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a b s t r a c t

Since direct numerical simulations cannot be computed at high Reynolds numbers, a dynamically less
complex formulation is sought. In the quest for such a formulation, we consider regularizations of the
convective term that preserve the symmetry and conservation properties exactly. This requirement
yielded a novel class of regularizations [Verstappen R. On restraining the production of small scales of
motion in a turbulent channel flow. Comput Fluids 2008;37:887–97.] that restrains the convective pro-
duction of smaller and smaller scales of motion in an unconditionally stable manner, meaning that the
velocity cannot blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used
to solve the governing equations must preserve the symmetry and conservation properties too. To do so,
one of the most critical issues is the discrete filtering. The method requires a list of properties that, in gen-
eral, is not preserved by classical filters for LES unless they are imposed a posteriori. In the present paper,
we propose a novel class of discrete filters that preserves such properties per se. They are based on poly-
nomial functions of the discrete diffusive operator, eD, with the general form F ¼ I þ

PM
m¼1dm

eDm. Then, the
coefficients, dm, follow from the requirement that, at the smallest grid scale kc, the amount by which the
interactions between the wavevector-triples (kc,kc � q,q) are damped must become virtually indepen-
dent of the qth Fourier-mode. This allows an optimal control of the subtle balance between convection
and diffusion at the smallest grid scale to stop the vortex-stretching. Finally, the resulting filters are suc-
cessfully tested for the Burgers’ equation.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible Navier–Stokes (NS) equations form an
excellent mathematical model for turbulent flows. In primitive
variables the equations are

@tuþ Cðu;uÞ ¼ 1
Re

Du�rp;r � u ¼ 0 ð1Þ

where u denotes the velocity field, p represents the pressure, Re is
the Reynolds number and the non-linear convective term is defined
by Cðu;vÞ ¼ ðu � rÞv .

Preserving the (skew-)symmetries of the continuous differen-
tial operators when discretizing them has been shown to be a very
suitable approach for direct numerical simulation (DNS) (see [1],
for instance). Doing so, certain fundamental properties such as
the inviscid invariants – kinetic energy, enstrophy (in 2D) and

helicity (in 3D) – are exactly preserved in a discrete sense. How-
ever, direct simulations at high Reynolds numbers are not feasible
because the convective term produces far too many relevant scales
of motion. Therefore, a dynamically less complex mathematical
formulation is needed. In the quest for such a formulation, we con-
sider regularizations [2,3] (smooth approximations) of the nonlin-
earity. The first outstanding approach in this direction goes back to
Leray [4]. The Navier–Stokes-a model also forms an example of
regularization modeling (see [3], for instance). The regularization
methods basically alter the convective terms to reduce the produc-
tion of small scales of motion. In doing so, we proposed to preserve
exactly the symmetry and conservation properties of the convec-
tive terms [5]. This requirement yielded a family of symmetry-pre-
serving regularization models: a novel class of regularizations that
restrains the convective production of smaller and smaller scales
of motion in an unconditionally stable manner, meaning that the
velocity cannot blow up in the energy-norm (in 2D also: enstro-
phy-norm). The numerical algorithm used to solve the governing
equations preserves the conservation properties too [1] and is
therefore well-suited to test the proposed simulation model. The
regularization makes use of a normalized self-adjoint filter. In
the initial tests [5,6], the performance of the method was tested
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keeping the ratio �/h (filter length/grid width) constant. Thus, this
parameter had to be prescribed in advance and therefore a conver-
gence analysis respect to �/h was needed. Later, to circumvent this,
a parameter-free approach was proposed [7]: the regularization
parameter (the local filter length, �) is dynamically determined
from the requirement that the vortex-stretching must be stopped
at the scale set by the grid. However, in this way, some basic prop-
erties of the filter (i.e., symmetry, normalization, incompressibility,
etc.) are lost. Therefore, they need to be restored by explicitly forc-
ing them; however, such a posteriori modifications are artifacts
that may change the dynamics of the system significantly.

In this context, here we propose a family of discrete linear filters
that preserves several fundamental properties by construction. To
do so, polynomial functions of the discrete diffusive operator, eD,
with the general form F ¼ I þ

PM
m¼1dm

eDm are considered. In this
way, a list of properties are automatically satisfied per se: (i) the fil-
ter is exactly symmetric and normalized, (ii) the diffusive nature of
the filter implies that there is no introduction of any non-physical
transport between scales and (iii) a filtered divergence-free vector
remains ‘almost’ incompressible. Moreover, since they are only
based on the diffusive operator, their implementation, even for
unstructured formulations, becomes straightforward. Then, the ex-
act coefficients, dm, follow from the requirement that the damping
of all triadic interactions at the smallest scale, kc, must become
virtually independent of the interacting wavevectors-triples
(kc,kc � q,q). The latter is a crucial property to control the subtle
balance between convection and diffusion in order to stop the vor-
tex-stretching mechanism.

The rest of the paper is arranged as follows. In the next section,
the symmetry-preserving regularization models are briefly pre-
sented. The interscale interactions are studied in detail in the spec-
tral space. The criterion to determine the regularization parameter
(i.e., the local filter length) follows from the requirement that the
vortex-stretching must stop at the smallest grid scale. Then, the
numerical approximations needed to apply the method in a dis-
crete setting are addressed in Section 3. The important role of
the discrete operators of the NS equations and the linear filter
are discussed. In Section 4, the novel class of discrete filters based
on polynomial functions of the discrete diffusive operator is pre-
sented and analyzed. Then, in Section 5, the performance of the
method is assessed through application to the Burgers’ equation
which holds many similarities with the NS equations. Finally, rele-
vant results are summarized and conclusions are given.

2. Restraining the production of small scales: Cn-regularization

2.1. Regularization modeling

At high Re-numbers, the velocity field cannot be computed
numerically from the NS Eqs. (1), because the solution possesses
far too many scales of motion. The computationally almost num-
berless small scales result from the non-linear convective term
Cðu;uÞ that allow the transfer of energy from scales as large as
the flow domain to the smallest scales that can survive viscous dis-
sipation. In the quest for a dynamically less complex mathematical
formulation, we consider smooth approximations (regularizations)
of the nonlinearity,

@tu� þ eCðu�;u�Þ ¼ 1
Re

Du� �rp�; r � u� ¼ 0 ð2Þ

where the variable names are changed from u and p to u� and p�,
respectively, to stress that the solution of (2) differs from that of
the NS equations.

