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a b s t r a c t

The application of bifurcation analysis to ocean climate models is substantially hampered by difficulties
associated with the use of convective adjustment, i.e. a parameterisation of convection in which the ver-
tical diffusion of heat and salt is greatly enhanced whenever the water column becomes statically unsta-
ble. When tracking steady solutions of these models in parameter space, problems arise due to the
occurrence of a multitude of saddle-node bifurcations, each of which is related to a minor reorganisation
of convection. In this paper, we analyse the origin of the multiple steady states in detail using a one-
dimensional column model. By analytical evaluation of the eigenvalue problem conditions are formulated
under which bifurcations may occur. Using numerical continuation methods a regime of multistability is
identified and it is shown that the number of coexisting steady states increases with increasing resolu-
tion, while the extent of parameter space in which they occur decreases. A comparison of the numerical
results to corresponding analytical solutions reveals that the multiple equilibria are inherent to the dis-
cretisation and hence artificial. Apparently, successful application of convective adjustment requires
knowledge of subgrid-scale tracer fields. Two alternative convective adjustment schemes are proposed
that (partially) overcome these problems. Results from a fully implicit model based on the two-dimen-
sional primitive equations indicate that the physically relevant phenomena due to the nonlinear charac-
ter of large-scale oceanic flow, notably the bifurcations related to the salt advection feedback, are
preserved under the alternative formulations.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The possibility of a rapid reduction in strength of the Atlantic
meridional overturning circulation (MOC) as a consequence of
anthropogenic greenhouse forcing represents a crucial uncertainty
in predicting the future climate (Meehl et al., 2007). Although
some palaeo-climatological data suggest that the last glacial period
witnessed a series of major reorganisations of the Atlantic circula-
tion (Clark et al., 2002), only with models one can assess if these
are an intrinsic property of the climate system. To do so, these
models need to adequately capture the relevant non-linear behav-
iour of the ocean circulation. In the present work we demonstrate
the difficulty of faithfully representing the effect of the small-scale
non-linear process of convection in models that simulate the
(Atlantic) MOC.

One of the main reasons that the ocean’s dynamics are not linear,
is the fact that flow strengths are in part determined by the density
field, while this, in turn, is affected by advective processes. Even if
the non-linearity of the equation of state is ignored, temperature
and salinity have different roles in this two-way interaction.

Because the surface heat flux depends on surface temperature, while
there is no such negative feedback in case of salinity, the MOC is
more sensitive to perturbations of salinity than of temperature. This
corollary forms the basis of the two major positive feedbacks that
have been proposed to have an effect on the large-scale circulation:
the convective and the advective feedback (Rahmstorf, 1999).

The convective feedback has been studied by Welander (1982)
and Lenderink and Haarsma (1994) using a simple box model, con-
sisting of a surface box that is in contact with the atmosphere, and a
box representing the deep ocean, where temperature and salinity
are fixed. They parameterised the effect of convection by a diffusive
exchange of water properties, using a diffusivity that is small when
the water in the upper box is less dense than that in the deep box,
but takes a very large value in convective conditions. Welander
(1982) demonstrated that the model may show spontaneous oscil-
lations due to the system switching between convective and non-
convective conditions before reaching either of the corresponding
fixed points. The analysis of Lenderink and Haarsma (1994) showed
that there also exist parameter regimes where the convective and
the non-convective state co-exist as stable steady states. Unfortu-
nately, we are not aware of studies that examine the relevance of
the convective feedback mechanism in models that resolve the con-
vective dynamics, nor of supporting observations.
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The seminal reference on the advective feedback is by Stommel
(1961). Using a box model he showed that under certain conditions
multiple stable steady states coexist, corresponding to different
flow patterns. In one state the circulation is driven by an imposed
thermal gradient, while the other state is characterised by an oppo-
site circulation driven by a salinity gradient that is sustained by the
flow itself. Multiple equilibria due to the advective feedback have
also been found in more complete models of the ocean circulation,
such as two-dimensional (latitude/depth) models (Vellinga, 1997),
three-dimensional ocean-only models (Marotzke and Willebrand,
1991) and models of intermediate complexity (EMICS, Rahmstorf
et al., 2005). Whether the existence of bistability transfers to the
full climate system is still subject of active research. Currently,
the lack of computational resources prevents this issue from being
addressed with state-of-the-art climate models.

A particularly insightful way to study feedbacks in ocean mod-
els is the application of numerical bifurcation analysis (Dijkstra
and Ghil, 2005). Using special techniques (Seydel, 1988), it is pos-
sible to follow branches of steady states in parameter space and
evaluate the linear stability of those states. These methods thus al-
low for a more systematic investigation of the origin of multiplicity
and intrinsic variability than would be possible with traditional
time stepping. When this approach is used to study the salt advec-
tion feedback, however, its effectiveness is severely limited due to
the parameterisation of convection.

Oceanic convection can only be resolved numerically if a very
fine horizontal resolution (<1 km) is employed (Jones and Marshall,
1993), which is not (yet) possible in models that are used to study
large-scale dynamics. Without a parameterisation of convection,
such models may admit solutions in which statically unstable den-
sity stratification prevails, and associated flow patterns are unreal-
istic (Marotzke and Scott, 1999). One of the simplest remedies is to
implement a scheme that causes strong vertical mixing of temper-
ature and salinity when the stratification across an interface is
unstable. This method is called convective adjustment (CA) and is
in fact very similar to the inter-box exchange in the box model of
Welander (1982) and Lenderink and Haarsma (1994). In conven-
tional time-marching codes two different approaches are used
(Marotzke, 1991): (1) complete removal of static instabilities at
the end of each time step in an iterative procedure; and (2) reduc-
tion of positive density gradients by greatly enhanced vertical diffu-
sion. Since our interest is in numerical bifurcation analysis, for
which the model equations need to be continuous in time, we focus
on the second method. It should be noted, though, that the first ap-
proach can be thought of as a limit case of the second, in which the
convective diffusivity tends to infinity (Schmidt and Mysak, 1996).

Convective adjustment is known to have serious deficiencies. To
begin with, Hughes et al. (2009) noted that it disrupts the coupling
between the evolution of basin integrated kinetic and potential en-
ergy. In addition, it falsely reduces the available potentially energy
production from the surface buoyancy flux. Even if consistent en-
ergy fluxes are not required, CA may give rise to artificial model
behaviour due to the strong vertical coupling between grid points
it implies. Cessi (1996) and Cessi and Young (1996) investigated
the interaction of CA and horizontal diffusion by coupling an array
of boxes similar to the ‘‘flip-flop’’ model of Welander (1982). They
demonstrated analytically that when mixing is applied instanta-
neously, the scheme leads to the spontaneous emergence of the
smallest resolved horizontal scale. Numerical simulations may
not reveal this grid-scale instability, though, because of errors
due to the finite size of the time step, or roundoff. Yet, it was sug-
gested that these problems may be avoided when the convective
diffusivity is finite and smaller than some critical value (Cessi,
1996; Cessi and Young, 1996).

