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Power-based adaptive and integral control of standard mechanical

systems

D.A. Dirksz and J.M.A. Scherpen

Abstract— Recently a power-based modeling framework was
introduced for mechanical systems, based on the Brayton-Moser
framework. In this paper it is shown how this power-based
framework is used for control of standard mechanical systems.
For systems which are affected by parameter uncertainty or
other unknown disturbances adaptive control and integral
control are also described in this framework. The power-based
control approach is also compared with the energy-shaping
control of port-Hamiltonian systems. The most interesting
difference is the possibility of having adaptive and integrator
dynamics depending on position errors, while preserving the
physical structure.

I. INTRODUCTION

After its introduction the port-Hamiltonian (PH) frame-

work [11] has received a considerable amount of inter-

est because of its insightful physical structure. It is well

known that a large class of (nonlinear) physical systems

can be described in the PH framework. The popularity of

PH systems can be largely accredited to its application for

analysis and control design of physical systems [4], [5], [13],

[14], [16]. Although many results have been presented in

the area of control, the performance is obviously affected

by unknown disturbances or model uncertainties. In the

case of stabilization uncertainties and/or modeling errors can

cause the well known problem of steady-state errors. Such

errors are traditionally eliminated by adding an integrator

to the system. Adaptive control is another alternative, when

errors are caused by parameter uncertainty and parameter

estimation is desired. However, and as will be shown in

a later section, for mechanical systems it is not possible

to define adaptive laws or integrator dynamics based on

position errors and still preserve the PH structure. In [6]

integral control was presented for PH systems, however the

integrator states were not directly used for control. A direct

use of integrator states would destroy the PH structure, as

mentioned before. Another possibility for integral control in

the PH framework without losing the structure is presented

in [2], but depends on a coordinate transformation.

To be able to define either adaptive laws or integrator

dynamics based on position errors and still keep some sort

of physical structure we leave the notion of PH systems and

look at systems described in the power-based framework.

In the power-based framework a system is described by

Brayton-Moser (BM) equations [1]. They were originally

developed for a large class of nonlinear electrical RLC net-

works. The use of the BM equations to realize stabilization
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of such networks via power-shaping was introduced in [15].

Power-based modeling and control of other systems followed

and were presented in [3], [7], [8], [9].

The main contribution of this paper is to extend results

from [7] for power-based control to include integral and

adaptive control. We focus on standard mechanical systems

and show that, with power-based control, adaptive and in-

tegral control can be realized based on position errors. In

this setup the original power-balance for the closed-loop

system is preserved. The power-based description of standard

mechanical systems [8] is recent and its application and

advantages for control have not been explored yet.

Section II first describes a standard mechanical system

in the PH framework. Then it is shown how adaptive

stabilization and integral control, based on position errors,

destroys the PH structure. Section III describes a standard

mechanical system by BM equations and presents stabiliza-

tion via power-shaping. Section IV then shows how to realize

adaptive stabilization and integral control of the standard

mechanical system. An example of the proposed control

method is then shown in section V. Concluding remarks are

then given in section VI.

Notation. All vectors are column vectors, including the

gradient of a scalar function.

II. PORT-HAMILTONIAN MECHANICAL SYSTEMS

Consider the PH system described by

ẋ = [J(x) − R(x)] ∂H
∂x

(x) + g(x)u

y = g(x)⊤ ∂H
∂x

(x)
(1)

with J(x) ∈ R
n×n the skew-symmetric interconnection

matrix, R(x) ∈ R
n×n the symmetric, positive-semidefinite,

damping matrix, x ∈ R
n, the Hamiltonian H(x), and u, y ∈

R
m with m ≤ n. A standard mechanical system described

by (1) takes the form
[

q̇

ṗ

]
=

[
0 I

−I −D

][
∂H
∂q
∂H
∂p

]
+

[
0
G

]
u

y = G⊤ ∂H
∂p

(2)

with q = (q1, ..., qk)⊤ the vector of generalized configuration

coordinates, p = (p1, ..., pk)⊤ the vector of generalized

momenta, I the identity matrix, D ∈ R
k×k the damping

matrix, G the input matrix and y the output vector. The

Hamiltonian of the system is equal to the sum of kinetic

and potential energy:

H(q, p) =
1

2
p⊤M−1(q)p + V (q) (3)
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where M(q) = M⊤(q) > 0 is the system mass matrix and