The regularized system (2) should be more amenable to be
solved numerically (meaning that the regularization should limit

the production of small scales of motion), while the leading modes
of u� have to approximate the corresponding modes of the solution
u of the NS Eq. (1). The regularized system (2) may also be seen in
relation to large-eddy simulation (LES). In LES, Eqs. (1) are filtered
spatially, and the resulting nonlinear terms involving residual
velocities are modeled in terms of the filtered velocity

@t �u� þ Cð�u�; �u�Þ ¼
1
Re

D�u� �rp� þMð�u�Þ; ð3Þ

where the model terms are approximately given by Mð�u�Þ �
Cð�u�; �u�Þ � Cðu�; u�Þ. The regularization described by Eq. (2) falls in
this concept if

eCðu�;u�Þ ¼ Cð�u�; �u�Þ �Mð�u�Þ: ð4Þ

Indeed under this condition, Eq. (2) are equivalent to (3): we
can filter (2) first and thereafter compare the filtered version of
(2) term-by-term with (3) to identify the closure model Mð�u�Þ. Fi-
nally, it may be noted that Eq. (4) relates the regularizationeCðu�; u�Þ one-to-one to the closure model M for any invertible
filter.

2.2. Symmetry-preserving regularization models

The regularization method basically alters the nonlinearity to
restrain the production of small scales of motion (see e.g. [3]). In
doing so, we propose to exactly preserve certain fundamental sym-
metry properties of the convective operator C in Eq. (1), i.e.

ðCðu;vÞ;wÞ ¼ �ðv ;Cðu;wÞÞ; ð5Þ
ðCðu;vÞ;DvÞ ¼ ðu;CðDv ;vÞÞ; ð6Þ

where the skew-symmetry with respect to v and w of the trilinear
form ðCðu;vÞ;wÞ ensures the conservation of energy and helicity.
Additionally, the identity (6) must be satisfied to conserve enstro-
phy in 2D. Therefore, we aim to regularize the convective operator
C in such a manner that the underlying symmetries (given by Eqs.
(5) and (6)) are preserved. In other words, we require that the
approximation eC of C satisfies ðeCðu; vÞ;wÞ ¼ �ðv ; eCðu;wÞÞ, and in
2D, ðeCðu;vÞ;DvÞ ¼ ðu; eCðDv ;vÞÞ. This criterion yields the following
class of regularizations proposed in [5],

C2ðu;vÞ ¼ Cð�u; �vÞ; ð7aÞ
C4ðu;vÞ ¼ Cð�u; �vÞ þ Cð�u;v 0Þ þ Cðu0; �vÞ; ð7bÞ
C6ðu;vÞ ¼ Cð�u; �vÞ þ Cð�u;v 0Þ þ Cðu0; �vÞ þ Cðu0;v 0Þ; ð7cÞ

where a prime indicates the residual of the filter, e.g. u0 ¼ u� �u,
which can be explicitly evaluated, and ð�Þ represents a normalized
self-adjoint linear filter with filter length �. The difference between
Cnðu;uÞ and Cðu; uÞ is of order �n (where n = 2, 4, 6) for symmetric
filters with filter length �. Note that for a generic, symmetric filter:
u0 ¼ Oð�2Þu (see e.g. [8]).

The approximations Cnðu�;u�Þ are stable by construction, mean-
ing that convective terms do not contribute to the evolution of
ju�j2; hence, the evolution of ju�j2 is governed by a dissipative pro-
cess. Therefore, replacing the convective term in the NS equations
by the Oð�nÞ-accurate smooth approximation Cnðu�;u�Þ, the partial
differential equations to be solved result in

@tu� þ Cnðu�;u�Þ ¼
1
Re

Du� �rp�; r � u� ¼ 0: ð8Þ

For further details about the symmetry-preserving regularization
modeling the reader is referred to [5].
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2.3. Triadic interactions

To study the interscale interactions in more detail, we continue
in the spectral space. The spectral representation of the convective
term in the NS equations is given by

Cðu; vÞk ¼ iPðkÞ
X

pþq¼k

ûpqv̂q; ð9Þ

where P(k) = I � k kT/jkj2 denotes the projector onto divergence-free
velocity fields in the spectral space. Taking the Fourier transform of
7a, 7b and 7c, we obtain the evolution of each Fourier-mode ûkðtÞ of
u�(t) for the Cn approximation1

d
dt
þ 1

Re
jkj2

� �
ûk þ iPðkÞ

X
pþq¼k

fnðĝk; ĝp; ĝqÞûpqûq ¼ Fk; ð10Þ

where ĝk denotes the kth Fourier-mode of the kernel of the convo-
lution filter, i.e., �̂uk ¼ ĝkûk. The mode ûk interacts only with those
modes whose wavevectors p and q form a triangle with the vector
k. Thus, compared with (9), every triad interaction is multiplied by

f2ðĝk; ĝp; ĝqÞ ¼ ĝkĝpĝq; ð11aÞ
f4ðĝk; ĝp; ĝqÞ ¼ ĝkĝp þ ĝkĝq þ ĝpĝq � 2ĝkĝpĝq; ð11bÞ
f6ðĝk; ĝp; ĝqÞ ¼ 1� ð1� ĝkÞð1� ĝpÞð1� ĝqÞ: ð11cÞ

Moreover, since for a generic symmetric convolution filter (see [8],
for instance), ĝk ¼ 1� a2jkj2 þ Oða4Þ with a2 = �2/24, the damping
functions fn can be approximated by

f2 � 1� a2ðjkj2 þ jpj2 þ jqj2Þ; ð12aÞ
f4 � 1� a4ðjkj2jpj2 þ jkj2jqj2 þ jpj2jqj2Þ; ð12bÞ
f6 � 1� a6jkj2jpj2jqj2: ð12cÞ

Therefore, the interactions between large scales of motion (�jkj < 1)
approximate the NS dynamics up to Oð�nÞ with n = 2, 4, 6, respec-
tively. Hence, the triadic interactions between large scales are only
slightly altered. All interactions involving longer wavevectors
(smaller scales of motion) are reduced. The amount by which the
interactions between the wavevector-triple (k,p,q) are lessened de-
pends on the length of the legs of the triangle k = p + q. In the case
n = 4, for example, all triadic interactions for which at least two legs
are (much) longer than 1/� are (strongly) attenuated; whereas,
interactions for which at least two legs are (much) shorter than 1/
� are reduced to a small degree only.