Even so, there appears to be yet another deficiency of the
CA method, which is less easily perceived when using the

conventional time-stepping approach. In determining bifurcation
diagrams of zonally averaged ocean models using continuation
methods, Vellinga (1997, Chapter 4) found a multitude of saddle-
node bifurcations, despite the use of a moderate intensity of con-
vection (corresponding to a timescale of convective mixing of
about 3 yr). The bifurcations were absent in the model without
CA. In a further investigation of their origin, Vellinga (1998, hereaf-
ter ‘‘V98’’) used a one-dimensional column model with only tem-
perature as tracer to study the behaviour of CA in isolation. He
concluded that the regular occurrence of saddle-node bifurcations
does not reflect a real physical process but is caused by the way in
which convection is treated in ocean models. His results thus pro-
vide a warning that convective adjustment is responsible for spu-
rious equilibria. In practice, the saddle-node bifurcations due to
CA are so numerous that the effectiveness of numerical continua-
tion methods is severely compromised, which motivates to reex-
amine the problem. We want to stress, though, that the
peculiarities of CA discussed in this paper are not unique to the
steady state modelling approach, but also apply to time-stepping
methods.

In the present work we extend the preliminary analysis of V98
regarding the one-dimensional column model by including both
temperature and salt. Numerical results, in conjunction with an
analytical examination of the linear stability of steady states, dem-
onstrate that the convective feedback (Welander, 1982; Lenderink
and Haarsma, 1994) operates on the grid scale. In addition, we
provide analytical solutions of the model and compare them to cor-
responding numerical results, which allows us to firmly establish
the artificial nature of the multiple equilibria associated with CA.
Finally, we propose alternative formulations to eliminate, or at
least reduce, their occurrence.

In Section 2, we show the effect of CA on the equilibria of a
two-dimensional primitive equation model. The analysis of the
one-dimensional column model is presented in Section 3 and the
alternative CA schemes in Section 4. A summary and discussion fol-
lows in Section 5.

2. Spurious multiple equilibria in a two-dimensional ocean
model

In this section, we aim to illustrate the problem of spurious
multiple equilibria due to CA in a model that captures the salt
advection feedback (Stommel, 1961). We therefore consider a
two-dimensional (latitude/depth) configuration. Compared to the
full three-dimensional case, it is much more tractable numerically,
because the number of unknowns that must be solved for is typi-
cally one order of magnitude smaller. The model we use here is
equivalent to the one analysed for the case of no CA in section 3a
of the paper by Weijer and Dijkstra (2001), and is very similar to
the model studied by V98. We choose this particular model, be-
cause results presented in the subsequent sections of Weijer and
Dijkstra (2001) demonstrate a close qualitative similarity between
the bifurcation structure of two- and three-dimensional flows.

The experiments with the two-dimensional model are con-
ducted with the B-grid version of the ThermoHaline Circulation
Model (THCM, De Niet et al., 2007), which is a fully-implicit
ocean-only model based on the hydrostatic primitive equations
in spherical coordinates. It employs a pseudo-arclength continua-
tion technique (Keller, 1977) to calculate branches of steady states,
and uses the Newton–Raphson method to converge to individual
solutions. In addition, the model implements the Jacobi–Davidson
QZ method (Sleijpen and Van der Vorst, 1996) to solve eigenvalue
problems. The large linear systems that arise from these tech-
niques are solved iteratively using a tailored preconditioner, which
is described in detail by De Niet et al. (2007).
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2.1. Formulation

There are two active tracers: temperature T⁄ (stars indicate
dimensional quantities) and salinity S⁄, which are related to the
density q⁄ by a linear equation of state

q� ¼ q0ð1� aTðT� � T0Þ þ aSðS� � S0ÞÞ; ð1Þ

where aT and aS are the thermal expansion and haline contraction
coefficients, respectively, and q0, T0, and S0 are reference quantities.
The numerical values of these (and following) fixed model parame-
ters are summarised in Table 1.

In order to eliminate longitudinal dependence from the prob-
lem, we consider a purely buoyancy-driven flow on a non-rotating
Earth and prescribe free-slip conditions at the lateral boundaries
(which avoids the necessity of boundary layer formation). We fur-
thermore assume that inertia can be neglected in the meridional
momentum equation. The mixing of momentum and tracers due
to eddies is parameterised by simple anisotropic diffusion. The
equations for the meridional velocity v⁄, vertical velocity w⁄, pres-
sure p⁄, and the tracers T⁄ and S⁄ are thus given by

0¼� 1
q0r0

@p�
@/
þAV

@2v�
@z2
�
þAH

r2
0

1
cos/

@

@/
cos/

@v�
@/

� �
þð1� tan2 /Þv�

� �
;

ð2aÞ

0 ¼ � 1
q0

@p�
@z�
þ gðaT T� � aSS�Þ; ð2bÞ

0 ¼ 1
r0 cos /

@v� cos /
@/

þ @w�
@z�

; ð2cÞ

@T�
@t�
þv�

r0

@T�
@/
þw�

@T�
@z�
¼ KH

r2
0 cos/

@

@/
cos/

@T�
@/

� �
þKV

@2T�
@z2
�
þ CAðT�Þ;

ð2dÞ

@S�
@t�
þ v�

r0

@S�
@/
þw�

@S�
@z�
¼ KH

r2
0 cos/

@

@/
cos/

@S�
@/

� �
þKV

@2S�
@z2
�
þ CAðS�Þ:

ð2eÞ

Here, t⁄ is time, / latitude, z⁄ the vertical coordinate, r0 the radius of
Earth, g the acceleration due to gravity, AH (AV) the horizontal
(vertical) eddy viscosity, and KH (KV) the horizontal (vertical) eddy
diffusivity. The term CA represents convective adjustment.

The equations are solved on an equatorially symmetric, flat-
bottomed domain. The basin is bounded by latitudes / = �/N and
/ = /N and has depth D. In order to calculate transports, we assume
it has a width of 64�. The resolution is 3.75� in the horizontal and
250 m in the vertical. Free-slip conditions apply at the lateral walls
and at the bottom. Rigid lid conditions are assumed at the surface
and atmospheric pressure is neglected. The wind stress is zero
everywhere, and ‘‘mixed’’ boundary conditions apply for tempera-
ture and salinity,

KV
@T�
@z�
¼ Hm

s
ðeT ð/Þ � T�Þ eT ð/Þ ¼ 10:0 cosðp/=/NÞ; ð3aÞ

KV
@S�
@z�
¼ S0

eQ ð/Þ eQ ð/Þ ¼ c
cosðp/=/NÞ

cosð/Þ : ð3bÞ

This formulation implies that temperatures in the upper model
layer (of depth Hm) are relaxed to a prescribed profile eT at a rate
s�1, while salinity is forced by a net freshwater flux eQ , which is con-
verted to an equivalent virtual salinity flux by multiplication with
S0. Although in a crude way, these equations express that ocean–
atmosphere interaction affects temperature and salinity in a funda-
mentally different way. In the next subsection we present the re-
sults of sensitivity experiments, in which the amplitude of the
freshwater forcing c is the control parameter.

The introduction of CA is the only change to the model analysed
in Section 3a of the paper by Weijer and Dijkstra (2001). It acts so-
lely on the tracers and is implemented as enhanced diffusion,
which for a tracer C⁄ takes the form

CAðC�Þ ¼ KV F0
@

@z�
F D

q0

@q�
@z�

� �
@C�
@z�

� �
: ð4Þ

Here, F0 is the efficiency of convection and F is a continuous
approximation of the Heaviside step function (see Fig. 3),

FðxÞ ¼maxð0; tanh½ð�xÞ3�Þ: ð5Þ

The steepness of the transition from 0 to 1 is determined by the
selectivity �; in the limit �?1 the function F tends to the step
function. The actual value of � is determined from experience. The
use of a smooth function is required for the application of numerical
bifurcation analysis, but the choice of which function is obviously
not unique. We return to this issue in Section 3.2, where we show
that the shape of the function can influence the dynamical behav-
iour of the model.

