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Abstract We present a software framework for mining software repositories. Our
extensible framework enables the integration of data extraction from repositories
with data analysis and interactive visualization. We demonstrate the applicability
of the framework by presenting several case studies performed on industry-size
software repositories. In each study we use the framework to give answers to
one or several software engineering questions addressing a specific project. Next,
we validate the answers by comparing them with existing project documentation,
by interviewing domain experts and by detailed analyses of the source code. The
results show that our framework can be used both for supporting case studies on
mining software repository techniques and for building end-user tools for software
maintenance support.

Keywords Software visualization · Evolution visualization · Repository mining

1 Introduction

Software configuration management (SCM) systems are widely accepted instruments
for managing large software development projects containing millions of lines of
code spanning thousands of files developed by hundreds of people over many
years. SCMs maintain a history of changes in both the structure and contents of
the managed project. This information is suitable for empirical studies on software
evolution (Ball et al. 1997; Bennett et al. 1999; Greenwood et al. 1998).
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Many SCM systems exist on the market and are used in the daily practice in
the software industry. Among the most widespread such systems we mention CVS,
Subversion, Visual SourceSafe, RCS, CM Synergy, and ClearCase. The Concurrent
Versions System (CVS) and Subversion are, in particular, very popular in the area of
open source software projects. Many CVS and Subversion repositories covering long
evolution periods, e.g., 5–10 years, are freely available for analysis. These repositories
are, hence, interesting options for research on software evolution.

Most SCM systems, including CVS and Subversion, are nevertheless primarily
designed to support the task of archiving software and maintaining code consistency
during development. The main operations they provide are check-in, check-out, and
a limited amount of functionality for navigating the intermediate versions that a
software system has during its evolution. They offer no functionality that enables
users to get data overviews easily. Such overviews are essential in case the questions
asked involve many files or file versions, rather than a particular file, or address facts
at a higher abstraction level than the file level. Most questions concerning spotting
trends in software evolution are of this type. This leads us to a major challenge of
software evolution research based on SCMs, namely how to tackle data size and
complexity. Raw repository information is too large and provides, when directly
displayed, only limited insight into the evolution of a software project. Extra analysis
is needed to process such data and extract relevant evolution features.

Visual tools, added atop of basic SCM systems, are a recent advance in the field.
By using dense pixel techniques, information on hundreds of versions of hundreds of
files can be displayed on a single screen overview. Furthermore, interesting evolution
patterns can be identified by directly looking at the visualization. Tuning various
graphics parameters such as layout, texture, color, and shading yields different
visualizations, thereby addressing different user questions.

However promising, a fundamental question remains: how valid are the answers
produced by visualization tools, when compared to ground truth as known by
domain experts? A related question is: can visualization tools be used to answer
non-trivial questions on industry-size repositories? Although preliminary evidence
suggests that such tools enhance the users’ analysis powers and can provide accurate
insight, there is still a high demand for a stronger validation of the accuracy of
the obtained insight on complex, real-life code repositories which are unfamiliar
to the persons using the tools. In this paper, we address the above question by a
number of empirical studies, as follows. We first introduce an extensible framework
for SCM data extraction and analysis. Then we customize this framework to support
developers in answering a number of concrete questions on CVS and Subversion
software repositories (Q1 · · · Q5):

Q1: What is the contribution style in a given project?
Q2: Who are the main developers in charge?
Q3: What are the high-level building blocks of a software system?
Q4: How maintainable is a given project?
Q5: What is the maintenance risk of a given developer leaving a given project?

Next, we use our framework to perform several empirical studies on real-life
software repositories. In these studies, one or several questions on a specific software
repository ate to be answered by a person who is not the main code developer.
We validate the obtained answers by comparing them with existing project doc-
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umentation, by interviewing software developers and by detailed analyses of the
source code itself. Finally, we use this information to draw several conclusions
concerning the effectiveness of visual repository analysis in supporting software
evolution assessments.

The structure of this paper is as follows. In Section 2 we review existing repository
data extraction methods and software evolution analysis techniques. Section 3
introduces our customizable framework for mining software repositories: Section 3.1
presents a flexible data interface with software repositories; Section 3.2 describes
a clustering technique for detecting logical coupling of files based on evolution
similarity; Section 3.3 describes a visual back-end for evolution assessment. Next,
in Sections 4 to 7 we demonstrate the applicability of our framework with four case
studies performed on several large-scale, real-world repositories. The specific plan-
ning, operation, analysis, result interpretation and result validation are presented for
each case. Section 8 discusses several aspects related to the choice of the case studies
and their prototypical value. Section 9 summarizes our contribution and outlines
open issues for future research.

2 Background

The huge potential of the data stored in SCMs for empirical studies on software
evolution has been recently acknowledged. The growth in popularity and use of
SCM systems, e.g., the open source (CVS, http://www.nongnu.org/cvs/) and Sub-
version (SVN, http://subversion.tigris.org), opened new ways for project accounting,
auditing, and understanding. Existing efforts to support these developments can be
grouped in three directions: data extraction, data mining, and data visualization.