2.4. Stopping the vortex-stretching mechanism

In the initial tests, the performance of the C4 approximation
was tested keeping the ratio �/h (filter length to the grid width)
constant. Therefore, only one parameter needed to be prescribed
in advance. Later, to circumvent this, a parameter-free approach
was proposed [7]. To do so, we determine the regularization
parameter (the local filter length) dynamically from the require-
ment that the vortex-stretching must be stopped at the smallest
scale set by the grid, kc = p/h. Shortly, the idea behind is to modify
the convective operator sufficiently to guarantee that the following
inequality is hold

xkc � Cnðx;uÞkc

xkc �xkc

6
1
Re

k2
c : ð13Þ

In this way, vortex-stretching is restrained enough to prevent a lo-
cal intensification of vorticity. Then, recalling the evolution Eq. (10)
of the kth Fourier-mode for the Cn-approximation, the previous
expression becomes

xkc �
P

pþq¼kc
fnðĝkc ; ĝp; ĝqÞûpqûq

� �
xkc �xkc

6
1
Re

k2
c : ð14Þ

Note that fnðĝkc ; ĝp; ĝqÞ depends on the filter length � and, in general,
on the wavevectors p and q = kc � p. This makes very difficult to
control the overall damping effect because fn cannot be taken out
of the summation. To avoid this, filters should be constructed from
the requirement that the damping effect of all the triadic interac-
tions at the smallest scale must be virtually independent of the
interacting pairs, i.e.

fnðĝkc ; ĝp; ĝqÞ � fnðĝkc Þ: ð15Þ

This is a crucial property to control the subtle balance between con-
vection and diffusion in order to stop the vortex-stretching
mechanism.

3. Playing with discrete operators

The regularizations Cn given by Eqs. 7a, 7b and 7c are con-
structed in a way that the symmetry properties (5) and (6) are ex-
actly preserved. Of course, the same should hold for the numerical
approximations that are used to discretize them. For this, the basic
ingredients are twofold: (i) the original NS equations must be dis-
cretized preserving the symmetries of the continuous differential
operators and (ii) a normalized self-adjoint linear filter.

3.1. Symmetry-preserving discretization of NS equations

Preserving the symmetries of the continuous differential opera-
tors when discretizing them has been shown to be a very suitable
approach for DNS of incompressible flows [1]. In short, the tempo-
ral evolution of the spatially discrete staggered velocity, uh, is gov-
erned by the following finite-volume discretization of Eq. (8)

X
duh

dt
þ CðuhÞuh þ Duh �MT ph ¼ 0h; ð16Þ

where the discrete incompressibility constraint reads M uh = 0h. The
diffusive matrix, D, is symmetric and positive semi-definite; it rep-
resents the integral of the diffusive flux �ru � n/Re through the
faces. The diagonal matrix, X, describes the sizes of the control vol-
umes and the approximate, convective flux is discretized as in [1].
The resulting convective matrix, C(uh), is skew-symmetric, i.e.
C(uh) + CT(uh) = 0. In a discrete setting, the skew-symmetry of
C(uh) implies that

CðuhÞvh �wh ¼ vh � CTðuhÞwh ¼ �vh � CðuhÞwh; ð17Þ

for any discrete velocity vectors uh (if Muh = 0h), vh and wh. Note that
Eq. (17) is the discrete analogue of Eq. (5). Then, the evolution of the
discrete energy, kuh k2 = uh �Xuh, is governed by

d
dt
kuhk2 ¼ �uh � ðDþ DTÞuh < 0; ð18Þ

where the convective and pressure gradient contributions cancel
because of Eq. (17) and incompressibility constraint Muh = 0h,
respectively. Therefore, even for coarse grids, the energy of the re-
solved scales of motion is convected in a stable manner: that is,
the discrete convective operator transports energy from a resolved
scale of motion to other resolved scales without dissipating any en-
ergy, as it should do from a physical point-of-view. This forms a
good starting point for LES-like simulations (see [9], for instance).
For a detailed explanation, the reader is referred to [1].1 Here, for simplicity, the subindex e is dropped.
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3.2. Discrete filtering

Filtering is usually done by means of an integral operator with a
symmetrical convolution kernel. In a discrete setting, this results
into a linear operator ~uh ¼ eFuh. However, to constitute a suitable
filter, �uh ¼ Fuh where F � eF , for our application, the following basic
properties are required:

(i) Symmetry, XF = (XF)T.
(ii) Normalization, i.e. constant velocity vector is unaffected,

F1 = 1.
(iii) Given an incompressible velocity field, uh (Muh = 0h), �uh must

be also divergence-free.
(iv) Low-pass filtering, i.e. only high-frequency components

must be effectively damped.
(v) The damping effect of fnðĝkc ; ĝp; ĝqÞ must be virtually inde-

pendent of the interacting pair (p, q = kc � p); that is Eq.
(15) need to be satisfied.

The first three properties are required to ensure that all the
symmetry and conservation properties hold exactly [5]. However,
in general, they are not satisfied by eF ; therefore, we need to rede-
fine our linear filter F as follows

F ¼ S� diagðS1� 1Þ with 2S ¼ X�1 XeF þ ðXeFÞTn o
: ð19Þ

Then, the linear map uh#�uh defined by Eq. (19) possesses the basic
properties (i) and (ii). Then, regarding the point (iii), it must be
noted that in general an incompressible velocity field, uh( Muh =
0h), does not automatically imply that �uh(u0h = uh � �uh also) is also
divergence-free. Although no ‘real’ mass is lost in terms of the uh

field, M�uh – 0h and M�u0h – 0h have series implications: the skew-
symmetry of the convective operator (17) and consequently the
conservation properties that follow from it would be lost. For in-
stance, because of this, the convection term would not be a pure
redistributor of energy any more; instead, it becomes an active
source or sink of kinetic energy and therefore the stability of the
method is lost. This question has been addressed before for a Ler-
ay-a model in [10]. One possible solution to this problem could
be to project the filtered velocity, �uh, onto a divergence-free space,

�uh ¼ Fuh; ð20Þ
�up

h ¼ �uh þX�1MT qh with M�up
h ¼ 0h: ð21Þ

However, an additional Poisson equation, �MX�1MT qh ¼ M�uh,
needs to be solved each time-step. A computationally less demand-
ing approach relies on explicitly forcing the diagonal term of the
discrete convective operators, C(uh), to be equal to zero,

½CðuhÞ�j;j ¼ 0 8j: ð22Þ

In this way, the skew-symmetry of the convective operator (17) is
restored irrespective whether the advective velocity is exactly
divergence-free. Both approaches have been tested in [7]. Since no
significant differences have been observed, in the view of lower
costs, the second approach was chosen.

Assuming that the property (iv) is also satisfied, we can con-
clude that F constitutes a suitable filter for our application. How-
ever, modifications proposed in Eqs. (19) and (22) are artifacts
that may change the dynamics of the system significantly. This
problem becomes especially relevant in the near-wall regions
where the non-slip boundary conditions may cause significant
compressibility effects on the filtered velocity. Finally, regarding
the last property (v) it must be satisfied via the adjustment of
the convolution kernel of the linear filter. This is addressed in the
following section.