2.2. Results

We start with a brief recapitulation of the case without CA
(F0 = 0); a more extensive analysis is given in Weijer and Dijkstra
(2001). The main characteristic of the model is that, as a result of
the salt advection feedback (Stommel, 1961), there is a parameter
regime in which equatorially asymmetric solutions exist despite
the symmetry imposed by the geometry and forcing. The complex
dynamical behaviour of the model is best illustrated by the bifurca-
tion diagram in Fig. 1a. For each value of the freshwater forcing
strength c there is a single equatorially symmetric solution, which
is characterised by surface flow away from (towards) the equator
for c 6 (P)0.17 m yr�1. The symmetric state is linearly stable,
except for the part of the branch between the two pitchfork bifur-
cations at c = 0.04 m yr�1 and c = 0.35 m yr�1. The pitchfork bifur-
cations also connect two branches of equatorially asymmetric
solutions. Each of these is linearly stable between the first pitchfork
at c = 0.04 m yr�1 and the Hopf bifurcation at c = 0.44 m yr�1. At
c = 0.46 m yr�1 linear stability changes again due to a saddle-node
bifurcation. For a given c the solution on one branch is the mirror
image of the solution on the other branch. An example of an asym-
metric solution with northward surface flow across the equator is
shown in Fig. 1b. Evidently, the density stratification is statically
unstable in a significant portion of the domain north of about 20�N.

If we start from the solution in Fig. 1b and increase the convec-
tive efficiency to F0 = 102, the result is the solution shown in Fig. 2b.
As expected, the application of CA reduces positive density gradi-
ents. The consequences are: (a) steeper isopycnals in the northern
part of the domain, (b) increased bottom density, (c) stronger strat-
ification to the south of the overturning maximum, and (d) a more
vigorous meridional overturning circulation. The bifurcation dia-
gram (Fig. 2a) shows that the dynamical behaviour of the model
is also changed due to the addition of CA. Although the overall
structure is similar compared to the case without CA, a large num-
ber of additional saddle-node bifurcations has appeared, which, in
the following section, will be shown to be artificial. The spurious

Table 1
Fixed model parameters of the two-dimensional ocean model.

D = 4.0 � 103 m Hm = 2.5 � 102 m
/N = 60� q0 = 1.0 � 103 kg m�3

r0 = 6.371 � 106 m T0 = 15.0 �C
g = 9.8 m s�2 S0 = 35.0 psu
AH = 2.2 � 1012 m2 s�1 aT = 1.0 � 10�4 K�1

AV = 1.0 � 10�3 m2 s�1 aS = 7.6 � 10�4 psu�1

KH = 1.0 � 103 m2 s�1 � = 2.0 � 103

KV = 1.0 � 10�4 m2 s�1 s = 75.0 days
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saddle-node bifurcations define relatively narrow regions in
parameter space where multiple steady states are present. Since
our focus is on artificial multiple equilibria we have not calculated
the linear stability of the steady states, which would have been
very computationally expensive. The results of V98, however, show
that apart from spurious saddle-node bifurcations, CA is also asso-
ciated with complex intrinsic variability through the occurrence of
numerous additional Hopf bifurcations.

3. Analysis

It is clear from the previous section that CA has a peculiar effect
on the dynamics of simulated ocean flow, but the two-dimensional
model is too complex to analyse the problem. We therefore turn to
the one-dimensional column model introduced by V98, but instead
of considering only temperature, we extend it to include salinity.

3.1. Formulation of the one-dimensional model

The model consists of a column with depth D. On this domain
we solve the vertical diffusion equation for the active tracers tem-
perature and salinity:

@T�
@t�
¼ KV

@

@z�
1þ F0KT�½ � @T�

@z�

� �
� j ires

T T� � eT �ðz�Þ� �
; ð6aÞ

@S�
@t�
¼ KV

@

@z�
1þ F0KS�½ � @S�

@z�

� �
� j ires

S S� � eS�ðz�Þ� �
: ð6bÞ

At the surface (z⁄ = 0) and the bottom (z⁄ = �D) no-flux conditions
apply. The functions KT and KS will be referred to as convective
adjustment functions, whose form may differ between the cases
considered. The forcing of the system is given by the rightmost
term. For ires = 1 it acts to relax the tracer to a prescribed profile
at a rate j, whereas for ires = 0 it represents a fixed source of heat/
salt. The density is computed from the linear equation of state given
in Eq. (1).

The system in Eq. (6) is nondimensionalised by making the fol-
lowing substitutions:

t ¼ jt�; z ¼ D�1z�;

T ¼ aTðT� � T0Þ; S ¼ aSðS� � S0Þ;

which gives

@T
@t
¼ 1

P
@

@z
½1þ F0KT �

@T
@z

� �
� ires

T T � eT ðzÞ� �
; ð7aÞ

@S
@t
¼ 1

P
@

@z
½1þ F0KS�

@S
@z

� �
� ires

S S� eSðzÞ� �
: ð7bÞ

Here, P ¼ D2j
KV

, which may be interpreted as the vertical Péclet num-
ber if ires = 1. With D and KV as in Table 1 and j�1 � 5 yr, we get
P � 103. This value will be used throughout and corresponds to
the ‘‘strong restoring’’ case considered by V98.

We use the same temperature forcing as V98,eT ðzÞ ¼ cosð2pzÞ; ð8Þ
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Fig. 1. (a) Bifurcation diagram for the two-dimensional model without convective adjustment, using the freshwater forcing strength c as control parameter. The plot shows
the maximum of the meridional overturning streamfunction WM in Sverdrups (1 Sv = 106 m3 s�1). Branches drawn as solid lines represent solutions that are linearly stable;
dashed (dotted) lines indicate that one (two) of the eigenvalues is (are) positive. Pitchfork (P) and Hopf (H) bifurcations are marked in the diagram. (b) Meridional stream
function (thick lines) and density relative to q0 for the solution indicated in (a) by ‘‘panel b’’. Contour interval is 2 Sv and 0.1 kg m�3, respectively.
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Fig. 2. (a) Bifurcation diagram for the two-dimensional model with traditional convective adjustment and F0 = 102. The linear stability of the steady states is not indicated. (b)
Same as Fig. 1b.
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which is such that it tends to stabilise (destabilise) the stratification
above (below) z = �0.5. The salinity forcing is given byeSðzÞ ¼ c cosðpzÞ: ð9Þ

As in the experiments with the two-dimensional model the salinity
forcing strength c is the control parameter for the sensitivity anal-
ysis presented in the next subsections. For negative (positive) c the
salinity forcing acts to stabilise (destabilise) the stratification in the
entire column. So, by varying c we can change the stratification. In
addition, we may compare the behaviour of CA in cases in which
temperature and salinity gradients have an opposite effect on the
density gradient to cases in which the effect is of the same sign.

