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The port-Hamiltonian modelling framework is extended to a class of systems containing
memristive elements and phenomena. First, the concept of memristance is generalised to
the same generic level as the port-Hamiltonian framework. Second, the underlying Dirac
structure is augmented with a memristive port. The inclusion of memristive elements in
the port-Hamiltonian framework turns out to be almost as straightforward as the inclusion
of resistive elements. Although a memristor is a resistive element, it is also a dynamic
element since the associated Ohmian laws are rather expressed in terms of differential
equations. This means that the state space manifold, as naturally defined by the storage
elements, is augmented by the states associated with the memristive elements. Hence the
order of complexity is, in general, defined by the number of storage elements plus the
number of memristors in the system. Apart from enlarging our repertoire of modelling
building blocks, the inclusion of memristive elements in the existing port-Hamiltonian
formalism possibly opens up new ideas for controller synthesis and design.

Keywords: memristor; memristive systems; port-Hamiltonian systems; port-based
modelling

1. Introduction and motivation

In the early 1970s, Chua [1] postulated the existence of a new basic electrical circuit element,

called the memristor, defined by a nonlinear relationship between charge and flux linkage.

The memristor, a contraction of memory and resistance, referring to a resistor with memory,

completes the family of the well-known existing fundamental circuit elements: the resistor,

inductor and capacitor. Although a variety of physical devices, including thermistors, dis-

charge tubes, Josephson junctions and even ionic systems such as the Hodgkin–Huxley

model of a neuron, were shown to exhibit memristive effects [2, 3], a physical passive two-

terminal memristive prototype could not be constructed until very recently, when scientists

of Hewlett-Packard Laboratories announced its realisation in nature [4]. Strukov et al. show

that memristance naturally arises in nanoscale systems when electronic and atomic transport

are coupled under an external bias voltage. On the other hand, as pointed out in [5], a tapered

dashpot is a mechanical resistor whose resistance depends on the displacement of its

terminals. Consequently, a description in terms of its associated force and velocity generally

yields some complicated, possibly hysteretic, constitutive relationship. These difficulties are
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circumvented by modelling the tapered dashpot as a mechanical memristive element using

the relationship between its displacement and momentum (the mechanical analogies of

charge and flux linkages) instead.

One of the main reasons why the memristor concept has not yet played a major role in

modelling problems can most likely be explained from the fact that so far the majority of

practical devices are reasonably well modelled by some (though often artificial) combination

of standard modelling building blocks, such as resistive, inductive and capacitive elements,

and their nonlinear and multi-port versions. However, as nanoscale electronic devices

become more and more important and complex [2], it might be beneficial, and on the longer

term even necessary, to enlarge our repertoire of modelling building blocks that establishes a

closer connection between the mathematics and the observed physics.

In this article, we study the inclusion of memristive elements and their properties in the

port-Hamiltonian modelling framework. The port-Hamiltonian formalism naturally arises

from network modelling of physical systems in a variety of domains (e.g., mechanical,

electrical, electromechanical, hydrodynamical and thermodynamical); see [6] for a compre-

hensive summary of the developments of this framework over the past decade. Exposing the

relation between the energy storage, dissipation and interconnection structure, this frame-

work underscores the physics of the system. The connection with network (bond-graph)

modelling is further formalised with the notion of a so-called Dirac structure on the space of

flows and efforts. One of the strong aspects of the port-Hamiltonian formalism is that a

power-preserving interconnection between port-Hamiltonian systems results in another

port-Hamiltonian system with composite energy, dissipation and interconnection structure.

Based on this principle, complex, multi-domain systems can be modelled by interconnecting

port-Hamiltonian descriptions of its subsystems. Moreover, several control design meth-

odologies are available that can be directly applied to such port-Hamiltonian descriptions of

complex nonlinear systems. It is precisely in this context that a memristive port-Hamiltonian

description can be of added value.

The remainder of the article is organised as follows. In Section 2, we briefly recall the

basic properties of port-Hamiltonian systems defined with respect to a Dirac structure.

Section 3 gives the generalisation of the concept of memristance to the same generic level

as the port-Hamiltonian framework. The extension of the input-state-output port-

Hamiltonian formulation with a generalised memristive port and some of its basic proper-

ties are highlighted in Section 4. Section 5 illustrates some aspects of the theory by using

three simple examples. The extension of the port-Hamiltonian framework to include

memristive systems, which extends the basic memristor concept to a much broader

class of dynamical systems, is discussed in Section 6. The article concludes with some

final remarks.

Notation. All vectors, including the gradient of a function, defined in the article are

column vectors.

2. The port-Hamiltonian formalism

The basic ingredient of any port-Hamiltonian system is the power-conserving interconnection

structure, mathematically formalised as a Dirac structure, linking the various power ports of

the system; see Figure 1. Power ports (henceforth simply called ports) carry two sets of

conjugate variables: a vector of flow variables f 2f and a vector of effort variables e 2 e,

with product eT f denoting the power occurring at the port. The Dirac structure captures the

basic interconnection laws (like Kirchhoff’s laws) together with ideal power-conserving
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elements like transformers, gyrators and ideal constraints, and generalises Tellegen’s theorem

and d’Alembert’s principle.

