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Chapter 1 
Asymmetric Synthesis of Chiral 
Heterocycles 

A selection of enantioselective synthetic approaches to chiral heterocycles is 
presented. The focus lies on catalytic asymmetric transformations with transition 
metal catalysts. Chiral phosphoramidite ligands serve as the vantage point as they 
have been applied to a wide variety of asymmetric catalytic reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter have been published:  

Teichert, J.F.; Feringa, B.L. Angew. Chem. Int. Ed. 2010, 49, 2486 -  2528. 



 

 

2 

Chapter 1 

 

1. Chiral Heterocycles 

Many naturally occuring compounds with biological activity posess chiral 

heterocycles as structural elements. Some illustrative examples are displayed in 

Figure 1. Laurenditerpenol (1), containing a bicyclic tetrahydrofuran moiety, was 

found to be a small molecule suppressor of tumor growth in human breast tumor 

cells.
1,2

 The substituted chiral piperidine alkaloid
3
 coniin (2) is a potent neurotoxin 

which acts by blocking the nicotinic receptor in the post-synaptic membrane.
4
 

Complex opoid alkaloid morphine (3) is used as a potent painkiller.
4
 It posesses 

both a nitrogen- and an oxygen-containing heterocycle. Artemisinin (4) bears a rare 

example of a naturally occuring peroxide, which is key to its anti-malarial activity, 

even though the exact mode of action is still subject of discussion.
5-9

 Finally, 

synthetic chiral piperidine paroxetine (5) is a selective serotonine reuptake inhibitor 

antidepressant (SSRI), and one of the 100 best selling drugs worldwide.
10,11

 

 

Figure 1 Some biologically active compounds bearing chiral heterocycles 

The broad range of biological activites of chiral heterocyclic compounds makes 

them valuable and interesting targets for organic synthesis, both from the industrial 

as well as academic perspective. On the one hand, large-scale and cost-effective 

synthesis is of major interest, whereas on the other hand, method-development or 

structural confirmation might be the main focus of researchers. This holds true not 
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only for naturally occuring products, but also for synthetic analogues thereof or de 

novo designed biologically active compounds. 

 

2. Synthetic approaches to chiral heterocycles 

When the synthesis of a chiral molecule, for example a chiral heterocyclic 

structure, is envisaged, a variety of approaches can be followed to introduce the 

stereogenic centers.
12-14

 The most common include racemic synthesis followed by 

separation of enantiomers, synthesis based on the chiral pool or enantioselective 

synthesis.
15-18

 Each of these approaches has its advantages and there is no 

general gold-standard. Rather, the strategic use and combination of these 

methods, before the background of cost-effectiveness and synthetic difficulty, 

seems to be the ideal approach to a particular target.
19-21

 In the following, the focus 

shall be on of the major approaches to enantioselective synthesis, namely 

asymmetric catalysis. 

 

3. Asymmetric transition metal-catalyzed reactions  

The field of asymmetric transition metal-catalysis is wide,
15

 and has been 

recognized by the 2001 chemistry Nobel prize,
22-24

 which awarded the development 

of “chirally catalyzed” reactions.
25

 The notion of introducing stereogenic centers 

using metal-catalysts bearing chiral ligands has some advantages: Ideally, a very 

small amount of chiral catalyst is sufficient for the synthesis of a large quantitiy of a 

chiral product. In the case where both enantiomers of the chiral catalyst of interest 

are available, both enantiomers of the desired product can be synthesized 

selectively. Catalyst optimization by ligand screening opens up the possibility to 

quickly select, optimize and improve the asymmetric transformation. 

Over the years, some so-called “privileged ligands” have emerged, which can be 

successfully applied to many different asymmetric transformations.
26

 In the 

following section, asymmetric catalysis with chiral phosphoramidite ligands will be 

discussed. On the one hand, this showcases the versatility of this class of ligands, 

which can partly be attributed to their modular setup and the resulting facile 

diversification. On the other hand, as these types of ligands have been applied to a 

wide variety of reactions,
27-32

 they serve as a good example and overview for the 

wide applicability and synthetic usefulness of asymmetric transition metal catalysis 

in general. In the following section, some applications of phosphoramidites in the 

synthesis of key chiral building blocks for the synthesis of chiral heterocycles will 

be discussed. 
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4. Synthesis of chiral heterocycles with phosphoramidite ligands  

In this section, a selection of catalytic asymmetric transformations is presented, 

which are based on phosphoramidite-transition metal complexes as chiral catalysts 

for the synthesis of chiral heterocycles. This section is subdivided by reaction 

mechanisms; starting off with the Cu-catalyzed conjugate addition reaction (see 

section 4.1). This transformation employs organometallic reagents as carbon 

nucleophiles, therefore it mostly makes use of heterocyclic -unsaturated 

carbonyl compounds as substrates, when chiral heterocycles are envisaged. A 

different approach can be taken when the allylic substitution reaction is chosen 

(see section 4.2): especially the Ir-catalyzed allylic substitution, which accepts a 

wide variety of heteroatom-based nucleophiles is ideally suited for the construction 

of chiral heterocycles. Other than the transition metal-catalyzed conjugate addition, 

which is mainly restricted to the use of carbon nucleophiles, the heteroatom can be 

introduced directly through this methodology and has led to many examples of 

syntheses of chiral heterocylces (vide infra). Finally, a selection of asymmetric 

catalytic approaches based on other mechanisms is discussed (section 4.3). 

 

4.1 Cu-catalyzed conjugate addition reactions 

The asymmetric conjugate addition reaction ranks among the most studied 

synthetic transformation in the last decades.
33-37

 Especially the development of an 

effective enantioselective copper-catalyzed conjugate addition of organometallic 

reagents has for a long time been a major challenge in synthetic chemistry.
27,38-43

 

In this transformation, the nucleophile is transferred to the β-position of an -

unsaturated system 6 (e.g. an enone) to yield a stabilized carbanion 7 (Scheme 1). 

This intermediate can subsequently be protonated, yielding β-chiral product 8 or it 

can be quenched by addition of another electrophile to provide chiral compounds 9 

with vicinal stereocenters. 
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Scheme 1 Conjugate addition 

A well-known problem that had to be overcome was the high affinity of 

organometallic reagents towards the 1,2-addition directly to the electron 

withdrawing group. This catalytic asymmetric conjugate addition methodology has 

successfully been developed for a wide variety of substrates (e.g. enones, -

unsaturated esters, nitroalkenes, etc.) and organometallic nucleophiles (Grignard 

reagents, organozinc, and -aluminium compounds) and furthermore has been 

applied to numerous natural product syntheses.
33-40,44

 Two representative 

examples are discussed in the following section. 

 

Asymmetric synthesis of chiral heterocycles bearing quaternary centers 

The copper-catalyzed conjugate addition of diethylzinc to enones was applied to 

derivatives of Meldrum's acid, yielding derivatives of β-substituted carboxylic 

acids.
45

 This transformation was extended to arylalkylidene derivatives of 

Meldrum's acid 10, carrying two substituents at the olefin moiety (Scheme 2).
46

 

With phosphoramidite ligand L1 the addition products 11 were obtained in 

excellent yields and ee values up to 95%. This reaction furnishes an attractive 

route for the synthesis of chiral quaternary carbon atoms
47-53

 and has recently been 

applied to the asymmetric synthesis of chiral succinimides 12 and chiral γ-

butyrolactones 13 and 14.
54
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Scheme 2 Conjugate addition to derivatives of Meldrum's acid 

 

Asymmetric synthesis of myrtine 

The copper-catalyzed asymmetric conjugate addition reaction with trialkylaluminum 

reagents to enones
28,55-62

 has been applied in the first catalytic asymmetric 

synthesis of the alkaloid myrtine (17),
63

 which has been isolated from heather 

plants
64

 (Scheme 3). For the key step, introducing the first stereogenic center, a 

copper-catalyzed addition of trimethylaluminum to 15 with phosphoramidite ligand 

L2 was employed to achieve high yields and stereoselectivites. The conjugate 

addition product 16 was formed with excellent enantioselectivity. 
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Scheme 3 Catalytic enantioselective synthesis of myrtine 

 

4.2 Asymmetric allylic substitution reactions 

The allylic substitution, especially the methodology based upon palladium catalysis, 

is a reaction of major significance for the generation of chiral, multifunctional 

building blocks and ranks among the key transformations for organic synthesis.
65-71

 

One of the typical features of the palladium-catalyzed reaction is that 'soft' 

nucleophiles such as malonates are transferred directly to the allyl-complex 19, 

whereas 'hard' nucleophiles like organozinc or Grignard reagents are proposed as 

being transmetalated to palladium to give allyl-palladium complex 20 prior to C-C 

bond formation (Scheme 4).
70,71

 Thus a different outcome for the products 21/22 of 

the substitution reaction occurs for the different types of nucleophiles. Contrary to 

the conjugate addition reactions (vide supra), the phosphoramidite to metal ratio 

required for the best results in terms of enantioselectivity is 1:1, not depending on 

which metal is employed as catalyst (Cu, Ir or Pd). It should be noted that the 

leaving group in the allylic substitutions is different for the various catalytic 

systems. Whereas the Cu/phosphoramidite catalysts perform best with allylic 

halides (Cl or Br),
37,72

 the related Cu/ferrocenyl-based bisphosphine catalysts
35

 

strictly require bromides as leaving groups for best performance. Asymmetric allylic 

substitutions with chiral Cu/NHC complexes employ allylic phosphonates as 

leaving groups
73

; Pd-catalyzed allylic substitutions generally use allylic acetates, 

carbonates or benzoates
65,66,68-71

 and the Ir/phosphoramidite catalysts give the best 

results with allylic carbonates.
74

 This sensitivity with regard to the leaving group in 

allylic substitution reactions could stem from the different structural requirements of 

the catalysts as well as from the different acidities of the various leaving groups. 
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Scheme 4 Allylic substitution 

 

Pd-catalyzed allylic substitutions 

The Tsuji-Trost palladium-catalyzed allylic substitution is a well-established 

transformation to yield important, multifunctional chiral building blocks for organic 

synthesis and has been the key step in numerous total syntheses.
65,66,68-71

 In recent 

years, phosphoramidite ligands have been applied to these palladium-catalyzed 

reactions.  

 

Asymmetric total synthesis of γ-lycorane 

The highest enantioselectivities so far with the Pd/phosphoramidite catalytic 

system in allylic substitutions were obtained in the desymmetrization reactions of 

dibenzoylcyclohexene 23 (Scheme 5).
75

 In order to synthesize the naturally 

occuring alkaloid γ-lycorane 26, malonate derivative 24 was employed as carbon 

nucleophile. With phosphoramidite ligand L3, excellent ee values up to 99% for 

cyclohexene 25, a key precursor to 26, were reached. Unfortunately, the 

stereogenic center of the malonate moiety could not be installed with high 

diasteroselectivity due to epimerization. 
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Scheme 5 Desymmetrization based on Pd-catalyzed allylic substitution 

 

Pd-catalyzed [3+2] trimethylenemethane cycloadditons 

The closely related palladium-catalyzed [3+2] cycloaddition of a 

trimethylenemethane unit is a marvellous and extremely useful transformation to 

provide 5-membered cyclic compounds and the development of an asymmetric 

variant has long been a highly warranted goal.
76

  

Recently, an asymmetric Pd-catalyzed [3+2] trimethylenemethane cycloaddition of 

3-acetoxy-2-trimethylsilyl-methylpropene 27 to various Michael acceptors 28 in the 

presence of phosphoramidite ligands was disclosed.
77

 The application of 

phosphoramidites to this particular transformation marks a major breakthrough, as 

catalysts based on these chiral ligands achieve for the first time high 

enantioselectivities. The reaction mechanism is noteworthy, as it combines 

transition-metal chemistry, through metal-allyl species, with the 1,3-dipolar 

cycloaddtions. The mechanism can be exemplified with the transformation depicted 

in Scheme 6. Substituted allyl acetate 27 can form a Pd-allyl complex through 

oxidative addition, the leaving group (in this case the acetate) is reacting further, 

and attacks the TMS group. The Si-C bond is then cleaved, leaving zwitterionic 

complex 29 behind. This carbanion, together with the positively charged Pd-allyl 

moiety, now forms the 1,3-dipolar partner for the subsequent cycloaddition with an 

olefin (28) or another unsaturated substrate. This reaction gave important multi-

functionalised, chiral cyclopentanes 30 in good overall yields and 
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enantioselectivities (up to 84%, 84% ee). However, further research is needed to 

improve the enantioselectivities for these transformations. L4 proved to be the 

preferred ligand for this transformation (Scheme 6). The choice of ligand proved to 

be crucial in order to create the steric constraints at the palladium catalyst required 

for high selectivities (compare also Chapter 2) in the outer-sphere addition
76

 distal 

from the coordinating ligand of the intermediate 29 to the olefin. Equally good 

results were obtained for the reaction with aryl- and alkylidene tetralones as 

Michael acceptors as well as with imines.
78

 

 

Scheme 6 Pd-catalyzed [3+2] trimethylenemethane cycloaddition 

This method was successfully extended to accomplish the synthesis of important 

intermediates including spirocyclic oxindole cyclopentanes 33 and 34.
79

 Oxindoles 

31 were reacted with allylic acetate 32 to yield the spirocyclic compounds 33 and 

34 in excellent yields and stereoselectivities (up to 99% ee) (Scheme 7). Just as in 

the aforementioned example, the choice of the phosphoramidite ligand proved to 

be critical. With 1-naphthyl-pyrrolidine-derived L6, compound 33 was the favoured 

product (reaching diastereoselectivities 33/34: >20:1), whereas with the 2-naphthyl-

derived ligand L5 diastereoisomer 34 (33/34: 1:6) was obtained. The authors claim 

that the origin of this selectivity lies in the different steric demands of the two 

ligands that results in a different approach of 31 to the intermediate palladium-

complex either from the re or the si face. 
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Scheme 7 Pd-catalyzed [3+2] cycloaddition with oxindole substrates 

 

Ir-catalyzed allylic substitutions 

Iridium-catalyzed substitution reactions have gained much attention over the last 

years.
74,80-83

 In fact, next to the copper-catalyzed conjugate addition, the iridium-

catalyzed allylic substitution has been one of the most prominent reactions in 

general for which phosphoramidite ligands were applied. The first appearance of 

this reaction employing phosphoramidites as chiral ligands was as early as 1999, 

when the iridium-catalyzed allylic alkylation of allylic acetates 35 (LG = OAc) with 

sodium malonates to form 36 was reported (Scheme 8).
84

 Although, with some 

exceptions, low enantioselectivities were observed at that time, the transformation 

set the stage for numerous important iridium-based methods developed in recent 

years. One important feature of the iridium-catalyzed allylic substitution is that it 

allows for the application of carbon-, oxygen-, sulfur- as well as nitrogen-based 

nucleophiles to give 36 to 38 (Scheme 8); even ammonia can be employed as 

nitrogen-nucleophile.
85-91
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Scheme 8 Ir-catalyzed allylic substitution 

 

Mechanistic studies and identification of the active Ir catalyst 

Elaborate studies of this transformation were carried out, focussing on the origin of 

regio- and stereoselectivity as well as on the influence of different phosphoramidite 

ligands.
92,93

 However, the reaction mechanism and the active species involved 

remained largely unclear, and the desired optically active products were only 

obtained when LiCl was employed as an additive. The presence of halide ions 

ensured fast σ-π isomerization of the intermediate Ir-allyl complex,
94,95

 and thus 

higher control of the stereoselectivity by the chiral phosphoramidite ligand. It was 

not until 2003 that the non-innocence of the amine moiety of the phosphoramidite 

ligand L1 was discovered when studying the related allylic amination and 

etherification reaction,
96,97

 thus paving the way for more sophisticated catalyst 

design.
98

 These investigations showed that, under basic conditions, 

phosphoramidite ligand (S,S,S)-L1 forms iridacycle 39 from the iridium(I) precursor 

via a C-H activation of a methyl group in the amine moiety of the phosphoramidite 

(Scheme 9). Remarkable is the fact that only the (S,S,S)-L1 diastereoisomer 

undergoes this activation and can subsequently serve as a good catalyst for the 

iridium-catalyzed allylic substitution reaction. This is in contrast to the conjugate 

addition reactions (vide supra), where the (S,R,R)-L1 isomer was the preferred 

ligand. 
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Scheme 9 Cyclometalation of L1 

Since the allylic substitution furnishes a stereogenic center with a heteroatom and 

a neighbouring terminal double bond, ideal starting points for further synthesis, the 

transformation with O- or N-nucleophiles is perfectly suited to be applied in the 

synthesis of chiral heterocycles. This has been demonstrated by a variety of total 

syntheses which rely on the Ir-catalyzed allylic substitution methodology as key 

steps.
99-105

 Some target molecules are depicted in Figure 2, two representative 

syntheses are discussed in more detail below (see Scheme 10 and Scheme 11). 

 

Figure 2 Target molecules obtained by routes involving asymmetric Ir-catalyzed allylic 
substitutions 
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Asymmetric synthesis of nicotine 

A total synthesis of nicotine (47) was reported based on the allylic amination as the 

key step to introduce the desired chiral amine (Scheme 10).
106

 In this synthetic 

route, allylic carbonate 44 was reacted with allylamine 45 in the presence of an 

iridium/phosphoramidite catalytic system to give the corresponding chiral 

diallylamine 46. With ligand L7
107

 allylic amine 46 was formed in moderate yield but 

with excellent regio- and stereoselectivity. This secondary amine served as the key 

chiral building block and was transformed into nicotine 47 in a few steps. 

 

Scheme 10 Total synthesis of (-)-(S)-nicotine 

An iridium/phosphoramidite-catalyzed etherification was used as one of the key 

steps in a total synthesis of centrolobine (51) (Scheme 11).
99

 For the total 

synthesis, the Cu-alkoxide of cyclopentenol 48 was reacted with allyl carbonate 49 

in the presence of a Ir/L8
108

 complex to yield the corresponding branched allylic 

ether 50 with excellent ee. The use of the copper alkoxide had been found to be 

crucial with regards to the branched/linear selectivity and the enantioselectivity for 

the reaction of secondary alkoxides.
109

 Compound 50 could be transformed into 

centrolobine 51 in a few steps. 
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Scheme 11 Asymmetric synthesis of centrolobine 

 

4.3 Miscellaneous reactions 

In this section, some reactions leading to chiral heterocycles will be discussed, that 

do not employ the abovementioned conjugate addition or allylic substitution 

mechanisms, but nevertheless serve as good examples for the effective 

construction of chiral heterocycles. 

 

Rh-catalyzed [2+2+2] cycloaddition reactions 

A new intermolecular rhodium-catalyzed [2+2+2] cycloaddition of a variety of aryl 

acetylenes 53 and alkenyl isocyanates 53 was discovered (Scheme 12).
110,111

 

Using TADDOL-derived phosphoramidite ligand L9, the nitrogen-bridged bicyclic 

enones 54 and 55 were obtained with ee's up to 94%. The predominant product 54 

was obtained exlusively when donor-substituted arylacetylenes 52 were used. 