Data extraction is a less detailed, yet very important, aspect of software evolution
analysis. Subversion offers a standard API for accessing the software repository.
However, Subversion is a relatively new SCM system. It appeared in June 2000
and it was first managed using CVS. This is reflected in the existence of fewer
large repositories freely available for investigations. A large part of the open source
community still uses CVS as their primary SCM system. Hence, a large part of
research in software evolution consider data from CVS repositories, e.g., (Burch et al.
2005; Fischer et al. 2003; Gall et al. 2003; German et al. 2004; Lopez-Fernandez et al.
2004; Voinea and Telea 2006a; Voinea et al. 2005; Ying et al. 2004; Zimmermann
et al. 2004). Yet, a standard framework for CVS data extraction does not exist so far.
To build such a framework, two main challenges must be addressed: evolution data
retrieval and CVS output parsing. The huge data amount in repositories is usually
available over the Internet. On-the-fly retrieval is ill suited for interactive (visual)
assessment, given the sheer data size. Storing data locally requires long acquisition
times, large storage space, and consistency checks. Next, CVS output is badly suited
for machine reading. Many CVS systems use ambiguous or nonstandard output
formats (e.g., file names without quotes but including spaces, which compromise
consistency in space separated records). Attempts to address these problems exist,
but are incomplete. Libraries exist that offer an application interface (API) to CVS,
e.g., javacvs (for Java programmers) or libcvs (for Perl programmers). However,
javacvs is basically undocumented, and hence of little use. libcvs handles only
local repositories. The Eclipse environment offers a CVS client but not an API.

http://www.nongnu.org/cvs/
http://subversion.tigris.org


Empir Software Eng (2009) 14:316–340 319

The Bonsai project (Bonsai, http://www.mozilla.org/projects/bonsai/) offers tools to
populate a database with evolution data obtained from CVS repositories. However,
these tools are mainly meant as a web data access package and are little documented.
The best supported effort for CVS data acquisition so far is the NetBeans.javacvs
package (http://javacvs.netbeans.org) for Java programmers (not to be mistaken as
javacvs). This package has a reasonably documented API offering most of the
functionality of the standard CVS client by parsing its output into API-level data
structures. However, the usefulness of this library depends on its ability to support
nonstandard formats. Its main drawback is the difficulty to adapt it to a specific
nonstandard situation.

Data mining focuses on extracting and processing relevant information from SCM
systems. SCM systems have not been designed to support empirical studies, so
they often lack direct access to high-level, aggregated evolution information. This is
distilled from the “raw” stored data by data mining tools. In the following, we review
a number of the prominent results in this field. Fischer et al. (2003) extend the SCM
evolution data with information on file merge points. Gall et al. (2003) and German
and Mockus (2003) use transaction recovery methods based on fixed time windows.
Zimmermann et al. (2004) extended this work with sliding windows and facts mined
from commit e-mails. Ball analyzes cohesion of classes using a mined probability
of classes being modified together (Ball et al. 1997). Bieman et al. (2003) and Gall
et al. (2003) also mine relations between classes based on change similarities. Ying
et al. (2004) and Zimmermann and Weisgerber (2004), Zimmermann et al. (2004),
address relations between finer-grained artifacts, e.g., functions. Lopez-Fernandez
et al. (2004) apply general social network analysis methods on SCM data to assess
the similarity and development process of large projects. Overall, the above methods
provide several types of distilled facts from the raw data, thereby trying to answer
questions such as: which software entities evolved together, which are the high and
low activity areas of a project, how is the developers network structured, and how do
a number of quality metrics, such as maintainability or modularity, change during a
project’s evolution. During data mining, a data size reduction often occurs, as only
the metrics and facts relevant to the actual question are examined further. However
useful, this approach can discard important facts which are not directly reflected by
the mining process, but which can give useful collateral insight.

Data visualization takes a different path than data mining, focusing on making
the large amount of evolution information available to users in an effective way.
Visualization methods make few assumptions on the data - the goal is to let users
discover patterns and trends rather than coding these in the mining process. SeeSoft
(Eick et al. 1992), one of the earliest works in this direction, is a line-based code
visualization tool which uses color to show code snippets matching given modification
requests. Augur (Froehlich and Dourish 2004) visually combines project artifact
and activity data at a given moment. Xia (Wu et al. 2004b) uses treemap layouts
for software structure, colored to show evolution metrics, e.g., time and author of
last commit and number of changes. Such tools successfully show the structure of
software systems and the change dependencies at given moments. Yet, they do not
show code attributes and structure changes made throughout an entire project. A
first step towards getting insight into several versions, UNIX’s gdiff and Windows’
WinDiff tools display code differences between two versions of a file by showing line
insertions, deletions, and edits computed by the diff tool. Still, such tools cannot

http://www.mozilla.org/projects/bonsai/
http://javacvs.netbeans.org
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show the evolution of thousands of files and hundreds of versions. Collberg et al.
solve this for medium-size projects by depicting the evolution of software structures
and mechanisms as a sequence of graphs (Collberg et al. 2003). Lanza (2001) depicts
the evolution of object-oriented software systems at class level. Wu et al. (2004a)
visualize the evolution of entire projects at file level and emphasize the evolution
moments. Voinea and Telea propose a set of tools that visualize the entire evolution
of software at file (Voinea et al. 2005) and project level (Voinea and Telea 2006a)
using dynamic layouts and multivariate visualization techniques. The approaches of
Lanza, Wu et al., and Voinea and Telea scale well on large software projects. Burch
et al. (2005) propose a framework for visual mining of both evolution and structure at
various levels of detail. SoftChange (German et al. 2004) is an attempt for a coherent
environment to support the comparison of Open Source projects, targeting CVS,
project mailing lists, and bug report databases. SoftChange focuses mainly on data
extraction and analysis, aiming to be a generic foundation for building evolution
visualization tools.

In spite of numerous attempts to tackle challenges in each of the above mentioned
directions, there exist only a few tools that combine data extraction, data mining,
and data visualization functionality in a single environment (Cubranic et al. 2005;
German et al. 2004). Tool integration is absolutely essential for getting them ac-
cepted by engineers during software development and maintenance, and also for
organizing empirical studies on software evolution. Many existing tools, however,
are quite monolithic and do not allow easy integration of new extraction, mining
or visualization components. To address this issue, we present next a new approach
towards an extensible framework.

