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The prognosis of epithelial ovarian cancer (EOC), the primary cause of death from gynaecological malignancies, has only modestly
improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a “universal”
vaccine strategy. We determined the expression of tumor antigens in the context of MHC class I expression in 270 primary tumor
samples using tissue microarray. Expression of tumor antigens p53, SP17, survivin, WT1, and NY-ESO-1 was observed in 120
(48.0%), 173 (68.9%), 208 (90.0%), 129 (56.3%), and 27 (11.0%) of 270 tumor specimens, respectively. In 93.2% of EOC, at least
one of the investigated tumor antigens was (over)expressed. Expression of MHC class I was observed in 78.1% of EOC. In 3 out
4 primary tumors, (over)expression of a tumor antigen combined with MHC class I was observed. These results indicate that a
multiepitope vaccine, comprising these antigens, could serve as a universal therapeutic vaccine for the vast majority of ovarian
cancer patients.

1. Introduction

Epithelial ovarian cancer (EOC) is the most common
cause of death in gynaecologic malignancies [1]. Most
ovarian cancer patients are asymptomatic until disease has
metastasized and therefore two-thirds of all patients are
diagnosed with advanced stage disease [1, 2]. Although
the majority of patients with advanced disease achieve
complete clinical response rates due to the current therapy
of aggressive cytoreductive surgery and platinum-taxane-
based chemotherapy, more than 90% develop tumor recur-
rence, resulting in five-year survival rates of only 30%
[3].

These records express the need for a new and improved
therapy for EOC. The significance of the immune response
for the clinical course of EOC has led to attempts to
modulate it artificially with (antigen-specific) immunother-
apeutic strategies [4]. Presentation of tumor antigens in
the context of MHC molecules on tumor cells is critical
for the efficacy of targeted immunotherapy [5]. Thus far,
approaches at therapeutic vaccination in cancer patients
including administration of peptide pulsed dendritic cells,
recombinant viral vectors encoding tumor antigen, DNA-
fusion vaccine and single peptide vaccine have not shown
consistent, and high percentages of clinical successes [6–
12]. Most clinical studies on immunotherapy targeted one
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antigen, limiting the use of such vaccines to those patients
with (over)expression of that specific tumor antigen. Immu-
nization using a cocktail of antigens has been proposed as
a “universal” vaccine strategy. Whereas solid tumors often
show heterogeneous protein expression, multiantigen vac-
cines may have greater therapeutic potential and compensate
for tumor antigen-loss variants [13, 14]. The ability to target
multiple antigens, may also improve the immunogenicity
of therapeutic vaccines [13, 15]. Therefore, discovery of
multiple tumor antigens in EOC may provide opportunities
for multiantigen immunotherapeutic strategies that can
induce sufficient clinical responses. Tumor antigens that are
inherently immunogenic and oncogenic in ovarian cancer
are p53 [16–18], Sperm Protein 17 (SP17) [14, 19, 20],
Wilms’ tumor gene 1 (WT1) [21–23], survivin [24–26], and
NY-ESO-1 [12, 27, 28].

The presence of an α (heavy) chain and β2-microglobulin
is a prerequisite for the formation of a stable MHC class
I complex [29]. Such stable MHC class I complexes are
required for presentation of the tumor antigenic peptides
[30].

No reports have been published describing tissue
microarray staining of p53, SP17, survivin, WT1, and NY-
ESO-1 with MHC class I expression in EOC. Further
knowledge of the expression of multiple tumor antigens
in the context of MHC class I expression is necessary to
develop strategies to increase clinical efficacy of multiantigen
immunotherapy in EOC.

The aim of the present study was to investigate the
expression of SP17 and NY-ESO-1 and overexpression of
p53, WT1, and survivin together with β2-microglobulin
and the α-chains, HLA-A and HLA-B/C, in tumor samples
obtained from a large well-documented cohort of primary
EOC patients using tissue microarray.