Heterocycle 54 could be used as the key chiral building block for the synthesis of 

lasubine II (56), a natural alkaloid found in the tree Lagerstroemia subcostata.
112

 

The Rh-catalyzed asymmetric [2+2+2] cycloaddition has recently been extended to 

gem-disubstituted olefins, rendering this method suitable for the preparation of 

quaternary stereogenic centers.
113

 Further extensions include the use of internal 

alkynes
114,115

 and carbodiimides
116

 as substrates, and the expansion to a related 

[4+2+2] cycloaddition.
117
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Scheme 12 Rh-catalyzed [2+2+2] cycloaddition 

 

Ag-catalyzed 1,3-dipolar cycloaddition reactions 

The first successful catalytic application of a phosphoramidite-silver complex was 

also recently reported.
118

 A silver-catalyzed 1,3-dipolar cycloaddition of aryl-

substituted iminoglycinates 57 and activated olefins such as tert-butyl acrylate 

58
119

 furnished proline derivatives 59. With phosphoramidite L1 (compare Scheme 

2) a variety of pyrrolidines 59 with multiple stereogenic centers were obtained, with 

generally good yields and excellent stereoselectivities (Scheme 13). 

 

Scheme 13 Ag-catalyzed 1,3-diploar cycloaddition 
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5. Aim and outline of this thesis 

As chiral heterocyclic compounds are of major importance through their biological 

activities, selective synthetic routes towards these targets are highly warranted, 

especially if a possible natural source cannot be exploited in large quantities. 

Furthermore, many non-natural pharmaceuticals bear chiral heterocycles as key 

structural elements. Therefore, the development of new synthetic routes towards 

these structures is of major importance for organic synthesis.  

The aim of this thesis was to develop new catalytic asymmetric transformations for 

the synthesis of chiral heterocycles. Ideally, the corresponding chiral heteroatom-

containing building blocks should become available in high yields and 

stereoselectivities. Furthermore, since our approach is based on chiral metal-

complexes, both enantiomers of the desired products should become available. 

Our approach was based on catalytic asymmetric methodology developed in our 

laboratories as well as chiral catalysts known in the literature. Starting from the 

established methods, also new catalytic asymmetric transformations were 

developed. In chapter 2, the asymmetric synthesis of 2,5-arylpyrrolidines 

employing Ir-catalyzed allylic amination with ammonia is described. The extension 

of this work can be found in chapter 3, where the development of the first 

asymmetric Ir-catalyzed intramolecular allylic amidation is described. Chiral 

tetrahydroisoquinolines, important chiral building blocks as well as 5- to 7-

membered saturated N-heterocycles could be obtained via this new approach. The 

attempted extension of this to the asymmetric synthesis of chiral β-carboline 

compounds is described in chapter 4. Related chiral saturated N-heterocycles with 

various ring sizes could be obtained via a complementary route employing a 

combination of Cu-catalyzed asymmetric allylic alkylation and ring-closing 

metathesis. This project is described in chapter 5. During the course of this 

research, also an approach to chiral oxygen-containing heterocycles was 

developed: the access to chiral coumarin dervatives using Cu-catalyzed conjugate 

additions of Grignard reagents employing a Cu/bisphosphine catalyst is discussed 

in chapter 6. The reaction intermediates of these reactions were found to be good 

starting points for a variety of reactions to give, among others, formal conjugate 

addition products of -unsaturated amides. Finally, the application of 

phosphoramidite ligands synthesized from chiral pyrrolidines (compare chapter 2) 

in asymmetric Ni-catalyzed reductive coupling reactions are described in chapter 7. 
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Chapter 2 

Catalytic Asymmetric Synthesis of 
2,5-Naphthylpyrrolidine 

A novel, straightforward fully catalytic asymmetric synthesis of chiral 2,5-
naphthylpyrrolidine based upon an iridium-catalyzed double allylic amination with 
ammonia has been developed. The products are available in high yields and 
enantioselectivities. 
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1. Introduction 

Chiral 2,5-disubstituted pyrrolidines 1 (Figure 1) are versatile chiral compounds that 

have been used for a large variety of asymmetric transformations. For example, 

they have been employed as chiral C2-symmetric auxiliaries
1
 for the asymmetric 

synthesis of α-amino acids through α-alkylation of glycine derivatives
2
 or 

stereoselective iodolactonization.
3
 Furthermore, derivatives of 2,5-chiral 

pyrrolidines have been shown to act as stereodirecting auxiliaries in asymmetric 

Wittig rearrangements.
4
 In catalytic asymmetric transformations, these compounds 

have been used as chiral ligands for the asymmetric addition of diethylzinc to 

aldehydes
5
 or in palladium-catalyzed allylic alkylation reactions.

6,7
  

 

Figure 1 Chiral 2,5-disubstituted pyrrolidines 

More recently, chiral 2,5-disubstituted pyrrolidines have been shown to be efficient 

organocatalysts for a variety of asymmetric transformations such as Michael 

additions
8
 and α-halogenation of aldehydes and ketones.

9-11
 As an example, the α-

chlorination of aldehydes is depicted in Scheme 1.
10

 When aldehydes 2 were 

reacted with NCS (3) as the chlorine source in the presence of catalytic amounts of  

2,5-phenylpyrrolidine 4, the corresponding α-chlorinated aldehydes 5 were isolated 

in up to excellent yields and enantioselectivities. 

 

Scheme 1 Organocatalytic asymmetric α-chlorination of aldehydes 

Phosphoramidite ligands
12,13

 prepared from chiral 2,5-disubstituted pyrrolidines 

were reported to give high enantioselectivities in asymmetric palladium-catalyzed 

[3+2] trimethylenemethane cycloadditions (see also Chapter 1).
14-17

 This 

methodology represents an elegant route towards cyclic compounds, including 

heterocycles.
16,17

 When allyl acetate 6 was reacted with Boc-protected imines 7 in 
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the presence of a Pd/L1 complex, the corresponding chiral pyrrolidines 8 were 

accessible in high yields and enantioselectivities (Scheme 2). It was shown that the 

phosphoramidites derived from chiral 2,5-arylpyrrolidines such as L1 were key to 

achieve high enantioselectivities for this transformation. Replacement of the 

naphthyl substitutents on the pyrrolidine with phenyl groups led to a dramatic drop 

in enantioselectivity (to 35% ee for 5 (Ar = Ph)). Ligand L1 thus creates a unique 

chiral environment around the catalytically active metal atom upon coordination.
17

  

 

Scheme 2 Pd-catalyzed asymmetric [3+2] trimethylenemethane addition with imines 

Although a few synthetic routes towards chiral 2,5-arylpyrrolidines are known,
18-22

 

they do not include the preparation of sterically demanding aryl-substituted 

pyrrolidines 1, such as naphthyl-subsituted ones. A report employing asymmetric 

borane reduction of 1,4-diketones specifically highlights the elusiveness of these 

substrates in undergoing reduction.
21

  

Approaches based upon the enantioselective deprotonation/arylation of Boc-

protected pyrrolidines utilizing organolithium reagents and naturally occurring (-)-

sparteine have been disclosed.
22-24

 One example of a sparteine-mediated 

asymmetric lithiation of N-Boc-pyrrolidine 9 followed by a Negishi coupling in a 

one-pot protocol has been reported (Scheme 3).
22

 When 9 was lithiated in the 

presence of (-)-sparteine (10), then transmetalated to zinc and a subsequent 

Negishi coupling with phenylbromide was carried out, chiral 2-phenyl-pyrrolidine 11 

was isolated in very good yields and enantioselectivity. The same reaction could be 

carried out on 11 once more to give the corresponding 2,5-diphenyl pyrrolidine 12. 

These transformations have been reported to work well with a variety of aromatics, 

however, the possibility to construct naphthyl-substituents (precursors for L1) was 

not disclosed. The use of an enantiomerically pure stoichiometric reagent such as 

10 renders this method not attractive in terms of atom economy. Moreover, since 

only one enantiomer of sparteine (10) is available, only one enantiomer of the 



 

 

26 

Chapter 2 

 

products 11 and 12 is accessible through this approach; a drawback when chiral 

ligands such as L1 derived from chiral pyrrolidines are employed in the synthesis of 

complex target molecules where a particular stereoisomer is desirable. 

 

Scheme 3 Asymmetric lithiation/Negishi coupling 

A catalytic enantioselective synthesis of chiral 2,5-naphthylpyrrolidines based on 

the reduction of 1,4-diketones with chiral cobalt-salen complexes was reported.
25

 

1,4-Diketone 13
26

 could be selectively reduced to the chiral 1,4-diol 15 in the 

presence of a chiral Co-salen complex 14, employing NaBH4 as the reducing agent 

(Scheme 4). For this reaction to proceed with high yields and enantioselectivities, it 

is important that tetrahydrofuryl alcohol (THFA) and NaBH4 are premixed, since 

this will form a NaBHx(THFA) adduct, which ensures high selectivities and 

reactivities.
27

 With diol 15 in hand, it could be transformed to the corresponding N-

allylpyrrolidine 16 in good yields, followed by a deprotection of the allyl moiety with 

Wilkinsons’s catalyst to give the desired chiral 2,5-dinaphthylpyrrolidine 17 in good 

yields and excellent enantioselectivity.  
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Scheme 4 Reported synthesis of 2,5-dinaphthylpyrrolidine 

Unfortunately, in our hands, these results were not reproducible or not practicable 

for the synthesis of naphthyl-substituted pyrrolidine 17 for a variety of reasons. 

First, the synthesis of the chiral salen ligand of 14 could not be achieved, as the 

literature procedures
28

 turned out to be not reproducible in our hands. The optically 

active cobalt complex 14 is commercially available, so we could still attempt the 

asymmetric synthesis of 17 (Scheme 5). The Co-catalyzed asymmetric reduction of 

13 could be rendered feasible only if higher temperatures than reported were 

employed. In our hands, carrying out the synthesis at -40 °C, as reported, led to no 

conversion of 13. When we raised the temperature to -20 °C, we could isolate 

chiral diol 14 in low yields but with enantioselectivities close to the ones previously 

reported. The following transformation to the N-protected pyrrolidine 16 turned out 

to be not reproducible either: under the reported conditions, no reaction to 16 was 

observed, in our hands, the best results were found when solvents, reactions times 

and temperatures were changed to more drastic conditions. However, even then 

chiral pyrrolidine 16 was only isolated in trace amounts. The following deprotection 

of the allylamine moiety of 16 to give pyrrolidine 17 did not occur at all under the 

published conditions and could furthermore not be rendered feasible with a variety 

of other deprotection conditions. With these disappointing results in hand, we 

decided to abandon this synthetic route, as it was not a useful one to obtain chiral 

2,5-dinaphthylpyrrolidine 17 in reasonable amounts. 
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Scheme 5 Attempted synthesis of 17 

 

2. Goal 

We were interested in the application of sterically very demanding phosphoramidite 

ligands L1 for the use in Ni-catalyzed reductive coupling reactions (see Chapter 7), 

as we expected them to improve the enantioselectivity in those transformations. 

Therefore, we were interested in a synthetic pathway towards C2-symmetric chiral 

pyrrolidines. As the only literature procedure was not reproducible in our hands 

(see Scheme 4 and Scheme 5), we sought to develop a new synthetic route 

towards chiral 2,5-diarylpyrrolidines that would provide the products in high optical 

purity. Ideally this new approach would furnish both enantiomers of the envisaged 

products. With foresight to possible applications as parts of chiral ligands or as 

organocatalysts, both enantiomers of the chiral diarylpyrrolidines should be 

available.  

A study regarding the direct allylic amination with ammonia was disclosed,
29

 in 

which the authors found not the anticipated monoamination of cinnamyl carbonate 

18 to chiral allylamine 20 in the presence of catalytic amounts of iridacycle 19, but 

reaction towards the secondary diallylamine 21 (Scheme 6). This observation 

stems most probably from the fact that primary amine 20 is a much better 

nucleophile with regard to Ir-catalyzed allylic amination than ammonia itself. Hence, 

no traces of the reaction intermediate 20 were observed in the reaction mixture. 

Nevertheless, the disubstituted product 21 was isolated in excellent yield and 

stereoselectivities.  
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Scheme 6 Ir-catalyzed double allylic amination with ammonia 

We decided to make use of this – originally unwanted – diallylation reaction of 

allylic carbonates 22 with ammonia and use diallylamines 23 as possible starting 

points for the synthesis of chiral 2,5-diarylpyrrolidines. With chiral compounds 23 in 

hand, ring-closing metathesis would lead to the corresponding diarylpyrrolines 24, 

subsequent reduction of the double bond would furnish the desired 

diarylpyrrolidines 25 (Scheme 7). Since the two stereogenic centers are 

constructed early in the synthesis, it is a prerequisite that the subsequent reactions 

do not compromize the stereochemistry generated at the α-position of the nitrogen 

atom. This is especially important for the hydrogenation step to give 25, since 

many transition metal-based hydrogenation protocols are known to jeopardize 

stereogenic allylic centers.
30-40

 

 

Scheme 7 Anticipated synthetic route 

Since both enantiomers of the phosphoramidite ligand L2 are readily available, 

also both enantiomers of 25 should be accessible, which is a major advantage over 

the previously mentioned synthetic routes (vide supra). 
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3. Results and Discussion 

When we started off to probe the viability of the anticipated synthetic route to 

diarylpyrrolidines, we chose to use the 2-naphthyl-substituted pyrrolidines 26 and 

27 as targets to develop and optimize the synthesis (Figure 2). The corresponding 

phosphoramidite ligand had shown remarkable effects in the asymmetric Pd-

catalyzed [3+2] trimethylenemethane addition reaction (vide supra).
15,17

 

Furthermore, ortho-methoxyphenyl-derived pyrrolidine 27 should be an interesting 

chiral building block for phosphoramidite ligands, as ortho-methoxy substituents 

often show remarkable effects in comparison with the corresponding phenyl 

substituents in chiral phosphoramidite ligands in various catalytic asymmetric 

transformations.
13

 

 

Figure 2 Envisaged target structures 

 

3.1 Synthesis of starting materials 

Allylic carbonates 32, starting materials for the double allylic amination with 

ammonia, with a 2-naphthyl and a ortho-methoxyphenyl moiety were synthesized 

in a straightforward manner (Scheme 8). Allylic alcohol 29a was prepared from the 

corresponding -unsaturated aldehyde 28 by reduction with DIBAL-H. For 

naphthyl-substituted substrate 32b, we started with naphthaldehyde 30, which was 

converted to the corresponding -unsaturated ester 31 by Horner-Wadsworth-

Emmons reaction
41

 in good yield (75%). Subsequent reduction of the ester to the 

allylic alcohol 29b proceeded in moderate yield.  Both allylic alcohols 29 could 

smoothly be transformed to the corresponding allylic carbonates 32. 
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Scheme 8 Synthesis of allylic carbonates 

At a later stage of this project, a shorter route to 32b was developed; commercially 

available 2-vinylnaphthalene 33 could be transformed to the corresponding allylic 

carbonate by cross-metathesis with Hoveyda-Grubbs 2
nd

 generation catalyst
42

 with 

dicarbonate 34 in very good yield (Scheme 9). The dicarbonate 34 ensured full 

conversion to 32b, since cross metathesis of 33 with the corresponding allyl methyl 

carbonate under similar reaction conditions led to low conversion to 32b and 

dicarbonate 34 was isolated as the major product.
43

 

 

Scheme 9 Alternative synthesis of allylic carbonate 32b 

 

3.2 Ir-catalyzed double allylic amination 

When the allylic amination of allylic carbonates was studied with (S,S,S)-19 as 

catalyst, we were delighted to find that 32a and 32b were converted smoothly to 

the corresponding amines 35 (Scheme 10). 35b was isolated with excellent 

stereoselectivities and yields after 16 hours, whereas diallylamine 35a was formed 

in slightly lower yields, however, with the same results in terms of stereoselectivity.  
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Scheme 10 Ir-catalyzed allylic amination 

A few factors have been found to be influential on the outcome of this 

transformation, which has been optimized with the transformation of substrate 32b: 

Catalyst loading 

It was found that with 2.0 mol% of (S,S,S)-19 the reaction proceeded with the same 

outcome with regards to stereoselectivity, but with considerably lower conversion of 

32b (~40% conversion, as judged by 
1
H NMR). Adding the catalyst in four batches 

of 0.5 mol% over a period of 4 hours did not improve the conversion, indicating that 

the catalyst stays active in the reaction mixture.  

Temperature 

The reaction was also run at elevated temperature (50 °C), and did show faster 

conversion to the desired product 35b with equally good enantioselectivities, 

however, still 6.0 mol% of (S,S,S)-19 were necessary to ensure full consumption of 

allylic carbonate 32b. For practical reasons, the reactions were run at ambient 

temperature in the following. 

Concentration 

The amounts of solvents proved to be influential on the conversion of 32 as well. In 

a typical experiment, a NH3 solution in EtOH was added to the allylic carbonate to 

give a ~0.7 molar suspension. Carbonates 32 do not dissolve well in the ammonia 

solution, so THF was added until all carbonate was dissolved (typically at a ratio 

EtOH/THF 2:1) and the reaction mixture stirred overnight, which ensured full 

conversion of 32. If more THF was added (exceeding ratios EtOH/THF 1:1), the 

reaction would still take place with the same stereoselectivities, however, with 

considerably lower conversion. From this observation, it can be concluded that a 

too low concentration of the nucleophile (NH3) is detrimental in terms of 

conversion. It is improbable that the catalyst loses its activity because of the higher 
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ratio of THF, as this is the solvent of choice for most of the Ir/phoshoramidite-

catalyzed allylic substitutions.
13

 

It should be noted that the enantioselectivity of 35 was determined by comparison 

of both enantiomers of 35 by chiral HPLC, since a direct racemic allylic amination 

was not available. (i.e. no non-chiral phosphoramidite-based iridacycle has been 

synthesized) At the same time, this served as an example that both enantiomers of 

35 are available through this allylic amination protocol. The absolute configuration 

of 35b was later assigned by comparison of the NMR data and optical rotation of 

phosphoramidite L1, synthesized from chiral pyrrolidine 26 (vide infra) with 

literature.
17

 The absolute configuration of 35a was then assigned in analogy to 35b. 

  

3.3 Ring-closing metathesis to give chiral pyrrolines 

With chiral diallylamines 35 in hand, we went on to investigate the following ring-

closing metathesis towards the corresponding chiral pyrrolines 37. Ring-closing 

metathesis of 35b was initially examined with Mo-based catalysts, since they were 

reported to exert catalytic activity with unprotected secondary amines (Scheme 

11).
44

 In our case however, employing catalytic amounts of the Schrock-Hoveyda 

catalyst 36, no turnover of 35b was observed, which we attribute to the steric 

constraints of 35b.  