In contrast to common port-based modelling approaches, such as the standard bond-graph

formalism [7] or classical energy- and power-based approaches [8], the port-Hamiltonian

framework uses only one type of storage. For example, in modelling mechanical systems or

electrical networks it is common to consider two types of storage: capacitive or C-type

storage, such as a spring or a capacitor, and inertial or I-type storage, such as a mass or an

inductor. This approach disables the distinction between flow and effort as rate of change of

state and equilibrium-determining variable, or vice versa. Based on the generalised bond-

graph (GBG) framework introduced in [9], the port-Hamiltonian formalism considers the

flow as rate of change of state exclusively. The usual physical domains are split into two sub-

domains, each associated to only one type of storage: the capacitive or C-type storage.

Consequently, we do not speak of mechanical or electrical domains, but of kinetic and

potential, or electric and magnetic sub-domains, and so on; see Table 1 for a complete

overview. The corresponding sub-domains are connected by a so-called symplectic (or unit)

gyrator. An additional advantage of considering only one type of storage is that the

concept of mechanical force has no unique meaning as it may play the role of a flow in

the kinetic domain or an effort in the potential domain, thus leaving the discussion about the

force–voltage versus force–current analogy a non-issue.

D

eR

fR

eS

fS

eP fP

resistive elements storage elements

interconnection

environment

Figure 1. Many physical systems can be characterised by interconnections between energy storage
elements, resistive elements and the environment. The key concept in the formulation of port-based
network models of physical systems as port-Hamiltonian systems is the geometric notion of a Dirac
structure d.

Table 1. Domains and variables used in the port-Hamiltonian framework.

Physical sub-domain Flow f 2f Effort e 2 e State variable x ¼
R
f dt

electric current voltage charge
magnetic voltage current flux linkage
potential translation velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity torque angular displacement
kinetic rotation torque angular velocity angular momentum
potential hydraulic volume flow pressure volume
kinetic hydraulic pressure volume flow flow tube momentum
chemical molar flow chemical potential number of moles
thermal entropy flow temperature entropy
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A recent exposition of the GBG framework and its relation to the commonly used port-

based modelling approaches is given in the first chapter of [6]. Details about port-

Hamiltonian systems, including a wealth of modelling examples, can be found in three

successive chapters of the same reference. In the following subsections we briefly recall the

basic definitions that are necessary for the developments thereafter.

2.1. Ports, dirac structures and passivity

In order to define a Dirac structure, the spaces of flows and efforts are naturally partitioned as

f :¼fS "fR "fP ande :¼ eS " eR " eP, each corresponding to the following set of

ports:

# The energy storage port, with port variables ðfS ; eSÞ 2fS " eS , is interconnected

with the energy storage of the system, which in turn is characterised by an

nS-dimensional space x of state variables, locally represented by x 2 x, together

with a Hamiltonian function H : x! R denoting the total stored energy. The corre-

sponding flow variables are given by the rate of change of the state variables. This is

accomplished by setting

fS ¼ _x;

eS ¼
@H

@x
ðxÞ:

(1)

Hence, the power at the energy storage port can be written as

_HðxÞ ¼
@H

@x
ðxÞ

! "T

_x ¼ eTS fS : (2)

# The resistive port corresponds to internal energy dissipation (e.g., friction, electrical
resistance, and so on), and its port variables ðfR; eRÞ 2fR " eR are terminated by a

static resistive relation of the form

fR ¼ f̂RðeRÞ; (3)

with f̂R : eR !fR. In many cases, fR can be derived from a so-called ‘content’

function D : eR ! R in the sense that fR ¼ @DðeRÞ=@eR.
1 Note that for passive

resistors eTR fR ' 0.

# Finally, the remaining port, with port variables ðfP; ePÞ 2fP " eP, denotes the

interaction port of the system, modelling its interaction with other system components

or the environment. The power delivered or extracted from the interaction port equals

eTP fP, which in the sequel is referred to as the supply rate.

The Dirac structure d is a linear relation between all the port variables that satisfy the

power conservation property

eTS fS þ eTR fR ¼ eTP fP; (4)

and has maximal dimension with respect to this property.2More specifically, locally around

a point x 2 x, we can represent d as

d ¼ fðfS ; eS ; fR; eR; fP; ePÞ 2f" e jFS fS þ ESeS
þFRfR þ EReR ¼ FPfP þ EPePg;

(5)
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for some matrices FS , ES , FR, ER, FP and EP satisfying

FSE
T
S þ ESF

T
S þ FRE

T
R þ ERF

T
R ¼ FPE

T
P þ EPF

T
P ;

and rankðFS jES jFRjERjFPjEPÞ ¼ dimðfÞ.

As a direct consequence of (4), any port-Hamiltonian system with passive resistive

elements satisfies the power-balance inequality

_HðxÞ ¼ eTS fS ¼ eTP fP , eTR fR - eTP fP; (6)

since eTR fR ' 0. Integrating the latter from initial time t0 to t yields the energy balance

inequality

H ½xðtÞ/ , H ½xðt0Þ/ ¼

Z t

t0

eTPðτÞfPðτÞdτ ,

Z t

t0

eTRðτÞfRðτÞdτ

-

Z t

t0

eTPðτÞfPðτÞdτ: (7)

If the Hamiltonian functionHðxÞ is bounded from below, then port-Hamiltonian systems are
passive with respect to the supply rate eTP fP and the Hamilton as storage function. Note that,

recalling Lyapunov stability theory, together with the sufficient conditions for the stability of

an equilibrium point, it can be shown that the Hamiltonian is often a bonafide candidate

Lyapunov function [10].