V (q) the potential energy. For fully actuated systems the

input matrix can be taken equal to the identity matrix without

loss of generality, G = I . Usually an input u = ues +
udi is defined, which shapes the Hamiltonian of the system

into a desired form, ues, and injects damping, udi. Assume

we are dealing with systems where we are only shaping the

potential energy. An easy way of shaping the potential energy

of the plant is by substituting it with another function of

the generalized positions which has suitable properties. The

input signal then takes the form

u =
∂V

∂q
(q) −

∂Vd

∂q
(q) − Kdq̇ (4)

where Vd(q) is the new, desired, potential energy and udi =
−Kdq̇ with Kd a positive definite matrix. Typically we

choose a quadratic potential [12]

Vd(q) =
1

2
q̄⊤Kpq̄ (5)

with q̄ = q − qd, qd being the desired position, and Kp a

positive definite matrix. Notice how (4) requires the knowl-

edge of the vector of the potential energy forces, ∂V
∂q

. In the

case of parameter uncertainty, this vector is not accurately

known. An adaptive version of (4) can then be applied, to

compensate for errors caused by the uncertainties. Assume

that the potential energy forces can be linearly parametrized

in the form:
∂V

∂q
(q) = ∆(q)z (6)

where ∆(q) is a matrix of known functions and z =
(z1, ..., zm)⊤ the vector of unknown parameters. An adaptive

version of (4) is obtained by

u = −Kpq̄ − Kdq̇ + ∆(q)ẑ (7)

where ẑ is the estimate of z. Now, in the PH framework, if

we want to define an update law for ẑ which depends on the

position error q̄ we get

˙̂z = −Kz∆(q)⊤G⊤
∂Hd

∂q
(q, p) (8)

with Kz the positive definite diagonal matrix of adaptive

gains and Hd(q, p) the new Hamiltonian, i.e.,

Hd(q, p) =
1

2
p⊤M−1(q)p + Vd(q) (9)

The input (7) with update law (8) result in the closed-loop

system




q̇

ṗ
˙̄z


 =




0 I 0
−I −D̄ G∆Kz

−Kz∆
⊤G⊤ 0 0







∂H̄
∂q

∂H̄
∂p

∂H̄
∂z̄


 (10)

where D̄ = D + Kd, z̄ = ẑ − z and the closed-loop

Hamiltonian

H̄(q, p, z̄) = Hd(q, p) +
1

2
z̄⊤K−1

z z̄ (11)

It is easy to see that the interconnection matrix of (10) is not

skew-symmetric and the closed-loop system is not anymore

PH. We can realize a skew-symmetric interconnection matrix

for the closed-loop system by replacing ∂Hd

∂q
in (8) by ∂Hd

∂p
.

However, that means that the update law for ẑ is driven by

the system velocity. Convergence of the velocity to zero does

not mean that q̄ → 0 as t → ∞, so we may still end up with

a steady-state error.

The same problem appears when we want to add an

integrator to system (2). Take

u = ξ (12)

with ξ the integrator state and

ξ̇ = −KiG
⊤

∂H

∂q
(q, p) (13)

where Ki is a positive definite diagonal matrix. The closed-

loop system can be described by




q̇

ṗ

ξ̇


 =




0 I 0
−I −D GKi

−KiG
⊤ 0 0







∂Ĥ
∂q

∂Ĥ
∂p

∂Ĥ
∂ξ


 (14)

with the Hamiltonian

Ĥ(q, p, ξ) = H(q, p) +
1

2
ξ⊤K⊤

i ξ (15)

Just like with the adaptive control we again do not have a

skew-symmetric interconnection matrix. We lose both pas-

sivity of the closed-loop system and the advantages of having

power-ports for control. Similar to with adaptive control

we can make it skew-symmetric by letting the ξ̇ dynamics

depend on ∂H
∂p

. Like before, this will not compensate for

steady-state errors since the dynamics are then driven by the

velocity.

As an alternative to deal with this problem we define adap-

tive and integral control schemes based on the power-based

modeling framework. The following section first introduces

the concept of power-based modeling and power-shaping.

III. BRAYTON-MOSER EQUATIONS AND POWER-SHAPING

This section introduces the concept of power-based model-

ing of standard mechanical systems, as presented in [8]. We

then show the notion of power-shaping, introduced in [15]

for RLC networks, applied for stabilization of mechanical

systems.