 

Scheme 11 Attempted ring-closing metathesis with Mo-based catalyst 

Ring-closing metathesis of 35 based upon ruthenium catalysts is hampered by the 

potential donor abilities of the nitrogen in 35, so we decided to convert 35b to the 

corresponding HBr salt to conceal this functionality. This approach had been 

employed successfully in the literature.
45-47

 We then probed the ring-closing 
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metathesis of 35b•HBr with Hoveyda-Grubbs 2
nd

 generation catalyst, which had 

been reported to be the catalyst of choice for the formation of pyrrolines.
42,45,47,48

 

Employing elevated temperatures (1,2-dichloroethane at reflux) and 4.0 mol% 

Hoveyda-Grubbs 2
nd

 generation catalyst, chiral pyrroline 37 was obtained in 79% 

yield (Scheme 12). Importantly, 37 was formed without loss of ee. Noteworthy is 

the fact that the corresponding HCl salt of 35b led to decomposition of the starting 

material under reaction conditions. This particular behaviour had been observed in 

previous studies,
45

 and the origin of this effect is unclear. With other Grubbs or 

Hoveyda-Grubbs (1
st
 or 2

nd
 generation) catalysts 37 was obtained in lower yields. 

Several factors are influencing the positive outcome of this reaction: The HBr salt 

of 35b has to be thoroughly dried, so that no traces of acetic acid are present (HBr 

was employed as a solution in acetic acid). Secondly, the catalyst has to be added 

in two batches of 2.0 mol% each, since rapid catalyst deactivation was observed. 

Furthermore, to achieve high isolated yields, a two step procedure has to be 

followed: After cooling down, the first batch of the product can just be filtered off 

and washed with acetone. Like this, analytically pure HBr salt of 37 is obtained 

(~60%). However, it turned out that not all 37•HBr was precipitated as after workup 

of the reaction mixture, a second part of the product was obtained after 

deprotection of the salt and purification by column chromatography. It is important 

that the column is run not too slow, since decomposition of 37 during 

chromatography is observed. The combined batches after filtration and column 

chromatography amount for the reported 79% yield. As will be seen in the following 

section, the reduction of the double bond is carried out with an excess of base, so 

that deprotection of the HBr salt of 37 poses no problems. 

 

Scheme 12 Ring-closing metathesis with Ru-based catalyst 

 

3.4 Reduction of the double bond 

The subsequent reduction of the olefin in pyrroline 37 was first attempted by 

homogenous Rh-catalysed hydrogenation
49

 (Scheme 13), but here also, the 

unprotected amine suppressed any conversion. The hydrogenation of the 
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corresponding HBr salt of 37 under the same conditions turned out to be unfruitful 

as well.  

 

Scheme 13 Attempted hydrogentation of 37 

Since heterogeneous hydrogenation with palladium on solid supports is known to 

racemize allylic amines,
30-40

 we refrained from applying this methodology into our 

synthesis. Instead, we were investigating the use of diimide (39) as reducing 

agent
50

 for the double bond of pyrroline 37. Diimide (or diazene) itself is unstable, 

as it readily disproportionates to hydrazine 38 and dinitrogen (Scheme 14). 

However, when formed in situ, it can be used as a reducing agent for non-polarized 

double bonds, diimid itself being oxidized to dinitrogen, leaving the reduced 

product 41 behind.
50

 The most important feature of this reduction protocol is the 

fact that it is assumed to proceed via a concerted mechanism with a six-membered 

transition state 40. This fact makes the use of this methodology inobjectionable for 

the reduction of double bonds bearing α-stereogenic centers.  

 

Scheme 14 Reduction with diimide / disproportionation of diimide 

It had been reported in the literature that diimide can be generated in situ under 

basic conditions from ortho-nitrobenzenesulfonylhydrazide (NBSH, 42)
51,52

 or 

tosylhydrazine (43)
53,54

 and directly used as mild reducing agents for olefins. We 

tried both conditions on chiral pyrroline 37, but neither of the reactions led to 

conversion of 37 (Scheme 15), as in both cases, the starting material was isolated 

unreacted. This is possibly due to the short lifetime of diimide under the given 

reaction conditions. Effectively, the concentration of diimide 39 has to be higher to 

ensure reduction of the sterically demanding substrate 37. 
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Scheme 15 Attempted reduction of 37 with diimide 

In our institute, a metal-free reduction of olefins based on catalytic formation of 

diimide 39 from cheap and readily available hydrazine with riboflavin-derived 

catalyst 44 and molecular oxygen has been developed.
55

 In this reaction, 44 

oxidizes hydrazine to the actual reducing agent, diimide 39, and then gets 

reoxidized by molecular oxygen (Scheme 16). The actual role of the organocatalyst 

44 on the double bond reduction is therefore of indirect nature.  

 

Scheme 16 Organocatalytic reduction of double bonds 

Catalyst 44 can be synthesized in a one-step procedure from riboflavine. When we 

applied the standard reaction conditions
55

 to the reduction of 37 (Table 1), no 

conversion to 26 was observed, most probably due to the insolubility of 37 in 

ethanol (Table 1, entry 1). When the same reaction was carried out in a mixture of 

dichloromethane and ethanol to ensure solubility of 37, we observed that the 

corresponding pyrrolidine 26 was formed, albeit in very low yields (Table 1, entry 

2). Raising the catalyst loading to 50.0 mol% led to a significant increase in 

conversion of 37 (Table 1, entry 3). It is important to note that even with 

comparatively high catalyst loading of 44 we can still speak of an efficient catalyst, 
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since 44 is only catalytically converting hydrazine 38 to diimide 39, which in turn 

facilitates the double bond reduction. Riboflavine 44 has thus no direct effect on 

the transformation of 37. We found that when the catalyst and hydrazine were 

added slowly (over a period of 10 hours via syringe pump) to the reaction mixture, 

a remarkable increase in conversion was observed (Table 1, entry 4). Finally, full 

conversion to 26 was obtained with 1.0 eq. of riboflavine 44 with respect to 

pyrroline 37 (Table 1, entry 5). As expected, the corresponding pyrrolidine 26 was 

formed without loss of ee. Furthermore, as this transformation is carried out in 

basic conditions, also the HBr salt of 37, which was obtained from the previous 

reaction, could be employed directly. 

Table 1 Reduction of 37 with riboflavine organocatalyst 44 

 

Entry Solvent Amount of 44 Conversion
a
 

1 EtOH 10 n.d. 

2 CH2Cl2/EtOH 1:1 10 traces 

3 CH2Cl2/EtOH 1:1 50
b
 50% 

4 CH2Cl2/EtOH 1:1 50
c
 80% 

5 CH2Cl2/EtOH 1:1 100
c
 full

d
 

a
Determined by 

1
H NMR.  

b
44 and hydrazine hydrate added in 5 min. 

c
44 and hydrazine hydrate added 

slowly over a period of 10 h. 
d
81% isolated yield. 

The success of the slow-addition protocol for this demanding substrate with 

regards to reduction of the double bond can be explained by the fact that the 

catalyst 44 as well as diimide (39) have a limited lifetime under the given reaction 

conditions. The active concentration of the reducing agent is effectively lowered 

during the reaction by diimide disproportionation to dinitrogen and hydrazine (see 

Scheme 14).
56,57

 By adding the organocatalyst 44 and hydrazine 38 slowly to the 

mixture, the active concentration of diimide (39) stays constant during the reaction, 

allowing for higher turnover of the reduction of sterically demanding substrates. 

This new protocol has also been used successfully in the reduction of other olefins 

bearing α-stereogenic centers.
58
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3.5 Synthesis of the corresponding phosphoramidite ligands 

With chiral 2,5-naphthylpyrrolidine in hand, we went on to synthesize the 

corresponding phosphoramidite ligand L1. When 26 was reacted in the presence 

of phosphochloridite 45,
59

 the corresponding phosphoramidite ligand L1 was 

obtained in 60% yield (Scheme 17). It is important to note that the triethylamine 

used has to be freshly distilled over CaH2 for this transformation to proceed 

smoothly. Failure to do this resulted in rapid hydrolysis of phosphochloridite 45 and 

therefore no conversion of pyrrolidine 26. The analytical data of L1 served as basis 

for the determination of the absolute configuration of 26 and thus also its 

precursors by comparison with literature data.
17

 It can be said that the Ir-catalyzed 

double allylic amination with ammonia employing (S,S,S)-19 as catalyst gives the 

corresponding (S,S)-products 35, such as displayed in the previous schemes. It is 

important to note that the attempted synthesis of the (R,S,S)-diastereomer of L1 

gave only traces of product via this synthetic route, indicating that the (S,S,S)-

diastereomer of L1 is sterically favoured.  

 

Scheme 17 Synthesis of phosphoramidites L1 (only the S-diastereomer of BINOL is displayed) 

The synthetic intermediate pyrroline 37 could also be transformed to a 

phosphoramidite ligand. For this reaction to occur, a different synthetic procedure 

was chosen. First, pyrroline 37 was transformed to the corresponding Li-amide, 

and then reacted with phosphochloridite 45 to give the phosphoramidite L3 in 

moderate yields (Scheme 18). It should be noted that the purification of 

phosphoramidites L1 and L3 is difficult due to their instability on silicagel, which 

leads to decomposition to the corresponding starting materials, pyrroline 37 or 

pyrrolidine 26, respectively, during purification. Therefore, column chromatography 

has to be carried out quickly with high polarity of the eluent. 
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Scheme 18 Synthesis of phosphoramidite L3 

 

4. Conclusions  

In summary, we have developed a new, concise catalytic asymmetric synthetic 

route towards chiral 2,5-diarylpyrrolidines. The key step of this synthetic route is a 

double asymmetric allylic amination with ammonia catalyzed by an 

iridium/phosphoramidite complex. This is a powerful reaction which creates two 

stereogenic centers in one transformation in high stereoselectivities, at the same 

time, it is atom-economic in terms of the nitrogen nucleophile used, namely 

ammonia. All steps of the pyrrolidine synthesis are high yielding and both 

enantiomers of the products are available through this novel pathway. The latter is 

a clear advantage over the existing sparteine-mediated processes. Furthermore, 

with the exception of salt formation of 35, the synthesis is protecting group free. 

We successfully employed this new synthetic route to prepare the corresponding 

pyrrolidine- and pyrroline-based phosphoramidite ligands L1 and L3.  

Along the way, we have optimized the protocol for the organocatalytic reduction of 

double bonds employing a riboflavine catalyst. With the new reaction protocol for 

the riboflavine-catalyzed reduction of double bonds, also sterically demanding and 

compounds prone to racemization under hydrogenative conditions can be reduced 

smoothly without endangering any stereogenic center. 

 

5. Experimental section 

General  

Starting materials were purchased from Acros, Sigma–Aldrich or Strem and were 
used as received unless stated otherwise. All solvents were reagent grade and, if 
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necessary, dried and distilled prior to use. Toluene was distilled over Na, THF and 
diethylether were distilled over Na/benzophenone. Column chromatography was 
performed on silica gel (Silicycle SiliaFlash P60, 230–400 mesh). TLC was 
performed on silica gel 60/Kieselguhr F254. 

1
H NMR and 

13
C NMR spectra were 

recorded on a Varian Gemini 200, a Varian VXR300 (299.97 MHz for 
1
H, 75.48 

MHz for 
13

C) or a Varian AMX400 (399.93 MHz for 
1
H, 100.59 MHz for 

13
C) 

spectrometer. Chemical shifts are reported in  values (ppm) relative to literature 
values of solvents and reference compounds.

60
 The following abbreviations are 

used to indicate multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), m 
(multiplet), br (broad). Mass spectra (HRMS) were performed on a Orbitrap system 
from Thermo Scientific. HPLC analysis was performed on a Shimadzu HPLC 
system equipped with two LC-10AD vp solvent delivery systems, a DGU-14 A 
degasser, a SIL-10AD vp auto injector, an SPD-M10 A vp diode array detector, a 
CTO-10 A vp column oven and an SCL-10A vp system controller by using the 
columns indicated for each compound separately. All glassware was flame-dried 
prior to use unless noted otherwise. Phosphochloridite 45

59
, Iridacycle 19

29,61
 and 

riboflavin 44
55

 were synthesized according to literature procedures.  

 

(E)-3-(2-Methoxyphenyl)prop-2-en-1-ol 29a 

(E)-3-(2-methoxyphenyl)acrylaldehyde 28 (1.0 eq., 2.00 g, 12.33 mmol) was 
dissolved in CH2Cl2 (50 ml) and cooled to -78 °C, then 1.50 
eq. diisobutylaluminum hydride (18.50 ml, 18.50 mmol) 
solution (c = 1.0 M in CH2Cl2) was added dropwise. The 
mixture was allowed to warm to ambient temperature and 
stirred for 16 h. After completion of the reaction, as judged 
by TLC, 50 mL of a saturated solution of Rochelle’s salt 

(potassium sodium tartrate) was added and the resulting slurry stirred at rt for 2 h. 
The mixture was then extracted with Et2O (3x 20 mL) and washed with water (2x 
30 mL). The combined organic phases were dried over MgSO4  and all volatiles 
were removed in vacuo to give (E)-3-(2-methoxyphenyl)prop-2-en-1-ol 29a (2.025 
g, 12.33 mmol, quant.) as a colourless oil. The product was used directly in the 
next reaction without further purification. 

 

(E)-Ethyl 3-(naphthalen-2-yl)acrylate 31 

According to a literature procedure,
41

 1.0 eq. triethyl phosphonoacetate (3.97 ml, 
20.0 mmol) was dissolved in 75 mL dry THF at rt. 
Then, 1.0 eq methylmagnesium bromide (6.67 ml, 
20.0 mmol) solution (c = 3.0 M) was added dropwise 
via syringe. The solution was stirred at r.t. for 15 min. 
Then, a solution of 1.1 eq. naphthaldehyde 30 (3.44 
g, 22.0 mmol) in 25 mL dry THF was added slowly 
through a syringe. The resulting yellow mixture was 

heated at reflux for 16 h. After cooling to rt, the reaction was quenched by addition 
of sat. aq. NH4Cl solution (50 ml). The mixture was extracted with diethyl ether (3x 
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25 mL), dried over MgSO4, and subsequently, all volatiles were removed in vacuo 
to yield a yellow solid. The crude product was purified by column chromatography 
(SiO2, pentane/EtOAc 800:15, Rf = 0.2 in pentane/EtOAc 100:1) to yield 3.39 g 
(15.0 mmol, 75%) of the desired product 31 as a white powder. 

1
H NMR (400 MHz, 

CDCl3) δ 7.94 (s, 1H), 7.90 – 7.80 (m, 4H), 7.67 (dd, J = 8.6, 1.7 Hz, 1H), 7.56 – 
7.47 (m, 2H), 6.55 (d, J = 16.0 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.39 – 1.33 (t, J = 
7.4 Hz, 3H). HRMS-ESI

+
: m/z [M+H]

+
 calcd for C15H15NO2: 227.1067; found: 

227.1065 

 

(E)-3-(Naphthalen-2-yl)prop-2-en-1-ol 29b 

(E)-Ethyl 3-(naphthalen-2-yl)acrylate 31 (1.0 eq., 9.866 g, 43.6 mmol) was 
dissolved in CH2Cl2 (50 ml) and cooled to -78 °C. To 
this solution, 2.4 eq. diisobutylaluminum hydride (105 
ml, 105 mmol) solution (c = 1.0 in CH2Cl2) was added 
dropwise. The reaction mixture was stirred for 1 h at 
the same temperature. When TLC analysis showed 
complete dissappearence of the starting material, the 

reaction mixture was warmed to rt and a 100 mL sat. solution of Rochelle’s salt 
was added carefully to quench the reaction. This mixture was stirred vigorously at 
rt for 3 h. This mixture was extracted with CH2Cl2 (3x 50 mL). The combined 
organic phases were dried over MgSO4 and all volatiles were removed in vacuo to 
yield (E)-3-(naphthalen-2-yl)prop-2-en-1-ol 29b (5.46 g, 29.6 mmol, 68 %) as a 
white powder. This was used without further purification. (Rf = 0.25 in Pentane / 
EtOAc 40:1) 

1
H NMR (400 MHz, CDCl3) δ 7.82 (ddd, J = 13.5, 8.2, 3.7 Hz, 3H), 

7.74 (s, 1H), 7.61 (dd, J = 8.6, 1.6 Hz, 1H), 7.52 – 7.41 (m, 2H), 6.79 (d, J = 15.9 
Hz, 1H), 6.50 (dt, J = 15.9, 5.7 Hz, 1H), 4.39 (td, J = 5.8, 1.4 Hz, 2H), 1.49 (t, J = 
5.9 Hz, 1H). HRMS-ESI

+
: m/z [M+H

+
-H2O] calcd for C13H11: 167.0855; found: 

167.0852. 

 

(Z)-But-2-ene-1,4-diyl dimethyl dicarbonate 34
62

  

(Z)-But-2-ene-1,4-diol (1.0 eq., 5.0 ml, 60.7 mmol), 2.0 eq. pyridine (9.82 ml, 121 
mmol) were dissolved in CH2Cl2 (50 ml) at 0 °C, 
then 2.2 eq. chloro methylformiate (10.32 ml, 134 
mmol) were added dropwise and the mixture was 
allowed to warm to room temperature. After TLC 
showed full conversion (~1 h), the mixture was 
extracted 3x with aq. HCl (2N) and the resulting 

organic phases were dried over Na2SO4. After removal of all volatiles in vacuo, (Z)-
but-2-ene-1,4-diyl dimethyl dicarbonate 34 (11.91 g, 58.3 mmol, 96 %) was isolated 
as a white solid. 

1
H NMR (400 MHz, CDCl3) δ 5.75 – 5.67 (m, 2H), 4.69 – 4.63 (m, 

4H), 3.70 – 3.65 (m, 6H). 
13

C NMR (101 MHz, CDCl3) δ 155.28, 127.74, 62.90, 
54.61. HRMS-ESI

+
: m/z [M+Na

+
] calcd for C18H12O6Na: 227.0526; found: 227.0535. 

 

General procedure for the synthesis of allylic carbonates 32: 
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To a solution of allyl alcohol 29 (1.0 eq.) and pyridine (2.2 eq.) in CH2Cl2 (20 
mL/mmol) methyl chloroformate (2.0 eq.) was added dropwise at 0 °C. After 5 min. 
the solution was warmed to room temperature and was stirred for 1 h. Then, it was 
washed with aq. HCl (2N) (3x 5 mL/mmol) and dried over Na2SO4. The 
corresponding products 32 were obtained as a white solid after evaporation of the 
solvent. 

 

(E)-3-(2-Methoxyphenyl)allyl methyl carbonate 32a 

According to the general procedure, 1.00 eq. (E)-3-(2-methoxyphenyl)prop-2-en-1-
ol 29a (2.025 g, 12.33 mmol) was transformed to (E)-
3-(2-methoxyphenyl)allyl methyl carbonate 32a (2.20 
g, 9.90 mmol, 80 %) as a white powder. 

1
H NMR (201 

MHz, CDCl3) δ 7.43 (dd, J = 7.6, 1.6 Hz, 1H), 7.32 – 
7.15 (m, 1H), 6.97 (d, J = 4.2 Hz, 1H), 6.88 (t, J = 7.4 
Hz, 2H), 6.49 – 6.18 (m, 1H), 4.89 – 4.71 (m, 2H), 

3.84 (s, 3H), 3.80 (s, 3H). HRMS-ESI
+
: m/z [M-OCO2Me] calcd for C11H10O: 

147.0810; found: 147.0804. 