3 An Extensible Framework for Mining Software Repositories

The purpose of our extensible framework for repository mining is twofold. First, it
provides a foundation for empirical research on software evolution, both in terms
of software tools and methodology. Secondly, it leverages the power of interactive
visualization techniques in the analysis of large amounts of interesting and potentially
useful information stored in software repositories. Ultimately, we would like to use
this framework to provide end users with a complete software evolution analysis
chain. We present next the key design elements of our framework and the compo-
nents it integrates so far.

3.1 Data Extraction

As already explained in Section 2, repository data extraction is a serious practical
problem for building analysis and visualization tools. Most repository access proto-
cols, such as implemented in the CVS and Subversion versioning systems, implement
only the basic access functions needed to support the archiving process. In the case
of CVS, navigation commands also do not have a machine-readable output. When
parsing CVS output, one usually searches for a parser that copes with the output
format at hand and tries to add it to the experimental setup.

We propose next an approach towards repository data access that simplifies the
process using a data acquisition mediator (see Fig. 1).
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Fig. 1 Architecture of an extensible framework for visual software repository analysis

The mediator is an instrumental part of our framework. It forms an easy-to-
customize layer between repositories, data acquisition, processing, and analysis tools.
When format inconsistencies occur between the CVS output and a parser, we do
not need a new CVS data acquisition tool. Instead, we adapt the mediator with a
simple rule to transform the new format into the one accepted by the tool. While
this does not completely remove the problems of inconsistent output formatting, it
is a flexible way to solve problems without removing the preferred data acquisition
tool. We developed an open source, easy to customize mediator, in a simple to use
programming language: Python. The mediator consists of a set of scripts which act
as data filters, i.e. read the raw data produced by the SCM tool (e.g. CVS client),
apply data and format conversion, and output a filtered data stream. Filters can
be connected in a dataflow-like manner to yield the desired data acquisition tool.
Several filter pipelines can be added to work in parallel and have their outputs
merged at the end. This enables alternative parsing strategies, e.g. in case one does
not know beforehand how to detect the data format used.

A second function of the mediator is to offer selective access to CVS repositories
by retrieving only information about a desired folder or file, as demanded by the
data analysis or visualization tool further in the pipeline. The mediator also caches
the retrieved information locally, using a custom developed database. This design
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lets one transparently control the trade-off between latency, bandwidth and storage
space in the data acquisition step as desired.

We have been able to test our mediator-based data extraction as part of several
software repository mining challenges at the MSR’06, SoftVis’06, and Vissoft’07
scientific events (Voinea and Telea 2006b, c). Getting to the facts in the repository
was one of the main time-consuming, tedious, tasks for most participants. The
mediator solution, complemented by a small amount of scripting, provided us with a
means to quickly get the facts and save more time for the actual visual analysis part.

3.2 Mining Evolutionary Coupling

Raw repository data is too large and low-level to provide insight into the evolution of
software projects. Extra analysis is needed to extract relevant evolution aspects. An
important analysis use-case is to identify artifacts that have similar evolution. Several
approaches exist for this task (Bieman et al. 2003; Gall et al. 2003; Ying et al. 2004;
Zimmermann et al. 2004). All these approaches use similarity measures (also known
as evolutionary coupling measures) based on recovered repository transactions, i.e.,
sets of files committed by a user at some moment. The assumption is that related files
have a similar evolution pattern, and thus their revisions will often share the same
commit transaction. This information about correlated files is used to predict future
changes in the analyzed system, from the perspective of a given artifact.

We offer a more general approach that does not take transactions into account but
pure commit moments, when searching for similar files. We believe transaction-based
similarity measures fail to correlate files that are developed by different authors, have
different comments attached, and yet are still highly coupled. To handle such cases,
we propose a similarity measure using the time distance between commit moments.
If S1 = {ti|i = 1..N} are the commit moments for a file F1 and S2 = {t j| j = 1..M} the
commit moments for F2, we define the similarity between F1 and F2 as the symmetric
sum:

Φ(F1, F2) =
N∑

i=1

1√
max(mint j∈S2 |ti − t j|, k) + l

+
M∑

j=1

1√
max(minti∈S1 |t j − ti|, k) + l

(1)

where k and l are parameters intended to reduce the influence of completely
unrelated events on the similarity measure (k), and to limit the impact of isolated,
yet very similar, events (l). The square root attenuates the influence of the network
latency on the transaction time recorded by the repository. Intuitively, the measure
Φ considers, for each commit moment of F1, the closest commit moment from F2,
weighted by the inverse time distance between the two moments. In practice, we
obtained good results by assigning value 1 to l and 3,600 (seconds) to k. The case
studies presented in Section 5 uses these values.

We next use this measure in an agglomerative clustering algorithm to group files
that have a similar evolution. The clustering works in a bottom-up fashion, as follows.
First, all individual files are placed in their own cluster. Next, the two most similar
clusters, as given by the above similarity metric, are found and merged in a parent
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cluster, which gets the two original clusters as children. The process is repeated until
a single root cluster is obtained. To measure the similarity of non-leaf clusters, we use
(1) on all commit moments of all files in the first, respectively second, cluster. This
is equivalent to a full linkage clustering which is computationally more expensive
than other techniques such as single linkage or k means (Everitt et al. 2001), but
offers a context-independent, more stable, result. To give a practical estimation of
the efficiency: Clustering a project containing around 850 versions of 2,000 files, using
a C++ implementation of the evolutionary clustering, took just under 5 min on a 2.5
GHz Windows PC.1

After the clustering tree is computed, it can be used to obtain a decomposition of
system evolution by selecting only those clusters that satisfy a given criterion. Users
can interactively select the most appropriate decomposition in a visual way using,
for example, the cluster map widget introduced by Voinea and Telea in (Voinea and
Telea 2006d). We added this facility to our framework, using the data acquisition
mediator introduced in Section 3.1 to decouple the calculation of the clustering tree
(done in C++ by a standalone program) from the cluster selection widget (done in
Python as part of our visualization).