A. Power-based description of standard mechanical systems

The BM (Brayton-Moser) equations, as introduced for

nonlinear electrical RLC networks, take the special gradient

form

Q(x)ẋ =
∂P

∂x
(x) + B(x)u (16)

with x ∈ R
n the vector of system states, Q(x) a symmetric

matrix, B(x) ∈ R
n×m the input matrix with m ≤ n and

P (x) the mixed-potential function (which has the units of

power). A practical advantage of the BM equations for

electrical systems is that they describe the dynamics of a
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system in terms of ”easily” measurable quantities [7]. That

is, inductor currents and capacitor voltages, instead of fluxes

and charges as normally used in PH electrical systems.

In [8] it is shown how the PH system described by (2)

can be described by BM equations. The standard mechanical

system (2) can be described in the form of (16) by x =
(q, p)⊤, the matrix

Q(q, p) =




∂2V
∂q2 + 1

2
∂2(p⊤M−1(q)p)

∂q2 −∂p⊤M−1(q)
∂q

∂M−1(q)p
∂q

−M−1(q)




(17)

input matrix

B =

[
0

−M−1(q)G

]
(18)

and mixed-potential function

P (q, p) =
∂V

∂q

⊤

M
−1(q)p +

1

2

„

∂p⊤M−1(q)p

∂q

«⊤

M
−1(q)p

+
1

2
p
⊤

M
−1(q)DM

−1(q)p (19)

which has the units of power.

As described in [1], [9] stability of a BM system is proven

by finding an alternative pair Q̃(x) and P̃ (x), which equiv-

alently characterize the system (16) and where P̃ (x) can

be used as a candidate Lyapunov function. The generation

of candidate Lyapunov functions is based on the following

theorem

Lemma 1 ([1]): For any arbitrary constant λ and any

constant symmetric matrix K, the pair

Q̃(x) = λQ(x) +
∂2P

∂x2
(x)KQ(x) (20)

P̃ (x) = λP (x) +
1

2

(
∂P

∂x
(x)

)⊤

K
∂P

∂x
(x) (21)

equivalently characterizes the dynamics (16). ⊳

B. Stabilization via power-shaping

For stabilization control we want to define an input u

which shapes the mixed-potential function P (x) into a

function of desired form, Pd(x). In [7] it is shown how

a general system of the form (16) can be asymptotically

stabilized by power-shaping. This power-shaping approach

can be related to the energy-shaping approach in which the

Hamiltonian H(x) of a system is shaped into a desired

Hamiltonian Hd(x). We now describe a similar approach for

standard mechanical systems, however, the difference with

[7] is that for a mechanical system the matrix (17) also

changes. Assume that:

A. 1: There exists a scalar function Pa(x) such that:

• B⊥(x)∂Pa

∂x
= 0, where B⊥(x) is a full-rank left

annihilator of B(x), i.e., B⊥(x)B(x) = 0.

•
∂Pd

∂x
(xd) = 0, with Pd(x) = P (x) + Pa(x) and xd a

minimum of Pd(x). ⊳

Define the input signal

u =
(
B⊤(x)B(x)

)−1
B⊤(x)

∂Pa

∂x
(22)

which for a mechanical system in the form of (16) results in

Qd(x)ẋ =
∂Pd

∂x
(23)

with Qd(x) a symmetric matrix. For mechanical systems

the matrix Q(x) and the mixed-potential function P (x) are

defined in terms of the kinetic and potential energy. For that

reason shaping the power of the system means shaping the

energy of the system, changing the matrix Q(x) too.
Assume that we have a fully actuated mechanical system

with no friction, i.e., G = I and D = 0. Potential energy
shaping and damping injection comes down to having the
desired mixed-potential function

Pd(q, p) =
∂Vd

∂q

⊤

M
−1(q)p +

1

2

„

∂p⊤M−1(q)p

∂q

«⊤

M
−1(q)p

+
1

2
p
⊤

M
−1(q)KdM

−1(q)p (24)

with Vd(q) as in (5). Satisfying assumption A.1 and since

Pa = Pd − P we have

−M−1(q)u =
∂Pa

∂p
(25)

u =
∂V

∂q
−

∂Vd

∂q
− KdM

−1(q)p (26)

where it is known that M−1(q)p = q̇. We then have the same

potential energy-shaping and damping injection input shown

in (4). Assume for simplicity that we also have a constant

mass matrix M(q) = M . We now have the BM mechanical

system (23) with potential function as in (24) and

Qd(q, p) =

[
∂2Vd

∂q2 0

0 −M−1

]
(27)