2.2. Input-state-output representation

An important special case of port-Hamiltonian systems is the class of input-state-output port-

Hamiltonian systems, where there are no algebraic constraints on the state variables, and the

flow and effort variables at all the other ports have been split into power-conjugated input–

output pairs. The corresponding Dirac structure is defined by

d ¼ fðfS ; eS ; fR; eR; fP; ePÞ 2f" e j fS , JeS þ GRfR , GPfP ¼ 0;

,GT
ReS þ eR ¼ 0; G

T
PeS , eP ¼ 0g;

(8)

where J ¼ ,JT , GR and GP are matrices of appropriate dimensions depending on

the interconnection, resistive and input–output structure of the system, respectively.

Furthermore, assuming that the resistive elements are linear, the constitutive relationship

(3) simplifies to

fR ¼ ReeR; (9)

with Re ¼ RT
e being some constant resistance matrix. Then, around x 2 x, by utilising

Equations (1) and (3), the dynamics on d take the form
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_x, J
@H

@x
ðxÞ þ GRReeR , GPfP ¼ 0;

,GT
R

@H

@x
ðxÞ þ eR ¼ 0;

GT
P

@H

@x
ðxÞ , eP ¼ 0;

which, after substitution of the second equation into the first and a slight rearrangement,

yields the well-known input-state-output port-Hamiltonian representation

#P :

_x ¼ ðJ , RÞ
@H

@x
ðxÞ þ GPfP

eP ¼ GT
P

@H

@x
ðxÞ;

8
><
>:

(10)

with resistive structure matrix R :¼ GRReG
T
R . Consequently, the power-balance inequality

(6) can be written as

_HðxÞ ¼ eTP fP ,
@H

@x
ðxÞ

! "T

R
@H

@x
ðxÞ - eTP fP; (11)

under the condition that R 0 0. Note that in this framework, the flow and effort related to the
environment are naturally defined as the input and output of the system, respectively.

Remark 2.1: For many systems, especially those with three-dimensional (3D) mechanical

components, the Dirac structure will in general be modulated by the state variables x. In such

a case, the structure matrices J, GR and GP are replaced by their modulated versions JðxÞ,
GRðxÞ and GPðxÞ, respectively. We come back to modulated Dirac structures in Section 6.
More details on the geometric properties of Dirac structures and port-Hamiltonian systems

can be found in [6, 10–12]. Note that, in comparison to these works, we have adopted a

different sign convention for the direction of power flow at the resistive and storage ports.

3. Properties of the memristor

Before generalising the concept of memristance to fit the definitions of the port-Hamiltonian

framework discussed in the previous section, we will first briefly recall the basic properties

of the electrical memristor.

3.1. Chua’s memristor

Since electronics was developed, engineers have designed circuits using combinations of

three basic two-terminal elements: resistors, inductors and capacitors. From a mathematical

perspective, the behaviour of each of these elements, whether linear or nonlinear, is

described by relationships between two of the four basic electrical variables: voltage,

current, charge and flux linkage. A resistor is described by the relationship of current and

voltage, a capacitor by that of voltage and charge and an inductor by that of current and flux

linkage. But what about the relationship between charge and flux linkage? As argued by

Chua in the early 1970s [1], a fourth element should be added to complete the symmetry.

He coined this ‘missing element’ the ‘memristor’, referring to a resistor with memory.
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The memory aspect stems from the fact that a memristor ‘remembers’ the amount of current

that has passed through it together with the total applied voltage. More specifically, if

q denotes the charge and f denotes the flux linkage, then a two-terminal or one-port

charge-controlled memristor is defined by the constitutive relationship

f ¼ f̂ðqÞ:

Since flux linkage is the time integral of voltage u (like in Faraday’s law), and charge is the

time integral of current i, or equivalently, u ¼ _f and i ¼ _q, we obtain

u ¼ MiðqÞi; (12)

where MiðqÞ :¼ df̂ðqÞ=dq is called the incremental memristance.
Similarly, a two-terminal or one-port flux-controlledmemristor (memductor) is defined by

q ¼ q̂ðfÞ;

Differentiation yields the dual of Equation (12),

i ¼ MuðfÞu; (13)

where MuðfÞ :¼ dq̂ðfÞ=df is called the incremental ‘memductance’.
Observe that Equations (12) and (13) are just the charge- and flux-modulated versions of

Ohm’s law, respectively. It is important to realise that for the special cases that the consti-

tutive relations are linear, that is, when the incremental memristance Mi or the incremental

memductance Mu is constant, a memristor or memductor becomes an ordinary resistor or

conductor. Hence, memristors and memductors are only relevant in nonlinear circuits, which

may account in part for their neglect in linear network and systems theory. Furthermore, it is

directly noticed from Equation (12) (resp. (13)) that u;0 (resp. i;0) whenever i;0 (resp.

u;0), regardless of q (resp. f) which incorporates the memory effect. This characteristic

feature is the so-called ‘no energy discharge property’ [2, 13], which is related to the fact

that, unlike an inductor or a capacitor, a memristor does not store energy.

Before the effect of memristive elements can be studied in the port-Hamiltonian frame-

work, we first need to bring the concept to the same generic level. This is accomplished by

generalising the constitutive relationships (12) and (13) to their multi-terminal or multi-port

versions on the level of flows and efforts.

