≡ (∃ q : level.q = k
∧ (cc.q ∨ (turn[k] = q ∧ bb.q ∧ k ≤ #lwb[q]))).

T (k) expresses that there are processes with level = k that have executed toPush at that level
and that cannot escape from this state by moveND.

We clearly have A(k) ⊆ B(k). If q is a witness of T (k) then q ∈ B(k) \ A(k). Therefore,
J1(k) implies J0(k).

In order to prove the invariants J1(k), we first note the easy invariants:

L0 : ∀ q : ¬ bb.q ∨ ¬ cc.q ,
L1 : ∀ q : bb.q ∨ cc.q ⇒ level.q > 0.

We now prove that the universal quantification (∀ k ∈ N : J1(k)) is preserved by every
step. For any state expression E , let E+ represent the value after the step and E represent the
value before the step, just as in Sect. 3.1. We treat the different steps of QmxI one by one.

Firstly, for moveND and flickerTurn, it is not very difficult to see that B(k)+ = B(k) and
that T (k) implies T (k)+. The same result applies to wait where we need the invariant L0.
This clearly implies preservation of J1(k) for moveND, flickerTurn, and wait.

For push and entry, we distinguish the cases #Cp+ ≤ k and k < #Cp+. In the first case,
the postcondition #B(k)+ ≤ k is obvious. In the second case, we have that B(k)+ = B(k)

and that T (k) implies T (k)+ as before. Whence preservation of J1(k). The invariant L1 is
needed for entry.
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For exit(p), we have B(k)+ ⊆ A(k + 1) \ {p}. Therefore J1(k)+ follows from J0(k + 1),
and hence from J1(k + 1).

For toPush(p) with k �= level.p, we have that B(k)+ ⊆ B(k) and that T (k) implies
T (k)+ as before. Whence preservation of J1(k). For toPush(p) with k = level.p, we have
that B(k)+ ⊆ A(k + 1) and p itself is a witness of T (k)+. Therefore J1(k)+ follows from
J0(k + 1), and hence from J1(k + 1).

All this together implies that the universal quantification (∀ k ∈ N : J1(k)) is preserved
by every step. Because it holds initially, this concludes the proof that (∀ k ∈ N : J1(k)) is an
invariant of QmxI . It follows that mutual exclusion (MX) is also an invariant of QmxI .

3.6 Theorem proving and formal conclusion

We have used the proof assistant PVS of [16] to mechanically verify the steps from algorithm
QmxC of Sect. 3.2 to mutual exclusion in QmxI of Sect. 3.5. In this mechanical proof, we
indeed construct refinement functions from QmxC to QmxA and from QmxH to QmxI , cf.
[9], and we show that the extension of QmxA with the history variable lwb to QmxH is a
so-called forward simulation, cf. [7,9,15]. We therefore have a composition which is a simu-
lation from QmxC to QmxI . All this also requires the verification of the invariants I* and K*.

In the automaton of QmxI , we verify the invariants L0 and L1, and then the more compli-
cated invariants J0 and J1, as described in Sect. 3.5. We thus prove that QmxI satisfies MX.
Because QmxI satisfies the invariant MX, this invariant can be traced backward to QmxC
to yield that there is always at most one process q with pc.q = 30 and level.q = 0. Finally,
the invariant I1 therefore implies that there is always at most one process q with pc.q = 30.
This proves mutual exclusion for QmxC. The PVS proof script is available at http://www.
cs.rug.nl/~wim/mechver/queueMX.

4 Progress and bounded overtaking

The proof of progress is relatively straightforward. That is, whenever some processes have
entered Intro, eventually some processes will enter CS. Suppose that this is not the case. Then
we have an infinite execution of the system, in which eventually k > 0 processes remain in
Intro and no process enters CS anymore. Since CS and Exit are terminating commands, we
have eventually all other (N − k) processes in NCS.

The k processes q in Intro repeatedly compute est.q (or lwb[q]) and eventually always
find #est.q < k (or #lwb[q] < k). Therefore, eventually, they all get level.q < k. They keep
level.q > 0 because they remain in Intro. They all try and set turn[level.q] := q and set
bb.q := true. Since there are only k−1 elementsturn[i] with 0 < i < k, at least one of them
will eventually be enabled to set level.q := 0 and exit Intro. This proves the progress property.