3.3 Visualization

Visualization attempts to provide insight into large and complex evolution data by
delegating pattern detection and correlation discovery to the human visual system.
Visualization can also present data analysis results in an intuitive way. Visualization
is a main ingredient of our software repository mining framework.

As a visualization back-end of our framework we integrated the CVSgrab
tool (Voinea and Telea 2006a). In its first release (2004), CVSgrab was a tool
for acquiring history information from CVS repositories. Since then, CVSgrab has
evolved into a set of techniques for visualizing project evolution at file level.

A complete project, as present in an SCM repository, is rendered in CVSgrab as a
set of horizontal strips (Fig. 2 left). Each strip shows a file’s evolution in time, along
the x axis. The file strips are stacked (ordered) along the y axis in different ways
(e.g. by age, type, size, number of changes, evolutionary coupling), thereby covering
different types of analyses. Color can show several attributes: file type, size, author,
metrics computed on the file contents, the occurrence of a specific word in the file’s
commit log, or information from an associated bug database.

CVSgrab can also visualize the evolution of file ownership, i.e., how many files
carry the signature of a given user at one or several moments (Fig. 2 right). This
type of visualization is particularly useful when assessing the team-related risks of a
software project (see Section 7).

1The entire project contains more than 850 versions, but we were only interested analyzing a
subperiod of its entire evolution that covered these versions.
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Summarizing, the main advantages of our framework as compared to the various
repository data mining and/or visualization frameworks, are

– A dataflow architecture combining data acquisition, filtering, metric computa-
tion, storage, and visualization modules;

– Integrated support for CVS and Subversion repositories;
– Handling specific CVS data formats by scripted plug-ins;
– Incremental and cached access to data on repositories;
– An integrated module for clustering files based on evolutionary coupling;
– An integrated visualization module in which all visualization options (e.g. layout,

color encoding, textures) can be customized to reflect any data attribute value
(e.g. file size, type, date, author).

In the remainder of this article, we present several case studies that illustrate
the applicability of our framework on real-life, industry-size software repositories.
In all these studies, we connected the evolutionary coupling and clustering algo-
rithm (Section 3.2) to the CVSgrab visualization back-end (outlined above) through
the data acquisition mediator (Section 3.1) to form a complete evolution analysis
solution. This solution was then used by us to answer the questions stated in the
introduction. Next, we confronted domain experts with the results and other existing
information in order to (in)validate them. Finally, we presented the complete toolset
to the domain experts and collected feedback on other issues, such as usability and
intuitiveness.

4 Case Study: Assessment of Repository Management Style

In the first study, we analyzed the evolution of two open source software (OSS)
projects to investigate how changes are committed in repositories. In order to ensure
consistency in OSS projects where many developers join the team, only a few
developers are typically allowed to make project-wide changes. Often, the changes
committed by these ‘repository managers’ incorporate the work of many other
developers who do not have commit rights, represent project-wide updates such



Empir Software Eng (2009) 14:316–340 325

as code beautification, or represent considerable work gathered into a single ‘bulk
commit’. Hence, simply equating the user(s) who perform the most changes with
the most insightful persons in the project can be misleading. Those users might have
committed the changes of other less privileged developers. Also, code beautification
operations touch a lot of files, but that does not mean the user performing them has
intimate knowledge over them.

To assess if the above takes place (or not) for a given repository, i.e. to answer
questions Q1 and Q2, we performed an investigation using the framework intro-
duced in Section 3 and validated the results using the information available in the
corresponding project documentation and on the project website. We examined two
projects: ArgoUML and PostgreSQL.

4.1 ArgoUML

The first project we analyzed was ArgoUML, an object-oriented design tool with a
6-year evolution of 4,452 files developed by 37 authors. Using the data acquisition
mediator (Section 3.1), we retrieved the project information from the public CVS
repository. For this, we had to extend the CVS format converter such that file names
with spaces were correctly handled.

Once the format converter had been patched, data acquisition took 31 min over
a T1 Internet connection: 8 min for the initial setup (i.e., retrieval, in full, of the
last version of 59 MB) and 23 min to retrieve the evolution data to be visualized
(20 MB). After being retrieved, all data was cached by the acquisition mediator.
Any subsequent updates of this information, e.g. when new versions appear in the
repository, require only a time proportional with the number of changed files. Hence,
when only a few files are changed, updating the cached data only requires a couple
of seconds.

After acquiring the evolution data with the mediator, we visualized it using
CVSgrab. Figure 3 presents several images depicting the evolution of ArgoUML.

In Fig. 3a, the 4,452 files are sorted along the y axis in decreasing order of
the creation time: old files are at the bottom, younger files are at the top. Gray
shade indicates the file type: light gray is for documentation files, dark gray is for
implementation (source code) files.2 We see that, in the beginning of the project,
many documentation files (roughly 400) have been committed, apparently during
one transaction, as indicated by a steep vertical pattern in the image. A similar ‘bulk
commit’ of implementation files followed a few months later. In Fig. 3b, files are
similarly arranged, but color encodes the ID of the developer who committed each
file. We see that the two chunks of files committed in bulk in the beginning of the
project, but also other similar chunks committed later, are contributed by individual
developers. The first chunk (documentation) has been committed by the developer
jrobbis. Many files committed in bulk in one transaction by a single person suggests
that previous development existed, and/or that cumulated work of more developers
has been committed by a code manager.

2The CVSgrab tool produces full-color visualizations. These have been converted to grayscale for
printing purposes.
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Figure 3g shows a list of the most active developers. The list is sorted based on the
number of file commits associated with each person, shown as a bar for each person
name. We see that linus, mvw and kataka are the most active developers. However,
the many files they contribute (compared to other developers) suggests they have the
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role of code managers, i.e. they commit the work of more developers, taking care of
the code consistency.