4. Constructing the discrete filter

As stated above, a list of properties are required to the linear fil-
ter, F, to be suitable for our application. However, they are not sat-
isfied by classical filters for LES and therefore, they need to be
imposed a posteriori via Eqs. (19) and (22). Alternatively, here we
propose a novel family of discrete linear filters that preserve the re-
quired properties (i)–(iv) by construction. Then, the exact form fol-
lows from the last requirement (v), i.e. the damping effect
f ðĝkc ; ĝp; ĝqÞ must be almost independent of the interacting wave-
vectors, q and p = kc � q.

4.1. Playing with the discrete diffusive operator, D

Here, we propose to construct symmetric linear filters with the
general form

F ¼ I þ
XM

m¼1

dm
eDm with eD ¼ X�1D; ð23Þ

where the boundary conditions that supplement the NS Eqs. (1) are
applied in (23) too. Then, the convolution kernel of the filter results

bGk ¼ 1þ
XM

m¼1

dm
bDm

k ; ð24Þ

where bDk denotes the transfer function of discrete diffusive opera-
tor, eD. In this way, all the above-mentioned basic properties (i)–(iii)
are automatically satisfied. Shortly, properties (i) and (ii) follow
from the symmetry D = DT and the fact that the unity vector lies
on the kernel of D, i.e. D1 = 0 (see [1] for details). Therefore, modifi-
cation proposed in Eq. (19) is not needed any more. Then, recalling
that Du =r(r � u) �r � (r � u), it follows that r � Du = 0 if
r � u = 0 and therefore the property (iii) is also satisfied. In a dis-
crete sense, the latter holds only approximately. Hence, the modifi-
cation given by (22) is still required.

Furthermore, since they are only based on D and no additional
operator is needed, the method is: (i) easy-to-implement, (ii)
boundary conditions are already prescribed in the definition of D,
(iii) the diffusive nature of the filter implies that there is no intro-
duction of any non-physical transport between scales and (iv) from
a parallel point-of-view the construction of filters with large sten-
cils (M > 1) is straightforward. Then, hereafter the only thing that
remains is to determine the values of the coefficients, dm, from
the requirement that properties (iv) and (v) must be also satisfied.
Therefore the influence of the choice of the filter bGk on the so-
called bandwidth of fn has been further analyzed. We restrict our-
selves to the C4 approximation. Here, the analysis will be restricted
to the case of 1D filters, without the loss of generality.

4.2. Starting point: 3-point filter

When considering a discrete 3-point symmetric filter in physi-
cal space, the associated transfer function is given by
ĝk = c0 + 2c1cos(kh) where h is the grid width. Therefore, the trans-
fer function of the classical 3-point diffusive operator (c0 = �2/h2

and c1 = 1/h2) reads

bDk ¼
2

h2 ðcosðkhÞ � 1Þ: ð25Þ

To simplify the analysis, hereafter we consider h = 1. Then, the 3-
point filter (M = 1) becomes bGk ¼ ð1� 2d1Þ þ 2d1cosðkÞ where the
d1 is given by

d1 ¼
1
4
�
bGp

4
: ð26Þ
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Note that for h = 1 the smallest scale is p (see Fig. 1). Since for C4,
f ðbGp; bGp; bGqÞ ¼ bGpðbGp þ bGqÞ þ bGp

bGqð1� 2bGpÞ (see Eq. (11b) and
p = p � q, the damping function f4 for the 3-point filter is bounded
by

f 3p
4 ðbGp;0Þ ¼ �bG2

p þ 2bGp; ð27Þ

f 3p
4 ðbGp;p=2Þ ¼ �1

2
bG3

p þ
1
4
bG2

p þ bGp þ
1
4
; ð28Þ

where the superindex 3p means that the 3-point filter is being used
to compute the damping function f4. Hereafter, the same notation
will be also used for the 5- and 7-point filters. Fig. 2 shows the
bandwidth of f 3p

4 ðbGp; qÞ for 0 6 bGp 6 1. For 1=2 6 bGp 6 1, it is small
and therefore for these values of bGp, f 3p

4 can be taken out of the sum-
mation (14). However, for bGp 6 1=2, the bandwidth of f 3p

4 increases,
and the 3-point filter is no longer satisfactory for taking outside of
the summation (14).

4.3. Minimizing the bandwidth of f4ðbGp; qÞ

Since for the 3-point filter, the coefficient d1 is given by the con-
dition (26), the bandwidth is fixed. However, additional degrees of
freedom, i.e. d2,d3, . . ., may be used to minimize the bandwidth of
f4. In Appendix A, the discrete 5- and 7-point filters have been de-
duced. The resulting expression for the 5-point filter (M = 2) is gi-
ven by

d1;opt ¼ �
bGp � 1

2ð2bGp þ 1Þ
; d2;opt ¼

2bG2
p � 3bGp þ 1

16ð2bGp þ 1Þ
: ð29Þ

Then, taking d2 = d2,opt and d1 = d1,opt, f 5p
4 is again bounded by q = 0

and q = p/2. Fig. 3(top) shows the bandwidth of f 5p
4 ðbGp; q; d2;optÞ.

However, the bandwidth of f 5p
4 for small values of bGp may not be

small enough. To solve this, an additional degree of freedom is re-
quired. Then, the following 7-point filter (M = 3) follows

d3;opt ¼ 1
54

EðbGpÞ

CðbGpÞ
þDðbGpÞ

EðbGpÞ
� 7

2

� �
ðbGp�1Þ

d2;opt ¼6d3;optþ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8d2

3;opt�2d3;opt
bGpþ2d3;opt

q
d1;opt ¼ 1

4ð1þ16d2;opt�64d3;opt� bGpÞ

9>>>>>=>>>>>;
; if 06 bGp<1=2

ð30Þ

d1;opt ¼ �
bGp � 1

2ð2bGp þ 1Þ
d2;opt ¼

2bG2
p � 3bGp þ 1

16ð2bGp þ 1Þ
; if 1=2 6 bGp 6 1

ð31Þ

where CðbGpÞ;DðbGpÞ and EðbGpÞ are given by Eqs. 65a, 65bb and 65c
(see Appendix A). Note that for bGp P 1=2, it becomes the 5-point fil-
ter given by (29) with a smooth transition from f 5p

4 to f 7p
4 atbGp ¼ 1=2. Fig. 3 (bottom) shows the bandwidth of f 7p

4 ðbGp; q; d2;opt;

d3;optÞ. Again, f 7p
4 is bounded by q = 0 and q = p/2. Now, the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Ĝ
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bandwidth is small for the whole range 0 6 bGp 6 1 and therefore f 7p
4

can always be taken out of the summation (14).