In this section we consider convective adjustment functions (K)
that only depend on the density gradient. It is therefore useful to
reformulate Eqs. (7a) and (7b) in terms of density. The nondimen-
sional form of the equation of state [Eq. (1)] is given by

q ¼ q�1
0 ðq� � q0Þ ¼ S� T: ð10Þ

Because there are two independent variables in the original system
(T and S), a complete description of the density evolution requires
the definition of a complementary variable. It is convenient to use
a quantity that is completely independent of density; we therefore
define

l ¼ Sþ T; ð11Þ

which is commonly referred to as ‘‘spiciness’’, being largest for hot
and salty water (Flament, 2002). Obviously, a water mass character-
ised by a certain temperature and salinity may equivalently be de-
scribed in terms of its density and spiciness. In a T versus S diagram
the isolines of q and l would appear as a set of perpendicular lines,
tilted at a 45 degree angle with respect to the axes. Combining Eqs.
(7a) and (7b) now gives the following alternative formulation of the
problem:

@q
@t
¼ 1

P
@

@z
1þ F0Kq
� � @q

@z

� �
� ires

þ qþ i res
� l� ~qðzÞ

� 	
; ð12aÞ

@l
@t
¼ 1

P
@

@z
½1þ F0Kl�

@l
@z

� �
� ires

� qþ i res
þ l� ~lðzÞ

� 	
; ð12bÞ

where

ires
þ ¼

ires
S þ i res

T

2
; ires
� ¼

ires
S � ires

T

2
;

and ~qðzÞ ¼ eSðzÞ � eT ðzÞ, ~lðzÞ ¼ eSðzÞ þ eT ðzÞ. The coordinate transfor-
mation applied here also has other applications in oceanography.
For example, it offers a meaningful way to examine the ubiquitous
phenomenon of density compensation, which refers to the situation
where temperature and salinity compensate in their effects on den-
sity. In that case all spatial thermohaline variability is projected
onto spiciness.

3.2. The choice of convective adjustment function

Before turning to the problem of how CA introduces spurious
additional multiple equilibria as in the results of Section 2, we
show why the analysis of the column model by V98 is incomplete.
We therefore focus on the influence that the choice of convective
adjustment function has on the model dynamics. The occurrence
of bifurcations is associated with zero eigenvalues (k) of the Jaco-
bian matrix, which results from linearising the model around a
steady state. Hence, a central element in the analysis below is
the evaluation of criteria under which zero eigenvalues can exist.
In the following @zX means @X/@z.

As in V98 we consider a single active tracer (density). We there-
fore take ires

� ¼ 0, which means that temperature and salinity are
either both relaxed towards a prescribed profile (ires

T ¼ ires
S ¼ 1), or

both forced by a fixed source (ires
T ¼ ires

S ¼ 0). In both cases spiciness
does not influence density, but rather adjusts passively to changes
in the diffusivity implied by changes in density. Furthermore, again
following V98, we define the convective adjustment functions as
Kq ¼ Kl ¼ G @zqð Þ with

GðxÞ ¼ 1
2
ð1þ tanhð�xÞÞ: ð13Þ

The function G will be contrasted with the function F introduced in
Eq. (5). As illustrated in Fig. 3 the most obvious difference between
the two functions is F being zero for negative x, while G is not.

We first assume Eq. (12a) has a certain steady solution �q, and
analyse what behaviour can be expected if it is slightly perturbed:
q ¼ �qþ Dq. After linearisation and substitution of solutions pro-
portional to ekt the following eigenvalue equation is found:

kDq ¼ 1
P
@

@z
1þ F0G þ F0G0

@�q
@z


 �
@Dq
@z

� �
� ires
þ Dq; ð14Þ

where G ¼ Gð@z �qÞ and the prime indicates differentiation. Next, we
investigate whether the linear self-adjoint operator, implicitly de-
fined in the right-hand side, is negative definite in the inner productZ 0

�1

bf gdz

on a space of functions (f,g, . . .) for which the vertical derivative at
bottom and top is zero (bf is the complex conjugate of f). The latter
is equivalent to the statement that all eigenvalues of the operator
are negative on the mentioned function space. Multiplying Eq.
(14) by dDq and integrating from z = �1 to z = 0 yields

1
P

Z 0

�1
1þ F0G þ F0G0

@�q
@z


 �
@dDq
@z

@Dq
@z

 !
dz

¼ � i res
þ þ k
� 	 Z 0

�1
jDqj2dz; ð15Þ

where we have used that @zDq = 0 at bottom and top.
Now suppose that

Cq
q � 1þ F0G þ F0G0

@�q
@z


 �
P 0 8z 2 ½�1;0�; ð16Þ

and, additionally, that ires
þ ¼ 1 (relaxation of T and S). In that case Eq.

(15) implies that the eigenvalues satisfy k 6 �1, meaning that the
steady state �q is linearly stable. If instead ires

þ ¼ 0 (fixed flux), den-
sity is only determined up to a constant, which results in a zero
eigenvalue. This singularity is easily removed by imposing an addi-
tional integral constraint on both T and S.
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Fig. 3. Convective adjustment functions F xð Þ (drawn) and GðxÞ (dashed).
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So, for eigenfunctions with nonnegative eigenvalues to exist, it is
required that Cq

q < 0 for some range of z. The only term in Cq
q that

can be negative is G0@z �q. In fact, it is negative when the stratification
is stable, since G is a monotone increasing function (Fig. 3) and
hence G0 is always positive. Bifurcation points in this model are thus
related to the following feedback: If at a certain point the stratifica-
tion becomes weak, but remains statically stable, vertical diffusion
is enhanced; this causes stratification to become weaker, which, in
turn, results in even stronger vertical diffusion. It should be stressed
that this mechanism is different from the convective feedback
(Welander, 1982; Lenderink and Haarsma, 1994) discussed in the
introduction. It does not depend on the presence of two active trac-
ers (T and S), but rather is inherent to the shape of G. In the following
it will be referred to as ‘‘self-sustaining diffusion’’.

An analytical steady state solution of Eq. (12a) with K ¼ G is not
available, so the ‘‘true’’ expression of the self-sustaining diffusion
feedback is unknown. Therefore we turn to the discrete problem.
We consider a discretisation in which numerical solutions are cal-
culated on an l-point equidistant grid, and derivatives are approx-
imated by central differences. Repeating the steps that lead to Eq.
(15), but now defining the inner product as a summation, leads to

l2

P

Xl�1

k¼1

1þ F0Gþ þ F0G0þlð�qkþ1 � �qkÞ
� �

� Dqkþ1 � Dqk

�� ��2� �
¼ � ires

þ þ k
� 	Xl

k¼1

jDqkj
2; ð17Þ

where qk is the density at level k 2 {1, . . ., l}, and

Gþ ¼ Gðl½�qkþ1 � �qk�Þ:

Comparison of Eqs. (15) and (17) shows that the latter may also be
obtained directly from the former by replacing integrals with sums
and discretising the derivatives. The feedback of self-sustaining dif-
fusion is hence also present in the discrete model and, indeed, ex-
plains the occurrence of saddle-node bifurcations and multiple
steady states in the one-dimensional model of V98 (his Figs. 11
and 12).

Yet, closer examination of Eq. (17) suggests that the stability
properties of the discrete system may be different from the contin-
uous system, and possibly depend on l. Even if the set �qk for
k = 1, . . ., l closely resembled the (unknown) true solution at the
levels of discretisation, the result of the strongly non-linear opera-
tor Gþ would depend on the resolution. Furthermore, the diffusion
feedback may only operate at the level of the interfaces deter-
mined by the discretisation. These notions form a provisional
explanation for the observation of V98 that the multiplicity of stea-
dy states in a given parameter space depends on resolution.