2. Materials and Methods

2.1. Patients. Since 1985, the Department of Gynecolog-
ical Oncology of the University Medical Centre Gronin-
gen (UMCG) prospectively stores all clinicopathologic and
followup data of epithelial ovarian cancer patients in a
computerized database. Tumor samples from 361 patients
were collected on a tissue microarray. This tissue microarray
contains primary ovarian tumor tissue obtained before
chemotherapy of 270 patients. Patients with borderline or
nonepithelial tumors were excluded. Primary treatment for
all patients consisted of surgery and adjuvant chemother-
apeutic treatment consistent of platinum-based regimens
and others. Since 1995, platinum-based chemotherapy was
supplemented by taxanes.

In the current study, the 270 EOC patients were selected
for tumor antigen analysis who underwent primary surgery
between 1985 and 2006 and of whom sufficient paraffin-
embedded ovarian tumor tissue and complete followup data
were available. In a nonselected subgroup of 183 primary
EOC patients, MHC class I expression was analyzed. These
data are partly previously published by our group [29].

Patients were surgically staged according to FIGO
(International Federation of Gynecology and Obstetrics)

classification [31]. Optimal and suboptimal debulking was
defined as the largest residual tumor lesions having a diame-
ter of, respectively, <2 cm or ≥2 cm. Histology of all tumors
was determined according to World Health Organization
criteria [32].

All relevant data were filed in a separate anonymous
database in which patients were given unique codes to
protect patient identity. Database management was restricted
to two people with access to the larger database containing
all patients’ characteristics. Due to these procedures, no
additional patient or institutional review board approval was
required according to Dutch Law.

2.2. Tissue Microarrays. Tissue microarrays were constructed
as described previously [17]. Four cores of 0.6 mm2 were
taken by biopsy and placed by a tissue microarrayer (Beecher
Instruments, Silver Spring, MD, USA) on a recipient
paraffin block. Using a microtome, 4 μm sections were
cut from each tissue microarray block and applied to
aminopropyltriethoxysilane-coated slides. All arrayed sam-
ples were H&E-stained to confirm the presence of tumor
tissue.

2.3. Immunohistochemical Staining of Tissue Microarrays.
Tissue microarray sections were deparaffinized in xylene
and rehydrated through graded concentrations of ethanol
to distilled water. The sections were boiled for 15 minutes
in a microwave to accomplish antigen retrieval. Endogenous
peroxidase was blocked by incubation of sections for 30
minutes in 0.3% hydrogen peroxide. Primary antibodies,
antigen retrieval buffers, and detection methods used are
provided as supplementary data (Table 1). Sections were
counterstained with hematoxylin. All control experiments
gave satisfactory results.

2.4. Scoring. Evaluation of immunostaining was indepen-
dently performed by two observers blinded to the clinical
data. Agreement between the two observers was >90%.
Contradictory outcomes were reviewed by a gynecological
pathologist and were reassigned by approval of all parties.

Immunostaining for p53, HLA-A, HLA-B/C, and β2-m
was scored as described in previous studies [17, 29, 30].
The immunohistochemical reaction for SP17 [33], WT1
[34, 35], survivin [24, 36, 37], and NY-ESO-1 [38] was
semiquantitatively graded into four classes based on the
frequency of nuclear staining for SP17, WT1, and survivin,
and cytoplasmatic staining in NY-ESO-1 in ovarian cancer
cells: negative = no/very low frequency (<5%) immunopos-
itive cells; + = low frequency (≤5–25%); ++ = moderate
frequency (25%–50%); +++ = high frequency (50%–75%);
++++ = very high frequency (75–100%). The cutoff was ‘a
priori‘ chosen for scoring; cases with low frequency or higher
were considered positive for tumor antigen expression.

2.5. Statistical Analysis of Data. Statistical analysis was car-
ried out using the SPSS 16.0 software package fow Windows
(SPSS Inc., Chicago, USA). All cases with <2 evaluable cores
were excluded from analysis.
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Table 1: Antibodies used for immunohistochemical staining.