5. Burgers’ equation

To test the performance of the new family of filters in conjunc-
tion with the C4 regularization method we consider the 1D Bur-
gers’ equation

@tuþ Cðu;uÞ ¼ 1
Re
@2

xxuþ f ; ð32Þ

on an interval X with periodic boundary conditions. Despite its sim-
plicity important aspects of the 3D Navier–Stokes equations remain
(see [11], for instance). Note that now the convective term is given
by Cðu; uÞ ¼ u@xu. In Fourier space, it reads

@t ûk þ Cðû; ûÞk ¼ �
k2

Re
ûk þ Fk; ð33Þ

where ûk denotes the kth Fourier mode of uðx; tÞ 2 R and the non-
linear term reads

Cðû; ûÞk ¼
X

pþq¼k

ûpiqûq: ð34Þ

A forward Euler scheme has been used as time-integration
method. Following the same notation than in [12], it reads

ûk½ �nþ1 � ½ûk�n

dt
¼ ½Wk�n; ð35Þ

where the time-step, dt, is chosen to keep the time-integration
numerically stable and Wk ¼ �C4ðû; ûÞk � ðk

2
=ReÞûk. Therefore, the

discrete time evolution of energy, ðenþ1
k � en

kÞ=dt, is given by

½ûk�nþ1 û�k
� �nþ1 � ½ûk�n û�k

� �n

dt
¼ û�k
� �n½Wk�n þ ½ûk�n W�

k

� �n

þ dt½Wk�n W�
k

� �n
: ð36Þ

In Fourier space the regularized convective term is given by

C4ðû; v̂Þk ¼
X

pþq¼k

f4ðbGk; bGp; bGqÞûpiqv̂q; ð37Þ

where f4ðbGk; bGp; bGqÞ ¼ bGkðbGp þ bGqÞ þ bGp
bGqð1� 2bGkÞ (see Eq. (11b).

Then, to stop the production of smaller scales of motion, the
inequality @tekc 6 0 must be satisfied, i.e.

û�kc

� �n½Wkc �
n þ ½ûkc �

n W�
kc

� �n þ dt½Wkc �
n W�

kc

� �n
6 0; ð38Þ

where kc is the smallest scale. However, such a condition is difficult
to be exactly satisfied. In general, the damping function
f4ðbGkc ;

bGp; bGqÞ depends on p and q; therefore, the terms in the sum-
mation are damped differently. To avoid this, we need to assume
that f4ðbGkc ;

bGp; bGqÞ � ~f 4ðbGkc Þ is almost independent of p and q. Then,
the value of the function ~f 4 follows from the requirement that con-
dition (38) must be satisfied. This yields the following quadratic
equation for ~f 4

AðûÞð~f 4Þ2 þ BðûÞ~f 4 þ CðûÞ ¼ 0; ð39Þ

where AðûÞ ¼ dtðCðû; ûÞkc
C�ðû; ûÞkc

Þ;BðûÞ ¼ ðû�kc
Cðû; ûÞkc

þ ûkcC
�ðû;

ûÞkc
Þðdtk2

c =Re� 1Þ and CðûÞ ¼ ðû�kc
ûkc Þk

2
c =Reðdtk2

c =Re� 2Þ. In this
way, we can guarantee that if the bandwidth of f4 vanishes, the
time-evolution of the energy at the smallest scale, ekc , is monoton-
ically decreasing. However, the identity (15) cannot be exactly sat-
isfied. Hence, here we aim to minimize enough the bandwidth of f4

not to affect significantly the solution. With this in mind, a family of
discrete linear filters have been proposed in Section 4.3. Here, the
performance of such filters is tested for a Burgers’ equation at
Re = 100.

5.1. Solution of Burgers’ equation at Re = 100

The C4 approximation has been used to solve the Burgers’ equa-
tion with Re = 100 and ûk = k�1 as initial condition. The forcing
term vanishes Fk = 0 for k > 1 and F1 forces @tû1 = 0. Fig. 4, shows
the energy spectrum of the steady-state solution. Results obtained
with and without regularization method for kc = 34 are compared
with a DNS reference spectrum with kc = 200. The 7-point filter
has been used to compute the C4 model. Clearly, the direct simula-
tion without model with kc = 34 is not able to capture the physics.
At high wavenumbers, the energy is not dissipated enough and
therefore is reflected back towards the larger scales. The zoom in
Fig. 4 shows that the direct simulation with kc = 34 is already sub-
stantially different of the DNS reference solution for k = 6. The C4

solution exhibit one of the features of the model: due to the energy
conservation, the model solution displays an additional hump in
the spectrum. This was already observed in [5] for a turbulent
channel flow. Fig. 5 displays essentially the same for kc = 30, 40,
50 and 60. As expected, the C4 solution of the leading modes be-
comes closer to the DNS reference solution when kc increases. Note
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Fig. 4. Energy spectrum of the steady-state solution of the Burgers’ equation with
and without modeling, for kc = 34. Direct comparison with DNS reference solution
(solid line), with kc = 200.
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that, due to the non-zero bandwidth of f 7p
4 , the energy still tends to

pile-up at the smallest scale. However, it seems that the bandwidth
of the 7-point filter is small enough not to affect negatively the
numerical solution.

To investigate further the influence of C4 regularization method
together with the family of discrete filters here proposed, a conver-
gence analysis has been performed for the steady-state energy
spectrum. Fig. 6 shows the errors respect kc for the first four
non-fixed modes, i.e. k = 2, 3, 4 and 5. Errors have been measured
by direct comparison with a DNS reference solution with
kc = 300. At first sight, we can observe that the C4 method outper-
forms the direct simulation without modeling, irrespective of the
linear filter. However, as expected, the 3-point filter is not able
to control the balance between convection and diffusion at the
smallest grid scale. Consequently, part of the energy is still re-
flected back and therefore affects negatively the performance of
the method. To tackle such a problem, the 5- and 7-point filters
have been proposed in this paper. In general, the 7-point filter
clearly performs better for very coarse meshes when this effect be-
comes more significant. More importantly, the solution using the
7-point filter seems to converge monotonically even for very
coarse meshes, whereas the 5-point filter still displays an erratic
behavior. It must be noted that for (very) fine resolutions the re-
sults obtained with the 7-point filter become worse. However,
for such meshes the errors have already reached very low values
and therefore, they are not especially significant. A possible expla-
nation for such a behavior could be that for such meshes the role of
the model for the lowest frequency modes becomes very small (in

Fig. 6 only the four lowest modes are represented). Under these
conditions the dynamical behavior of the system when using the
3- or the 5-point filter converges faster towards the original Bur-
gers’ equation. In any case, from a practical point-of-view, these er-
rors are not significant.