When we contrast the function Gwith the function F [Eq. (5)] it
is clear, though, that this analysis is not complete. Because F0@z �q is
always nonnegative, using the latter function would eliminate the
self-sustaining diffusion feedback. As a result, there would be no
bifurcations (we have confirmed this for the discrete case). So,
for ires

� ¼ 0 and using F , we can prove that no unfavourable feed-
back can occur in the discrete system, where it can if we use G.
Nevertheless, we observe spurious multiple equilibria in the two-
dimensional model computations using F (Fig. 2). The conclusion
is therefore that it is not sufficient to consider only the case of a
single active tracer ðires

� ¼ 0Þ; we also have to consider the case
with interaction between density and spiciness in order to under-
stand the two-dimensional model results.

3.3. Mixed forcing

We examine the case of ‘‘mixed forcing’’ by taking ðires
� –0Þ. Fur-

thermore, let Kq ¼ Kl ¼ F @zqð Þ. In the eigenvalue analysis we now

need to include both the equations for density and spiciness and
arrive atZ 0

�1

Uq
q

P
@dDq
@z

@Dq
@z
þ

Ul
l

P
@dDl
@z

@Dl
@z
þ 2ires

T jDTj2 þ 2ires
S jDSj2

" #
dz

¼ �
Z 0

�1

Ul
q

P
@dDl
@z

@Dq
@z
þ k jDqj2 þ jDlj2
� �" #

dz;

ð18Þ

where we used the following short-hand notations:

Uq
q � 1 ¼ F0Kq þ F0

�Kq
0 @�q
@z
¼ F0F þ F0F0

@�q
@z

; ð19aÞ

Ul
l � 1 ¼ F0Kl ¼ F0F ; ð19bÞ

Ul
q ¼ F0K0l

@�l
@z
¼ F0F0

@�l
@z

: ð19cÞ

Since Uq
q P 1 and Ul

l P 1 the integral on the left-hand side is non-
negative. The (real part of the) first term on the right-hand side,
however, can have either sign, implying that the eigenvalue k is
not necessarily negative. This notion is the mathematical expres-
sion of the convective feedback (Welander, 1982; Lenderink and
Haarsma, 1994). It may result in the occurrence of bifurcations,
even when using F as convective adjustment function.

In the following we consider the case ires
T ¼ 1 (relaxation of T)

and ires
S ¼ 0 (fixed salinity source), which most closely corresponds

to the situation in the real ocean. An intuitive explanation of how
the convective feedback causes multiple equilibria in this case was
provided by Lenderink and Haarsma (1994): Given that the tem-
perature forcing acts to destabilise the stratification, while the
salinity forcing acts to stabilise it, convection may become self-
sustaining due to the fact that it has a stronger neutralising impact
on salinity than on temperature. If present, multiple equilibria are
therefore expected for c < 0 (stabilising salinity forcing), and would
be associated with a reorganisation of the tracer distribution in the
lower part of the column (where the temperature forcing is
destabilising).

For the discretised model we can verify this prediction, but it
turns out that the bifurcation diagram is not robust to changes in
resolution. Using F0 = 102 and � = 10 we perform two numerical
experiments, one with l = 10 (equidistant) levels, and one with
l = 20 levels. Branches of steady states are calculated using a
pseudo-arclength continuation algorithm (Keller, 1977). The linear
systems are solved using the matrix division operator implemented
in MATLAB. The results are shown in Fig. 4. The vertical axes of the
bifurcation diagrams show the sum of F @zqð Þ across all interfaces,
which is a measure of the range across which convection operates.
For values of c smaller than about �4 � 10�2 solutions exist with
stable stratification throughout the column, i.e.

P
F ¼ 0. For values

of c larger than about 1 stratification is statically unstable in the
entire column, i.e.

P
F ¼ l� 1. The solutions on these two parts

of the branch are linearly stable, while the part in between is char-
acterised by a series of bifurcation points. For c > 0 the bifurcations
are Hopf bifurcations. Since we focus on the steady state dynamics,
we have not quantitatively explored the intrinsic variability that
originates from these singularities. For c < 0 the bifurcations are
saddle-nodes. When comparing the two experiments the most
striking result is that the number of bifurcations is determined by
the resolution. For l = 10 there are 6 pairs of back-to-back saddle-
nodes, while there are 12 pairs for l = 20. In addition, the width of
the region in parameter space where multiple equilibria exist de-
creases with increasing resolution.

Fig. 5 presents the profiles of density, temperature and salinity
from the experiment with l = 20 for two values of c close to zero.
CA acts on that part of the column where the density gradient is
positive, i.e. z < �0.375 for c = �0.01 and z < �0.325 for c = 0.01.
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It is obvious that CA does not completely remove static instability:
only in the limit F0 ?1 the stratification becomes neutral. By vir-
tue of the relatively small value of the convective efficiency
(F0 = 102) used here, the figure clearly illustrates the fact that CA
has a much stronger impact on salinity than on temperature. It
was explained above that multiple equilibria result from just this
difference. For the discrete model it is clear, though, that the con-
vective feedback mechanism operates on the grid scale, rather than
independent of the discretisation. The resulting multiple steady
states are therefore artificial.

From Eq. (19c) one may expect that if F0 or F0 is made suffi-
ciently small, no spurious bifurcations occur. Indeed, for l = 10,
there are no bifurcations if F0 < 1.41 � 10�2, while keeping � = 10,
or if � < 7.09 � 10�2, while keeping F0 = 102. In both cases CA would
be completely ineffective. Furthermore, even if there are no bifur-
cations, the number of positive excursions of the least negative
eigenvalue still depends on resolution (not shown). For the exper-
iment with l = 20 the thresholds are only slightly larger: bifurca-
tions disappear if F0 < 1.82 � 10�2 or if � < 8.14 � 10�2.

3.4. Analytical approach

We have shown for the discrete case that the bifurcation
behaviour that reflects the convective feedback, depends on reso-
lution. Similar spurious behaviour was noted by V98 regarding the
self-sustaining diffusion feedback, for which case a tentative expla-

nation could be deduced from Eq. (17). In case of the convective
feedback the explanation can be made more precise, because ana-
lytical steady solutions of Eq. (7) can be calculated, provided that
the Heaviside step function is used as convective adjustment func-
tion for temperature and salinity,

KT ¼ KS ¼ H
@q
@z

� �
: ð20Þ

As in the previous section, we use F0 ¼ 102; ires
T ¼ 1 and ires

S ¼ 0. We
proceed by decoupling the intensity of convection from the stratifi-
cation by introducing zc, the shallowest level of convection, and
substituting

H @q
@z

� �
! Hðzc � zÞ ð21Þ

in Eq. (7). The implication is that the diffusivity equals 1 for z > zc and
1 + F0 for z < zc. The next step is to solve the diffusion equations for
both parts of the domain and to match them afterwards. The com-
plete solution is rather lengthy and therefore presented in the
Appendix. By combining the results for T and S the analysis gives a
solution q = q(z,zc,c). Now we consider the function @zq(z,zc,c) and
try to find zc such that it is positive for z < zc and negative for z > zc,
because only then is the substitution defined by Eq. (21) appropriate.
In the following, such values of zc are referred to as ‘‘consistent’’.

Fig. 6a demonstrates that consistent values of zc exist for all val-
ues of c, except for a window between 0.024 and 0.800. It should
be noted that a solution is linearly stable for a fixed value of zc, be-
cause the governing equations are linear. A proper analysis of the
stability properties of this system would hence require considering
perturbations in zc, which turns out to be tedious. The stability
indicated in Fig. 6a is therefore simply inferred from the fact that
a change in linear stability is a generic feature of a saddle-node
bifurcation. The main result of this exercise is that there is only a
single pair of saddle-node bifurcations in the continuous model.
These represent the ‘‘true’’ expression of convective feedback in
the column model.