Antigen Antigen retrieval Clone Dilution Company

p53 Tris/EDTA (pH8) DO-71 1 : 2000 DAKO2

SP17 Citrate (pH 6) Sp17MF1 1 : 100 3

survivin Citrate (pH 6) 71G4B7E 1 : 100 Cell signaling4

WT1 Tris/HCL (pH 9) 6F-H2 1 : 25 DAKO2

NY-ESO-1 EDTA (pH 8) E978 1 : 50 Zymed5

HLA-A Citrate (pH 6) HCA2 1 : 500 6

HLA-B/C Citrate (pH 6) HC-10 1 : 100 6

β2-m Citrate (pH 6) Polyclonal 1 : 400 DAKO2

1Detects both wild-type and mutant p53 protein; 2DAKO, Glostrup, Denmark; 3The SP17 antibody kindly provided by Dr. Maurizio Chiriva, Texas Tech
University; 4Cell Signaling, Danvers, USA; 5Zymed, San Francisco, USA; 6The HCA2 and HC-10 antibodies were a gift from Professor Dr. Neefjes, Netherlands
Cancer Institute, Amsterdam, The Netherlands.

Table 2: Patient and tumor characteristics.

All patients (n = 270)

Age (years)

Mean (SD) 56.9 (13.8)

n (%)

FIGO∗ stage

Stage I 67 (24.9)

Stage II 26 (9.7)

Stage III 144 (53.5)

Stage IV 32 (11.9)

Missing 1

Tumor type

Serous 147 (59.8)

Mucinous 37 (15.0)

Endometrioid 42 (17.1)

Clear cell 17 (6.9)

Undifferentiated 3 (1.2)

Missing 24

Differentiation grade

Grade I 51 (20.2)

Grade II 77 (30.6)

Grade III 113 (44.8)

Undifferentiated 11 (4.4)

Missing 18

Residual disease

<2 cm 155 (59.0)

≥2 cm 94 (35.7)

Positive∗∗ 21 (5.3)
∗FIGO: International Federation of Gynecology and Obstetrics. ∗∗Amount
unknown.

3. Results

3.1. Patients. Tumor samples from 270 consecutive primary
ovarian cancer patients (median age 56.9 years, range 16–
89) treated at the UMCG between 1985 and 2006 were
available (Table 2). The majority of patients presented with
serous histology, advanced stage, and/or high-grade disease.

First-line chemotherapy regimens were platinum based in
90 (34.2%) patients and platinum and taxane based in
108 (41.1%) patients. Other regimens were given to 25
(9.5%) patients, while 40 (15.2%) patients did not receive
chemotherapy because of early stage disease, comorbidity, or
treatment refusal.

3.2. Tumor Antigen (Over)Expression in EOC. P53, SP17, sur-
vivin, WT1, and NY-ESO-1 (over)expression was observed
in 48.0%, 68.9%, 90.0%, 56.3%, and 11.0% of tumors,
respectively (Table 3). In 93.2% tumors, at least one of the
investigated tumor antigens was (over)expressed (Table 4).
Expression of only one tumor antigen was found in 40
(15.2%) tumors, 70 (26.6%) tumors expressed two antigens,
70 (26.6%) tumors expressed three antigens, 58 (22.1%)
tumors expressed four antigens, and 7 (2.7%) tumors
expressed all five investigated tumor antigens. Absence of
expression of any antigen was seen in 18 (6.8%) patients.
Nonevaluable primary tumors due to core loss during
staining procedures or absence of tumor tissue ranged from
19 (7.4%) for SP17 staining to 41 (15.2%) for WT1 staining.
Several specific combinations of tumor antigen expression
cover high percentages of EOC patients, varying from 95.5%
(214/224) combining two antigens to a maximum coverage
of 98.2% (216/220) combining four antigens (Table 5).

3.3. Immunostaining MHC Class I. Coexpression of HLA-A
and β2-m or HLA-B/C and β2-m was observed in 98 (53.6%)
and 136 (74.7%) of the tumors, respectively (Table 3).
Positive MHC class I expression, defined as HLA-A and β2-
m and/or HLA-B/C and β2-m coexpression, was observed in
143 (78.1%) tumors.

3.4. Coexpression of Tumorantigens and MHC Class I in EOC.
Of all EOC positive for p53, SP17, survivin, WT1, or NY-
ESO-1, 82.5%, 82.8%, 77.0%, 80.9%, and 80.0% were also
positive for MHC class I, respectively (Table 6). In 78.4% of
tumors (over)expressing one or more tumor antigens, also
expression of MHC class I was found. Furthermore, 74.3% of
all tumors coexpressed MHC class I and at least one tumor
antigen.
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Table 3: Expression levels of antigen and MHC class I components.