3.2. The generalised memristor

In view of the classifications and analogies of Table 1, the multi-port generalisation of the

charge-controlled memristor (12) or the flux-controlled memductor (13) is easily deduced as

follows. Let xf 2 xf denote the vector of integrated flows, and let xe 2 xe denote the vector

of integrated efforts, or equivalently, _xf ¼ f , and _xe ¼ e, respectively, then the relationship

xe ¼ x̂eðxf Þ

constitutes a multi-port xf -controlled memristor, i.e.,

e ¼ Mf ðxf Þf ; (14)

with generalised memristance matrix Mf ðxf Þ :¼ @x̂eðxf Þ=@xf .
Note that Equation (14) contains both the original memristive relationships (12) and

(13). Moreover, adopting the storage element-based state variable definition of Table 1, the

charge-controlled memristor (12), with xf ¼ q; f ¼ i and e ¼ u, belongs to the electric
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sub-domain, while the flux-controlled memductor (13), with xf ¼ f; f ¼ u and e ¼ i,

belongs to the magnetic sub-domain.

On the other hand, by interchanging the roles of the (integrated) flow and effort, we

might as well consider

xf ¼ x̂f ðxeÞ

yielding a multi-port xe-controlled memristor, i.e.,

f ¼ MeðxeÞe; (15)

with generalised memristance matrix MeðxeÞ :¼ @ x̂f ðxeÞ=@xe.
In a similar fashion as the storage and resistive elements, the constitutive relationship of a

memristive element will in many cases be derivable from a so-called memristive ‘action’

function Af : xf ! R (resp., Ae : xe ! R) in the sense that

xe ¼
@Af

@xf
ðxf Þ resp:; xf ¼

@Ae

@xe
ðxeÞ

! "
: (16)

Obviously, Af and Ae are related by the Legendre transform

Af ðxf Þ þ AeðxeÞ ¼ xf xe: (17)

More details on the memristive action and some of its applications in a circuit-theoretic

context can be found in [1, 14].

Remark 3.1: Since (14) already contains both the original memristive relationships

(12) and (13), the form (15) should just be considered as the corresponding dual form – in

the same sense that eR ¼ Rf fR is the dual form of fR ¼ ReeR, with Rf ¼ R,1e . To this end,

definitions (14) and (15) are in some sense exchangeable. For energy storage elements the

distinction between flow and effort as the equilibrium-establishing (rate of change of state)

and the equilibrium-determining variable, respectively, is clear since a storage element is

defined by a constitutive relationship between effort and integrated flow (state), or in

thermodynamic parlance, between an intensive state and extensive state, i.e., e ¼ êðxÞ or
x ¼ x̂ðeÞ, with _x ¼ f . In terms of input–output causality, the constitutive relationship

e ¼ êðxÞ yields a so-called integral causal form in which the flow can be considered as

input and the effort as output; see Figure 2(a). This is the form generally considered in the

ef x

f

e

e

f

x f

xe

xe

x f d

dt

d

dt

∂A f

∂x f

∂Ae

∂xe

∂H

∂x

(a) (b)

Figure 2. (a) Preferred causality of a storage element; (b) causally natural character of a memristive
element.
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port-Hamiltonian framework. The dual or co-energy form, x ¼ x̂ðeÞ, yields a differential
causal form, considering effort as input and flow as output. Clearly, since both an integration

and a differentiation is involved in ‘lifting’ the memristor to the space of flows and efforts,

the memristor, like the resistor, is causally neutral, i.e., there is no fixed or preferred

causality, so that it can accept either a flow or an effort as input variable; see Figure 2(b).

Furthermore, a generalised memristor does not store integrated flow or integrated effort; it

just bookkeeps the amount of integrated flow or integrated effort that passed its port. Hence it

does not distinguish between the various sub-domains outlined in Table 1. This means that,

starting from Equation (15), the charge-controlled memristor (12) might as well be asso-

ciated with the magnetic sub-domain, whereas the flux-controlled memductor then belongs

to the electric sub-domain.

Remark 3.2: The definitions above can be further generalised as follows. Let the memristive

structure be represented by an m-dimensional submanifold m of xf "xe, where

m ¼ dimðxf Þ ¼ dimðxeÞ. The tangent space to this submanifold then defines the linear
relationship between f and e, like in Equation (14) or (15). Furthermore, ifm is a Lagrangian

sub-manifold ofxf "xe, wherexf is the dual ofxe, then the associated memristive action

function corresponds to the generating function ofm. The interested reader is referred to

[15] for a similar exposition in the context of nonlinear RLC networks.

4. Port-Hamiltonian systems with memristive dissipation

We are now ready to extend the port-Hamiltonian formalism, as introduced in Section 2,

by adding a memristive port, with port variables ðfM ; eM Þ 2fM " eM , to the Dirac

structure.

4.1. Memristors as port-Hamiltonian systems: the null-Hamiltonian

Assuming that the memristive port can be described by an xf -controlled constitutive relation-

ship of the form (14), we define the memristive structurem as

m ¼ fðfM ; eM Þ 2fM " eM j _xf , fM ¼ 0; eM ,Mf ðxf ÞfM ¼ 0g; (18)

where the generalised memristanceMf ðxf Þ ¼ MT
f ðxf Þ is a matrix of appropriate dimensions.

Now, a key observation is that locally around xf 2 xf the memristive structure (18) defines a

non-energetic port-Hamiltonian system with a direct feed-through term. Indeed, let

HM : xf ! 0; then the dynamics onm take the form

#M :

_xf ¼ fM ;

eM ¼
@HM

@xf
ðxf Þ þMf ðxf ÞfM ;

8
<
: (19)

where the memristive port variables fM and eM can be considered as the inputs and outputs,

respectively. Non-energicness follows from the fact that HM ðxf Þ;0, for all xf 2 xf , which,

together with the fact that eM;0 whenever fM;0 and regardless of the internal state xf ,

clearly underscores the ‘no energy discharge property’ as discussed in Section 3.1. For this

reason we refer to HM as the ‘null-Hamiltonian’.
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Remark 4.1: In the light of Remark 3.2, a memristive port can be generally represented by

an implicit port-Hamiltonian system (with null-Hamiltonian) of the form

#M :
_xf ¼ fM ;
_xe ¼ eM ; ðxf ; xeÞ 2m:

(

4.2. Input-state-output representation

In order to interconnect the memristive port (19) with the port-Hamiltonian system (10), we

need to consider the composition of the Dirac structure (8) and the memristive structure (18).