When treating this problem numerically, there are two funda-
mental limitations that cause multiple equilibria due to CA to be
artificial. The first limitation is that zc may only be taken from a fi-
nite discrete set of values. Mesh size convergence is only achieved
if zc equals one of the levels zk at which the discrete tracers are cal-
culated. For the l-point equidistant grid used in the analysis above
these are given by

zk ¼
1
l

k� l� 1
2

� �
k ¼ 1; . . . ; l: ð22Þ

In general, the consistent value of zc will not coincide with any zk.
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Fig. 4. Bifurcation diagrams for the one-dimensional model with traditional convective adjustment, using the salinity forcing strength c as control parameter (note the
variation in scale on the horizontal axis). Plotted is the sum of F @zqð Þ across all interfaces for a vertical resolution of (a) 10 layers/9 interfaces and (b) 20 layers/19 interfaces.
Drawing conventions are as in Fig. 1a. The crosses in (b) indicate the solutions shown in Fig. 6b.
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Fig. 5. Profiles of density (drawn), temperature (dashed) and salinity (dotted) from
the experiment with l = 20 for two values of c. The profiles for c = �0.01 correspond
to the solution with
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F � 12.
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As an example we consider c = �0.06, in which case the consis-
tent zc = �0.478 for the convecting, linearly stable solution
(Fig. 6a). In the experiment with l = 20 (Fig. 4b) 23 solutions were
found for c = �0.06 (of which 12 are linearly stable); here we focus
on the three linearly stable solutions with

P
F � 5;

P
F � 6, andP

F � 7, respectively. In these cases the discrete density gradients
are such that at each interface Fðl½qkþ1 � qk�Þ is either 0 or 1 (due
to finite computational precision), which implies that F could be
replaced by H without changing the solution. In other words, the
numerical solutions we examine might as well have been obtained
usingH. We may also consider them as solutions of the problem in
which the diffusivity is prescribed as 1þ F0H zc � zð Þ, where
zc = �0.725, zc = �0.675 and zc = �0.625, respectively. So, in each
case the value of zc is inconsistent in the continuous case. We
would therefore not like these numerical solutions, which are good
approximations of the corresponding inconsistent analytical solu-
tions (Fig. 6b), to exist.

Numerical solutions with inconsistent values of zc nonetheless
appear as viable solutions, which is due to the second limitation in-
volved in the discretisation of the problem: As demonstrated in
Fig. 6b, the density gradients needed to evaluate Hð@zqÞ are not
adequately resolved. The discrete derivative across the interval
above z = zc is an average that does not capture the positive density
gradient present in the analytical solution. In the contrary, the
numerical gradient is of opposite sign. The solution is hence falsely
considered consistent, which explains its existence. The multiple
equilibria of the discrete model are thus completely artificial, both
if F is used, as in subsection 3.3 (Fig. 4), as well as ifH is used, as in
conventional ocean models. Note, though, that only in the former
case the spurious multiple steady states are connected through
branches of linearly unstable solutions.

Increasing the resolution might seem to mitigate the problem,
as such would improve the discrete estimates of continuous deriv-
atives. Indeed, it leads to a reduction in the range of c across which
the spurious solutions are possible. Our results suggest, however,
that the correct linear stability properties are only found in the
continuous limit. This would imply that the convective feedback
cannot be captured by a discrete model that uses CA.

4. Eliminating the spurious multiple equilibria

In the previous section we established that the numerous multi-
ple equilibria associated with CA arise due to a model artifact.
Although we believe this to be a fundamental problem, in this sec-
tion we seek to establish a pragmatic remedy: the aim is to be able
to apply a form of CA without severely diminishing the effective-

ness of implicit modelling. Two alternative CA formulations are
proposed in which the spurious model behaviour is eliminated,
or at least reduced. The new schemes result from modifications
to the traditional CA scheme that are motivated by the results of
the previous section. By implementing the alternative formulations
in the two-dimensional model of Section 2 we assess the impact
they have on the large-scale dynamical behaviour.

4.1. Density mixing

We first investigate a scheme in which multiple equilibria are
absent by definition. It was shown in Section 3.3 that positive
eigenvalues are caused by the interaction of density and spiciness
gradients. This interaction can be eliminated by choosing

Kq ¼ F
@q
@z

� �
; Kl ¼ 0; ð23Þ

in which case Eq. (19b) and (19c) would change to Ul
l ¼ 1 and

Ul
q ¼ 0. As a result, the eigenvalues k of the one-dimensional col-

umn model are always negative [Eq. (18)]. Qualitatively, this formu-
lation implies that density is affected by convection, while spiciness
is not. This approach is therefore called ‘‘density mixing’’. We repeat
the l = 20 experiment of Section 3.3 to find that the resulting solu-
tion branch is indeed free of bifurcations (Fig. 7a). The spurious
additional multiple equilibria introduced by traditional CA also dis-
appear from the two-dimensional model results (Fig. 7b). Yet, the
two pitchfork bifurcations, which are the signature of the large-
scale salt advection feedback, are maintained. It is even possible
to create the bifurcation diagram for very efficient convection,
F0 = 105, without running into computational problems.

However, these benefits come at a cost. The main disadvantage
of this scheme is most easily illustrated by the equations for tem-
perature and salinity in the one-dimensional model, which are gi-
ven by

@T
@t
¼ 1

P
@2T
@z2 þ

F0

2P
@

@z
F @q

@z

� �
� @T
@z
� @S
@z


 �� �
� ires

T T � eT ðzÞ� �
;

ð24aÞ

@S
@t
¼ 1

P
@2S
@z2 þ

F0

2P
@

@z
F @q

@z

� �
� @S
@z
� @T
@z


 �� �
� ires

S S� eSðzÞ� �
: ð24bÞ

It is clear that gradients in a tracer are created due to density mix-
ing, even if that tracer is unforced. For example, if eSðzÞ ¼ 0, the solu-
tion of Eq. (24b) is different from S(z) = 0. Fig. 8, which may be
compared to Fig. 5, illustrates this point for ires

T ¼ 1; ires
S ¼ 0. In com-
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Fig. 6. (a) Bifurcation diagram showing the consistent value of zc for the analytical solution to the one-dimensional model with traditional convection. There are no consistent
solutions within the interval c 2 (0.024,0.800). (b) Analytic density profiles for c = �0.06, using three inconsistent values of zc (indicated by horizontal dotted lines), and
corresponding numerical solutions (crosses) from the experiment with l = 20.
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parison to the traditional formulation the (positive) density gradi-
ent in the part of the column with active CA is rather weak, which
is achieved by mutual compensation of temperature and salinity
gradients, i.e. @zT � @zS � @zl/2. The specified forcing allows salinity
to be affected much stronger by CA than temperature. The creation
of gradients due to density mixing is thus most apparent in the
salinity profile.