P531 SP171 Survivin1 WT11 NY-ESO-11

n (%) n (%) n (%) n (%) n (%)

Normal/negative 130 (52.0) 78 (31.1) 23 (10.0) 100 (43.7) 219 (89.0)

Overexpression/positive 120 (48.0) 173 (68.9) 208 (90.0) 129 (56.3) 27 (11.0)

Missing 20 19 39 41 24

HLA- A+/ β2- m+2 HLA-B/ C+/ β2- m+2 MHC class I3

Positive4 98 (53.6) 136 (74.7) 143 (78.1)

Negative4 85 (46.4) 46 (25.3) 40 (21.9)

Missing 1
1primary EOC patients, n = 270; 2staining in subgroup, n = 183; 3MHC class I expression is defined as HLA-A and β2-m and/or HLA-B/C and β2-m
coexpression; 4positive is both components HLA-A/B/C and β2-m expressed, negative are all other phenotypes.

Table 4: Expression of single or multiple antigens in EOC.

Number of antigens n % Cumulative %

1 40 15.2 15.2

2 70 26.6 41.8

3 70 26.6 68.4

4 58 22.1 90.5

5 7 2.7 93.2

None 18 6.8 100.0

Missing 7

n = 270.

4. Discussion

In a large well-documented cohort of representative EOC
patients, (over)expression of at least one of the tumor
antigens p53, SP17, survivin, WT1, or NY-ESO-1 was
observed in over 90% of the tumors. To our knowledge,
this is the first study on the expression of multiple tumor
antigens in a large cohort of EOC. Only a minority (6.8%)
of the tumors did not express one of the selected tumor
antigens. About 75% of the EOC tumors expressed both,
one of the tumor antigens and MHC class I. This obser-
vation underlines the relevance of designing a multiepitope
vaccine consisting of p53, SP17, NY-ESO-1, survivin, and
WT1 for the immunotherapeutic treatment of ovarian
cancer.

This inventory tissue microarray study enables us to
analyze the expression of five well-known tumor antigens
in EOC, in correlation to MHC class I expression. Tissue
microarray is a practical and powerful tool for high-
throughput analysis of tumor tissue identifying targets in
human cancers [39]. P53, SP17, NY-ESO-1, survivin, and
WT1 are immunogenic target antigens in EOC. Rates of
observed (over)expression of p53, SP17, survivin, and WT1
in 48.0%, 68.9%, 90.0%, and 56.3% of EOC patients,
respectively, are in agreement with previous studies [16, 24,
40, 41]. NY-ESO-1 expression was seen in 11.0% of tumors
in our cohort which is in agreement with the results of
others [42, 43]. However, Odunsi et al. observed NY-ESO-1
expression in 43% of EOC patients [38, 44]. This difference

in expression might be explained by considerable method-
ological variability among the different studies. The type of
study design, antibodies and assays used to study NY-ESO-1
expression, determination of cutoff points for aberrant NY-
ESO-1 expression, and the definition of study end points
vary greatly among different studies. Immunohistochemical
analyses of tumors have shown heterogeneous NY-ESO-1
expression [45]. Since expression of NY-ESO-1 is mostly
focal and nonuniform, tissue microarrays containing large
numbers of tumor tissue are essential to determine NY-ESO-
1 expression in EOC. Our sample size of 270 EOC patients
might be more potent to distinguish between positive and
negative NY-ESO-1 expression in EOC compared to 143
EOC patients analyzed by Odunsi et al.