From energy-shaping control we know that potential energy

shaping and damping injection results in an asymptotically

stable system. We now apply lemma 1 to show this result for

the BM mechanical system, which means finding a matrix

Q̃d

Q̃d(x) = λQd(x) +
∂2Pd

∂x2
(x)KQd(x) (28)

such that Q̃d(x) + Q̃⊤

d (x) < 0 and a function

P̃d(x) = λPd(x) +
1

2

(
∂Pd

∂x
(x)

)⊤

K
∂Pd

∂x
(x) (29)

Take λ = −1 and

K =

[
0 0
0 M2

]
(30)

We then have that

Q̃d =

[
−∂2Vd

∂q2 −∂2Vd

∂q2

0 M−1 (I − Kd)

]
(31)
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and Q̃d+Q̃⊤

d < 0 for a sufficiently large Kd and by choosing

Vd such that ∂2Vd

∂q2 is positive definite. It can be easily verified

that

dP̃d

dt
=

1

2
ẋ⊤

(
Q̃d(x) + Q̃⊤

d (x)
)

ẋ (32)

≤ 0 (33)

which then means that q̇, ṗ → 0 as time t → ∞. The function

P̃d(x) is bounded from below and LaSalle’s invariance

principle [10] can be used to prove asymptotic stability in

q̄ = 0. If the function P̃d is radially unbounded, asymptotic

stability is global.

A similar approach can be taken to show asymptotic

stability of systems with a non-constant matrix M(q).

IV. INTEGRAL AND ADAPTIVE CONTROL OF

BRAYTON-MOSER MECHANICAL SYSTEMS

A. Integral control

In the previous section we showed the idea of potential

energy shaping and damping injection via power-shaping

in the BM framework. However, potential energy shaping

is usually realized by canceling the potential energy terms

of the original system and replacing them by a desired

function. A mismatch between real potential energy and

the potential energy used for control can cause steady-state

errors. It is well known that an integrator can compensate

for steady-state errors caused by unknown disturbances or

model uncertainties. The results of [7] can be extended

to realize an integral control scheme for stabilization of

standard mechanical systems, where τ denotes the integrator

state.

Theorem 1: Consider a standard mechanical system with

a constant input disturbance d, described in BM form by

Q(x)ẋ =
∂P

∂x
+ B(x)(u − d) (34)

Assume that assumption A.1 holds and that

A. 2: There exists a constant λ and a matrix K in (28)

such that Q̃d(x) + Q̃⊤

d (x) < 0.

A. 3: The largest invariant set contained in the set

{x ∈ R
n|ẋ⊤Q̃d(x)ẋ = 0}

equals {xd}.

Then, the power-shaping plus integral control input

u =
(
B⊤(x)B(x)

)−1
B⊤(x)

(
∂Pa

∂x
(x) + τ

)
(35)

and integrator dynamics

τ̇ = −KiB
⊤(x)Q−1

d (x)
∂Pd

∂x
(x) (36)

with Ki a constant, positive definite, diagonal matrix, asymp-

totically stabilizes the system (34) in the point xd with

domain of attraction given by the set

{(x, τ̄) ∈ R
n+k|P̃i(x, τ̄) ≤ c1} (37)

with τ̄ = τ − d,

P̃i(x, τ̄) = P̃d(x) + τ̄⊤K−1
i τ̄ (38)

P̃d(x) as in (29) and constant c1 > 0.

Proof. The control input (35) with integrator dynamics
(36) results in the closed-loop system 1

»

Qd 0
0 I

– »

ẋ
˙̄τ

–

=

»

I BKi

−KiB
⊤Q−1

d
0

–

"

∂Pi

∂x

∂Pi

∂τ̄

#

(39)

with

Pi(x) = Pd(x) +
1

2
τ̄⊤K−1

i τ̄ (40)

This closed-loop system can be rewritten in the form

»

ẋ
˙̄τ

–

=

"

Q−1

d
Q−1

d
BKi

−KiB
⊤Q−1

d
0

# "

∂Pi

∂x

∂Pi

∂τ̄

#

(41)

Take (38) as Lyapunov candidate function. It can be verified,

with assumption A.2, that

dP̃i

dt
=

dP̃d

dt
(42)

≤ 0 (43)