 

(E)-Methyl 3-(naphthalen-2-yl)allyl carbonate 32b
63

  

2-Vinylnaphthalene 33 (1.00 eq., 0.154 g, 1.00 mmol) was dissolved in 10 mL 
CH2Cl2 at room temperature and 
butenedimethylcarbonate 34 (2.00 eq., 0.409 g, 
2.00 mmol) were added. Then, a solution of 5 
mol% Hoveyda-Grubbs 2

nd
 generation catalyst 

(0.031 g, 0.05 mmol) in 0.5 mL CH2Cl2 was 
added and the reaction mixture was heated at 

reflux for 16 h. After cooling, all volatiles were removed in vacuo to give a brown-
green solid. This was purified by column chromatography (SiO2, pentane/EtOAc 
20:1, Rf = 0.8 in pentane/EtOAc 10:1) to give 32b as a white powder (0.218 g, 0.9 
mmol, 90%). 

1
H NMR (200 MHz, CDCl3): δ = 7.90 – 7.72 (m, 4H), 7.60 (m, 1H), 

7.48 (m, 2H), 6.86 (d, J = 15.9 Hz, 1H), 6.43 (dt, J = 15.8, 6.4 Hz, 1H), 4.86 (dd, J 
= 6.4, 1.2 Hz, 2H), 3.85 – 3.82 (s, 2H). 

13
C NMR (50 MHz, CDCl3): δ = 155.66, 

134.85, 133.44, 133.42, 133.20, 128.28, 128.05, 127.64, 127.01, 126.33, 126.15, 
123.41, 122.70, 68.46, 54.85. HRMS-ESI

+
: m/z [M-OCO2Me]

+
 calcd for C13H11: 

167.0861; found: 167.0853. 

 

(S)-Bis((S)-1-(2-methoxyphenyl)allyl)amine 35a 

(E)-3-(2-Methoxyphenyl)allyl methyl carbonate 32a (1.0 eq., 0.027 g, 0.121 mmol) 
and 0.06 eq. (S,S,S)-19 (0.010 g, 7.25 µmol) were 
mixed in a dried Schlenk tube and 1 mL ammonia in 
EtOH (c = 2.0 M) was added. THF was added until all 
starting materials were dissolved (~0.7 mL). The 
reaction was stirred for 16 h at rt. The conversion was 
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checked by TLC analysis. After full conversion was reached, all volatiles were 
removed in vacuo to yield the crude product, which was further purified by column 
chromatography (SiO2, Pet-ether 40-60/EtOAc 20:1 + 1% NEt3, Rf = 0.45 in Pet-
ether 40-60/ EtOAc 10:1) to yield (S)-bis((S)-1-(2-methoxyphenyl)allyl)amine 35a 
as a white solid (0.033 g, 0.106 mmol, 88 %, 99% ee). 

1
H NMR (201 MHz, CDCl3) 

δ 7.33 (d, J = 7.4 Hz, 2H), 7.29 – 7.14 (m, 2H), 7.06 – 6.78 (m, 4H), 6.23 – 5.81 (m, 
2H), 5.26 – 4.94 (m, 4H), 4.53 (t, J = 6.9 Hz, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 2.14 (s 
(br), 1H). 

13
C NMR (50 MHz, CDCl3) δ 157.16, 140.33, 128.39, 127.82, 120.71, 

114.64, 110.69, 104.99, 57.29, 55.29. HRMS-ESI
+
: m/z [M+H

+
] calcd for 

C20H24NO2: 310.1802; found: 310.1800. HPLC analysis: The ee was determined by 
HPLC analysis, Chiralpak AD (n-heptane/i-PrOH 99:1, 200 nm, flow rate 0.5 
mL/min), retention times (min.) S,S-enantiomer: 4.49, R,R-enantiomer: 5.03. The 
enantiomeric excess was obtained by comparison of both the pure enantiomers as 
well as a mixture of both enantiomers of 35a. 

 

(S)-Bis((S)-1-(naphthalen-2-yl)allyl)amine 35b 

In a glovebox, (E)-methyl (3-(naphthalen-2-yl)allyl) carbonate 32b (1.00 eq., 0.242 
g, 1.00 mmol) and 6.00 mol% 19 (0.083 g, 
0.060 mmol) were introduced into a flame-
dried Schlenk tube. After sealing, the tube 
was taken out of the glovebox, flushed with 
nitrogen and 1.5 mL of a 2.0 M solution of 
ammonia in ethanol was added. Then, dry 
THF was added dropwise until all of the 
starting material was dissolved (~0.8 mL). 

The yellow mixture was stirred at room temperature for 16 h. After full conversion 
was reached, as checked by TLC, all volatiles were removed in vacuo and the 
resulting yellow oil was purified by flash chromatography (SiO2, pentane/EtOAc 
40:1 + 1% NEt3, Rf = 0.85 in pentane/EtOAc 10:1) to yield (S)-bis((S)-1-
(naphthalen-2-yl)allyl)amine 35b (0.166 g, 0.475 mmol, 95 % yield) as a colourless 
oil. [α]D

20
 = -104.6 (c = 1.02, CHCl3) 

1
H NMR (200 MHz, CDCl3): δ = 7.97 – 7.81 (m, 

6H), 7.77 (s, 2H), 7.62 – 7.40 (m, 6H), 6.26 – 5.90 (m, 2H), 5.33 (t, J = 1.4 Hz, 1H), 
5.28 – 5.21 (m, 2H), 5.20 – 5.15 (m, 1H), 4.41 (d, J = 6.6 Hz, 2H), 3.86 (s (br), 1H). 
13

C NMR (50 MHz, CDCl3): δ = 140.80, 140.01, 133.45, 132.85, 128.29, 127.81, 
127.63, 126.13, 125.98, 125.64, 125.61, 115.23, 62.28. HRMS-ESI

+
: m/z [M+H]

+
 

calcd for C26H24N: 350.1909; found: 350.1901. HPLC analysis: ee was determined 
by HPLC analysis, Chiralpak AD (n-heptane/i-PrOH 95:5, 215 nm, flow rate 0.5 
mL/min), retention times (min.) S,S-enantiomer: 4.05, R,R-enantiomer: 4.67. The 
enantiomeric excess was obtained by comparison of both the pure enantiomers as 
well as a mixture of both enantiomers of 35b. 
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(2S,5S)-2,5-Di(naphthalen-2-yl)-2,5-dihydro-1H-pyrrole 37 

(S)-Bis((S)-1-(naphthalen-2-yl)allyl)amine 35b (1.00 eq., 0.330 g, 0.944 mmol) was 
dissolved in 10 mL EtOAc at r.t. and 5 mL 
hydrogen bromide solution (32% in AcOH) 
was added. After stirring for 5 min, all 
volatiles were removed in vacuo and the 
yellow oil was dried under vacuum for 16 h 
to yield a pale yellow solid. This was 

dissolved in degassed DCE (5.00 mL) and subsequently 2.0 mol% Hoveyda-
Grubbs 2

nd
 generation catalyst (0.024 g, 0.038 mmol) in 1 mL of DCE (5.00 mL) 

were added. This mixture was heated to reflux for 6 h. Then, 2.0 mol% of catalyst 
were added and the reaction mixture was heated at reflux for 16 hours. The 
conversion of the reaction was checked by 

1
H NMR (Samples were washed with 

2N aq. KOH and extracted with CH2Cl2). After cooling, the mixture was filtered and 
the resulting brown solid was washed several times with acetone to yield the HBr 
salt of the desired product 37 as an off-white solid after drying. The resulting 
organic phase was washed with 2N aq. KOH solution (3x 10 mL). After re-
extraction of the aqueous layers with 10 mL CH2Cl2, the combined organic phases 
were dried over Na2SO4 and all volatiles were removed in vacuo to yield a dark 
green solid. This was purified by column chromatography (SiO2, Pentane/EtOAc 
20:1 + 1% NEt3, Rf = 0.5 in Pentane/EtOAc 10:1) to yield (2S,5S)-2,5-
di(naphthalen-2-yl)-2,5-dihydro-1H-pyrrole 37 (0.240 g, 0.746 mmol, 79 % yield) as 
a white powder. (Combined yield from column chromatography and filtration). [α]D

20
 

= -521.25 (c = 1.01, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ = 7.90 – 7.80 (m, 8H), 

7.54 (m, 2H), 7.52 – 7.42 (m, 4H), 6.11 (m, 2H), 5.56 (m, 2H), 2.44 (s (br), 1H). 
13

C 
NMR (50 MHz, CDCl3): δ = 141.72, 133.49, 132.91, 132.49, 128.55, 128.36, 
127.83, 127.65, 126.64, 126.08, 125.67, 125.32, 125.11, 69.57. HRMS-ESI

+
: m/z 

[M+H]
+
 calcd for C24H20N: 322.1596; found: 322.1591. HPLC analysis: ee was 

determined by HPLC analysis, Chiralcel OD-H (n-heptane/i-PrOH 95.5:0.5, 210 
nm, flow rate 0.5 mL/min), retention times (min.) S,S-enantiomer: 9.47, R,R-
enantiomer: 10.29. The enantiomeric excess was obtained by comparison of both 
the pure enantiomers as well as a mixture of both enantiomers of 37. 

 

(2S,5S)-2,5-Di(naphthalen-2-yl)pyrrolidine 26
25

 

(2S,5S)-2,5-Di(naphthalen-2-yl)-2,5-dihydro-1H-pyrrole 37 (1.00 eq., 0.142 g, 0.442 
mmol) (or the corresponding HBr salt) was 
dissolved in 10 mL CH2Cl2 at r.t., an oxygen 
atmosphere was applied (1 atm) and the 
reaction mixture was stirred extremely 
vigourously. Then, via syringe pump, a 
solution of riboflavin catalyst 44 (0.180 g) in 
10 mL ethanol and an excess hydrazine 

hydrate (4.30 ml, 88.00 mmol) were added over a period of 10 h. The reaction 
mixture was stirred at rt for 16 h and the progress of the reaction was checked by 
1
H NMR. (Samples were washed with H2O and extracted with CH2Cl2.) The mixture 



Asymmetric Synthesis of Naphthylpyrrolidine 

  45 

was washed with water (3x 10 mL), the aqueous layers were reextracted with 
CH2Cl2 (10 mL) and the organic layers combined. After drying over Na2SO4, all 
volatiles were removed in vacuo to yield a pale yellow solid. This was purified by 
column chromatography (SiO2, pentane/EtOAc 20:1 + 1% NEt3, Rf = 0.3 in 
pentane/EtOAc 10:1) to yield (2S,5S)-2,5-di(naphthalen-2-yl)pyrrolidine 26 (0.116 
g, 0.358 mmol, 81 % yield) as a white powder. [α]D

20
 = -127.9 (c = 0.91, CHCl3). 

1
H 

NMR (400 MHz, CDCl3): δ = 7.94 – 7.82 (m, 8H), 7.61 (dd, J = 8.5, 1.7 Hz, 2H), 
7.55 – 7.42 (m, 4H), 4.82 (t, J = 6.8 Hz, 2H), 2.66 – 2.46 (m, 2H), 2.39 (s (br), 1H), 
2.07 (m, 2H). 

13
C NMR (50 MHz, CDCl3): δ = 143.16, 133.41, 132.63, 128.29, 

127.76, 127.60, 126.03, 125.47, 124.99, 124.50, 62.47, 35.53. HRMS-ESI
+
: m/z 

[M+H]
+
 calcd for C24H22N: 324.1752; found: 324.1745. HPLC analysis: ee was 

determined by HPLC analysis, Chiralpak AD (n-heptane/i-PrOH 95:5, 225 nm, flow 
rate 0.5 mL/min), retention times (min.) R,R-enantiomer: 12.33, S,S-enantiomer: 
15.03. The enantiomeric excess was obtained by comparison of both the pure 
enantiomers as well as a mixture of both enantiomers of 26. 

 

(S,S,S)-Phosphoramidite ligand L1
17

 

(2S,5S)-2,5-di(naphthalen-2-yl)pyrrolidine 26 (1.00 eq., 0.085 g, 0.263 mmol), 
triethylamine (5.00 eq., 0.183 ml, 1.314 mmol) and 
DMAP (0.01 eq., 3.2 mg, 0.027 mmol) were dissolved 
in 5 mL toluene and cooled to 0 °C. To this, a 0.5 
molar solution of (S)-phosphochloridite 45 (1.20 eq., 
0.631 ml, 0.315 mmol) was added dropwise. The 
reaction was allowed to warm up to room temperature 
and stirred for 16 h. Then, all volatiles were removed 
in vacuo and the residual off-white solid was purified 
by column chromatography. (SiO2, Pentate / EtOAc 

10:1 + 1% NEt3, Rf = 0.9 in pentane / EtOAc 10:1) to 
yield phosphoramidite L1 (0.100 g, 0.157 mmol, 60% 
yield) as a white powder. [α]D

20
 = -6.2 (c = 0.86, 

CHCl3). 
1
H NMR (400 MHz, CDCl3): δ = 7.98 – 7.79 

(m, 10H), 7.56 (m, 5H), 7.44 (d, J = 8.5 Hz, 2H), 7.35 
– 7.29 (m, 3H), 7.25 – 7.15 (m, 2H), 7.11 (m, 2H), 

6.60 (d, J = 8.0 Hz, 1H), 5.87 (d, J = 8.0 Hz, 1H), 5.39 (d, J = 6.6 Hz, 2H), 2.54 (m, 
2H), 1.81 (m, 2H). 

13
C NMR (50 MHz, CDCl3): δ = 149.48, 149.04, 143.39, 143.29, 

133.43, 132.75, 131.25, 130.19, 129.89, 128.26, 127.99, 127.70, 127.06, 126.94, 
126.24, 125.70, 125.41, 125.22, 124.58, 123.98, 121.91, 120.84, 62.86, 33.23. 

31
P-

NMR (162 MHz, CDCl3): δ = 145.98. HRMS-APCI
+
: m/z [M+H]

+
 calcd for 

C44H33NO2P: 638.2249; found: 638.2245.  
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(S,S,S)-Phosphoramidite ligand L3 

(2S,5S)-2,5-Di(naphthalen-2-yl)-2,5-dihydro-1H-pyrrole 37 (1.0 eq. 0.065 g, 0.202 
mmol) was dissolved in toluene (2 ml) and cooled to -
78 °C. Then, 1.0 eq. nBuLi (0.126 ml, 0.202 mmol) 
solution (c = 1.6 M) was added slowly. The reaction 
mixture was stirred at –78 ° for 2 h, then the lithium 
amide solution was added to a solution of (S)-
phosphorchloridite 45 (0.485 ml, 0.243 mmol) in 
toluene (10 mL), which was cooled to 0 °C. The 
mixture was stirred overnight and was allowed to 
warm up to rt. Subsequently, the reaction mixture was 
filtered through celite and all volatiles were removed in 
vacuo to yield the crude product as a yellow solid. This 
was purified by column chromatography (SiO2, 
pentane / EtOAc 20:1 + 1% NEt3, Rf = 0.9 in pentane / 
EtOAc 10:1) to yield L3  (0.050 g, 0.079 mmol, 39%) 
as a white solid. 

1
H NMR (400 MHz, CDCl3) δ 7.87 (d, 

J = 8.1 Hz, 2H), 7.78 (dd, J = 8.7, 5.5 Hz, 4H), 7.61 – 7.42 (m, 12H), 7.32 – 7.17 
(m, 6H), 6.21 (d, J = 8.8 Hz, 1H), 6.04 (s, 2H), 5.99 (d, J = 8.7 Hz, 1H), 5.86 (s, 
2H). 

13
C NMR (101 MHz, CDCl3) δ 140.29, 133.52, 133.09, 132.00, 131.24, 

131.05, 130.08, 128.69, 128.46, 128.12, 127.93, 127.66, 127.62, 127.14, 126.63, 
126.49, 126.21, 126.10, 125.76, 125.70, 125.56, 125.14, 124.56, 123.68, 123.14, 
121.87, 120.98, 69.98. 

31
P NMR (162 MHz, CDCl3) δ 145.22. [α]D

20
 = -12.4 (c = 

0.77 in CHCl3). HRMS-ESI
+
: m/z [M+H]

+
 calcd for C44H31NO2P: 636.2105; found: 

636.2105. 
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Chapter 3  

Iridium-catalyzed Allylic Amidation 
- Asymmetric Synthesis of  
Tetrahydroisoquinolines and 
Saturated N-Heterocycles 

The first intramolecular asymmetric Ir-catalyzed allylic amidation has been 
developed. Using this transformation, the asymmetric synthesis of chiral nitrogen-
containing heterocycles, especially tetrahydroisoquinolines is achieved in excellent 
yields and enantioselectivities. The products are important chiral building blocks for 
the synthesis of biologically active products, in particular alkaloids.  
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1 Introduction 

1.1 Tetrahydroisoquinolines 

Naturally occuring or synthetic compounds based on the bicyclic 

tetrahydroisoquinoline core are a large class of compounds which often show 

interesting biological activities.
1,2

  As examples, Reticuline (1) and Tubocurarine (2) 

are depicted (Figure 1). Reticuline is an alkaloid found in the latex of opium poppy; 

it has recently been suggested that it is one of the intermediates for the in vivo 

biosynthesis of morphine, indicating that it is an important compound related to 

intercellular signalling.
3,4

 Tubocurarine (2) is found in the plant extracts of the 

climbing plant Chondrodendron tomentosum which has been used by South 

American natives as arrow poison.
1
 It has been used since the 1970s as 

anaesthetic and 2 and derivatives thereof are in use today as highly active
5
 

neuromuscular blocking muscle relaxants.
6,7

  

 

Figure 1 Examples of biologically active chiral tetrahydroisoquinolines 

In living organisms, the tetrahydroisoquinoline core is constructed via two closely 

related pathways, employing a Mannich-type or Pictet-Spengler-type reaction 

(Scheme 1):
1
 Phenylethylamine precursors 3, derived from tyrosine, are 

transformed to tetrahydroisoquinolines 5 either by direct condensation with an 

aldehyde to form 5 directly, or via the second pathway employing α-ketoacids, that 

runs via amino acid intermediates 4 followed by decarboxylation to yield 5. Both 

pathways have been found in nature, and generally more sophisticated 

substitutents (R’) like aryl groups are introduced as the corresponding aldehydes, 

whereas simpler substituents like H or Me are usually incorporated to the target 

structures 5 via the ketoacids. 
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Scheme 1 Biosynthesis of tetrahydroisoquinolines 

 

1.2 Synthetic approaches to chiral tetrahydroisoquinolines 

Tetrahydroisoquinoline compounds represent important targets for synthesis, and 

therefore much effort has been directed towards the development of efficient 

enantioselective routes to prepare these important chiral structures.
8-13

 Generally, 

the approaches taken from the phenylethylamine 6 follow two distinct routes, 

mimicking nature’s approach to the same compounds.
8
 The first is via Bischler-

Napieralsky cyclization of amides 7 followed by hydrogenation/reduction of the 

resulting iminium ion 8 to 9 and the second is by Pictet-Spengler condensation 

reactions of 6 with aldehydes to give 9 (Scheme 2). It should be noted that the 

Pictet-Spengler reaction gives better results when electron-rich aromatic 

compounds are employed. The Bischler-Napieralksy reaction, on the other hand, 

has a broader scope in this regard. Although a variety of enantioselective methods 

using the former approach are known, a general asymmetric Pictet-Spengler 

reaction to generate tetrahydroisoquinolines with high yields and 

enantioselectivities is not known so far.
8
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Scheme 2 General synthetic approaches to tetrahydroisoquinolines 

Some of the reported strategies will be discussed briefly. One approach to chiral 

tetrahydroisoquinolines is based on an asymmetric Ru-catalyzed transfer 

hydrogenation of cyclic iminium ions – products of the Bischler-Napieralsky 

reaction - giving tetrahydroisoquinolines 12 bearing unfunctionalized 5- or 6-

membered rings.
14,15

 In this case, iminium ion 11 can be converted to the 

corresponding chiral isoquinoline 12 (n = 1, Crispine A – vide infra) in very good 

yields and enantioselectivities (Scheme 3). For the asymmetric transfer 

hydrogenation, a Ru catalyst based on a chiral diamine was employed. 