This is tantamount to interconnect (some of) the interconnection ports of (8) with (19) via the

(negative) feedback interconnection

fP ¼ ,GMeM þ eGP
efP; fM ¼ GT

MeP; (20)

whereGM and eGP are matrices of appropriate dimensions, andefP 2fP denotes a new input;

see Figure 3. If, for simplicity, it is assumed that the resistive port of (10) is vacuous (R¼ 0),
and GP ¼ I we obtain the ‘closed-loop’ port-Hamiltonian system

_x

_xf

! "
¼

J ,Mðxf Þ ,GM

GT
M 0

! " @H

@x
ðxÞ

@HM

@xf
ðxf Þ

0
BB@

1
CCAþ

eGP

0

! "
efP; (21)

with state space x"xf , memristive structure matrix Mðxf Þ :¼ GMMf ðxf ÞG
T
M and

Hamiltonian HðxÞ þ HM ðxf Þð¼ HðxÞ þ 0Þ. The new output for the system is naturally

defined by

ẽP ¼ eGT
P

@H

@x
ðxÞ: (22)

f̃P

ẽP

eP

fP

fMeM

ΣP

ΣM

+

–
G̃P

GM GT
M

Figure 3. Feedback interpretation of the composition of a port-Hamiltonian system with a memris-
tive port.
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4.3. Passivity and the power balance inequality

A memristive port described by Equation (19) is passive if and only if its generalised

memristance Mf ðxf Þ is non-negative. Indeed, differentiating the null-Hamiltonian HM ðxf Þ
with respect to time and using Equation (19), we have

_HM ðxf Þ ¼ _xTf
@HM

@xf
ðxf Þ ¼ f TM ðeM ,Mf ðxf ÞÞfM;0:

Hence, ifMf ðxf Þ 0 0, for all xf 2 xf , the instantaneous power dissipated by the memristive

port is given by

PM ¼ f TM eM ¼ f TMMf ðxf ÞfM ' 0;

where we recall that the sign convention adopted here is that power supplied to the

system carries a negative sign, whereas power extracted from the system carries a

positive sign.

The power-balance inequality associated to Equations (21) and (22) takes the form

_HðxÞ þ _HM ðxf Þ ¼ ẽTP
efP ,

@H

@x
ðxÞ

! "T

Mðxf Þ
@H

@x
ðxÞ - ẽTP

efP; (23)

where Mðxf Þ :¼ GMMf ðxf ÞG
T
M 0 0 since Mf ðxf Þ 0 0, for all xf 2 xf . Hence if the

Hamiltonian function HðxÞ is bounded from below, then the system is passive with respect
to the supply rate ẽTP

efP and storage function HðxÞ.
Note that the memristive port (19) appears as an integrated-flow-modulated resistive

port. Under the condition that the generalised memristance Mf ðxf Þ is non-negative the
memristive port is dissipative, which is also evident from the first term at the right-hand

side of Equation (23). For that reason, we refer to Equations (21) and (22) as a port-

Hamiltonian system with memristive dissipation.

4.4. Degenerate case: linear memristance

In the linear case, i.e., whenMf in Equation (19) is constant, the memristive port reduces to a

purely resistive port. This property is consistent with the original definitions of the memris-

tor outlined in Section 3.1.

4.5. Order of complexity

The addition of the memristive port yields that the total state space is in general extended to

x"xf . Consequently, in addition to the initial values of the state variables associated with

the storage elements, the initial values of the memristors should also be specified in order to

find a complete solution of the port-Hamiltonian systems presented above. This means, in

general, that the order of complexity [16] of a port-Hamiltonian system with memristive

dissipation is determined by

n ¼ nS þ nM ;

where nS denotes the number of energy storage elements and nM the number of memristive

elements.
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5. Examples

5.1. Josephson junction circuit model

The classical circuit model for a Josephson junction consists of a parallel connection of a

linear resistor r, a linear capacitorC and a flux-controlled nonlinear inductor described by the

constitutive relationship iL ¼ Io sinðkfLÞ, where Io is a device parameter and k ¼ 4π"=$h,

with % and $h denoting the electron charge and Planck’s constant, respectively. As discussed

in [2], a more rigorous quantum mechanical analysis of the junction dynamics reveals the

presence of an additional small current component that can be approximated by

i ¼ g cosðkofÞu, for some constants g and ko. Obviously, the latter can be associated

with a flux-controlled memristor (memductor) of the form

qM ¼
g

ko
sinðkofM Þ;

with _qM ¼ i;fM ¼ f and _fM ¼ u. Figure 4 shows the more realistic circuit model for a

Josephson junction consisting of a parallel connection of eachof the four basic circuit elements.