Figure 3e depicts the commit moments of kataka. Dark gray dots show the file
versions he committed. We see that kataka has not been active in the last 18 months.
In contrast, Fig. 3c and d, indicates that linus and mvw are active code managers.

Figure 3f uses color to visualize the contributions of linus (light gray) and mvw
(dark gray). Figure 3h shows a zoom-in on a selected area. In both images, we see
that both linus and mvw have a similar contribution style. They typically commit
many files at one moment, but also make individual smaller commits. This suggests
they both do project-wide operations, such as code beautification, and also do issue-
specific code updates, possibly provided by other developers.

We validated our observations on the evolution of ArgoUML by comparing
them with the information available in the project documentation and on the
official project website (ArgoUML, www.http://argouml.tigris.org/). According to
this information, ArgoUML has been started by Jason Robbins prior to 1995, and
preliminary versions have been made public as early as 1998. The repository has
been only populated in early 2000, by the same developer. According to the same
website, prior to 1999, more developers took part in the development of ArgoUML,
for example Jim Holt and Curt Arnold. This validates our hypothesis that previous
work, done by several developers, existed before the first files were stored in the
repository.

We also consulted the list of committed members available on the project website
to investigate the role of kataka, linus and mvw. According to the list, kataka has
been a major developer only until release 0.18 of ArgoUML, in April 2005, and
did not contribute to later releases. This confirmed our observation about kataka
being an important developer who was inactive in the last 18 months of recorded
development. The list further revealed that linus has the role of a project leader,
being also responsible for all releases. This explains his contribution pattern, which
affects in general many files at the same moment, and confirms our hypothesis of
linus being an important code manager. Additionally, the list reveals that mvw is in
charge of code documentation. This can also explain why he modifies many files at
once, performing project-wide modifications that may not be issue-specific.

4.2 PostgreSQL

The second project we investigated was PostgreSQL, an object-relational database
management system with a history of 10 years, 2,829 files, and 27 authors. We
followed a similar procedure as in the first case. We started with the data acqui-
sition step. Our CVS format converter needed no adaptation for this project. The
acquisition took 28 min: 7 min for the initial setup (i.e., retrieval of the last project
version = 56 MB) and 21 min for retrieving the evolution data to be visualized (29
MB). The evolution retrieval time was smaller than in our first example, even though
more data was retrieved. This is explained by the connection overhead. In CVS,
when retrieving evolution data, the connection has to be established for each file.
PostgreSQL has less files than ArgoUML, which decreased the overall connection
latency.

http://www.http://argouml.tigris.org/
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After acquisition, we used CVSgrab to visualize the data.3 Figure 4 shows several
generated images depicting the evolution of PostgreSQL.

Figure 4a shows the project’s 2,829 files using a layout sorted by creation date,
similar to the previously presented case. Color shows file type: implementation
files are dark gray, headers are light gray. Similar to ArgoUML, we see that both
implementation and header files have been committed initially in large chunks during
bulk transactions, as shown by those steep vertical jumps in the image. Additionally,
Fig. 4b shows that all files in the two initial chunks are committed by only one person:
scrappy. Whereas these findings may not be immediately visible on the overview
images shown in Fig. 4, they are quite easy to see in the actual tool, in which each
image is viewed at full-screen resolution and can be further zoomed in, if the commit
density or file count are too high.

Figure 4g shows a list of the most active developers. According to it, momjian and
tgl are the most active ones. Figure 4c and d also shows that they are still active, i.e.
committed recently.

Figure 4f uses color to visualize the contributions of momjian (light gray) and tgl
(black), with a zoom-in shown in Fig. 4h. These images show that these developers
have very different contribution styles. While momjian changes many files in single
transactions, tgl commits only a few files at once, but does many transactions. Based
on similar patterns that we have seen in several other OSS repositories, this suggests
that momjian may be involved in project-wide code updates (e.g. code beautification,
patches) while tgl may commit issue-specific code updates from other developers.

We validated our observations on the evolution of PostgreSQL by confronting
them with the facts from the official project website (http://www.postgresql.org/).
According to these, the project roots go back to 1986. It was developed by many
teams along the time, yet the first files were stored in the repository only in the first
half of 1996 by Marc G. Fournier. This developer has the ID scrappy and one of his
roles is to manage the repository. This confirms our hypothesis that previous work
existed before the first commit and that these files were the work of more developers.

According to the website, momjian (Bruce Momjian) and tgl (Tom Lane) are two
of the core developers behind the project. Besides being a core developer momjian,
has also the task of applying patches contributed by other developers. Also, tgl is
presented as being involved all aspects of PostgreSQL, including bug evaluation and
fixes, performance improvements, and major new features. The above confirm both
our hypotheses regarding momjian and tgl.

Concluding, the two case studies on the evolution of ArgoUML and PostgreSQL
show that commit data does, in some cases, represent the activity of a ‘code manager’
and not the activity of all developers involved in a project. On the one hand, previous
development efforts may have existed before the repository was first populated. On
the other hand, in order to ensure code consistency, developers can be constrained
to commit their work via ‘code managers’. Both cases can be detected by studying
patterns in the repository evolution.

3The mediator makes it possible to couple CVSgrab visualizations with both CVS and Subversion
repository data.

http://www.postgresql.org/
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5 Case Study: System Decomposition Based of Evolutionary Coupling

An important question that most developers ask when trying to understand a
software system is “what are the high-level building blocks?” (Q3). To answer this
question, we use the history information stored in SCM repositories, by computing
a system decomposition hierarchy based on evolutionary coupling (Section 3.2).
However technically simple to compute, one should still ask: How accurately does
such a decomposition reflect the actual building blocks used in the software?