 

Scheme 3 Asymmetric transfer hydrogenation 

An acyl-Mannich reaction to construct the related chiral dihydroisoquinolines 16 

has recently been described.
16

 With chiral thiourea 15 in 10 mol% loading, the 

conversion of quinolines 13 with silyl enolether 14 to the desired chiral products 16 

proceeds with generally very good yields and enantioselectivities. It has to be 

noted, though, that the temperature plays a critical role in this transformation and 

has to be carefully controlled to achieve the reported results, certainly a downside 

in terms of applicability. To reach the envisaged tetrahydroisoquinolines, one 

further reduction/hydrogenation step has to be carried out. 
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Scheme 4 Asymmetric acyl-Mannich reaction 

A Lewis acid-catalyzed aromatic cyclization of allylamines 17 was reported.
17

 This 

transformation gives rise to the corresponding N-protected tetrahydroisoquinolines 

18 with a terminal double bond as substituent in up to excellent yields. These 

compounds are valuable building blocks with a variety of possibilities for further 

functionalization. The substituent R’ in the α-position to the nitrogen atom was 

found to have little influence on the diastereoselectivity. It is important to note that 

for this transformation, only electron-rich aromatic compounds 17 are converted to 

the desired products 18. If R = Me, no turnover was found under a number of 

cyclization conditions. This marks an important downside of this method and the 

related Pictet-Spengler reaction
8
 which requires activated aromatic compounds for 

the ring-closing to occur. 

 

Scheme 5 Lewis-acid catalyzed aromatic cyclizations 

 

2 Goal 

The aim of this research was to develop a transition-metal based catalytic 

asymmetric approach to chiral tetrahydroisoquinolines. It should be general in 

terms of substrate scope and thus independent of the electronic parameters of the 

aromatic system. In this manner, problems associated with the widely-used Pictet-

Spengler reaction should be overcome. Ideally, this approach to chiral nitrogen-

containing heterocycles should be general and not be limited to 
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tetrahydroisoquinolines alone or 6-membered N-heterocycles. Needless to say, the 

formation of both enantiomers should be feasible with high selectivity. We 

envisaged that an allylic substitution protocol should be able to fulfill all of the 

above prerequisites. Furthermore, it would furnish a stereogenic center bearing a 

terminal double bond, which is an ideal starting point for further synthesis. As the 

last requirement, if an N-protecting group had to be employed, it should be easily 

removable. 

 

3 Results and Discussion 

From related studies on β-carboline compounds (see Chapter 4), it was clear that 

the direct allylic amination approach was not viable, i.e. making use of an 

unprotected ethylamine moiety and employing it as nucleophile for the 

intramolecular allylic amination. We instead chose to employ a nitrogen-based 

functional group that could act both as the nucleophile for the allylic substitution as 

well as acting as a protecting group during the preparation of the desired starting 

material. As a third requirement, the protecting group should be easily removed 

after installation of the tetrahydroisoquinoline structure. We therefore chose the 

(trifluoro)acetamide as a nucleophile/protecting group for our approach.  

The Ir-catalyzed asymmetric allylic substitution
18-23

 with phosphoramidites
24-28

 as 

chiral ligands represents powerful synthetic methodology which has found 

application in many natural product syntheses.
18,24

 One major advantage of the 

asymmetric iridium-catalyzed allylic substitution is its tolerance towards a large 

variety of nucleophiles, including ammonia.
29-33

 Amides as nucleophiles for these 

transformations have only been reported in the case of potassium 

trifluoroacetamide as ammonia surrogate
29

 or in allylic amidation reactions via 

decarboxylative pathways.
34,35

 Apart from the aforementioned literature 

precedents, a general, highly selective allylic amidation had not been developed, 

therefore we chose to investigate the Ir-catalyzed allylic amidation for the synthesis 

of tetrahydroisoquinolines. Employing iridium catalysts would enable us to work at 

ambient temperatures with a well-understood, but still tunable catalyst system. 

 

3.1 Synthetic approach  

To synthesize the envisaged starting materials 20 for the allylic amidation, i.e. 

phenylethylamines bearing an ortho-allylic carbonate substituent, the approach 

taken was to make use of a Pd-catalyzed cross-coupling reaction to install the 
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allylic alcohol moiety (Scheme 6). For this, 2-iodo or 2-bromo phenylethylamine 

derivatives 21 had to be prepared, which could subsequently be cross-coupled to 

an appropriate organometallic compound. It turned out that the preparation of the 

2-halophenylethylamines 21 represented the bottleneck of the synthesis, since 

selective ortho-halogenation with both electron-rich and –deficient aromatics 

cannot be achieved via a single methodology. Thus, one of the limitations of the 

scope for the preparation of tetrahydroisoquinolines via Ir-catalyzed allylic 

amidation as described in this chapter turned out to be the preparation of the 

corresponding halogenated starting materials (vide infra). 

 

Scheme 6 Retrosynthetic approach 

As mentioned before, the usefulness of the trifluoroacetamide group in the selected 

synthetic approach is twofold. First it serves as protecting group during the 

synthesis of the allylic carbonates 20, whose key step relies on a Pd-catalyzed 

cross-coupling reaction to introduce the allylic moiety (Scheme 6). Here, 

unprotected amines are generally not accepted. Second, amide 20 serves as the 

actual nucleophile of the Ir-catalyzed allylic substitution, which furnishes the 

tetrahydroisoquinoline core 19. An important property of the trifluoroacetamide 

group is that the secondary amine moiety could easily be deprotected without 

jeopardizing the adjacent sensitive allylic-benzylic stereocentre. This is a major 

advantage over N-protecting groups which have to be removed by hydrogenolysis, 
36,37

 or other harsh conditions that could endanger racemization-sensitive 

stereocenters.
38-48

  

 

3.2 Synthesis of starting materials  

Synthesis of the 2-halophenylethylamine derivatives 

First, the commercially unavailable ortho-halophenylethylamine derivatives had to 

be synthesized. The protection of the primary amines 22 to the corresponding 

(trifluoro)acetamides 23 with the appropriate anhydrides was carried out (Scheme 

7). 
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Scheme 7 Preparation of (trifluoro)acetamides 23 

The choice of the appropriate iodination method was crucial with for a high yielding 

and regioselective transformation. With electron-rich (trifluoro)acetamides 24 , 

simple iodination with the electrophilic reagent ICl could be achieved according to 

literature procedures
49

 yielding the desired ortho-iodophenylethylamides 26 with 

high yields and complete regioselectivity (Scheme 8). The preparation of 27 was 

carried out according to a literature procedure,
50

 starting from the commercially 

available nitrile 25, which was converted to 27 through a 

iodination/reduction/protection protocol in good yield. 

 

Scheme 8 Iodination of electron-rich phenylethylamines
49,50

 

However, iodination of para-tolylphenylethyltrifluoroacetamide 28a could not be 

carried out in a selective fashion according to the same approach due to lack of 

regioselectivity of the aromatic substitution, which can be attributed to the lower 

electron density of the aromatic ring. The same holds true for the para-chloro 

derivative 28b. For the selective ortho-iodination of those two compounds, an 

iodination protocol employing bis(pyridine)iodonium tetrafluoroborate (IPy2)
51

 was 

employed (Scheme 9).
52

 The corresponding iodides 29 were obtained with 

excellent yields and regioselectivities. Finally, for the unsubstituted 
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phenylethylamine derivative 30f (see Scheme 10), the trifluoroacetamide-derivative 

of the commercially available bromide was used for the subsequent cross-coupling 

reaction. 

 

Scheme 9 Selective Iodination with IPy2 

To prepare the corresponding allylic alcohols 31, a Stille coupling reaction
53

 with E-

tributylstannylpropenol
54

 with 5.0 mol% Pd catalyst was carried out at 70 °C 

(Scheme 10). This coupling method was found to be the highest yielding and most 

reliable coupling protocol, as established in preliminary studies (see also chapter 

4). Iodides 30 were smoothly converted to the allylic alcohols 31 in high yields, an 

exception being the electron poor para-chloro compound 31e, with 51% isolated 

yield. In the case of the bromo-phenylethyltrifluoroacetamide with no further 

substituents on the aromatic ring, a slightly elevated temperature of 90 °C had to 

be used to achieve full conversion to the desired product. Already at this stage the 

detrimental performance of the acetamide protection group in comparison to the 

trifluoroacetamide group was visible, since the acetamide-protected allylic alcohol 

31f was isolated in substantially lower yield, due to the (unexpected) considerably 

higher polarity and subsequent difficult purification. This general trend is visible 

through the following transformations, further supporting the choice of 

trifluoroacetamide as the protecting group. Conversion of the allylic alcohols 31 to 

the corresponding carbonates 32 with methyl chloroformate proceeded in high 

yields. 

 

Scheme 10 Stille coupling and transformation to allylic carbonates 

 



 

 

58 

   

Chapter 3 

 

Synthesis of the linear allylic carbonates 

The synthesis of the linear allylic carbonates for the allylic amidation to give 

saturated N-heterocycles is straightforward (Scheme 11). Trifluoroacetamide (33) 

was alkylated with bromoalkenes of varying chain lengths to give the 

corresponding terminal alkenes 34 in excellent yields. Alkenes 34 were 

subsequently transformed to the allylic carbonates 35 by cross-metathesis with Z-

butenediyl methyl carbonate in good yields,
31

 employing Hoveyda-Grubbs 2
nd

 

generation catalyst (Scheme 11).
55

 It is important to note that for the latter reaction 

to occur in high yields, elevated temperatures of 70 °C were necessary. Reactions 

in refluxing CH2Cl2 gave low conversions to the corresponding carbonates 35. 

 

 

Scheme 11 Preparation of linear allylic carbonates 

 

3.3 Catalyst optimization 

Base screening 

One of the most influential components of the Ir-catalyzed allylic amidation turned 

out to be the base. Not only were substantial changes in the conversion of the 

benchmark substrate 32a observed, but the base proved to be highly influential in 

terms of enantioselectivity. Compound 32a was chosen as the starting point of the 

investigation since the 4,5-dimethoxy substitution of 37a is very common in 

naturally occuring tetrahydroisoquinoline alkaloids, but also it served as a point of 
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comparison to the related Pd-based catalytic systems.
13,49

 We set off to investigate 

the influence of various bases on the catalytic system, which was comprised of 

preformed iridacycle 36 in THF at 50 °C (Table 1).
20

 In 36, two phosphoramidite 

ligands are bound to the Ir, one in a κ
1
 fashion via the P atom and one in a κ

2
 

fashion, where both a P and a C atom coordinate to Ir to form a five-membered 

iridacycle. DBU gave 70% conversion and 81% ee (Table 1, entry 1). With catalytic 

amounts of DBU the same enantioselectivity was found, however the reactions did 

not achieve full conversion to 37a. Other related organic bases such as TBD and 

DABCO (see Table 1), which had been reported earlier in combination with Ir 

catalysts for allylic substitutions
56,57

 led to significantly lower or no conversion and  

low enantioselectivities (Table 1, entries 2,5). In the case of TBD, the starting 

material was recovered (Table 1, entry 2). Inorganic bases such as K3PO4 and 

Cs2CO3 (Table 1, entries 3,4) performed similarly disappointing with regard to 

conversion and enantioselectivities. 

  

Table 1 Base Screening
a 

 

Entry Base Conversion
b
 ee

c
  

1 DBU
d
 70% 81% 

2 TBD
e
 n.d. n.d. 

3 K3PO4 10% 19% 

4 Cs2CO3 15% 22% 
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Entry Base Conversion
b
 ee

c
  

5 DABCO
f
 10% 31% 

a
 Reaction conditions: 1.0 eq. 32a (16.9 mg, 0.05 mmol), 5.0 mol% 36 (3.45 mg, 0.0025 mmol) and 1.0 

eq. base (0.05 mmol) were dissolved in 1 mL THF and stirred under a N2 atmosphere at 50 °C for 20 h. 

b
Determined by HPLC. 

c
Determined by chiral HPLC, see experimental section. 

d
1,8-

Diazabicyclo[5.4.0]undec-7-ene. 
e
1,5,7-Triazabicyclo[4.4.0]dec-5-ene. 

f
1,4-Diazabicyclo[2.2.2]octane.  

 

From these results it became clear that the base plays a crucial role for the 

performance of the catalyst with regard to both turnover as well as 

stereodiscrimination. This seems to be in contrast with some of the previously 

reported allylic amination protocols which work well without a base (apart from the 

catalytic amounts of base necessary for the activation of the catalyst).
20,23,57

 In 

those cases, the alkoxide leaving group acts as an additional base to neutralize the 

protons of the nucleophile. One could speculate that the positively charged 

counterion that is formed by protonation of the base could have an influence on the 

allylic substitution, possibly due to a coordinating and thus activating effect of the 

leaving group or the nucleophile. Additional studies are clearly needed to elucidate 

the role of the base in allylic substitutions with iridacycles as catalysts. 

 

Catalyst optimization 

Further investigations to improve the catalytic allylic amidation were carried out. 

With preformed iridacycle 36 at elevated temperatures (50 °C) the reaction did not 

reach full conversion overnight, and the desired tetrahydroisoquinoline 37a could 

be isolated in only 33% yield (Table 2, entry 1). However, we were delighted to find 

that an in situ formed iridacycle, prepared from catalytic amounts of 

phosphoramidite ligand L1 and [Ir(COD)Cl]2, showed a higher activity and led to full 

conversion (73% yield) under the same conditions (Table 2, entry 2) with similar 

enantioselectivities (83% ee). This effect could be explained by the fact that in 

preformed catalyst 36, the κ
1
-phosphoramidite has to decoordinate to liberate a 

coordination site for the intermediate Ir-allyl species
22,58,59

 to form. In the case of 

the in situ prepared iridacycle, only one equivalent of phosphoramidite ligand L1 
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with respect to the iridium is present, so that the last coordination site of the 

catalyst is most probably occupied by a solvent molecule, in our case THF. This is 

expected to dissociate more quickly, giving rise to a much more active catalyst. 

One would hypothesize that the enantioselectivity should remain the same for both 

catalysts, since the ligand staying on the Ir atom stays the same, which is in 

accordance to our observations (Table 2, entries 1,2). It has been established 

earlier that it is the stereogenic center of the iridacycle that governs the 

stereodiscrimination of the transformation.
60

 Lowering the temperature (RT) did not 

affect the enantioselectivity but again resulted in incomplete conversion (Table 2, 

entry 3). Turning to the related, methoxy-substituted phosphoramidite L2,
61

 we 

found the product of the intramolecular asymmetric allylic amidation in excellent 

enantioselectivities (95% ee), with an even higher yield observed at room 

temperature (Table 2, entries 4,5). The ortho-methoxy substitution of L2 clearly has 

a remarkable effect on the transformation. However, it is not established whether 

this effect has its origin in a possible additional coordination, changes in the 

electronic properties or steric effects of ligand L2. Particularly noteworthy is the fact 

that when the corresponding acetamide was subjected to the optimized reaction 

conditions, no allylic amidation occurred even at elevated temperatures (Table 2, 

entry 6), indicating that trifluoroacetamides possess ideal electronic and/or acidic 

requirements for the asymmetric transformation envisaged. 

Table 2 Catalyst optimization
a 

 

Entry R Catalyst Temp. Yield
b
 ee

c
 

1 CF3 (32a) 36 50 °C 33%
e
 81% 

2 CF3 (32a) Ir/L1
d
 50 °C 73% 83% 
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3 CF3 (32a) Ir/L1
d
 RT 55%

e
 80% 

4 CF3 (32a) Ir/L2
d
 50 °C 82% 94% 

5 CF3 (32a) Ir/L2
d
 RT 90% 95% 

6 CH3 (32f) Ir/L2
d
 50 °C n.d. n.d. 

a
Reaction conditions: 1.0 eq. 32a or 32f (0.05 mmol), 5.0 mol% Ir catalyst (0.0025 mmol) and 1.0 eq. 

DBU (8 μL, 0.05 mmol) were dissolved in 1 mL THF and stirred under a N2 atmosphere at the indicated 

temperature until TLC showed full conversion. 
b
Isolated yields. 

c
Determined by HPLC, see experimental 

section. 
d
See Experimental section. 

e
Reaction did not reach full conversion.  

 

3.4 Substrate scope 

Tetrahydroisoquinolines 

To probe the substrate scope of the catalytic system, a collection of chiral 

tetrahydroisoquinolines were prepared, posessing the most common substitution 

patterns of natural products (Table 3).
1,2

 Tetrahydroisoquinolines with donor 

substituents, such as methoxy-, dioxo- as well as methyl groups 37a-c (Table 3, 

entries 1-3) were all obtained in very good yields and with excellent enantiomeric 

excesses ranging from 91 - 95%. Furthermore, the unsubstituted 

tetrahydroisoquinoline 37d (Table 3, entry 4) could be isolated with similarly good 

results (78%, 94% ee). The reactions could be scaled up to 1 mmol scale with the 

same results in terms of yields and enantioselectivities. The absolute configuration 

of the products was established by comparison of the sign of the optical rotation of 

37a to earlier studies.
13

 The absolute configurations of the other products 37 were 

assigned accordingly. 
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Table 3 Substrate Scope Tetrahydroisoquinolines
a 

 

 

Entry Product Temp. Yield
b
 ee

c
 

1 

 

37a rt 97% 95% 

2 

 

37b rt 89% 94% 

3 

 

37c rt 92% 91% 

4 

 

37d rt 78% 94% 

a
 See experimental section. 

b
 Isolated yields. 

c
 Determined by HPLC, see experimental section.  

With chloro-substituted substrate 32e, unexpected results were obtained when the 

Ir-catalyzed allylic amidation was attempted (Table 4). Under optimized reaction 

conditions (Table 4, entry 1), full conversion was observed overnight, but as the 

sole product the isomerized enamide 39 was isolated as a mixture of E and Z 

double bond isomers. The same outcome was found with a catalyst prepared from 

the related phosphoramidite ligand L1 (Table 4, entry 2), albeit with slightly lower 

conversion, reflecting the same trends in terms of activity as found earlier. To 

probe whether the base had an influence on the double-bond isomerization, the 

reaction was carried out at ambient temperature with only catalytic amounts of 

DBU, which had led to lower conversion in the previously studied cases. In the 

case of substrate 32e, however, full conversion to the unwanted enamide 39 was 

observed (Table 4, entry 3). Preformed iridacycle 36 led to no conversion of the 

allylic carbonate 32e, independent of the presence of base (Table 4, entries 4,5). In 
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previous studies of Ir-catalyzed asymmetric allylic etherifications, a similar effect of 

double bond isomerization had been observed.
62

 In that case, the addition of 

catalytic amounts of phenylpropyne to the catalyst had been shown to prevent the 

unwanted isomerization from occuring. When we carried out the allylic amidation in 

the presence of catalytic amounts of phenylpropyne (Table 4, entry 6), still the 

same complete isomerization to enamide 39 was observed. It can be speculated 

that the electronic parameters of the substrate enabled the unwanted isomerization 

to take place, this would then represent a limitation of this catalytic transformation. 