From a port-Hamiltonian perspective the circuit consists of four ports: an energy storage

port defined by the total energy stored in the capacitor and the inductor, a memristive port, a

resistive port and an external port. Let the charge qC and the flux linkage fL define the state

variables (integrated flows) associated with the capacitor and the inductor, respectively, then

the Hamiltonian (total stored energy) is given by

HðqC;fLÞ ¼
q2C
2C

,
Io

k
cosðkfLÞ;

which, according to Equation (1) and Table 1, defines an energy storage port of the form

fS1 ¼
_fL;

eS1¼
@H

@fL

;

fS2 ¼ _qC;

eS2¼
@H

@qC
:

According to Equation (19), the memristive port is defined by

_fM ¼ fM ;
eM ¼ g cosðkofM ÞfM ;

I

U C r

iL = Io sin(k L)

qM = g
ko

sin(ko M)

Figure 4. More realistic model of a Josephson junction [2].
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with xf ¼ fM , and according to Kirchhoff’s laws we obtain the following set of structure

matrices:

J ¼
0 1

,1 0

! "
; GM ¼

0

1

! "
; eGP ¼

0

1

! "
:

Although the presence of both resistive and memristive elements is not discussed explicitly,

the system is easily extended by introducing a resistive port of the form fR ¼ eR=r and setting
GR ¼ ð0 1ÞT . On the other hand, since the resistor is linear it can also be considered as a
degenerate memristor (see Section 4.4). However, in both cases, the following input-state-

output port-Hamiltonian system is obtained:

_fL

_qC

! "
¼

0 1

,1 ,g cosðkofM Þ ,
1

r

 ! @H

@fL

@H

@qC

0
BB@

1
CCAþ

0

1

! "
I ;

together with

U ¼
@H

@qC

and

_fM ¼
@H

@qC
:

Note that the order of complexity is 3 (nS ¼ 2 and nM ¼ 1) since three initial conditions are
needed to solve the system. Interestingly, the system is passive (note that H is bounded from

below) under the condition that rg cosðkofM Þ ' ,1, for all admissible fM .

5.2. Mechanical system

Consider the mechanical system depicted in Figure 5. The system consists of two carts with

masses m1 and m2, interconnected by a linear spring with elastance k, and a tapered dashpot

d. Since the storage elements are linear, we have v1 ¼ p1=m1, v2 ¼ p2=m2 and Fk ¼ kxk ,

where v1, v2, p1 and p2 are, respectively, the velocities and momenta of the two masses, and

Fk and xk are, respectively, the force and displacement of the spring. The Hamiltonian (total

stored energy) is given by

Hðp1; p2; xkÞ ¼
p21
2m1

þ
p22
2m2

þ
kx2k
2

:

m1 m2

v1 v2

k

d

Figure 5. A mechanical mass-spring system with a tapered dashpot. Note that the shape of the pin
may be machined to produce any desired memristance curve.
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According to Equation (1) and Table 1, the energy storage port assumes the form

fS1 ¼ _p1;

eS1¼
@H

@p1
;

fS2 ¼ _p2;

eS2¼
@H

@p2
;

fS3 ¼ _xk ;

eS3¼
@H

@xk
:

(24)

As argued in [5], a tapered dashpot can, in principle, not be treated as an ordinary damper

since the incremental damping coefficient, i.e., the mechanical resistance, depends on the

piston displacement. Hence a description in terms of its associated force Fd and velocity vd
generally yields some complicated (possibly hysteretic) constitutive relationship. These

difficulties are circumvented by modelling the tapered dashpot as a memristive element.

Indeed, suppose that the constitutive relationship is given by a monotonically increasing

function pd ¼ p̂dðxdÞ, where pd and xd denote the memristor’s momentum and displacement,
respectively, then Fd ¼ MvðxdÞvd , with mechanical memristance MvðxdÞ :¼ dp̂dðxdÞ=dxd ,
where _pd ¼ Fd and _xd ¼ vd . Hence the memristive port is defined by

_xd ¼ fM ;
eM ¼ MvðxdÞfM :

(25)

Since there are no inputs and outputs, the interaction port is vacuous and GP ¼ 0.
Furthermore, the interconnective relationships dictate the remaining structure matrices

J ¼
0 0 ,1
0 0 1

1 ,1 0

0
@

1
A; GM ¼

1

,1
0

0
@

1
A;

which by Equation (21) yield the following port-Hamiltonian equations:

_p1

_p2

_xk

0
B@

1
CA ¼

,MvðxdÞ MvðxdÞ ,1

MvðxdÞ ,MvðxdÞ 1

1 ,1 0

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J,MðxdÞ

@H

@p1
@H

@p2
@H

@xk

0
BBBBBB@

1
CCCCCCA

; (26)

together with

_xd ¼ ð1 , 1 0Þ

@H

@p1
@H

@p2
@H

@xk

0
BBBBBBB@

1
CCCCCCCA

¼ v1 , v2: (27)

Differentiating the Hamiltonian HðxÞ, where x ¼ ðp1; p2; xkÞ
T
, along the trajectories of the

system yields the power balance of the system, i.e.,
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_HðxÞ ¼ ,
@H

@x

! "T

MðxdÞ
@H

@x
- 0;

where the inequality stems from the fact that MðxdÞ :¼ GMMvðxdÞG
T
M 0 0, for all xd , by

assumption. This implies that the mechanical system is passive – as should be expected.

It should be pointed out, however, that for this particular system it is a coincidence that it

is possible to represent the tapered dashpot as a modulated resistor since its displacement

coincides with the displacement of the spring, which, in turn, is proportional to the force in

the spring. Hence the system contains a conserved quantity xd ¼ xk þ c, where the constant c
depends on the initial condition of the overall system. In general, the states of the memristive

elements in a system are independent from the states of the energy storage elements, like in

the Josephson junction circuit model.