We answered this question by studying the decomposition based on evolutionary
coupling of the mCRL2 software package (http://www.mcrl2.org). mCRL2 is a
toolset for modeling, validation, and verification of concurrent systems and protocols.
It contains 2,635 files contributed by 15 developers during 30 development months.
mCRL2 is hosted on a Subversion repository.

We started with the data acquisition step. The Subversion format converter
needed no adaptations for this project. The acquisition took 20 min. This relatively
low acquisition time as compared with the previous cases is explained by the richer
functionality of Subversion repositories, which can deliver a list of their contents.
Consequently, the initial set-up step specific to CVS repositories was not required in
this case.

Once the information has been acquired, we used the evolutionary coupling
decomposition component of our framework (Section 3.2). The component operates
on the evolution data cached by the data acquisition mediator. We planned to
validate the results by using a domain expert involved in the development of mCRL2
to assess the computed decomposition. We used as domain expert Jeroen van der
Wulp, one of the main architects behind mCRL2. At his suggestion, we applied the
decomposition on the sip subsystem, i.e. that part of the software with which he was
most familiar. This subsystem contains 65 files and implements the interface between
various tools available in mCRL2, and a central controller. The computation of the
agglomerative clustering tree took only 2 s.

After the clustering, we used CVSgrab to select a decomposition based on similar
cohesion (Voinea and Telea 2006a). Figure 5 shows the resulting decomposition,
containing six main clusters (numbered 1–6) and a number of unclustered files (A
and C). Files in the same cluster are visually emphasized using the so-called plateau
cushions, dark at the edges and bright in the middle, implemented as described in
(Voinea and Telea 2006a). We concluded that the sip component has six high-
level building blocks, and we asked the opinion of the domain expert on this
decomposition.

The expert analyzed the names of the files in each cluster and then indicated the
main role they refer to in the design of the sip component. He identified clusters
1, 2, 3, and 6 as a meaningful view on the architecture of the sip component with
4 building blocks. The meaning of each clusters is shown as annotations in Fig. 5.
Clusters 1, 2, and 6 contain mostly files correctly located in their corresponding
building block (hence they are a good decomposition). Cluster 3 contains also a few
files logically belonging to other blocks (hence is a less useful decomposition). Cluster
5 does not contains files in a building block, but groups files used for testing the sip
subsystem. Finally, cluster 4 groups the remainder of the files in the project. The
domain expert analyzed also the names of the unclustered files (e.g. A,C in Fig. 5)
and concluded they are weakly related to one of the main clusters 1, 2, 3, or 6. In the

http://www.mcrl2.org
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Fig. 5 mCRL2 decomposition in building blocks based on evolutionary coupling

end, the domain expert considered that, with the exception of cluster 4, the evolution-
based decomposition correctly revealed the most relevant building blocks in sip.

Our conclusion is that a system decomposition purely based on evolutionary
coupling (i.e. without examining the file contents) is meaningful and useful. Yet,
several aspects must be considered in practice. First, the decomposition covers all
development activities that commit files. Hence, not only source code clusters are
produced, but also clusters related to other activities such as testing. Secondly,
artificial clusters will typically appear. In our study, cluster 4 does not have any
special meaning. At a close analysis, we found out that cluster 4 contained files
which were modified together during a project-wide activity (reconfiguration of the
documentation engine). To eliminate such clusters, one should adapt the similarity
metric (1) to include not just raw commit times, but additional semantics, such as file
types, folder locations, or author IDs.

6 Case Study: Assessment of Maintainability

A frequent question that appears when assessing a third-party software stack for
the first time is: “How maintainable is this software?” (Q4). Assessing past main-
tainability can help predicting future maintainability and is also to be considered
when buying or outsourcing software stacks. Two important project history-related
factors are useful here (among many others): The development stability, i.e., how
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dynamically is the code changing, and the code cleanness, i.e., what is the quality of
the intermediate versions.

We chose the KDE Pim project (Pim KDE, http://pim.kde.org) as a case study on
which to answer these questions. KDE Pim is a sub-project of the KDE desktop envi-
ronment. It offers an application suite to manage personal information. The project
contains 6,141 files, contributed by 73 developers during almost eight development
years. We used the Subversion module of the data acquisition mediator to retrieve
the entire KDE Pim project history. This operation took 30 min. After acquisition,
we used the CVSgrab visualization module to display the project evolution.

To validate the results of our investigation, we asked a domain expert involved in
the development of KDE Pim to assess our findings. Our domain expert was Adriaan
de Groot, one of the core KDE developers. We examined that part of the software
that was most familiar to this domain expert, namely the KPilot application of the
KDE Pim suite. KPilot contains 504 files. We used CVSgrab’s filter functions to
select the 145 C++ source files for detailed investigation. Next, we used a line counter
plug-in component to add a lines-of-code-per-file (LOC) metric to the database
maintained by the mediator.
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Fig. 6 Source code evolution in KDE Koffice. Code cleaning patterns, occurring at regular intervals,
are emphasized (bottom images)

http://pim.kde.org


Empir Software Eng (2009) 14:316–340 333

Figure 6 (top left) shows the developers sorted on number of commits, which
yields adridg (Adriaan de Groot) as the main developer. In Fig. 6 (top right), files
are drawn sorted on inverse creation time—old files are at bottom, most recent ones
are at top. The dark dots show the commits (time and file) of adridg. We quickly see a
flat region without any commit events (dark dots). This is a low-activity development
moment, in which we can assume the software is in a stable state. Another interesting
aspect regarding the maintainability of KPilot is shown in Fig. 6 (bottom). Files
are laid out as above, but the dots mark the presence of the word “warnings” in
the commit logs. This word often appears in logs reporting that compiler warnings
have been removed, indicating that a thorough code inspection has been done.
Such code cleaning happens when the code is stable and no planned (refactoring)
changes are foreseen. In Fig. 6 (bottom), we see several “L” shaped patterns (A)
that indicate many files being changed while removing “warnings”, right before a low
activity period. This suggests that as functionality is implemented and the software
has reached a stable phase, the code is carefully inspected and compiler warnings
are removed before continuing development. This suggests KPilot is a thoroughly
maintained project. A different project-wide code clean step is seen in the zoom-
in image (marker B). Here, only old code is modified to remove compile warnings.