We previously reported on the expression of tumor anti-
gens EGFR and Her-2 in our large well-documented cohort
of representative EOC, using tissue microarray [46]. EGFR
and Her-2 overexpression was observed in 7.0% and 5.2%
of EOC, respectively. The expression of EGFR and Her-2 has
been extensively studied in ovarian cancer [47, 48]. Aberrant
activity of these antigens is important in tumor growth and
development [49, 50]. Therefore, EGFR and Her-2 were
considered to be attractive targets for immunotherapeutic
strategies in EOC. Because of the low expression levels in
EOC, therapeutic potential of vaccines targeting EGFR and
Her-2 is limited. As the existing repertoire of known antigens
in EOC is relatively small, we performed our innovative
study on five highly expressed tumor antigens which may
provide opportunities for multiepitope immunotherapeutic
strategies targeting the majority of EOC patients.

We provide first evidence that several antigen combi-
nations can be used in a multiepitope vaccine for EOC
treatment, since different antigen combinations cover high
percentages of EOC patients. Vaccines comprising a mixture
of, for example, p53, SP17, and survivin or combining
survivin, WT1, and NY-ESO-1 cover the vast majority of
EOC patients. Maximum coverage of EOC patients can be
obtained by a vaccine comprising four antigens p53, SP17,
survivin, and WT1.

Single antigen vaccines targeting p53 [51], SP17 [40],
NY-ESO-1 [52], survivin [11], and WT1 [22] have been
described to generate tumor antigen-specific cytotoxic
T-cell lymphocytes (CTLs) able to lyse autologous tumor
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Table 5: Expression of specific antigen combinations in EOC.

Antigen combinations % (n/total)

One antigen

p53 48.0 (120/250)

SP17 68.9 (173/251)

Survivin 90.0 (208/231)

WT1 56.3 (129/229)

NY-ESO-1 11.0 (27/246)

Two antigens

p53, SP17 84.2 (203/241)

p53, survivin 95.5 (214/224)

p53, WT1 73.1 (163/223)

p53, NY-ESO-1 52.7 (125/237)

SP17, surviving 94.7 (215/227)

SP17, WT1 82.3 (186/226)

SP17, NY-ESO-1 74.0 (179/242)

survivin, WT1 93.0 (212/228)

survivin, NY-ESO-1 90.8 (208/229)

WT1, NY-ESO-1 60.3 (138/229)

Three antigens

p53, SP17, survivin 97.7 (217/222)

p53, SP17, WT1 91.4 (202/221)

p53, SP17, NY-ESO-1 86.4 (203/235)

p53, survivin, WT1 95.9 (213/222)

p53, survivin, NY-ESO-1 95.5 (213/223)

p53, WT1, NY-ESO-1 74.4 (166/223)

SP17, survivin, WT1 96.0 (216/225)

SP17, survivin, NY-ESO-1 95.6 (216/226)

SP17, WT1, NY-ESO-1 84.5 (191/226)

survivin, WT1, NY-ESO-1 93.4 (213/228)

Four antigens

p53, SP17, survivin, WT1 98.2 (216/220)

p53, SP17, survivin, NY-ESO-1 97.7 (216/221)

p53, SP17, WT1, NY-ESO-1 92.3 (204/221)

p53, survivin, WT1, NY-ESO-1 95.9 (213/222)

SP17, survivin, WT1, NY-ESO-1 96.4 (217/225)

All antigens

p53, SP17, survivin, WT1, NY-ESO-1 98.2 (216/220)

n = 270.

cells. One can envision that multiepitope vaccines may
enhance immunogenicity, improving clinical efficacy of the
immunotherapeutic vaccine.

Multiepitope vaccines should preferably contain multiple
MHC class I-presented CTL epitopes derived from different
target antigens together with a tumor-specific MHC class
II-presented T-helper epitope. This will reduce the risk
of immune-driven selection of antigen-loss variants of
the tumor. Next, given the pivotal role of T-helper cells
in promoting the primary and secondary CTL responses
through the induction of DC maturation and the produc-
tion of cytokines, the inclusion of T-helper epitopes in a
multiepitope-based vaccine will have strong beneficial effects

[6]. For example, p53-specific T-helper cells induced upon
p53 specific immunization might fulfil this role [53].

Important advantages of well-defined multiepitope vac-
cines over nondefined vaccines, such as tumor lysate vac-
cines, are their defined nature [6, 54], lack of suppressive
inducing antigens [55–57], simple way of manipulation
to prevent dominance of one antigen over the others [6,
58], universal applicability [6, 59], easiness to make in a
standardized procedure [59, 60], possibility to combine with
other strategies [59], and limited autoimmune toxicity [55,
61].