6. Concluding remarks

The regularizations Cn given by Eqs. 7a, 7b and 7c are con-
structed in a way that the symmetry properties (5) and (6) are ex-
actly preserved. Consequently, the non-linear term Cnðu�;u�Þ in Eq.
(8) redistributes the energy among the various scales of motion
without introducing any non-physical dissipation. The production
of smaller and smaller scales of motion is regulated by means of
a gradual reduction of the energy flux and therefore the energy
cascade stops at shorter wavevectors than the original NS equa-
tions. At the smallest grid scale, dissipation should be strong en-
ough to stop the energy cascade. This subtle balance between
convection and diffusion is ultimately controlled by means of a
normalized self-adjoint linear filter. In a discrete setting, the
above-mentioned symmetries must be also preserved. This has
serious implications for the discrete filter: it must possess a list
of properties that, in general, is not satisfied by classical filters
for LES unless they are imposed a posteriori. However, this is an
artifact that may change the dynamics of the system significantly.

In this context, a family of discrete linear filters that preserve
the required list of properties by construction has been proposed.
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They are based on polynomial functions of the discrete diffusive
operator, eD, with the general form F ¼ I þ

PM
m¼1dm

eDm. In this
way, a list of properties is automatically satisfied per se: (i) the fil-
ter is exactly symmetric and normalized, (ii) the diffusive nature of
the filter implies that any non-physical transport between scales is
being introduced and (iii) a filtered divergence-free vector remains
’almost’ incompressible. Moreover, since they are only based on
the diffusive operator, their implementation becomes straightfor-
ward. Then, the exact coefficients, dm, follow from the requirement
that the damping of all the triadic interactions at the smallest scale,
must be virtually independent of the qth Fourier-mode, i.e.
fnðbGp; qÞ � fnðbGpÞ. The latter is a crucial property to control the sub-
tle balance between convection and diffusion in order to stop the
vortex-stretching mechanism.

The performance of the method has been tested for a Burgers’
equation at Reynolds number 100. In this case, the basic 3-point fil-
ter (M = 1) is not able to control the balance between convection
and diffusion at the smallest grid scale. As a consequence, part of
the energy is reflected back affecting negatively the numerical
solution. This effect is mitigated when using the 5-point (M = 2)
and the 7-point (M = 3) filters. These filters have been constructed
to minimize the bandwidth of the damping function. Doing so, the
production of small scales of motion is effectively restrained. As
expected, the 7-point filter outperforms the 5-point filter only for
very coarse meshes.

Finally, it must be noted that apart from Cn-regularization mod-
eling, the idea of constructing filters as a function of the discrete
diffusive operator can also be used for other applications. Then,
depending on the specific application the convolution kernel of
the filter would be adjusted via the degrees of freedom, i.e. d1, d2,
d3, etc. For instance, several techniques and subgrid models for
LES make use of a test filter [13,14]. The proposed family of dis-
crete linear filters commutes with the differentiation operator. In
the context of LES this is a crucial property to ensure that LES equa-
tions have the same form as the unfiltered NS equations [15,16].
Together with this, symmetry and normalization are required in
LES to guarantee that the filtered equations conserve momentum
and dissipate kinetic energy [17]. Therefore, filters defined as in
Eq. (23) may be a suitable approach also for LES applications.
Moreover, the non-dispersive nature of the proposed filters may
make then suitable for other applications. For instance, in the con-
text of Computational AeroAcoustics spurious short waves need to
be eliminated. To do so, a common strategy lies in explicitly filter-
ing them without affecting the physical long waves. Suitable filters
for such application must minimize dispersion [18]. Hence, the
proposed family of filters may also be a good candidate for such
application.
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Appendix A. Minimizing the bandwidth of f4

In Section 4.2, it is shown that for the basic 3-point filter the
coefficient d1 is completely determined by Eq. (26) and therefore
the bandwidth of f 3p

4 ðbGp; qÞ is fixed (see Fig. 2, also). To solve this
more degrees of freedom are needed. Here, we consider to deter-

mine the coefficients dm of Eq. (23) with M 6 3, that is up to a 7-
point filter, from the requirement that the bandwidth of the damp-
ing function of the C4-approximation at the smallest grid scale,
f4ðbGp; qÞ, must be minimal.

A.1. 5-point filter

Using a 5-point filter, the associated transfer function (24) yieldsbGk ¼ 1þ d1
bDk þ d2

bD2
k ; ð40Þ

then, plugging the transfer function of the diffusive operator (25)
leads tobGk ¼ 1� 2d1 þ 6d2 þ 2d1 � 8d2ð Þ cosðkÞ þ 2d2 cosð2kÞ: ð41Þ

In this case, bGp is given by bGp ¼ 1� 4d1 þ 16d2, and therefore an
additional degree of freedom in the coefficients is obtained. This
can be used to minimize the bandwidth of the f 5p

4 function. Rear-
ranging terms the following expression is obtained

f 5p
4 ðbGp;q;d2Þ ¼ a0ðbGp;d2Þþa1ðbGp;d2Þcosð2qÞþa2ðbGp;d2Þcosð4qÞ;

ð42Þ

where

a0ðbGp; d2Þ ¼ d2
2 �12bGp þ 6
� �

þ d2 4bG2
p � 2bGp � 2

� �
þ �1

4
bG3

p �
3
8
bG2

p þ
3
2
bGp þ

1
8

� �
; ð43aÞ

a1ðbGp; d2Þ ¼ d2
2 16bGp � 8
� �

þ d2 �4bG2
p þ 2bGp þ 2

� �
þ 1

4
bG3

p �
5
8
bG2

p þ
1
2
bGp �

1
8

� �
; ð43bÞ

a2ðbGp; d2Þ ¼ d2
2 �4bGp þ 2
� �

: ð43cÞ

Furthermore, f 5p
4 ðbGp; q;d2Þ is bounded by q = 0,q = p/2 and q = 1/2

cos�1(�a1/4a2),

f 5p
4 ðbGp;0; d2Þ ¼ a0 þ a1 þ a2 ð44aÞ

f 5p
4 ðbGp;p=2;d2Þ ¼ a0 � a1 þ a2 ð44bÞ

f 5p
4 ðbGp;1=2 cos�1ð�a1=4a2ÞÞ; d2Þ ¼ a0 � a2 �

a2
1

8a2
ð44cÞ

where the latter is a proper value only for values of d2 satisfying
ja1j 6 4a2. Then, choosing d2 with the criterion that a1 = �4a2 leads
to

d1;opt ¼ �
bGp � 1

2ð2bGp þ 1Þ
and d2;opt ¼

2bG2
p � 3bGp þ 1

16ð2bGp þ 1Þ
: ð45Þ

Therefore, the values of f 5p
4 for q = 1/2cos�1(�a1/4a2) and q = 0

coincide and f 5p
4 remains positive for all p,q at bGp ¼ 0. Hence, for

d2 = d2,opt,f4 is again bounded by q = 0 and q = p/2. Fig. 3 (top)
shows the bandwidth of f 5p

4 ðbGp; q; d2;optÞ for 0 6 bGp 6 1.