Fig. 7 Source code evolution
in KDE Koffice. Color shows
the lines-of-code per file
variation in time. This allows
detecting unstable, heavily
changing, files
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The newly contributed code (at top of image) is probably not yet stable, so it is not
cleaned up.

Figure 7 shows code files sorted on activity (number of commits) and colored
with the LOC metric. As expected, the most active files (at top) are also among
the oldest. Since we measure activity as absolute number of commits, older files
which are still changed get potentially a higher chance to be recognized as active. To
emphasize recently active files, if desired, we can use the activity metric computed on
a subperiod, e.g. few latest months, of the entire history.

However, we also discover these most active files are not very stable. The
magnified region shows the latest versions of some of the most active files. These
are not stable files, as the LOC metric (gray shade) varies a lot for each file.

Our findings described above were validated by the domain expert, who could
recognize his work patterns in our results. We conclude that the visual correlation
of several attributes, such as project activity, specific patterns in commit logs, and
source code metrics, can deliver valuable insights on code stability and maintenance
style (e.g. periodic code cleaning operations). Hence, the presence of such patterns
can be used as a sign of good maintainability. However, as it appeared when asking
a developer unfamiliar with the KPilot code base and only slightly familiar with
CVSgrab, identifying such visual patterns clearly takes some training time (over
one hour). An improvement we consider is to detect and visually highlight patterns
of interest.

7 Case Study: Assessment of Project Team Risks

A set of important questions for project managers are “What are the team-related
risks?”, “What happens if a developers leaves the team?” and “What will be the
effort of replacing the leaving person?” (Q5) In this section, we show how evolution
data, mined from software repositories, can help answering these questions.

The first project we investigated was mCRL2 (http://www.mcrl2.org), same as in
our second case study. As the evolution data was previously cached by the mediator
(Section 5), this study started with no acquisition time. Next, we visualized the
evolution of mCRL2 at system level to assess the distribution of impact in the team.
We used a so-called flow graph to compare the number of files each developer
“owned”, i.e., which were last committed by that developer (see Fig. 8). For each
developer, a tube-like band is drawn whose thickness (height) is scaled by the
number of files owned. Time is mapped to the x axis, so the thickness variation
shows the impact variation of a developer in the project. This gives an indication
about which users are familiar with the repository at a given moment in time. Since
this visualization shows changes cumulated per version, small-scale changes done
sporadically by a user to a few files in a few versions will not considerably influence
its ownership percentage in general. If desired, we can also compute a more fine-
grained ownership per line-of-code, as shown in (Voinea et al. 2005), and aggregate
that instead the coarser per-file ownership.

Figure 8 top shows the flow graph visualization for the mCRL2 repository. The
small upper-left window shows the developers, sorted in increasing order of commit
numbers, as described in the previous case studies (Figs. 3, 4, 7). In the second
half of the first development year, an important developer (jwulp) joined the team.

http://www.mcrl2.org
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Gradually, he became the owner of most implemented code. Given the impact
distribution over the developers, he is arguably the main (and only) one up-to-date
with changes in most parts of the project. From this perspective, he represents an
important asset for the project, but also a high risk. If he left the team, a high amount
of knowledge would have to be transferred to other team members. Our finding was
validated by the main architect of mCRL2, who happens to be exactly this person,
and was also confirmed by his project manager.

The second project we investigated is MagnaView (http://www.magnaview.nl),
a commercial visualization software package containing 312 files, written by 11
developers in over 16 development months. Figure 8 bottom shows the flow graph
visualization for this project. We see that in the first three months the relatively
small code was owned by just one developer. At the end of February 2005, two new
developers joined the team: tomasz and Roel. Developers tomasz and Roel seemed to
own equal code amounts in the following months, while other minor developers have
little influence. Starting June 2005, the code size increases notably. End of August
2005, a new developer (guido) joins the team. Until the end, the amount of code
owned by guido increases steadily. In the same time the amount owned by the project
initiator, roel (not to be confounded with Roel), shrinks significantly. At the end, the
code is mainly owned by three developers: tomasz, guido, and Roel. We assumed
these three developers have now a good understanding about the system and are
important, and actually critical, team members. They own fairly balanced amounts
of code, so the impact of losing one of them is quite small. The amount of code

http://www.magnaview.nl
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owned by the other eight minor developers is very small, so they are non-critical to
the development.

We used as validation the opinion of Roel Vliegen, the main software architect
behind MagnaView, as domain expert. Our distribution of developers in terms of
(critical) team impact was found to be correct. We concluded that the flow graph
visualization showing the evolution of team members’ impact provides a simple,
intuitive, and highly effective way for managers to discover and/or monitor the
impact distribution over a team. The flow graphs were particularly appreciated
exactly because of their simplicity, as compared to more complex imagery such as
the decomposition clusters (Fig. 5). In particular, flow graphs were easily understood,
and appreciated, by non-technical persons (managers). However, the flow graph view
was most effective when correlated with other views, such as the member list sorted
based on impact, as well as the evolution of file metrics (Fig. 2 left).

8 Discussion

In the previous sections, we have described a number of case studies showing how
our visualization framework can be used to discover several facts and perform several
assessments on software repositories. At this point, an important question is: How
much can we generalize from these studies to the applicability of our approach and
the presented analyses to any software repository in general?