Another example of a system in which memristance plays a crucial role is the electrolytic

tank system discussed in [5]. An example for which the minimal number of state equations is

less than the order of complexity is briefly discussed next.

5.3. Electrical network

Consider a flux-controlled memristor (memductor), with a constitutive relationship qM ¼
q̂M ðfM Þ, connected in parallel with a linear capacitor described by uC ¼ qC=C. Following
the ideas exposed in Section 4, we obtain the following port-Hamiltonian description:

_qC ¼ ,MuðfM Þ
@H

@qC
;

_fM ¼
@H

@qC
;

withHðqCÞ ¼
1
2C

q2C andMuðfM Þ :¼ dq̂M ðfM Þ=dfM . Clearly, the system has two independent

initial conditionsfM ðt0Þ and qCðt0Þ. However, since qCðtÞ , qCðt0Þ ¼ ,½qM ðtÞ , qM ðt0Þ/, the
system can be reduced to a single first-order differential equation,

_fM ¼ ,
1

C
½q̂M ðfM Þ , q̂M ðfM ðt0ÞÞ , qCðt0Þ/;

but still two initial conditions are needed to solve the latter.

6. Memristive systems

As pointed out in [3, 13], memristors are just a special case of a much broader class of

dynamical systems called ‘memristive’ systems. In contrast to the basic mathematical

descriptions of the memristor outlined in Section 3.1, the flux linkage in memristive systems

is no longer uniquely defined by the charge, or vice versa. In [3], a current-controlled

memristive one-port system is represented by

_z ¼ giðz; iÞ;
u ¼ Miðz; iÞi;

(28)

and a voltage-controlled memristive one-port system is represented by

_z ¼ guðz; uÞ;
i ¼ Muðz; uÞu:

(29)

Here i and u denote the port current and voltage, respectively, and z denotes the internal state

of the system. The functions gi and gu are continuous vector functions of the same dimension
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as z, andMi andMu are scalar functions similarly defined as the memristance and memduc-

tance in Equations (12) and (13), respectively. The main peculiarity which distinguishes a

memristive system from an arbitrary dynamical system is the form of the output equations or

read-out maps. Indeed, as with Equation (12) (resp. (13)), it is noticed from Equation (28)

[resp. (29)] that the output u (resp. i) is zero whenever the input i (resp. u) is zero, regardless

of the state z which incorporates the systems memory effect, i.e., the ‘no energy discharge

property’. Typical examples of systems that can be modelled by Equation (28) or (29) are

thermistors and discharge tubes. The next subsections show how these systems can be

captured in the port-Hamiltonian framework.

6.1. The thermistor

The first example in [3] is a negative-temperature-coefficient thermistor characterised by

_T ¼ ,δ T
C
þ
R0ðT0Þ

C
exp β

1

T
,
1

T0

! "7 8
i2 ¼: gðT ; iÞ;

u ¼ R0ðT0Þ exp β
1

T
,
1

T0

! "7 8
i ¼: MiðTÞi;

(30)

where T is the absolute body temperature of the thermistor, T0 is the ambient temperature,

C is the heat capacity, δ a dissipation constant, β is some material constant and the constant

R0ðT0Þ denotes the cold temperature resistance at T ¼ T0.

Before Equation (30) can be expressed in a port-Hamiltonian fashion, we first need to

perform a change of variables. According to Table 1, the natural state variable for the thermal

domain is the entropy, say S. The associated flow is the entropy flow _S, whereas the effort is

represented by the temperature T. Since the heat capacity C is assumed constant, the

relationship between S and T is given by the linear expression S ¼ CT . Defining the

Hamiltonian HðSÞ ¼ 1
2C

S2, we can rewrite 30 as

_S ¼ ,δ
dH

dS
ðSÞ þ eMiðSÞi

2;

u ¼ eMiðSÞi;
(31)

with

eMiðSÞ :¼ R0ðT0Þ exp βC
1

S
,
1

S0

! "7 8
: (32)

Clearly, these expressions do not yet define a proper input-state-output port-Hamiltonian

system since the term i2 renders (31) non-affine in the input. To circumvent this problem, we

must extend our definition of an input-state-output port-Hamiltonian system to a description

that allows for both state and input modulation in the structure matrices. In fact, system

(31) is a special case of a port-Hamiltonian system with direct feed-through terms [6] of

the form

_z ¼ ½Jðz; f Þ , Rðz; f Þ/
@H

@z
ðzÞ þ ½Gðz; f Þ , Pðz; f Þ/ f ;

e ¼ ½Gðz; f Þ þ Pðz; f Þ/T
@H

@z
ðzÞ þ ½Kðz; f Þ þ Nðz; f Þ/ f ;

(33)

where the matrices Jðz; f Þ, Rðz; f Þ and Gðz; f Þ are similarly defined as J, R and GP in

Equation (10), Kðz; f Þ is a skew-symmetric matrix and Nðz; f Þ is a symmetric matrix that
plays a role similar to Mf in Equation (19). Furthermore, it follows that
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_HðzÞ ¼ eT f ,
@H
@z ðzÞ

f

! "T
R ðz; f Þ P ðz; f Þ
PT ðz; f Þ N ðz; f Þ

! "
@H
@z ðzÞ

f

! "
; (34)

which, under the condition that

R ðz; f Þ P ðz; f Þ
PT ðz; f Þ N ðz; f Þ

! "
0 0; (35)

for all z; f , implies that system (33) is passive with respect to the supply rate eT f and storage
function HðzÞ.