Asymptotic stability of x then follows by invoking LaSalle’s

invariance principle together with assumption A.3, which

also implies that τ̄ converges to zero . ¤

Remark 1: From (42) it can be seen that the power-

balance obtained by stabilization via power-shaping, inequal-

ity (33) in the previous section, is preserved when adding

integral control as described above. ⊳

Remark 2: It can be noticed that for a mechanical system

the original matrix Q(x) may not be invertible, i.e., sys-

tems with no potential energy. However, the power-shaping

approach as shown above can assign a (virtual) potential

energy function such that the matrix Qd(x) of the closed-

loop system becomes invertible. ⊳

For illustration purposes, take a fully actuated mechanical

system with a constant matrix M and no friction. Application

of theorem 1 gives

u =
∂V

∂q
(q) − Kpq̄ − Kdq̇ + τ (44)

and the integrator dynamics (36)

τ̇ = −KiM
−1

(
Kpq̄ + KdM

−1p
)

(45)

In the previous section it was already shown that a matrix

Q̃d exists which proves that q̇, ṗ → 0 as time t → ∞. We

then know that q becomes constant and since q̇ = M−1p we

know that p → 0 too. The dynamics then reduce to

ṗ = Kpq̄ + τ (46)

= 0 (47)

as t → ∞, showing that τ has to be constant too. Assumption

A.3 can be verified by noting that, if q is constant in another

1Since d is constant, ˙̄τ = τ̇ .
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point other than the desired equilibrium point, q̄ 6= 0 and

from (45) we know that τ̇ 6= 0. A non-constant τ contradicts

the fact that ṗ ≡ 0. This shows that the largest invariant set

where dP̃d

dt
= 0 is the set containing q̄ = 0, p = 0, and we

have a zero steady-state error.

A similar approach can be taken for integral control of

mechanical systems with a non-constant matrix M(q) and/or

systems with friction D ≥ 0. It can be seen, however, that

the integrator dynamics (36) become more complicated since

kinetic and dissipation energy terms have to be included too.

The matrix Q(x) also becomes more complex. However, the

method can still be applied for such systems, which are more

complex.

B. Adaptive control

In the previous subsection we extended results of power-

shaping by adding an integrator to the system. In the special

case that we only have parameter uncertainty also adaptive

control can be applied to compensate for errors caused

by using uncertain parameter values in the control input.

Adaptive control, compared to integral control, becomes

interesting when parameter estimation is desired. Theorem 1

will now be modified to define an adaptive control theorem.

Theorem 2: Consider a standard mechanical system of

the form (16) and assume that assumptions A.1-A.3 hold.

Assume furthermore that

A. 4: We can write

∂Pa

∂x
(x) = α(x) + Φ(x)z (48)

where α(x) is a known vector function, Φ(x) a matrix

of known functions and z the vector of unknown system

parameters (as before).

Denote the estimation of z by ζ. Then the power-shaping

and adaptive control input

u =
(
B⊤(x)B(x)

)−1
B⊤(x) (α(x) + Φ(x)ζ) (49)

with update law

ζ̇ = −KzΦ(x)B⊤(x)Q−1
d (x)

∂Pd

∂x
(x) (50)

and Kz a positive definite diagonal matrix asymptotically

stabilizes the system (16) in the point xd with domain of

attraction given by the set

{(x, z̃) ∈ R
n+m|P̃z(x) ≤ c2} (51)

with z̃ = ζ − z,

P̃z(x, z̃) = P̃d(x) +
1

2
z̃⊤K−1

z z̃ (52)

P̃d(x) as in (29) and constant c2 > 0.

Proof. The proof follows the same steps as in the proof of
theorem 1. The only difference is that the closed-loop system
is now described by

»

ẋ
˙̃z

–

=

"

Q−1

d
Q−1

d
BΦKz

−KzΦ
⊤B⊤Q−1

d
0

# "

∂Pz

∂x

∂Pz

∂z̃

#

(53)

with z̃ = ζ − z and mixed-potential function

Pz(x, z̃) = Pd(x) +
1

2
z̃⊤K−1

z z̃ (54)

The same Q̃d(x) and P̃d(x) as before can be used, with (52)

as Lyapunov candidate function. ¤

However, for adaptive control we have the requirement

that the matrix Φ(x) has to be known. This means that

only parameter values can be uncertain. Furthermore, the

uncertainties should not impede the computation of (50).