4.1 Bounded overtaking

In an execution of the system, let us call a competing period of process p a period that starts
with entry(p) and ends with exit(p). Bounded overtaking is the property that there is some
number k such that, in every execution, for any pair of processes p and q , any competing
period of p contains not more than k competing periods of q .

Under the assumption that the variables turn are only write-safe, bounded overtaking
is not valid. This is shown by the following scenario, found by model checking. Let p and
q be two processes. Process p enters first. Then q enters, sets level.q := 1, and executes
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toPush. Then process p enters CS, and exits. At this point, an infinite cycle starts: process
p enters and executes push with level.p = 1; then q executes flickerTurn so that p can set
level.p := 0; consequently, p can enter CS and then exit. This is the end of the cycle. In this
infinite loop p passes q infinitely often. Of course, the write-safeness of turn implies that
process q executes flickerTurn only finitely often before it executes push, but no upper bound
is specified. We can therefore not find an upper bound for the number of times p passes q .

This scenario depends on the fact that writing periods for different processes on a
write-safe variable can overlap. If it is somehow guaranteed that such writing periods are
always disjoint (in particular, when the variables turn[k] are atomic), we conjecture that
bounded overtaking with k = 1 holds, i.e., that every competing period of any process
contains at most one competing period of any other process.

The reason for this conjecture is as follows. When p is competing and process q enters, q
can indeed pass p when p executes push and therewith refreshes lwb[p]. For q to reach CS,
however, it seems that all j processes passed by q need to line up in turn[1] up to turn[ j]
in such a way that they cannot be passed again by newcoming processes.

The conjecture is justified by model checking it with N ≤ 5 processes. Indeed, we model
checked algorithm QmxI of Sect. 3.4 in which the actions toPush and push are combined in a
single atomic action in accordance with atomic writing of turn. We used the model checker
Spin of [10], which created a model with 0.92 × 108 states and 7.96 × 108 transitions, using
10.5 GByte memory. The case of nonatomic writing of turn with mutual exclusion of the
writers leads to bigger models, which could only be checked for N ≤ 4 processes.

The conjecture clearly implies freedom from starvation. For, once p starts competing,
there cannot be more than 2N − 2 processes that exit before p itself exits (at most N − 1 of
them entered after p).

The conjecture can be formalized by introducing history variables a[q, r ] for the number
of times process q entered while process r ∈ Cp. In entry(p), a[p, q] is incremented for all
q ∈ Cp. In exit(p), a[q, p] is reset to 0 for all q . Now the conjecture amounts to invariant
validity of a[q, r ] ≤ 2, for all q and r . We are unable to prove this invariant.

Recently, we found a proof of freedom from starvation in the case that the variables
turn[k] are atomic. Specifically, we can prove that, once some process p starts competing,
there cannot be more than N 2 processes that exit before p itself exits. We leave this to future
work because the proof is not appealing and the bound is still unsatisfactory.

5 Related work and conclusion

Our algorithm may be considered as a variant of Peterson’s algorithm [17]. Another variant
presented by Block and Woo has some similarity in the shared space usage and the number of
levels crossed by the competing processes. In Block-Woo’s algorithm, the number of levels
to be crossed increases whenever a new process starts its competition for CS. In our algo-
rithm, it is determined in the beginning and does not change due to future contention for CS.
Also, the number of bypasses over a process in accessing CS is high in Peterson’s algorithm
and its variations (unbounded for the algorithms given in [11,17] and (N (N − 1)/2) for the
algorithm given in [3]). These algorithms require the shared variable turn to be atomic.

The Bakery algorithm [12] has the attractive property that it works with safe variables, but
it requires unbounded shared space. There are many attempts to bound the token numbers
[21], but they all compromise the nonatomicity property [21]. Our algorithm assures fairness
similar to the Bakery algorithm. Peterson’s algorithm and the Bakery algorithm are widely
touted for their simplicity and elegance. The algorithm presented in this paper is quite simple
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and elegant. Also, our algorithm uses bounded shared registers and seems to assure high
fairness. We have to leave the conjecture of Sect. 4.1 to future work or as a challenge to the
reader.

Multi-port memories allow concurrent accesses to memory through multiple ports. Such
weaker memories are increasingly used in smart-phones, multi-mode handsets, multipro-
cessor systems, network processors, graphics chips, and other high performance electronic
devices [6,19,20]. The applicability of our algorithm for weaker memory with safe and
write-safe variables increases its practical value for systems with multi-port memories.
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