Moreover, administration of a multiepitope vaccine as
a single mixture offers advantages including: (1) injection
of a limited volume, (2) lower number of skin sites with
local toxicity due to injection site reactions, and (3) lower
chance of error and contamination with the preparation of
one versus multiple epitope preparations [13, 14].

In contrast, previous studies showed that administration
of multiple epitopes at one injection site could lead to a
more vigorous response to just one of the involved antigens
[62, 63]. We reasoned that this disadvantageous result might
be due to immunodominance of one antigen over the other.
Preclinical studies might be helpful in designing the optimal
combination of multiantigen vaccines, trying to predict
and/or prevent immunodominance. In contrast, the synergy
between antigens included in a multiepitope vaccine might
induce immune responses with increased potency compared
with the response induced by the same epitopes individually
[6]. Separate injection sites for all of the involved antigens
may result in a significant increase in the magnitude of
the antigen-specific T-cell response. It still holds true that
several multiantigen combinations cover high percentages of
tumors. The most favourable vaccine, based on (pre)clinical
studies concerning immunodominance, can be used for
treatment of EOC patients.

MHC class I downregulation was observed in 21.9%
of tumors. Loss of MHC class I molecules on tumor cells,
which may lead to immune escape, is often restricted to
one or a few alleles. Targeting multiple epitopes restricted
by different class I molecules of the patient will likely
circumvent such an escape mechanism [6]. The tumor-
associated antigens p53, NY-ESO-1, and WT1 epitopes are
presented both by MHC class I and II (according to listing at
http://www.cancerimmunity.org/, update September 2008).
As a result, p53, WT1, and NY-ESO-1 [64] can function as
both CTL and T-helper cell targets.

Considering the importance of the expression of MHC
class I by tumor cells for immune recognition by T cells,
several regimens could be added in the multiepitope vaccine
to enhance MHC class I expression. Treatment with IFN-
gamma is known to upregulate MHC class I [10, 65, 66].
Another possibility would be the addition of demethylating
agents to the multiepitope vaccine, since DNA hypermethy-
lation, common in human tumors, may result in the loss of
MHC class I expression [67, 68].

The most promising finding that emerges from this study
is that the vast majority of EOC patients present one or
more tumor antigens. Furthermore, if tumor cells present
one of our investigated tumor antigens, it is likely to express
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Table 6: Coexpression of MHC class I components with tumorantigens.

p53+ SP17+ Survivin+ WT1+ NY-ESO1+ Tumorantigen+2

n = 80 n = 116 n = 152 n = 89 n = 20 n = 173

n/total (%) n/total (%) n/total (%) n/total (%) n/total (%) n/total (%)

HLA-A+β2m+ 52/80 64/116 80/152 50/89 13/20 96/173

n = 98 (65.0) (55.2) (52.6) (56.2) (65.0) (55.0)

HLA-B/C+β2m+ 62/78 94/116 111/151 67/89 15/20 129/171

n = 136 (79.5) (81.0) (73.5) (75.3) (75.0) (75.4)

MHC class I+ 66/80 96/116 117/152 72/89 16/20 136/173

n = 143 (82.5) (82.8) (77.0) (80.9) (80.0) (78.4)

All patients1 66/174 96/178 117/169 72/167 16/175 136/183

n = 183 (37.9) (53.9) (69.2) (43.1) (9.1) (74.3)
1Antigen+ and MHC class I+ in all subgroup patients (n = 183); 2 ≥ 1 tumorantigen expression.

MHC class I as well. Therefore, a vaccine comprising the
investigated tumor antigens is capable of targeting tumor
cells of the vast majority of EOC patients. Since several
combinations of tumor antigens cover the majority of
EOC patients, different institutes can attribute personally
preferred antigens to their multiepitope vaccine.

In summary, we are first to show that multiepitope
immunotherapy combining tumor antigens p53, SP17, sur-
vivin, WT1, and/or NY-ESO-1 might be a promising new
therapeutic vaccination strategy in ovarian cancer.
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