A.2. 7-point filter

However, the bandwidth of f 5p
4 for low values of bGp is still sig-

nificant. To minimize it we propose to use the 7-point filterbGk ¼ 1þ d1
bDk þ d2

bD2
k þ d3

bD3
k ; ð46Þ

then, substituting the transfer function of the diffusive operator
(25) leads tobGk ¼ 1� 2d1 þ 6d2 � 20d3 þ ð2d1 � 8d2 þ 30d3Þ cosðkÞ

þ ð2d2 � 12d3Þ cosð2kÞ þ 2d3 cosð3kÞ: ð47Þ

In this case, bGp ¼ 1� 4d1 þ 16d2 � 64d3 and therefore we have two
degrees of freedom
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f 7p
4 ðbGp; q;d2;d3Þ ¼ a0ðbGp;d2;d3Þ þ a1ðbGp;d2;d3Þ cosð2qÞ

þ a2ðbGp; d2; d3Þ cosð4qÞ þ a3ðbGp; d2; d3Þ cosð6qÞ;
ð48Þ

where

a0ðbGp;d2;d3Þ ¼ d2
2ð�12bGp þ 6Þ þ d2

3ð�424bGp þ 212Þ

þ d2d3ð144bGp � 72Þ þ d2 4bG2
p � 2bGp � 2

� �
þ d3 �22bG2

p þ 9bGp þ 13
� �

� 1
4
bG3

p �
3
8
bG2

p

þ 3
2
bGp þ

1
8
; ð49Þ

a1ðbGp;d2;d3Þ ¼ d2
2ð16bGp�8Þþd2

3ð572bGp�286Þ
þd2d3ð�192bGpþ96Þþd2ð�4bG2

pþ2bGpþ2Þ

þd3ð24bG2
p�12bGp�12Þþ1

4
bG3

p�
5
8
bG2

pþ
1
2
bGp�

1
8
;

ð50Þ

a2ðbGp;d2;d3Þ ¼ d2
2ð�4bGp þ 2Þ þ d2

3ð�152bGp þ 76Þ

þ d2d3ð48bGp � 24Þ þ d3 �2bG2
p þ 3bGp � 1

� �
; ð51Þ

a3ðbGp;d2;d3Þ ¼ d2
3ð4bGp � 2Þ: ð52Þ

Then, the optimal values for d2 and d3 are given by the following
equation

d
dq

f 7p
4 ðqÞ ¼ �2a1 sinð2qÞ � 4a2 sinð4qÞ � 6a3 sinð6qÞ ¼ 0: ð53Þ

Applying the double-angle formula, sin(2a) = 2sin(a)cos(a), and
the triple-angle formula, sin(3a) = 3sin(a) � 4sin3(a), leads to

d
dq

f 7p
4 ðqÞ ¼ sinð2qÞ½�2a1�8a2 cosð2qÞ�18a3þ24a3 sin2ð2qÞ� ¼ 0;

ð54Þ
and therefore, zeros are given by

sinð2qÞ ¼ 0; ð55Þ
� 2a1 � 8a2 cosð2qÞ � 18a3 þ 24a3 sin2ð2qÞ ¼ 0: ð56Þ

Thus, the roots of the first equation are q1 = 0 and q2 = p/2. Then,
rest of roots are given by Eq. (56). Using the Pythagorean trigono-
metric identity, sin2(a) + cos2(a) = 1, we obtain a quadratic equation
for cos(2q)

�24a3 cos2ð2qÞ � 8a2 cosð2qÞ þ ð�2a1 þ 6a3Þ ¼ 0; ð57Þ

which roots are given by

cosð2qÞ ¼ 1
6

�a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 3a1a3 þ 9a2
3

q
a3

: ð58Þ

Then, a proper bound is given by the following equation

1
6

�a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 3a1a3 þ 9a2
3

q
a3

¼ �1
2
: ð59Þ

Therefore, the rest of roots is given by q3 = p/6 and q4 = p/ 3. Then, to
fulfill the previous equation, the following equations must be satisfied

a2 ¼ 0; ð60Þ
a1 ¼ 0: ð61Þ

Imposing the first Eq. (60) leads to

d2 ¼ 6d3 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8d2

3 � 2d3
bGp þ 2d3

q
; ð62Þ

however, only the solution

d2;opt ¼ 6d3 þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8d2

3 � 2d3
bGp þ 2d3

q
; ð63Þ

guarantees d2 > 0. Then, two solutions for d3 follow from Eq. (61).
However, proper bounds are only given by

d3;opt ¼
1

54
EðbGpÞ
CðbGpÞ

þ DðbGpÞ
EðbGpÞ

� 7
2

 !
ðbGp � 1Þ; ð64Þ

where

CðbGpÞ ¼ 4bG2
p � 4bGp þ 1; ð65aÞ

DðbGpÞ ¼ 4bG2
p � 196bGp þ 1; ð65bÞ

EðbGpÞ ¼ C2ðbGpÞ AðbGpÞ þ 12
ffiffiffi
6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibGpBðbGpÞ=CðbGpÞ
q� �� �1=3

; ð65cÞ

with AðbGpÞ ¼ 4bG2
p þ 1004bGp þ 1 and BðbGpÞ ¼ 48bG4

p þ 4096bG3
pþ

4072bG2
p þ 1024bGp þ 3. In summary, the values of optimal values

for d1, d2, d3 are given by

d3;opt ¼
1

54
EðbGpÞ
CðbGpÞ

þ DðbGpÞ
EðbGpÞ

� 7
2

 !
ðbGp � 1Þ; if 0 6 bGp < 1=2 ð66Þ

d3;opt ¼ 0; if 1=2 6 bGp 6 1 ð67Þ

then, optimal values for d2 and d1 follow from Eqs. (63) and (47),
respectively

d2;opt ¼ 6d3;opt þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8d2

3;opt � 2d3;opt
bGp þ 2d3;opt

q
if 0 6 bGp < 1=2

ð68Þ

d2;opt ¼
2bG2

p � 3bGp þ 1

16ð2bGp þ 1Þ
; if 1=2 6 bGp 6 1 ð69Þ

and

d1;opt ¼
1
4
ð1þ 16d2;opt � 64d3;opt � bGpÞ; if 0 6 bGp < 1=2 ð70Þ

d1;opt ¼ �
bGp � 1

2ð2bGp þ 1Þ
; if 1=2 6 bGp 6 1 ð71Þ

Therefore, for bGp P 1=2, it becomes again the 5-point filter. Actu-
ally, the transition from f 5p