Table 4 Ir-catalyzed allylic amidation of 32e 

 

Entry Conditions 38/39 Conversion ee 

1 
2.5 mol% [Ir(COD)Cl]2 

5.0 mol% L2, 2.0 eq. DBU, 50 °C 
0/100 Full (63% yield) n.d. 

2 
2.5 mol% [Ir(COD)Cl]2 

5.0 mol% L1, 2.0 eq. DBU, 50 °C 
0/100 80% (32% yield) n.d. 

3 
2.5 mol% [Ir(COD)Cl]2 

5.0 mol% L2, 10 mol% DBU, rt 
0/100 full n.d. 

4 5.0 mol% 36 (preformed), 50 °C - none n.d. 

5 
5.0 mol% 36 (preformed) 

2.0 eq. DBU, 50 °C 
- none n.d. 

6 

2.5 mol% [Ir(COD)Cl]2 

5.0 mol% L2 

20 mol% phenylpropyne 

2.0 eq. DBU, 50 °C 

0/100 Full n.d. 
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Saturated N-heterocycles 

The methodology of the asymmetric intramolecular allylic amidation could be 

extended to the synthesis of other chiral nitrogen-containing heterocycles. This 

shows the generality of this transformation, which is not limited to substrates 

bearing aromatic rings in the backbone. Along these lines, 5-, 6- and 7-membered 

chiral heterocycles 40a-c could be synthesized (Table 5, entries 1 – 3). For these 

reactions to proceed smoothly, elevated temperatures of 50 °C were required to 

ensure full conversion. At room temperature, the reactions proceeded with the 

same outcome in terms of enantioselectivity, but with about 50% conversion. The 

reason that in the earlier case of the tetrahydroisoquinolines a lower temperature 

was sufficient for full conversion could be explained by the ortho-substitution of 

both the nucleophile as well as the allyl carbonate on the phenyl ring. In this case, 

the two reaction partners are spatially already closer to each other and less energy 

is necessary for the molecule to adopt a conformation that is beneficial for the 

allylic amidation to take place. This phenomenon is known in literature under the 

name “steric compression”.
63

  In all cases of the saturated heterocycles, however, 

very good to excellent enantioselectivities (up to 96% ee) were found, 

demonstrating the versatility of our new catalytic transformation. The actual yields 

of the products 40a and 40b are low due to their volatilty, however, full conversion 

to the desired heterocycles 40 could be established by 
1
H NMR analysis of the 

crude reaction mixture.  

Table 5 Substrate scope saturated N-heterocycles
a 

 

Entry Product Yield
b
 ee

c
 

1 

 

40a 56%
d, e

 96% 

2 

 

40b 68%
d, e

 88% 
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Entry Product Yield
b
 ee

c
 

3
f
 

 

40c 25%
d, e

 92% 

a
See experimental section. 

b
Isolated yields. 

c
Determined by HPLC, see experimental section. 

d
Products 

are volatile. 
e
100% conversion, determined by 

1
H NMR. 

f
A side reaction was observed, see Scheme 12. 

Noteworthy is the fact that when the synthesis of chiral azepane 40c was 

investigated (Table 5, entry 3), an unexpected side reaction occurred. When allylic 

carbonate 35c was reacted under allylic amidation conditions at 50 °C, chiral 

azepane 40c was found along with linear diene 42 as the major product (Scheme 

12). The product distribution seemed to be independent of temperature (i.e. the 

same outcome was observed at room temperature) and amount of DBU employed. 

This side reaction was only observed for 40c and not in the synthesis of piperidine 

40b or pyrrolidine 40a, indicating that the mechanism of the formation of the 7-

membered ring requires special spatial constraints. Therefore, the formation of the 

azepane is slower and the intermediate Ir-allyl species can react further in via other 

pathways. In the absence of the Ir-catalyst, no reaction was observed, indicating 

that the Ir catalyst is essential for this transformation to take place.  

 

Scheme 12 Observed side reaction / formation of azepane 

There are two possible mechanisms for the formation of the linear diene 42. Since 

it was observed that the formation of 42 only takes place in the presence of the Ir 

catalyst, it can be assumed that the first step involves the formation of the Ir-allyl 

complex. This had previously been isolated and postulated as one of the key steps 

of Ir-catalyzed allylic substitution.
22,58,59

 After formation of the allyl-Ir-complex from 

allylic carbonate 35c, the oxygen atom of the trifluoroacetate could act as a 

nucleophile for the allylic substitution (Scheme 13, path A); a reaction related to 

recent observations made in the Ir-catalyzed asymmetric allylic substitution with 

thiocarbamates,
64

 resulting in a 9-membered heterocycle 44, which can 

subsequently undergo elimination to form the linear diene 42. Alternatively, Ir-
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complex 43 could undergo β-hydride elimination to form 42 directly (Scheme 13, 

path B). This decomposition reaction would hint towards a relatively long-lived 

intermediate 43, which could be explained by the sterically unfavoured formation of 

the envisaged product 44 containing a seven-membered ring. This would also 

explain why similar side-reactions were not observed in the synthesis of pyrrolidine 

40a and piperidine 40b. 

 

Scheme 13 Proposed mechanisms for the formation of diene 42 

 

3.5 Deprotection of the trifluoroacetamide 

The ease of deprotection of the products of the intramolecular asymmetric allylic 

amidation, i.e. chiral secondary trifluoroacetamides, was demonstrated with the 

conversion of 37a (Scheme 14). The product was simply stirred at ambient 

temperature in the presence of an excess of K2CO3 in MeOH/H2O to yield the 

corresponding chiral homoallylic amine 45 in excellent yield, without loss of ee. 

Bearing both a terminal olefin and a secondary amine, 45 is a highly versatile chiral 

building block for the synthesis of chiral tetrahydroisoquinoline-derived structures. 

 

Scheme 14 Deprotection of trifluoroacetamide 30a 
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3.6 Application of chiral tetrahydroisoquinolines in synthesis 

To demonstrate the synthetic utility of the chiral allylic amidation products 37 they 

were explored in synthetic studies towards natural products and biologically active 

compounds. In both cases, the following synthetic steps were building upon the 

highly functional building blocks such as 45, making use of the secondary amine 

and the terminal double bond.   

 

Attempted Synthesis of Crispine A 

Crispine A (12) is an isoquinoline alkaloid isolated from the thistle Carduus crispus, 

from which extracts have been used in traditional Chinese medicine for the 

treatment of rheumatism.
65

 The attempted synthesis was based on chiral 

tetrahydroisoquinoline 45, which was N-allylated to give 46 in good yields (Scheme 

15). The subsequent synthetic route comprised a ring-closing metathesis reaction 

with Ru-based catalysts,
55

  to give the tricyclic precursor to Crispine A 47. To finish 

the synthesis, a metal-free reduction of the double bond was intended,
66,67

 

however, the ring-closed product was oxidized during the metathesis reaction to 

give pyrroline 48. The tendency to quickly oxidize had been observed with related 

compounds earlier,
17

 and in our hands could not be prevented by changing the 

reaction conditions to lower temperatures and/or variation of the metathesis 

catalyst. The use of Mo-based metathesis catalysts
68

 did not show conversion in 

this case. 

 

Scheme 15 Attempted Synthesis of Crispine A 
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Attempted Synthesis of Almorexant 

Almorexant (51)
69

 is a potent inhibitor of the orexin neuropeptide hormones in 

humans, which have an influence on awakeness (Scheme 16).
70

 Therefore, orexin 

inhibitors are used for the treatment of insomnia. It carries a chiral 

tetrahydroisoquinoline core next to an α-chiral amide. We chose this molecule as a 

potential synthetic target to demonstrate the usefulness of the Ir-catalyzed allylic 

amidation. From the N-deprotected compound 45, a functionalization of the 

terminal double bond via Pd-catalyzed cross-coupling followed by a Ugi-type 

reaction
71

 should lead to 50. It needed to be investigated in how far the stereogenic 

center of 49 could induce steroselectivity for the formation of the second 

stereocenter in 50.  Finally, reduction of the double bond
66,67

  would give rise to 

Almorexant (51). 

 

Scheme 16 Anticipated total synthesis of almorexant (51) 

Preliminary synthetic studies revealed the general feasiblity of the envisaged 

synthesis, however, as in the previous case with Crispine A, partial oxidation of the 

nitrogen-containing ring of the tetrahydroisoquinoline core presented some 

synthetic challenge. 

We started off by investigating the possibility of directly installing the para-

trifluorostyrene moiety by cross-metathesis with the N-protected 
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tetrahydroisoquinoline 37a, however, all attempts with Ru-based metathesis 

catalysts did not lead to conversion of 37a to 53 (Scheme 17). The fact that mainly 

the homodimer of 52 was found in the reaction mixture is indicative that the 

reactivity of the terminal olefin of 37a is relatively low. The same low reactivity was 

also found in preliminary attempts to carry out a hydroboration on 37a which led to 

no conversion either.  

 

Scheme 17 Attempted cross metathesis 

The functionalization of the terminal double bond of 37a to yield styrene 55 was 

achieved by employing the Heck reaction. The desired product 55 could be 

obtained from the reaction of tetrahydroisoquinoline 37a with iodobenzene 54 in 

good yield (Scheme 18). However, it should be mentioned that as a side product, 

the isomerized enamide 56 was found. This preliminary result indicates that some 

optimization of the Heck reaction conditions is still necessary. The mixture of 55 

with 56 was subjected to a reduction of the internal double bond employing a 

metal-free flavin-catalyzed recuction protocol
66,67

 furnishing 58 in moderate yield. 

Again, 56 was still present in the reaction mixture. The following deprotection of the 

trifluoroacetamide group went smoothly, however it was accompanied by complete 

oxidation to the corresponding ketimine 59. It is expected that side-product 56 also 

gives 59 after deprotection and isomerization (see also Scheme 19). Even under 

reductive deprotection conditions employing DIBAL-H, 59 was the only product 

isolated, indicating a very fast oxidation of the anticipated secondary amine to 59 

upon contact with air. 
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Scheme 18 Attempted synthesis of Almorexant 

To avoid oxidation of the products, the synthetic steps of reduction and 

deprotection were reversed (Scheme 19). When the impure mixture of the Heck 

reaction, namely trifluoroacetamide 55  and enamide 56, was deprotected before 

the internal olefin was reduced, the desired product 60 could be found as the major 

product. In this case we find it as a mixture with the isomerized product 59, which 

we attributed as the product of the deprotection and isomerization of 56. This result 

and the outcome of the previous attempt (Scheme 17) show that, in principle, the 

deprotection of the trifluoroacetamide moiety is possible, however, the presence of 

the olefin is necessary to prevent oxidation or isomerization to unwanted side 

products.   
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Scheme 19 Deprotection of 55 

The aforementioned results lead to the conclusion that a revised synthetic route 

should be followed to prevent any isomerization or oxidation (Scheme 20): Starting 

off from the deprotected tetrahydroisoquinoline 45, which has been known to be 

stable towards oxidation, first the Ugi-type reaction
71

 to yield the amide should be 

carried out. The next step would be functionalization of the terminal olefin to 

introduce the trifluorotolyl group with subsequent reduction of the double bond.  

This can be carried out by the Heck reaction, which is to be optimized to prevent 

the formation of side-products. This route would lead to the target molecule, 

almorexant (51) avoiding oxidation-labile intermediates. As an alternative, the 

hydroboration of 61 and subsequent Suzuki coupling of 63 would circumvent the 

need for later reduction of the internal double bond.  

 

Scheme 20 Suggested revised synthesis of Almorexant (51) 
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3.7 Intermolecular allylic amidation 

It was anticipated that the newly developed catalyst system for the Ir-catalyzed 

allylic amidation could be extended to an intermolecular variant. This would bear 

some advantages: It would open up the possibility to introduce amines bearing a 

short (i.e. methyl or ethyl) alkyl group, which are difficult to employ in the allylic 

amination due to the fact that they are gaseous. Secondly, since the amines would 

be introduced to the new molecule bearing a trifluoroacetamide group, they would 

be introduced in a protected fashion. If a longer synthesis is envisaged or the allylic 

amidation is carried out early in the synthetic route, this could be advantageous. 

The reaction of N-methyl trifluoroacetamide 65 with cinnamyl methyl carbonate 64 

was used as the benchmark reaction to investigate this catalytic transformation 

(Table 6). With the Ir/L1 catalyst, full conversion of the starting material was 

achieved, however, the only product isolated was the isomerized enamide 67 

(Table 6, entry 1). The same results were found at ambient temperature and with 

only catalytic amounts of base (Table 6, entries 2,3). Also the addition of catalytic 

amounts of phenylpropyne, as mentioned earlier, did not prevent the isomerization 

from taking place (Table 6, entry 4). Again, as in the case of the para-chloro 

tetrahydroisoquinoline 32 (vide supra), it seems that the electronic properties of the 

substrate govern the product distribution of this transformation. For example, the 

phenyl substituent could lead to the isomerization, as the double bond in 67 is 

stabilized through conjugation. 

Table 6 Intermolecular allylic amidation 

 

Entry Conditions Conversion 66 / 67 

1 2.0 eq. DBU, 50 °C full 0/100 

2 2.0 eq. DBU, rt ~80% 0/100 

3 10.0 mol% DBU, 50 °C full 0/100 

4 
2.0 eq. DBU, 50 °C 

20.0 mol% phenylpropyne 
full 0/100 
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4 Conclusions and Future prospects 

In conclusion, we have developed a new asymmetric synthesis of chiral nitrogen-

containing heterocycles, especially tetrahydroisoquinolines, which are important 

building blocks for the synthesis of biologically active products. Our approach is 

based on the first intramolecular asymmetric Ir-catalyzed allylic amidation, and the 

desired products are accessible in excellent yields and enantioselectivities. The 

trifluoroacetamide group serves two purposes in this approach; initially it is used as 

a protecting group during the synthesis stage of the starting materials, but further 

on its enhanced nucleophilicity is exploited for the key asymmetric allylic amidation 

step. We have also demonstrated that deprotection to the corresponding amine 

can be readily executed without loss of ee.  

The applicability of the corresponding products has been demonstrated by two 

attempted synthesis of a naturally occuring and a biologically active product. Both 

syntheses did reveal the tendency of certain tetrahydroisoquinolines to oxidize. 

However, for the synthesis of Almorexant, preliminary studies have led to the 

proposal of a revised synthetic route which should not be hampered by possible 

oxidation of intermediates. 

In the case of the attempted intermolecular allylic amidation and the attempted 

synthesis of para-chlorotetrahydroisoquinoline, where only the isomerized 

enamides were isolated, albeit in good yield, more work has to be done to 

overcome the deterioration of the desired products. The above mentioned 

discovery that the addition of internal alkynes could prevent a similar isomerization 

for an allylic etherification with Ir catalysts has recently led to the identification of a 

highly active Ir-ethene complex 70, which is also capable of selective direct 

asymmetric amination with ammonia (Scheme 21).
30,72

  This more selective 

catalyst should be employed to reinvestigate the reactions which so far have led to 

the isomerized enamides. 

 

Scheme 21 Direct asymmetric allylic amination with ammonia 
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One disadvantage of the present catalytic asymmetric synthesis of 

tetrahydroisoquinolines is that the substrate scope is effectively limited by the 

problematic introduction of the halogens for the Stille cross-coupling, which installs 

the allylic alcohol moiety. Ideally, the allylic alcohol could be introduced without 

prior halogenation of the aromatic ring. A directed C-H activation with transition 

metals
73,74

 could be envisaged (Scheme 22). Again, the trifluoracetamide group 

could be employed: it could direct the C-H activation to the ortho position of 71, 

leading to the desired substitution pattern of the aromatic ring 72. In this manner, 

the synthetic route towards tetrahydroisoquinolines would be shortened 

significantly. 

 

Scheme 22 Proposed C-H activation methodology 

 

5 Experimental Section 

 

General 

Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gel 
60,0.25 mm. Components were visualized by UV and cerium/molybdenum staining. 
Progress and conversion of the reaction were determined by GC-MS (GC, 
HP6890: MS HP5973) with an HP1 or HP5 column (Agilent Technologies, Palo 
Alto, CA). Mass spectra were recorded on a AEI-MS-902 mass spectrometer (EI+) 
or a LTQ Orbitrap XL (ESI+). 

1
H, 

19
F and 

13
C-NMR were recorded on a Varian 

AMX400 (400 and 100.59 MHz, respectively) using TMS or CFCl3 as reference, a 
Varian VXR300 (300 and 75 MHz, respectively) or a Varian Gemini 200, using 
CDCl3 as solvent. Chemical shift values are reported in ppm with the solvent 
resonance as the internal standard (CHCl3: δ 7.26 for 

1
H, δ 77.0 for 

13
C). Data are 

reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, 
q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. 
Optical rotations were measured on a Schmidt + Haensch polarimeter (Polartronic 
MH8) with a 10 cm cell (c given in g/100 mL). Enantiomeric excesses (ee values) 
were determined by HPLC analysis using a Shimadzu LC-10ADVP HPLC 
equipped with a Shimadzu SPD-M10AVP diode array detector and chiral columns 
as indicated. Ees were determined by comparison with the corresponding chiral 
compounds or the mixtures of both R and S enantiomers. All reactions were carried 
out under a nitrogen atmosphere using oven dried glassware and using standard 
Schlenk techniques. CH2Cl2 was dried and distilled over calcium hydride, THF and 
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Et2O were dried and distilled over Na/benzophenone. Toluene was dried and 
distilled over Na. [Ir(COD)Cl]2 was purchased from Strem Chemicals, Inc.. 
Complex 36 was prepared according to literature.

20,29
 Ligand L1 was prepared 

according to literature.
75

 Ligand L2 was prepared according to literature.
61

  

 

General trifluroacetylation/acetylation protocol: 

To a solution of the corresponding amine (1.0 eq.) and NEt3 (2.0 eq.) in CH2Cl2 (2 
mL/mmol) was added dropwise trifluoroacetic anhydride (1.2 eq.) (or acetic 
anhydride in the case of 30f) at 0 °C. The mixture was stirred at this temperature 
for 1 h. The reaction was quenched with water (10 ml) and the mixture extracted 
with CH2Cl2 (3 x 5mL). The combined organic layers were washed with brine, dried 
over Na2SO4 and concentrated under vacuum to afford the corresponding N-
trifluoroacetyl or N-acetyl compound. The products were used without further 
purification. 