Take again the standard mechanical system with constant

matrix M and no friction (D = 0), then

Pa =

(
∂Vd

∂q
−

∂V

∂q

)⊤

M−1p +
1

2
p⊤M−1KdM

−1p (55)

with Vd(q) as in (5). The shaped potential function becomes

Pd(q, p) =
∂Vd

∂q

⊤

M−1p +
1

2
p⊤M−1KdM

−1p (56)

and we have that the update law (50) becomes

ζ̇ = −KzΦ(q)⊤M−1
(
Kpq̄ + KdM

−1p
)

(57)

It is possible to replace M−1p by q̇, since this is what is

actually measured. However, we will still have that the up-

date law depends on M . This can complicate the application

of the adaptive scheme when there is parameter uncertainty

in this matrix. In the case of a constant M matrix there are

cases where this is not an issue. Denote M0 as the (nominal)

matrix used for computation of the update law. Instead of

(57) we actually have

ζ̇ = −KzΦ
⊤(q)M−1

0 (Kpq̄ + Kdq̇) (58)

In the special case that Φ(q) is a diagonal matrix, of equal

size as M , we can write

KzΦ
⊤(q)M−1

0 = Φ⊤(q)KzM
−1
0 (59)

which means that a constant, positive definite, matrix K̃z

exists such that

Φ⊤(q)KzM
−1
0 = Φ⊤(q)K̃zM

−1 (60)

We can then say that the update law (58) satisfies (50),

however, with a different matrix for the adaptation gains,

K̃z . In other words, applying the matrix M0 with Kz is

equal to applying M with K̃z (different adaptation gains

than originally intended). The simple example in the next

section illustrates this. Notice that such problem does not

occur when the uncertainty is only present in the potential

energy V (q). For analysis, Kz in (53), (54) and (52) can

then be replaced by K̃z .

For systems with a non-constant matrix M(q) the update

law (50) also depends on kinetic energy terms. The update

law then has more terms depending on M(q), impeding its

application when there is uncertainty in this matrix.
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V. EXAMPLE

Adaptive stabilization control, as presented in the previous

section, is applied on a simple nonlinear system, i.e., a single

pendulum. Assume that the pendulum has a massless rod of

length l with a mass m attached at the end. In the example

we have the angle q = θ and u is the input torque. The

system can be described by

M = ml2, V (q) = mgl(1 − cos(q)) (61)

with g the gravitational constant and input matrix G = 1.

This system has a stable equilibrium, the hanging position,

and an unstable equilibrium, the upward position. Assume

that we want to asymptotically stabilize this system at the

angle qd = π
2 rad. Assume also that m is unknown and a

nominal value is used for control, m0 6= m. The power-

shaping adaptive control input (49) is given by

u = m0gl sin(q) − kpq̄ − kdq̇ + gl sin(q)ζ (62)

where q̄ = q− qd and the adaptation law (50) takes the form

ζ̇ = −
kzg

m0l
sin(q) (kpq̄ + kdq̇) (63)

with kp, kd, kz positive constants. Figure 1 shows simulation

results for this example with m = 1, l = 1, g = 9.81,m0 =
1.5 and control gains kp = 20, kd = 5, kz = 0.02. The figure
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Fig. 1. Trajectories for the pendulum system. Dashed lines: results
without adaptive control. Solid lines: results with power-based
adaptive control. Initial conditions: [q(0) p(0) ζ(0)] = [0 0 0].

shows how the adaptive part compensates for the steady-state

error in q̄ = q − qd caused by m0 6= m (dashed line). The

figure also shows how m0 + ζ → m.

VI. CONCLUDING REMARKS

Power-based control was applied to be able to define either

adaptive control dynamics or integrator dynamics based on

position error measurements. Contrary to with PH systems,

we preserve the power-balance for the closed-loop system

(remark 1). The theories used for generation of Lyapunov

functions to prove stability of a Brayton-Moser system

can then still be applied for the closed-loop system. The

disadvantage, however, is that the update law and integrator

dynamics become more complex when the system has a

coordinate dependent matrix M and friction. The reason

is that the mixed-potential function for mechanical systems

depends on the kinetic, potential and dissipation energy. The

more complex the system is, the more complex the mixed-

potential function. The result is more complex adaptive or

integrator dynamics. In short, the power-based approach can

be applied to more complex systems (e.g. robotic manipu-

lators) but the increased complexity implies more complex

adaptive or integrator dynamics. Nevertheless, the dynamics

can now depend on position measurements and the original

power-balance is preserved. Compared to integral control,

adaptive control estimates the values of uncertain parameters.

The dynamics are also different, based on how the uncertain

parameters influence the system.

The adaptive control scheme was applied on a simple

example where parameter uncertainty caused a steady-state

error. Simulation results showed how the position error

converged to zero and that the estimation of the parameter

error converged to the real (unknown) parameter error.
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