To show that (31) is indeed a special case of (33), we readily observe that (31) can be cast

in the form of (33) by letting z ¼ S, f ¼ i, e ¼ u, JðS; iÞ ¼ 0, RðS; iÞ ¼ δ,

GðS; iÞ ¼ 1
2
eMiðSÞi, PðS; iÞ ¼ ,GðS; iÞ, KðS; iÞ ¼ 0 and NðS; iÞ ¼ eMiðSÞ. Substituting the

latter into (33) yields

_S ¼ ,δ
dH

dS
ðSÞ þ

1

2
eMiðSÞi, ,

1

2
eMiðSÞi

! "7 8
i;

u ¼
1

2
eMiðSÞiþ ,

1

2
eMiðSÞi

! "7 8

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

dH

dS
ðSÞ þ eMiðSÞi: (36)

The power occurring at the port equals ui ¼ eMiðSÞi
2. Hence, from an input–output perspec-

tive, the system is passive if and only if eMiðSÞ ' 0, for all S, as is already concluded in [3].
However, for the overall system to be passive with respect to the supply rate ui and storage

functionHðSÞ, we naturally need to pose the extra condition that δ ' 0 in order to satisfy the
matrix inequality (35).

6.2. Discharge tubes

The dynamics of a discharge tube can be described by [17] as

_n ¼ ,βnþ α
n

F
u2 ¼: gðn; uÞ;

i ¼
n

F
u ¼: MuðnÞu; (37)

where n denotes the electron density of the tube, and α, β and F are constants depending on

the dimension of the tube and the gas fillings.3 Based on the previous developments, the

port-Hamiltonian structure of a discharge tube is deduced as follows. Although there is no

direct classification in terms of the domains listed in Table 1, selecting the electron density as

the state, defining the Hamiltonian HðnÞ ¼ 1
2
n2, letting Jðn; uÞ ¼ 0, Rðn; uÞ ¼ β,

Gðn; uÞ ¼ 1
2
αMuðnÞu, Pðn; uÞ ¼ ,Gðn; uÞ, Kðn; uÞ ¼ 0 and Nðn; uÞ ¼ MuðnÞ yields

_n ¼ ,β
dH

dn
ðnÞ þ

1

2
αMuðnÞu, ,

1

2
αMuðnÞu

! "7 8
u;

i ¼
1

2
αMuðnÞuþ ,

1

2
αMuðnÞu

! "7 8

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

dH

dn
ðnÞ þMuðnÞu:

(38)

It follows that the overall system is passive with respect to the supply rate ui and storage

function HðSÞ if and only if β;MuðnÞ ' 0, for all n.
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7. Final remarks

In this article, we have extended the existing port-Hamiltonian formalism with the inclusion

of generalised memristive elements. Besides being a resistive element, a memristor also

exhibits dynamics because the associated Ohmian laws are rather expressed in terms of

differential equations. As a result, the state space manifold, as naturally defined by the

storage elements, is augmented by the states associated with the memristive elements, and

thus the order of complexity is, in general, defined by the total number of storage elements

and memristors in the system. However, depending on the physical structure, there can exist

constraints among some of the variables leading to conserved quantities. An example is

provided by the mechanical system discussed in Section 5.2. Although memristors, like

storage elements, exhibit dynamics and thus possess memory, they do not store energy. This

fact is underscored by associating with the memristive port a so-called null-Hamiltonian.

In conclusion, the following remarks are in order:

# In the port-Hamiltonian formalism we can combine both the resistive and memristive
ports into a single ‘dissipative’ port; see Figure 6. Such port can be described by

mr ¼ fðfD; eDÞ 2fD " eD j _xf , fD ¼ 0;

_xe , eD ¼ 0; DEð1ÞeD , DFð1ÞfD ¼ 0g;

where the matrices DEð1Þ and DFð1Þ, in general, depend on xf and/or xe, and satisfy

DEð1ÞD
T
Fð1Þ ¼ DFð1ÞD

T
Eð1Þ 0 0:

Note that if the dissipative port only contains purely resistive elements, we identify

DE ¼ Re and DF ¼ I . Similarly, letting DE ¼ I and DFðxf Þ ¼ Mf ðxf Þ, we obtain the
memristive structure (18).

# The broad generalisation of memristors, called memristive systems, are shown to
be representable in an input-state-output port-Hamiltonian description with direct

feed-through terms and structure matrices that are modulated by both state variables

and input flows. However, the dependence of the underlying interconnection structure

d on the input flows does not fit the definition of a Dirac structure. A further

generalisation of the notion of a Dirac structure is necessary to formalise systems of

the form (33). It should be noted that this problem does not occur in the context of

D

eD

fD

eS

fS

eP fP

memristive elements

resistive elements storage elements

interconnection

environment

Figure 6. Port-Hamiltonian system with a single dissipative port containing memristors and linear
resistors.
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switching networks because then the Dirac structure depends on non-energetic vari-

ables, such as externally controlled switches, instead of external flows or efforts [6].
# Recently, memristive systems are accompanied by two new types of systems, called

‘meminductive’ and ‘memcapacitive’ systems [13]. The resulting memory devices

share many of the characteristics of memristive systems, but with a fundamental

difference: they do store energy. The next step is to study under what conditions

these systems can also be captured in the port-Hamiltonian formalism.

Notes

1. For linear mechanical dissipation the content function coincides with the usual Rayleigh dissipation
function; see e.g. [8].

2. Note that Equation (4) is a generalisation of Tellegen’s theorem; see [6] for more details.
3. Note that the choice of the input and output differs from the choice in [3].
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