 

Preparation of halides 30a-e 

Substrate 30a (X = I) was synthesized following literature procedures.
49

 Substrate 
30b (X = I) was prepared following the general trifluoroacetylation protocol (see 
above) from 2-(2-iodo-3,4-methyldioxyphenyl)ethylamine which was made 
following literature procedures.

50
 30c (X = I) was synthesized from 30a using 

IPy2BF4 (which was recrystallized from CH2Cl2/Et2O before use) as iodinating agent 
following a literature procedure.

52
 Substrate 30d (X = Br) was prepared following 

the general trifluoroacetylation protocol (see above) from commercial 2-
bromophenethylamine. 30f was synthesized following the same procedure as for 
30a,

49
 but with N-acetylation instead of N-trifluoroacetylation (see general 

procedure above). 

 

N-(4-chloro-2-iodophenethyl)-2,2,2-trifluoroacetamide (30e) 

In analogy to a literature procedure,
52

 1.00 eq. N-(4-chlorophenethyl)-2,2,2-
trifluoroacetamide 29b (0.126 g, 0.5 mmol) was 
dissolved in a mixture of CH2Cl2 (100 ml) and 
trifluoracetic acid (10 ml). 4.40 eq. of 
tetrafluorboric acid in Et2O (0.295 ml, 2.0 mmol) 
was added, followed by slow addition of freshly 
recrystallized 2.20 eq. bispyridineiodonium 
tetrafluoroborate (0.371 g, 2.0 mmol). The 

reaction mixture was stirred at room temperature until full conversion was reached 
as judged by GC/MS (~1h). Then, the reaction was quenched by addition of cold 
water (50 mL), the mixture was washed with saturated aq. Na2S2O3 solution (2x 50 
mL). After drying over Na2SO4 and removal of all volatiles N-(4-chloro-2-
iodophenethyl)-2,2,2-trifluoroacetamide 30e (0.175 g, 0.464 mmol, 93 %) was 
obtained as a white solid. This material was used without further purification. 

1
H 
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NMR (201 MHz, CDCl3) δ 7.81 (d, J = 2.1 Hz, 1H), 7.32 – 7.20 (m, 1H), 7.10 (d, J = 
8.2 Hz, 1H), 6.92 (s (br), 1H), 3.57 (dd, J = 13.4, 6.8 Hz, 2H), 2.99 (t, J = 7.2 Hz, 
2H). 

13
C NMR (50 MHz, CDCl3) δ 157.53 (q, J = 36.0 Hz), 138.94, 138.89, 133.33, 

130.34, 128.74, 115.69 (q, J = 293.2 Hz),100.02, 39.67, 38.66. 
19

F NMR (189 MHz, 
CDCl3) δ -75.90. HRMS: (ESI

+
) calculated for C10H9ClF3INO [M+H

+
]: 377.9364, 

found: 377.9358. 

 

General procedure for the synthesis of substrates 31 (Stille coupling): 

To a mixture of halides 30 (1.0 eq.), E-β-tributylstannylpropenol
54

 (1.2 eq.) and LiCl 
(3.0 eq.) in dry DMF (6 mL/mmol), bis(triphenylphosphine)palladium dichloride (5.0 
mol%) was added under nitrogen atmosphere. The resulting solution was stirred at 
70 °C for 16 h. After cooling to room temperature, the mixture was diluted with 
ethyl acetate (15 mL/mmol) and washed with water (4 x 10 mL/mmol). The organic 
layer was dried over Na2SO4 and concentrated under vacuum. Purification by 
column chromatography afforded 31 as white solids. 

 

(E)-2,2,2-Trifluoro-N-(2-(3-hydroxyprop-1-enyl)-4,5-
dimethoxyphenethyl)acetamide 31a 

Following the general procedure, 274 mg of 31a (0.83 mmol, 83%) were isolated 
from the reaction of iodide 30a (403 mg, 1 mmol) 
after purification by column chromatography 
using ethyl acetate/pentane 3:1 as eluent. 

1
H 

NMR (400 MHz, CDCl3) δ 6.96 (s, 1H), 6.93 (br s, 
1H), 6.80 (dt, J = 15.6, 1.4 Hz, 1H), 6.60 (s, 1H), 
6.17 (dt, J = 15.6, 5.4 Hz, 1H), 4.31 (dd, J = 5.4, 
1.6 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.48 (q, J 
= 6.7, 2H), 2.89 (t, J = 6.7, 2H), 2.52 (br s, 1H). 

13
C NMR (101 MHz, CDCl3) δ 157.4 (q, J = 37.0 Hz), 148.8, 148.1, 129.5, 128.4, 

127.7, 127.2, 115.8 (q, J = 287.8 Hz), 112.8, 109.3, 63.4, 55.9, 55.9, 40.9, 32.0. 

 

(E)-2,2,2-Trifluoro-N-(2-(6-(3-hydroxyprop-1-enyl)benzo[d][1,3]dioxol-5-
yl)ethyl)acetamide 31b 

Following the general procedure, 297 mg 31b (0.94 mmol, 78%) were isolated from 
the reaction of iodide 30b (464 mg, 1.2 mmol) 
after purification by column chromatography 
using ethyl acetate/pentane 2:1 as eluent. 

1
H 

NMR (400 MHz, CDCl3) δ 6.96 (s, 1H), 6.82 (dt, 
J = 15.6, 1.5 Hz, 1H), 6.61 (s, 1H), 6.46 (br s, 
1H), 6.16 (dt, J = 15.6, 5.3 Hz, 1H), 5.95 (s, 
2H), 4.33 (t, J = 5.3 Hz, 2H), 3.49 (q, J = 7.1 
Hz, 2H), 2.89 (t, J = 7.1 Hz, 2H), 1.91 (t (br), J = 
5.4 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 

157.5 (q, J = 37.0 Hz), 147.4, 147.2, 130.1, 130.0, 129.8, 128.7, 127.10, 109.6, 
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106.4, 101.1, 63.4, 40.9, 32.4. 
19

F NMR: (376 MHz, CDCl3) δ = -75.98. HRMS 
(ESI+, m/z): calculated for C14H14F3NO4Na [M+Na

+
]: 340.07671, found: 340.07650. 

 

(E)-2,2,2-Trifluoro-N-(2-(3-hydroxyprop-1-enyl)-4-methylphenethyl)acetamide 
31c 

Following the general procedure, 104 mg 31c (0.36 mmol, 72%) were isolated from 
the reaction of iodide 30c (178 mg, 0.5 mmol) after 
purification by column chromatography using ethyl 
acetate/pentane 2:1 as eluent. 

1
H NMR (400 MHz, 

CDCl3) δ 7.27 (d, J = 9.2 Hz, 1H), 7.07 – 6.99 (m, 2H), 
6.88 (dt, J = 15.7, 1.2 Hz, 1H), 6.75 (s (br), 1H), 6.26 
(dt, J = 15.7, 5.2 Hz, 1H), 4.34 (dd, J = 5.2, 1.2 Hz, 
2H), 3.50 (q, J = 7.3 Hz, 2H), 2.92 (t, J = 7.3 Hz, 2H), 
2.33 (s, 3H), 1.87 (s (br), 1H). 

13
C NMR (101 MHz, 

CDCl3) δ 157.5 (q, J = 36.9 Hz), 137.0, 136.1, 131.9, 131.4, 129.8, 128.7, 127.4, 
127.3, 63.4, 40.8, 32.2, 21.0. The CF3 peaks could not be detected. 

19
F NMR: (376 

MHz, CDCl3) δ = -75.99. 

 

(E)-2,2,2-trifluoro-N-(2-(3-hydroxyprop-1-enyl)phenethyl)acetamide 31d 

Following the general procedure, heating the reaction mixture at 90 °C in this case, 
108 mg 31d (0.4 mmol, 79%) were isolated from the 
reaction of bromide 30d (148 mg, 0.5 mmol) after 
purification by column chromatography using ethyl 
acetate/pentane 2:1 as eluent. 

1
H NMR (400 MHz, 

CDCl3) δ 7.46 (dd, J = 7.1, 2.3 Hz, 1H), 7.24 – 7.21 (m, 
2H), 7.13 (dd, J = 6.7, 2.2 Hz, 1H), 6.92 (dt, J = 15.7, 1.6 
Hz, 1H), 6.90 (s (br), 1H), 6.26 (dt, J = 15.7, 5.2 Hz, 1H), 
4.34 (dd, J = 5.2, 1.6 Hz, 2H), 3.51 (q, J = 7.3 Hz, 2H), 

2.96 (t, J = 7.3 Hz, 2H), 2.61 (s (br), 1H). 
13

C NMR (101 MHz, CDCl3) δ 157.5 (q, J 
= 37.1 Hz), 136.3, 134.9, 131.6, 129.9, 127.9, 127.5, 127.3, 126.7, 115.8, (q, J = 
287.4 Hz), 63.3, 40.6, 32.6. HRMS (ESI+, m/z): calculated for C13H14F3NO2Na 
[M+Na

+
]: 296.0869, found: 296.0867. 

 

(E)-N-(4-chloro-2-(3-hydroxyprop-1-enyl)phenethyl)-2,2,2-trifluoroacetamide 
31e 

Following the general procedure, (E)-N-(4-chloro-2(3-hydroxyprop-1-en-1-
yl)phenethyl)-2,2,2-trifluoroacetamide 31e (0.074 
g, 0.240 mmol, 52%) was isolated from the 
reaction of iodide 30e (175 mg, 0.46 mmol) after 
purification by column chromatography (SiO2, 
pentane/EtOAc 1:1, Rf = 0.60 in pentane/EtOAc 
1:1). 

1
H NMR (201 MHz, CDCl3) δ 7.41 (d, J = 2.0 
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Hz, 1H), 7.33 – 7.10 (m, 2H), 7.04 (d, J = 8.2 Hz, 1H), 6.85 (d, J = 15.8 Hz, 1H), 
6.35 – 6.14 (m, 1H), 4.33 (dd, J = 4.8, 1.4 Hz, 2H), 3.45 (dd, J = 14.8, 6.6 Hz, 2H), 
3.02 – 2.85 (m, 2H). 

13
C NMR (50 MHz, CDCl3) δ 137.98, 133.34, 133.09, 132.78, 

131.15, 127.63, 126.44, 125.81, 62.89, 40.45, 32.06. COCF3 signals were not 
observed. 

19
F NMR (189 MHz, CDCl3) δ -75.97. HRMS: (ESI

+
) calculated for 

C13H13ClF3NO2Na [M+Na
+
]: 330.0479, found: 330.0472. 

 

(E)-N-(2-(3-hydroxyprop-1-enyl)-4,5-dimethoxyphenethyl)acetamide 31f 

Following the general procedure, heating the reaction mixture at 80 °C in this case, 
42 mg 31f (0.15 mmol, 30%) were isolated from the 
reaction of iodide 30f (139 mg, 0.4 mmol) after 
purification by column chromatography using ethyl 
acetate/methanol 10:1 as eluent. 

1
H NMR (400 MHz, 

CDCl3) δ 6.97 (s, 1H), 6.88 (dt, J = 15.7, 1.4 Hz, 
1H), 6.62 (s, 1H), 6.17 (dt, J = 15.7, 5.4 Hz, 1H), 
5.71 (s (br), 1H), 4.33 (dd, J = 5.3, 1.4 Hz, 2H), 3.88 
(s, 3H), 3.86 (s, 3H), 3.38 (q, J = 7.4 Hz, 2H), 2.83 (t, 

J = 7.4 Hz, 2H), 2.65 (s (br), 1H), 1.94 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 170.4, 
148.6, 147.8, 129.3, 128.8, 128.6, 127.7, 112.8, 109.1, 63.5, 56.0, 55.9, 40.7, 33.0, 
23.3. 

 

General procedure for the synthesis of allylic carbonates 32: 

To a solution of allyl alcohol 31 (1 equiv.) and pyridine (3 equiv.) in CH2Cl2 (20 
mL/mmol) methyl chloroformate (1.5 equiv.) was added dropwise at 0 °C. After 5 
min. the solution was warmed to room temperature and was stirred for 1 h. Then, it 
was washed with aq. HCl (2N) (3 x 5 mL/mmol) and dried over Na2SO4. The 
corresponding products 32 were obtained as a white solid after evaporation of the 
solvent. 

 

(E)-3-(4,5-Dimethoxy-2-(2-(2,2,2-trifluoroacetamido)ethyl)phenyl)allyl methyl 
carbonate 32a 

Following the general procedure, 280 mg of 32a (0.72 mmol, 90%) were isolated 
as a white solid from the reaction of allyl 
alcohol 31a (267 mg, 0.8 mmol). 

1
H NMR (400 

MHz, CDCl3) δ 6.97 (s, 1H), 6.89 (dt, J = 15.6, 
1.0 Hz, 1H), 6.62 (s, 1H), 6.47 (s (br), 1H), 6.11 
(dt, J = 15.6, 6.6 Hz, 1H), 4.80 (dd, J = 6.6, 1.0 
Hz, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.80 (s, 
3H), 3.51 (q, J = 6.8 Hz, 2H), 2.92 (t, J = 7.1 
Hz, 2H). 

13
C NMR (101 MHz, CDCl3) δ 157.2 

(q, J = 36.7 Hz), 155.7, 149.3, 148.1, 131.9, 
128.3, 127.4, 123.0, 115.8 (q, J = 287.8 Hz), 112.7, 109.2, 68.6, 55.9, 55.8, 54.8, 
40.8, 31.8. 



 

 

80 

   

Chapter 3 

 

 

(E)-Methyl 3-(6-(2-(2,2,2-trifluoroacetamido)ethyl)benzo[d][1,3]dioxol-5-yl)allyl 
carbonate 32b 

Following the general procedure, 258 mg of 32b (0.70 mmol, 92%) were isolated 
from the reaction of allyl alcohol 31b (240 mg, 0.76 
mmol). 

1
H NMR (400 MHz, CDCl3) δ 6.94 (s, 1H), 

6.87 (dt, J = 15.6, 1.2 Hz, 1H), 6.62 (s, 1H), 6.59 (s 
(br), 1H), 6.05 (dt, J = 15.5, 6.5 Hz, 1H), 5.94 (s, 
2H), 4.77 (dd, J = 6.5, 1.2 Hz, 2H), 3.79 (s, 3H), 
3.47 (q, J = 7.1 Hz, 2H), 2.88 (t, J = 7.1 Hz, 2H). 
13

C NMR (101 MHz, CDCl3) δ 157.2 (q, J = 36.9 
Hz), 155.7, 148.0, 147.1, 132.0, 129.6, 128.9, 
123.5, 115.8 (q, J = 287.7 Hz), 109.7, 106.4, 101.3, 

68.5, 54.8, 40.8, 32.2. 
19

F NMR: (376 MHz, CDCl3) δ = -76.01. HRMS (ESI,
+
, m/z): 

calculated for C16H16F3NO6Na [M+Na
+
]: 398.0822, found: 398.0839. 

 

 

(E)-Methyl 3-(5-methyl-2-(2-(2,2,2-trifluoroacetamido)ethyl)phenyl)allyl 
carbonate 32c 

Following the general procedure, 114 mg of 32c (0.33 mmol, 95%) were isolated 
from the reaction of allyl alcohol 31c (101 mg, 0.35 
mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 9.3 

Hz, 1H), 7.12 – 6.98 (m, 2H), 6.93 (dt, J = 15.7, 1.3 
Hz, 1H), 6.44 (s (br), 1H), 6.18 (dt, J = 15.6, 6.4 Hz, 
1H), 4.80 (dd, J = 6.4, 1.3 Hz, 2H), 3.80 (s, 3H), 3.50 
(q, J = 7.0 Hz, 2H), 2.93 (t, J = 7.0 Hz, 2H), 2.33 (s, 
3H). 

13
C NMR (101 MHz, CDCl3) δ 157.7 (q, J = 36.9 

Hz), 155.3, 137.0, 135.1, 132.4, 132.2, 129.9, 129.3, 
127.4, 125.0, 115.8 (q, J = 287.8 Hz), 68.5, 54.8, 

40.7, 31.9, 21.0. 
19

F NMR: (376 MHz, CDCl3) δ = -76.02. HRMS (ESI
+
, m/z): 

calculated for C16H18F3NO4Na [M+Na
+
]: 368.1080, found: 368.1062. 

 

 

 

 

 

 

(E)-methyl 3-(2-(2-(2,2,2-trifluoroacetamido)ethyl)phenyl)allyl carbonate 32d 
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Following the general procedure, 126 mg of 32d (0.38 mmol, 95%) were isolated 
from the reaction of allyl alcohol 31d (108 mg, 0.4 
mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 5.7, 

3.7 Hz, 1H), 7.31 – 7.18 (m, 2H), 7.14 (dd, J = 5.6, 3.6 
Hz, 1H), 6.97 (dt, J = 15.7, 1.2 Hz, 1H), 6.73 (s (br), 
1H), 6.18 (dt, J = 15.6, 6.4 Hz, 1H), 4.80 (dd, J = 6.4, 
1.2 Hz, 2H), 3.78 (s, 3H), 3.51 (q, J = 7.3 Hz, 2H), 2.96 
(t, J = 7.3 Hz, 2H). 

13
C NMR (101 MHz, CDCl3) δ 

157.3, (q, J = 37.0 Hz), 155.7, 135.4, 135.4, 132.1, 
129.9, 128.5, 127.5, 126.8, 125.3, 115.8 (q, J = 287.7 Hz), 68.4, 54.8, 40.6, 32.4. 
HRMS (ESI

+
, m/z): calculated for C15H16F3NO4Na [M+Na

+
]: 354.0924, found: 

354.0913. 

 

(E)-3-(5-chloro-2-(2-(2,2,2-trifluoroacetamido)ethyl)phenyl)allyl methyl 
carbonate 32e 

Following the general procedure, (E)-3-(5-chloro-(2-(2,2,2-
trifluoroacetamido)ethyl)phenyl)allyl methyl 
carbonate 32e (0.084 g, 0.230 mmol, 96 %) were 
isolated as a white solid from the reaction of allyl 
alcohol 31e (74 mg, 0.24 mmol). 

1
H NMR (201 MHz, 

CDCl3) δ 7.42 (d, J = 2.1 Hz, 1H), 7.20 (dd, J = 8.2, 
2.2 Hz, 1H), 7.05 (dd, J = 9.6, 5.6 Hz, 1H), 6.89 (d, J 
= 15.7 Hz, 1H), 6.79 (s (br), 1H), 6.17 (dt, J = 15.6, 

6.2 Hz, 1H), 4.77 (dt, J = 10.5, 5.3 Hz, 2H), 3.86 – 3.73 (m, 3H), 3.47 (dd, J = 14.1, 
6.9 Hz, 2H), 2.92 (t, J = 7.3 Hz, 2H). 

13
C NMR (50 MHz, CDCl3) δ 157.30 (q, J = 

36.2 Hz), 155.65, 137.06, 133.81, 133.16, 131.23, 130.62, 128.29, 126.61, 126.56, 
115.71 (q, J = 291.0 Hz), 68.00, 54.86, 40.37, 31.79. 

19
F NMR (189 MHz, CDCl3) δ 

-76.00. HRMS: (ESI
+
) calculated for C13H15ClF3NO4Na [M+Na

+
]: 388.0534, found: 

388.0533. 