Several observations can be made here. First, all the chosen repositories
(ArgoUML, PostgreSQL, mCRL2, KDE Pim, and MagnaView) contain large
projects spanning several thousands of files each, tens of developers, and changes
covering several years. During related past studies, we also analyzed the Mozilla
code, which contains over ten thousand files (Voinea and Telea 2007). This makes
us believe that our methods and tools are technically scalable to industry-size repos-
itories. Second, the techniques presented here do not analyze the file contents, but
only the repository commit data. While this makes the range of performed analyses
less specific, e.g. we could not perform duplication or clone evolution analysis on
source code, this also makes our techniques lightweight, fast, and generic, as we do
not need to transfer or analyze the actual file contents.

Second, we chose for the case studies repositories ranging from OSS projects
(ArgoUML, PostgreSQL, KDE Pim) to academic software (mCRL2) and commer-
cial software (MagnaView). Software is developed and maintained in different ways
in these three types of communities. We performed our different types of analyses
(repository management style, system decomposition using evolutionary coupling,
maintainability assessment, and team risk assessment) on all these repositories,
although we described here only a subset thereof, for space constraints. From these
results, we believe that the proposed methods and techniques should be applicable to
any type of software repository in a range of organizations, as long as the repository
data is accessible via a suitable mediator.

Third, we chose different types of information for validation: project history
manually extracted from documentation and websites (ArgoUML, PostgreSQL) and
discussions with actual developers and project managers (mCRL2, KDE Pim, and
MagnaView). In none of the case studies were we involved, directly or not, in the
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development or code-level usage of the studied code bases. In two cases (mCRL2
and MagnaView), the domain experts involved in the validation briefly saw our
visualizations, but they were not told of our interpretation of the visual patterns
until after they validated our findings. Given these, we conclude that users familiar
with our visualization tools can effectively perform correct assessments of several
evolution aspects on unknown repositories.

A separate question to discuss relates to the effectiveness of our visualizations.
A visualization is effective if users can detect patterns in it which correlate with
events in the displayed data. So which are the most salient patterns of our evolution
visualizations, and why do they show?

One of the most frequently used visual patterns are colored pixel blocks. Given
the 2D time-by-file layout used (Fig. 2), semi-compact, same-color, near-rectangular
pixel blocks show file versions which are related by two attributes (sorting (y axis)
and coloring) and related in time (x axis). After such blocks are found, their meaning
depends on the axes’ and color encoding, showing e.g. owned code (Section 4) or
code-cleaning events or unstable files (Section 6). Clusters essentially use the same
rectangular visual pattern, on a higher scape, to show this time files evolving together
(Section 5). A quite different pattern are the ‘code flows’ used to show evolution of
developers’ impact (Section 7). This pattern is easy to interpret: tube thickness shows
contribution amount, color shows identity. Thickening tubes, from right to left, show
‘code owners’ who become gradually more important. A very similar pattern was
successfully used in computer games to show evolution of players in time (Microsoft
Inc 2007).

9 Conclusions

We presented a framework for visual data mining and analysis of software reposito-
ries and its application in supporting various assessments of software development
and maintenance processes. Our main goals were to determine, through case studies
with concrete projects, developers, and questions, whether the insights generated
by our tools do indeed match the reality; which were the most usable and useful
tools; and to test the effectiveness of visual analysis tools for understanding software
repositories in practice.

Through this study, we have reached several conclusions. The critical require-
ments for visual analysis tools (on software repositories) are simplicity, genericity,
and integration. Visual techniques (and their user interfaces) need to be simple to
be understood and accepted. Our simplest techniques: 2D Cartesian layouts, color
encoding attributes, and sorting on any attribute, are easy to grasp and perform
interactively with a few mouse clicks. We presented also a new visualization, the
flow graphs, which shows team impact distribution over time in a simple, aggregated,
manner. This visualization was especially appreciated by project managers who are
typically farther away from the code. More complex techniques, such as the evolu-
tionary coupling based clusters (Section 3.2, are considerably harder to understand,
even by more advanced users. Next, the proposed techniques have to be generic:
any technique (e.g. color mapping or sorting) can be applied on any attribute (e.g.
author IDs or the LOC metric). This allows users to construct analysis scenarios
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interactively with a few mouse clicks. Finally, the complete framework has to be fully
integrated with existing repositories. Our solution, a network of scripted components
connected by a dataflow engine to a central fact database, allows rapid customization
for different repository standards and formats. This proved to be essential in doing
the case studies, as all users we talked to, whether from the academia or the industry,
suggested that they would generally reject a tool-chain having a complex, tedious
set-up phase.

Our second goal was to develop an experimenting framework, both in soft-
ware tools and methodology, for research on software evolution. Our framework,
consisting of a set of data filters, metric computation components, and a visualization
back-end, all coupled together via a scriptable data acquisition mediator to the
actual repositories, provides a flexible way to construct visual analysis scenarios
targeting concrete questions in a few minutes up to about one hour. Our framework is
illustrated by four different case studies (of a larger set that we performed), covering
analysis of repository management style, system decomposition, maintainability,
and project team risks, over three industry-size Open Source projects (ArgoUML,
PostgreSQL, KDE Koffice), one academic system (mCRL2) and one commercial
system (MagnaView). Virtually all our findings were positively verified by domain
experts who were not involved in the analysis. Also, we had no prior knowledge
about the analyzed systems.

This positive news has to be, however, put into perspective. In all cases, the per-
sons performing the visual analysis were reasonably familiar with our visualization
framework. An important subsequent question is whether actual developers in the
field will be able to get the same results with our tools in a comparable amount of
time. Answering this is still an open question. In a follow-up set of case studies, we
plan to assess the usability of our toolset by its end-users and, also, refine and extend
those visual techniques which are best accepted by the users. Finally, we are working
on extending our toolset with new metrics (e.g. an improved evolutionary coupling)
that target new specific questions of our users.
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