4.2. Conditional mixing

The second alternative formulation is based on a partial disrup-
tion of the feedback that causes the multiple equilibria. By choos-
ing the convective adjustment function for temperature and
salinity as

KT ¼ F
@q
@z

� �
� F � @T

@z

� �
; KS ¼ F

@q
@z

� �
� F @S

@z

� �
; ð25Þ

convection only operates on a tracer if both the tracer and the den-
sity stratification are statically unstable. This approach is therefore
coined ‘‘conditional mixing’’. Unlike density mixing, this form of CA
cannot by itself generate a gradient in a tracer profile. In the one-
dimensional experiment of Section 3.3 the salinity stratification is
statically stable across the entire depth range for c < 0. Conditional
mixing then results in KS ¼ 0, which implies that convection cannot
become self-sustaining. For c > 0 the region of convection expands
across the upper part of the domain, where temperature is stably
stratified and thus unaffected by CA. There is hence also no interac-

tion between temperature and salinity for positive salinity forcing.
Fig. 9a shows that the bifurcation diagram is indeed free of bifurca-
tions, while Fig. 10 illustrates how conditional mixing affects the
tracer profiles.

If the forcing or model parameters are modified, however, the
absence of singularities cannot be guaranteed. Applying the analy-
sis demonstrated in Section 3.2 leads toZ 0

�1

� T
T

P
@cDT
@z

@DT
@z
þ i res

T jDTj2
 !

dz¼�
Z 0

�1

� T
S

P
@cDT
@z

@DS
@z
þ kjDTj2

 !
dz

ð26Þ

for the temperature equation [Eq. (7a)] and toZ 0

�1

� S
S

P
@cDS
@z

@DS
@z
þ i res

S jDSj2
 !

dz¼�
Z 0

�1

� S
T

P
@cDS
@z

@DT
@z
þ kjDSj2

 !
dz

ð27Þ

for the salinity equation [Eq. (7b)], where we used the following
definitions:

� T
T ¼ 1� F0F0ð@z �qÞFð�@zTÞ@zT þ F0Fð@z �qÞðFð�@zTÞ
� F 0ð�@zTÞ@zTÞ; ð28aÞ

� S
S ¼ 1þ F0F0ð@z �qÞFð@zSÞ@zSþ F0Fð@z �qÞðFð@zSÞ þ F0ð@zSÞ@zSÞ;

ð28bÞ

� T
S ¼ F0F0ð@z �qÞFð�@zTÞ@zT; ð28cÞ

� S
T ¼ �F0F0ð@z �qÞFð@zSÞ@zS: ð28dÞ

Because � T
T P 0 the integral on the left-hand side of Eq. (26) is al-

ways nonnegative. So, this relation only allows eigenvalues to be
nonnegative if DT = 0 or if � T

S@zDS is nonzero for some range z 2 ZT.
If the first condition holds, Eq. (27) implies k < �ires

S , because
� S

S P 0. So nonnegative eigenvalues are only possible if the second
condition is satisfied. Hence, DS must be nonzero, which through
Eq. (27) leads to the condition that � S

T must be nonzero for some
range z 2 ZS. In summary, for eigenvalues to be nonnegative it is re-
quired that � T

S is nonzero for some z 2 ZT and that � S
T is nonzero for

some z 2 ZS, where ZT and ZS are not empty. This condition is more
restrictive than that for traditional CA, in which case F0@z �l must be
nonzero for nonnegative eigenvalues to be possible. Nonetheless,
although the condition is not satisfied for any c in the problem of
Section 3.3, it may well be in general, as illustrated by the two-
dimensional model results.

As with density mixing, the two-dimensional model operates
without computational difficulties, even for F0 = 105. In addition,
the bifurcation diagram (Fig. 9b) shows that the large-scale
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Fig. 7. Bifurcation diagram for the (a) one-dimensional and (b) two-dimensional model with density mixing. In (b) linear stability is not indicated; the solid line corresponds
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Fig. 8. Same as Fig. 5, but for density mixing.
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dynamics are not affected qualitatively by conditional mixing. Dif-
ferent from the density mixing case, saddle-node bifurcations oc-
cur along the branches of the equatorially asymmetric solutions,
but only on the parts where c is larger than about 0.28 m yr�1.
Compared to traditional CA there are clearly less singularities,
and those that are present do not raise computational problems.

5. Summary and discussion

In this paper we reexamined the origin of the multiple equilib-
ria in ocean-climate models that arise due to convective adjust-
ment. Their occurrence presents a challenge to the application of
numerical bifurcation analysis in these models. The problem was
first illustrated in a fully-implicit two-dimensional primitive
equation model. By varying the strength of the surface virtual salt
flux a multitude of saddle-node bifurcations was shown to occur
(Fig. 2a). Next, the cause of these bifurcations was analysed in de-
tail using the one-dimensional column model introduced by V98,
but extended in this study to include both temperature and salin-
ity. A regime of multiple equilibria was identified and it was dem-
onstrated that the number of coexisting steady states increases
with increasing resolution, while the extent of the parameter space
in which they occur decreases (Fig. 4). By comparing numerical and
analytical results we showed that the multiple equilibria are inher-
ent to discretisation of CA and therefore artificial (Fig. 6b). Finally,
we proposed two alternative formulations of CA and demonstrated

that these can be used as a pragmatic solution to the difficulty of
applying CA in implicit models.

It should be emphasised that the extension of the column model
of V98 to include two tracers is necessary to fully understand the
problem of artificial multiple equilibria. By analytically establish-
ing the conditions required for the existence of zero eigenvalues
of the Jacobian matrix (which implies bifurcations), we found
two different feedback mechanisms that may be responsible for
multiple equilibria. V98 only captured the feedback of self-
sustaining diffusion, which may occur if there is sub-critical mixing
for weakly stable stratification. We eliminated this mechanism by
choosing a convective adjustment function in which there is no
sub-critical mixing. This allowed us to focus on the nonlinear inter-
action of density and spiciness gradients that occurs due to the
asymmetry in temperature (damping) and salinity (no damping)
forcing. The associated feedback mechanism was discussed before
by Lenderink and Haarsma (1994) and is also present in the simple
box model of Welander (1982). In contrast to these studies, our re-
sults indicate that there is no meaningful way to capture this feed-
back in a discrete model by using CA, despite its possible relevance
in the real world.

Our results suggest a close correspondence between the behav-
iour of CA in the two-dimensional model and the column model.
For example, we demonstrated analytically that multiple equilibria
can be eliminated from the column model by density mixing, and
showed numerically that also no spurious saddle-nodes occur due
to CA when using this scheme in the two-dimensional model. This
strongly suggests that the additional multiple equilibria in the
two-dimensional model with traditional convection are solely
due to the parameterisation and are not induced by a response of
resolved processes on changes in density caused by CA.

Still, it should be kept in mind that the one-dimensional model
cannot be perceived as representing a column from a full ocean
model. Rather, it allows to evaluate the properties of CA in a con-
trolled way. We specifically note that the forcing was distributed
along the entire column, instead of specified as boundary condi-
tions at the top. In the latter case, the forcing would also have influ-
enced the temperature and salinity across the full depth range, but
only in an uncontrolled manner. Furthermore, conditions in the
ocean model may correspond to other parameter values and forc-
ing functions than used in the above, which were merely chosen
such as to clearly illustrate the problems of CA.

The asset of the coarse-resolution (non eddy-permitting) mod-
elling approach is that it allows to study the dynamical processes
that might become obscured when as a result of higher resolution
simulations on centennial to millennial timescales become compu-
tationally inaccessible. We believe that the relevance of the alter-
native CA formulations presented in Section 4 should be assessed
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from this point of view. Both schemes help to realise a density field
that respects the physical requirement that no static instabilities
should be present at large spatial or temporal scales. At the same
time they facilitate the use of numerical continuation techniques
in coarse-resolution ocean models by avoiding (density mixing)
or reducing (conditional mixing) the occurrence of artificial multi-
ple equilibria.