4 to f 7p
4 at bGp ¼ 1=2 is smooth.2 Moreover,

since the expression for f 7p
4 reduces to

f 7p
4 ðbGp; q;d2;opt;d3;optÞ ¼ a0 � 3a3 cosð2qÞ þ 4a3 cos3ð2qÞ; ð72Þ

the values of f 7p
4 for q3 = p/6 and q4 = p/3 coincide with q1 = p/2 and

q2 = 0, respectively. Hence, for d3,opt, d2,opt, d1,opt, f4 is again bounded
by q = 0 and q = p/2. Fig. 3 (bottom) shows the bandwidth of
f 7p
4 ðbGp; q; d2;opt; d3;optÞ for 0 6 bGp 6 1.

A.3. Constructing filters for C2

The same analysis can be applied for the C2 regularization given
by Eq. (7a). In this case, f2ðbGp; bGp; bGqÞ ¼ bGp

bGp
bGq and therefore the

damping function f 3p
2 for the 3-point filter becomes

f 3p
2 ðbGp; qÞ ¼

1
8
bG3

p þ
3
4
bG2

p þ
1
8
bGp þ �1

8
bG3

p þ
1
4
bG2

p �
1
8
bGp

� �
cosð2qÞ;

ð73Þ

which is bounded by f 3p
2 ðbGp;0Þ and f 3p

2 ðbGp;p=2Þ

2 Ac tual ly at bGp ¼ 1=2; d3;opt ¼ 0. Howev e r , i t mu st b e n oted tha t
limbGp!1=2�

CðbGpÞ ¼ 0 and limbGp!1=2�
EðbGpÞ ¼ 0. Hence, special care must be taken

when evaluating d3,opt for values close to bGp ¼ 1=2.
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f 3p
2 ðbGp;0Þ ¼ bG2

p; ð74Þ
f 3p
2 ðbGp;p=2Þ ¼ 1

4
bG3

p þ
1
2
bG2

p þ
1
4
bGp: ð75Þ

Since for the 3-point filter, the coefficient d1 is given by the condi-
tion (26), the bandwidth is fixed. Again, the bandwidth of f2 can be
minimized by adding additional degrees of freedom in the coeffi-
cients. Using a 5-point filter the damping function for C2 reads

f 5p
2 ðbGp; q;d2Þ ¼ a0ðbGp; d2Þ þ a1ðbGp; d2Þ cosð2qÞ þ a2ðbGp;d2Þ cosð4qÞ;

ð76Þ

where

a0ðbGp;d2Þ¼ d2
2ð6bGpÞþd2ð�2bG2

p�2bGpÞþ
1
8
bG3

pþ
3
4
bG2

pþ
1
8
bGp

� �
;

ð77Þ

a1ðbGp;d2Þ¼ d2
2ð�8bGpÞþd2ð2bG2

pþ2bGpÞþ �1
8
bG3

pþ
1
4
bG2

p�
1
8
bGp

� �
;

ð78Þ
a2ðbGp;d2Þ¼ d2

2ð2bGpÞ: ð79Þ

Furthermore, f 5p
2 ðbGp; q;d2Þ is bounded by q = 0, q = p/2 and q = 1/2

cos�1(�a1/4a2),

f 5p
2 ðbGp;0;d2Þ ¼ a0 þ a1 þ a2; ð80Þ

f 5p
2 ðbGp;p=2; d2Þ ¼ a0 � a1 þ a2; ð81Þ

f 5p
2 ðbGp;1=2 cos�1ð�a1=4a2ÞÞ;d2Þ ¼ a0 � a2 �

a2
1

8a2
; ð82Þ

where the latter is a proper value only for values of d2 satisfying
ja1j 6 4a2. Then, choosing d2 with the criterion that a1 = �4a2 leads
to

d2;opt ¼
bG2

p � 2bGp þ 1

16ðbGp þ 1Þ
and d1;opt ¼ �

bGp � 1

2ðbGp þ 1Þ
: ð83Þ

Finally, using a 7-point filter the bandwidth of f2 can be further re-
duced. In this case, the damping function of C2 reads

f 7p
2 ðbGp; q;d2;d3Þ ¼ ða0 � a2Þ þ ða1 � 3a3Þ cosð2qÞ

þ 2a2 cos2ð2qÞ þ 4a3 cos3ð2qÞ; ð84Þ

where

a0ðbGp;d2;d3eÞ ¼ d2
2ð6bGpÞ þ d2

3ð212bGpÞ þ d2d3ð�72bGpÞ
þ d2 �2bG2

p � 2bGp

� �
þ d3 11bG2

p þ 13bGp

� �
þ 1

8
bG3

p þ
3
4
bG2

p þ
1
8
bGp

� �
; ð85Þ

a1ðbGp;d2;d3Þ ¼ d2
2ð�8bGpÞ þ d2

3ð�286bGpÞ þ d2d3ð96bGpÞ
þ d2 2bG2

p þ 2bGp

� �
þ d3 �12bG2

p � 12bGp

� �
þ �1

8
bG3

p þ
1
4
bG2

p �
1
8
bGp

� �
; ð86Þ

a2ðbGp;d2;d3Þ ¼ d2
2ð2bGpÞ þ d2

3ð76bGpÞ þ d2d3ð�24bGpÞ
þ d3

bG2
p � bGp

� �
; ð87Þ

a3ðbGp;d2;d3Þ ¼ d2
3ð�2bGpÞ: ð88Þ

Then, repeating the same reasoning leads again to Eqs. (60) and
(61). This leads to the following solution

d1;opt ¼
1
4
ð1þ 16d2;opt � 64d3;opt � bGpÞ ð89Þ

d2;opt ¼ 6d3;opt þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8d2

3;opt � 2d3;opt
bGp þ 2d3;opt

q
ð90Þ

d3;opt ¼
1

54
KðbGpÞ �

JðbGpÞ
KðbGpÞ

� 7
2
bGp � 1
� � !

ð91Þ

where JðbGpÞ ¼ �bG2
p þ 98bGp � 1 and KðbGpÞ ¼ ðFðbGpÞ þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðbGpÞ

q
Þ1=3

with FðbGpÞ ¼ bG3
p þ 501bG2

p � 501bGp � 1 and HðbGpÞ ¼ 9bG5
pþ1536bG4

pþ
3054bG3

p þ 1536bG2
p þ 9bGp, respectively.
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