The alternative schemes are not meant to faithfully reproduce
the water mass characteristics seen in convective areas in the
ocean – although the performance of traditional CA is probably
not superior in this respect. Therefore no attempt was made to
compare the action of these schemes with data or high-resolution
model output. It should be noted, though, that the fact that tradi-
tional, density and conditional mixing produce different tempera-
ture and salinity profiles, implies that large-scale dynamics are
affected differently by these schemes. In the context of the two-
dimensional model, this is clear from comparison of the (overall)
bifurcation structure presented in Figs. 2a, 7b, and 9b. It is not
straightforward to explain exactly how any of the different forms
of CA deforms a bifurcation diagram. The bifurcation behaviour
due to the salt advection feedback (Stommel, 1961), however, is
qualitatively the same for different CA schemes.

It remains to be explored if this robustness transfers to three-
dimensional models, since flow dynamics are severely altered be-
tween the two- and three-dimensional case (Rahmstorf, 1995).
Yet, it turns out that, compared to computations without CA,
applying the Newton–Raphson method to a model with one of
the alternative CA schemes of Section 4 still produces rather ill-
posed systems, even if the artificial bifurcations due to traditional
CA are absent or reduced in number. As a result, exploring the
three-dimensional case is currently too challenging from a compu-
tational point of view. The technical details of this problem are be-
yond the scope of this paper, but there are good prospects of
resolving the issue. A hint of what might be expected if the flow
dynamics were three-dimensional is provided by Weijer and
Dijkstra (2001). They showed that the bifurcation diagram for the
two-dimensional model is qualitatively similar to that of its
three-dimensional extension, which was obtained by consecu-
tively adding Earth rotation and surface wind stress. No CA was ap-
plied, however, so this result corresponds to the case with unstable
stratification present in high latitudes. Nonetheless, using an iter-
ative post-processing procedure, which avoids the problems of
using CA in a numerical continuation experiment, Weijer and
Dijkstra (2001) found that the mechanism of symmetry-breaking
is probably not affected by the convective adjustment procedure.
It may therefore well be that the alternatives presented in Section
4 also mitigate the problems of applying CA in more complete
models without affecting the relevant large-scale feedbacks.

Throughout this paper, we have focussed on the use of numer-
ical bifurcation techniques. It is to be emphasised, however, that
artificial multiple steady states due to CA also occur in time-
stepping models that are run until equilibrium is reached.
Although the multiplicity was not classified as artificial behaviour,
Rahmstorf (1995) showed that in his idealised three-dimensional
model many different convection patterns were stable under the
same boundary conditions, using finite amplitude perturbations
to switch between these states. Yet, it should be stated that the
spurious saddle-node bifurcations due to CA are not evident in
the hysteresis behaviour of all ocean models (e.g. Sijp et al.,
2006). Most likely, this is because a hysteresis experiment is inher-
ently transient and can only result in approximate bifurcation
diagrams. Even if the anomalous freshwater forcing is increased
sufficiently slowly in time, the artificial steady states due to CA
are not easily recognised, because the ‘‘jump’’ from one state to
the other is relatively small (at least when overturning rate is used
as measure of the solution, Fig. 2). It is however also possible that

the artificial saddle-node bifurcations are not as ubiquitous as in
the two-dimensional model results of Section 2, because convec-
tion is more limited in space. Unlike the implicit model used here,
most time-stepping codes currently employ isoneutral Redi (1982)
and Gent and McWilliams (1990) mixing of tracers instead of sim-
ple horizontal diffusion. In a comparison of the two tracer mixing
schemes Danabasoglu et al. (1994) showed that the use of the for-
mer causes convection to become much less widespread. Sijp et al.
(2006) and Sijp and England (2009) suggested that this reduction is
mainly due to isoneutral mixing and its interaction with the sur-
face boundary conditions.

Eventually, computational resources will be no longer a limiting
factor to run global simulations of the ocean at a resolution sufficient
to capture the convective instability. This notwithstanding, coarser
models probably remain valuable tools, provided that sub-grid scale
motions such as convection are parameterised in a way that is
acceptable for the problem under study. Our results, in conjunction
with previous work (Cessi, 1996; Cessi and Young, 1996; Vellinga,
1998; Hughes et al., 2009), demonstrate that convective adjustment
has serious deficiencies. This strongly motivates to continue the
development of parameterisations of convection that are both phys-
ically sound, and can be implemented in a numerical model without
introducing artificial dynamics.
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Appendix A. The analytical solution

Under the conditions specified in Section 3.4, and defining
Q = P(1 + F0)�1, the temperature satisfies

0 ¼ 1
Q
@2T
@z2 � T þ cosð2pzÞ for z < zc; ðA:1aÞ

0 ¼ 1
P
@2T
@z2 � T þ cosð2pzÞ for z > zc: ðA:1bÞ

We require that the temperature and the diffusive temperature flux
are continuous across z = zc and obtain

T ¼ A1 cosð2pzÞ þ B1 cosh
ffiffiffiffi
Q

p
ðzþ 1Þ

� �
for z < zc; ðA:2aÞ

T ¼ A2 cosð2pzÞ þ B2 cosh
ffiffiffi
P
p

z
� �

for z > zc: ðA:2bÞ

Here,

A1 ¼ 1þ4p2

Q

� ��1

; ðA:3aÞ

A2 ¼ 1þ4p2

P

� ��1

; ðA:3bÞ

B1 cosh
ffiffiffiffi
Q

p
ðzc þ1Þ

� �
¼

2p P
Q A1�A2

� �
sinð2pzcÞþ A1�A2ð Þcosð2pzcÞ

ffiffiffi
P
p

tanh
ffiffiffi
P
p

zc

� �
P
Q

ffiffiffiffi
Q
p

tanh
ffiffiffiffi
Q
p

zc þ1ð Þ
� 	

�
ffiffiffi
P
p

tanh
ffiffiffi
P
p

zc

� � ;

ðA:3cÞ
B2 cosh

ffiffiffi
P
p

zc

� �
¼

2p P
Q A1�A2

� �
sinð2pzcÞþ ðA1�A2Þcosð2pzcÞ P

Q

ffiffiffiffi
Q
p

tanh
ffiffiffiffi
Q
p
ðzc þ1Þ

� 	
P
Q

ffiffiffiffi
Q
p

tanh
ffiffiffiffi
Q
p
ðzc þ1Þ

� 	
�

ffiffiffi
P
p

tanh
ffiffiffi
P
p

zc

� � :

ðA:3dÞ
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The salinity profile is determined from

0 ¼ 1
Q
@2S
@z2 þ c cosðpzÞ for z < zc; ðA:4aÞ

0 ¼ 1
P
@2S
@z2 þ c cosðpzÞ for z > zc: ðA:4bÞ

We impose continuity of S at z = zc and the integral constraintZ 0

�1
Sdz ¼ 0

to find

c�1S ¼ C1 cosðpzÞ þ D1 for z < zc; ðA:5aÞ
c�1S ¼ C2 cosðpzÞ þ D2 for z > zc; ðA:5bÞ

where

C1 ¼
Q
p2 ; ðA:6aÞ

C2 ¼
P
p2 ; ðA:6bÞ

D1 ¼
P � Q
p3 ðsinðpzcÞ � pzc cosðpzcÞÞ; ðA:6cÞ

D2 ¼
P � Q
p3 ðsinðpzcÞ � pðzc þ 1Þ cosðpzcÞÞ: ðA:6dÞ
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