 

(E)-3-(2-(2-acetamidoethyl)-4,5-dimethoxyphenyl)allyl methyl carbonate 32f 

Following the general procedure, 29 mg of 32f (0.08 mmol, 86%) were isolated 
from the reaction of allyl alcohol 31f (28 mg, 0.1 mmol). 

1
H NMR (400 MHz, CDCl3) 

δ 6.96 (s, 1H), 6.90 (d, J = 15.6 Hz, 1H), 6.64 (s, 
1H), 6.10 (dt, J = 15.5, 6.6 Hz, 1H), 5.61 (s (br), 
1H), 4.79 (d, J = 6.6 Hz, 2H), 3.88 (s, 3H), 3.86 (s, 
3H), 3.79 (s, 3H), 3.40 (q, J = 6.9 Hz, 2H), 2.84 (t, J 
= 6.9 Hz, 2H), 1.93 (s, 3H). 

13
C NMR (101 MHz, 

CDCl3) δ 170.2, 155.7, 149.3, 147.9, 132.3, 129.6, 
127.3, 122.4, 112.8, 109.0, 68.7, 55.97, 55.9, 54.8, 
40.7, 32.5, 23.3. 

 

General Procedure for the alkylation of 2,2,2-trifluoroacetamide to give 34 
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2,2,2-trifluoroacetamide (33) (1.0 eq.) was dissolved in DMF (Volume: 50 ml per 10 
mmol) and added to a suspension of 1.05 eq. sodium hydride in DMF (Volume: 20 
ml per 10 mmol) at 0 °C. After all gas evolution ceased, 1.05 eq. of the appropriate 
bromide was added and the reaction mixture was heated to 50 °C for 3 h. After the 
reaction showed full conversion (by TLC), 50 mL EtOAc was added and the 
reaction mixture was washed with water (80 mL per 10 mmol) and 2x with brine (2x 
80 mL per 10 mmol). After drying over MgSO4, all volatiles were removed under 
reduced pressure to give the desired alkyltrifluoroacetamides 34. These products 
were used without further purification.  

 

2,2,2-trifluoro-N-(pent-4-en-1-yl)acetamide 34a
76

 

Following the general procedure for the alkylation of 2,2,2-trifluoroacetamide, 1.442 
g of 34a (7.96 mmol, 99%) were isolated as a pale 
yellow oil from the reaction of 2,2,2-trifluoroacetamide 
33 (0.909 g, 8.04 mmol) with 5-bromopent-1-ene (1.00 
ml, 8.44 mmol). 

1
H NMR: (400 MHz, CDCl3) δ = 7.23 (s 

(br), 1H), 5.75 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.14 – 
4.84 (m, 2H), 3.39 – 3.22 (m, 2H), 2.19 – 1.95 (m, 2H), 1.78 – 1.58 (m, 3H). 

13
C 

NMR: (100 MHz, CDCl3) δ = 157.4 (q, J = 36.7 Hz), 137.0, 115.8 (q, J = 287.2 Hz), 
115.5, 39.4, 30.7, 27.7. 

19
F NMR: (376 MHz, CDCl3) δ = -76.21. HRMS (ESI

+
): 

calculated for C7H11F3NO [M+H
+
]: 182.0787, found: 182.0784. 

 

2,2,2-trifluoro-N-(hex-5-en-1-yl)acetamide 34b 

Following the general procedure for the alkylation of 2,2,2-trifluoroacetamide, 1.352 
g 34b (6,93 mmol, 98%) were isolated as a pale 
yellow oil from the reaction of 2,2,2-
trifluoroacetamide 33 (0.799 g, 7.07 mmol) with 6-
bromo-1-hexene (1.00 ml, 7.42 mmol). 

1
H NMR: (400 

MHz, CDCl3) δ = 7.30 (s (br) 1H), 5.83 – 5.59 (m, 
1H), 5.11 – 4.70 (m, 2H), 3.34 – 3.22 (m, 2H), 2.09 – 

2.00 (m, 2H), 1.63 – 1.48 (m, 2H), 1.47 – 1.31 (m, 2H). 
13

C NMR: (101 MHz, 
CDCl3) δ =  157.3 (q, J = 36.8 Hz), 137.9, 115.9 (q, J = 287.8 Hz), 114.8, 39.7, 
33.0, 28.1, 25.8. 

19
F NMR: (376 MHz, CDCl3) δ = -76.10. HRMS (ESI

+
): calculated 

for C8H13F3NO [M+H
+
]: 196.0944, found: 196.1103. 

 

2,2,2-trifluoro-N-(hept-6-en-1-yl)acetamide 34c 

Following the general procedure for the alkylation of 2,2,2-trifluoroacetamide, 1.294 
g 34c (6.19 mmol, 99%) were isolated as a pale 
yellow oil from the reaction of 2,2,2-
trifluoroacetamide 33 (0.706 g, 6.25 mmol) with 7-
bromohept-1-ene (1.00 ml, 6.56 mmol). 

1
H NMR: 

(400 MHz, CDCl3) δ = 6.68 (s (br), 1H), 5.92 – 
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5.61 (m, 1H), 5.08 – 4.84 (m, 2H), 3.40 – 3.27 (m, 2H), 2.12 – 1.97 (m, 2H), 1.67 – 
1.51 (m, 2H), 1.48 – 1.29 (m, 4H). 

13
C NMR: (101 MHz, CDCl3) δ = 157.3 (q, J = 

36.8 Hz), 138.4, 115.9 (q, J = 288.3 Hz), 114.6, 39.9, 33.4, 28.7, 28.3, 26.0. 
19

F 
NMR: (376 MHz, CDCl3) δ = -76.07. HRMS (ESI

+
): calculated for C9H15F3NO 

[M+H
+
]: 210.1100, found: 210.2215. 

 

General Procedure for the cross-metathesis of 34 with butendiyl 
dimethylcarbonate

77
 to give allylic carbonates 35 

Trifluoroacetamides 34a-c (1.0 eq.) were dissolved under a N2 atmosphere in 
degassed toluene (10 ml per 2 mmol), then 2.00 eq. of (Z)-but-2-ene-1,4-diyl 
dimethyl dicarbonate were added and finally 5.0 mol% Hoveyda-Grubbs 2

nd
 

generation was added. The mixture was heated to 70 °C and stirred until TLC 
showed full conversion (2-6 h). After cooling to ambient temperature, all volatiles 
were removed under reduced pressure and crude product was purified by column 
chromatography (SiO2, Pentane/EtOAc) to give the pure compounds 35. 

 

(E)-Methyl (6-(2,2,2-trifluoroacetamido)hex-2-en-1-yl) carbonate 35a 

Following the general procedure for the cross-metathesis with butendiyl 
dimethylcarbonate, 1.00 g 34a (5.52 
mmol) was reacted with 2.254 g butendiyl 
dimethylcarbonate (11.04 mmol) to give 
1.233 g 35a (4.58 mmol, 83%) after 
column chromatography (SiO2, 

pentane/EtOAc 10:1, Rf = 0.20 in Pentane/EtOAc 10:1). 
1
H NMR: (400 MHz, 

CDCl3) δ = 6.75 (s (br), 1H), 5.76 (dd, J = 14.4, 7.6 Hz, 1H), 5.67 – 5.54 (m, 1H), 
4.54 (d, J = 6.3 Hz, 2H), 3.75 (s, 3H), 3.34 (dd, J = 13.4, 6.7 Hz, 2H), 2.11 (dd, J = 
14.2, 7.1 Hz, 2H), 1.77 – 1.57 (m, 2H). 

13
C NMR: (101 MHz, CDCl3) δ = 157.2 (q, J 

= 36.7 Hz), 155.6, 135.0, 124.6, 115.8 (q, J = 289.6 Hz), 68.1, 54.7, 39.3, 29.3, 
27.8. 

19
F NMR: (376 MHz, CDCl3) δ = -76.02. HRMS (ESI

+
): calculated for 

C10H14F3NO4Na [M+Na
+
]: 292.0767, found: 292.0762. 

 

(E)-Methyl (7-(2,2,2-trifluoroacetamido)hept-2-en-1-yl) carbonate 35b 

Following the general procedure for the cross-metathesis with butendiyl 
dimethylcarbonate, 0.500 g 34b (2.56 
mmol) were reacted with 1.046 g 
butendiyl dimethylcarbonate (5.12 
mmol) to give 0.573 g 35b (2.20 mmol, 
79%) after column chromatography 

(SiO2, pentane/EtOAc 10:1, Rf = 0.18 in Pentane/EtOAc 10:1). 
1
H NMR: (201 MHz, 

CDCl3) δ = 7.22 (s (br), 1H), 5.87 – 5.35 (m, 2H), 4.47 (d, J = 6.2 Hz, 2H), 3.77 – 
3.57 (m, 3H), 3.25 (dd, J = 13.0, 6.6 Hz, 3H), 2.15 – 1.91 (m, 2H), 1.76 – 1.24 (m, 
4H). 

13
C NMR: (50 MHz, CDCl3) δ = 157.2 (q, J = 37.1 Hz), 155.4, 136.0, 123.7, 

115.8 (q, J = 290.2 Hz), 68.2, 54.4, 39.5, 31.4, 28.0, 25.5. 
19

F NMR: (189 MHz, 
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CDCl3) δ = -76.15. HRMS (ESI
+
): calculated for C11H13F3NO4Na [M+Na

+
]: 

306.0924, found: 306.0908. 

 

(E)-methyl (8-(2,2,2-trifluoroacetamido)oct-2-en-1-yl) carbonate 35c 

Following the general procedure for the cross-metathesis with butendiyl 
dimethylcarbonate, 1.00 g 34c (4.78 
mmol) was reacted with 1.952 g 
butendiyl dimethylcarbonate (9.56 
mmol) to give 1.023 g 35c (3.44 
mmol, 72%) after column 

chromatography (SiO2, pentane/EtOAc 10:1, Rf = 0.22 in Pentane/EtOAc 10:1). 
1
H 

NMR: (201 MHz, CDCl3) δ = 6.73 (s (br), 1H), 5.93 – 5.36 (m, 2H), 4.53 (d, J = 6.3 
Hz, 2H), 3.74 (s, 3H), 3.31 (dd, J = 13.4, 6.7 Hz, 2H), 2.16 – 1.91 (m, 2H), 1.68 – 
1.46 (m, 2H), 1.46 – 1.17 (m, 4H). 

13
C NMR: (50 MHz, CDCl3) δ = 157.2 (q, J = 

36.4 Hz), 155.6, 136.6, 123.5, 115.9 (q, J = 288.5 Hz), 68.5, 54.6, 39.8, 31.9, 28.6, 
28.1, 26.0. 

19
F NMR: (189 MHz, CDCl3) δ = -76.04. HRMS (ESI

+
): calculated for 

C12H18F3NO4Na [M+Na
+
]: 320.1080, found: 320.1077.  

 

General Procedure for the Iridium-catalyzed asymmetric allylic amidation 

 [Ir(COD)Cl]2 (2.5 mol%) and 5.0 mol% L2 were dissolved in dry THF (1.0 mL per 
0.2 mmol) under a N2 atmosphere. Then, 1.00 eq. DBU was added and the 
reaction mixture was heated at 50 °C for 30 min. Then, the solution was brought to 
the appropriate temperature and 1.0 eq. allylic carbonate 32 or 35 was added. The 
reaction mixture was stirred until TLC showed full conversion. All volatiles were 
removed under reduced pressure to yield the crude product as an orange oil. This 
was purified by column chromatography (SiO2, Pentane/EtOAc) to yield the desired 
trifluoroacetamide. 

 

(S)-1-(6,7-Dimethoxy-1-vinyl-3,4-dihydroisoquinolin-2(1H)-yl)-2,2,2-
trifluoroethanone 37a 

The title compound was prepared from 32a (117 mg, 0.30 mmol) following the 
general procedure for the Ir-catalyzed asymmetric 
allylic amidation at room temperature. Purification by 
column chromatography (SiO2, Pentane/EtOAc 3:1) 
afforded 37a (92 mg, 0.29 mmol, 95% ee, 97%) as a 
colourless oil as a mixture of two conformers in 3.6:1 
ratio (determined by 

1
H NMR at 20 °C). 

1
H NMR (400 

MHz, CDCl3) δ 6.62 (s, 1H, minor), 6.60 (s, 1H, major), 6.58 (s, 1H, major), 6.55 (s, 
1H, minor), 6.00 – 5.91 (m, 2H major + 1H minor), 5.44 (d, J = 4.0 Hz, 1H minor), 
5.30 (dd, J = 9.9, 0.8 Hz, 1H major), 5.29 (d, J = 10.0 Hz, 1H minor), 5.12 (dd, J = 
15.5, 0.8 Hz, 1H major), 5.03 (d, J = 17.1 Hz, 1H minor), 4.51 – 4.46 (m, 1H minor), 
4.03 – 3.98 (m, 1H major), 3.85 (s, 3H, minor), 3.84 (s, 3H, major), 3.84 (s, 3H, 
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minor), 3.83 (s, 3H, major), 3.53 (ddd, J = 13.8, 12.1, 3.9 Hz, 1H major), 3.24 (td, J 
= 12.2, 4.2 Hz, 1H minor), 3.00 – 2.90 (m, 1H major + 1H minor), 2.76 – 2.68 (m, 
1H major + 1H minor). 

13
C NMR (101 MHz, CDCl3) δ 155.6 (q, J = 35.8 Hz) 

(major), 148.6 (minor), 148.3 (major), 147.8 (major), 147.7 (minor), 136.5 (minor), 
135.6 (major), 126.0 (minor), 125.3 (major), 124.7 (major), 124.4 (minor), 118.6 
(major), 118.5 (minor), 116.8 (q, J = 287.9 Hz), 111.4 (minor), 111.1 (major), 110.6 
(major), 110.3 (minor), 57.9 (minor), 56.0 (minor), 56.0 (major), 55.9 (major), 55.5 
(major), 40.0 (major), 37.7 (minor), 28.7 (major), 27.2 (minor). 

19
F NMR: (376 MHz, 

CDCl3) δ = -68.7 (minor), -69.4 (major). HRMS (APCI+, m/z): calculated for 
C15H17F3NO3 [M+H

+
]: 316.1155, found: 316.1140. [α] D

20
 = + 168.3 (c = 0.85 in 

CHCl3) ee determination by chiral HPLC (Chiralpak OJ-H: n-heptane/2-propanol 
90:10, 40 °C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 19.7 min 
(major), 24.7 min (minor).  

 

 

(S)-2,2,2-Trifluoro-1-(5-vinyl-7,8-dihydro-[1,3]dioxolo[4,5-g]isoquinolin-6(5H)-
yl)ethanone 37b 

The title compound was prepared from 32b (75 mg, 
0.20 mmol) following the general procedure at room 
temperature. Purification by column chromatography 
(SiO2, Pentane/Et2O 10:1) afforded 37b (54 mg, 0.18 
mmol, 94% ee, 89%) as a colourless oil as a mixture 
of two conformers in 3.5:1 ratio (determined by 

1
H 

NMR at 20 °C). 
1
H NMR (400 MHz, CDCl3) δ 6.61 (s, 1H, minor), 6.58 (s, 2H, 

major), 6.56 (s, 1H, minor), 6.02 – 5.88 (m, 4H major + 3H minor), 5.40 (d, J = 4.2 
Hz, 1H minor), 5.30 (dd, J = 9.9, 1.0 Hz, 1H major), 5.29 (d, J = 10.1 Hz, 1H 
minor), 5.12 (dd, J = 15.5, 1.0 Hz, 1H major), 5.05 (d, J = 17.2 Hz, 1H minor), 4.46 
– 4.39 (m, 1H minor), 4.02 – 3.94 (m, 1H major), 3.54 (ddd, J = 14.0, 11.6, 3.9 Hz, 
1H major), 3.24 (td, J = 11.5, 4.7 Hz, 1H minor), 2.97 – 2.87 (m, 1H major + 1H 
minor), 2.75 – 2.68 (m, 1H major + 1H minor). 

13
C NMR (101 MHz, CDCl3) δ 155.8 

(q, J = 35.8 Hz) (major), 147.3 (minor), 147.0 (major), 146.5 (major), 146.4 (minor), 
136.4 (minor), 135.5 (major), 127.3 (minor), 126.5 (major), 125.8 (major), 125.6 
(minor), 118.5 (major), 118.4 (minor), 116.5 (q, J = 288.0 Hz) (major), 108.6 
(minor), 108.3 (major), 107.8 (major), 107.4 (minor), 101.2 (minor), 101.1 (major), 
58.1 (minor), 55.9 (major), 40.0 (major), 37.9 (minor), 29.1 (major), 27.6 (minor). 
19

F NMR: (376 MHz, CDCl3) δ = -68.7 (minor), -69.4 (major). HRMS (APCI+, m/z): 
calculated for C14H13F3NO3 [M+H

+
]: 300.0842, found: 300.0839. [α] D

20
 = + 153.2 (c 

= 1.0 in CHCl3) ee determination by chiral HPLC (Chiralpak AD-H: n-heptane/2-
propanol 98:2, 40 °C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 23.4 
min (minor), 24.7 min (major).  
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(S)-2,2,2-Trifluoro-1-(7-methyl-1-vinyl-3,4-dihydroisoquinolin-2(1H)-
yl)ethanone 37c 

The title compound was prepared from 32c (34 mg, 0.15 mmol) following the 
general procedure at room temperature. Purification by 
column chromatography (SiO2, Pentane/Et2O 20:1) 
afforded 37c (25 mg, 0.14 mmol, 91% ee, 92%) as a 
colourless oil as a mixture of two conformers in 3.1:1 
ratio (determined by 

1
H NMR at 20 °C). 

1
H NMR (400 

MHz, CDCl3) δ 7.05 (d, J = 8.2 Hz, 1H major +1H 
minor), 7.04 (s, 1H, major + 1H minor), 6.95 (d, J = 8.2 Hz, 1H major +1H minor), 
6.06 – 5.93 (m, 2H major + 1H minor), 5.50 (d, J = 4.0 Hz, 1H minor), 5.32 – 5.28 
(m, 1H major +1H minor), 5.12 (dd, J = 16.3, 0.7 Hz, 1H major), 5.04 (d, J = 17.0 
Hz, 1H minor), 4.49 – 4.44 (m, 1H minor), 4.05 – 4.00 (m, 1H major), 3.58 (ddd, J = 
14.0, 11.8, 4.0 Hz, 1H major), 3.24 (td, J = 12.4, 4.7 Hz, 1H minor), 3.03 – 2.93 (m, 
1H major + 1H minor), 2.84 – 2.76 (m, 1H major + 1H minor), 2.33 (s, 3H minor), 
2.33 (s, 3H major). 

13
C NMR (101 MHz, CDCl3) δ 155.6 (q, J = 36.0 Hz) (major), 

136.6 (minor), 136.3 (major), 136.1 (minor), 135.6 (major), 132.8 (major), 132.6 
(minor), 130.1 (major), 130.0 (minor), 128.9 (minor), 128.6 (major), 128.5 (major), 
128.2 (major), 128.1 (minor), 118.2 (major), 118.1 (minor), 116.5 (q, J = 287.7 Hz) 
(major), 58.3 (minor), 56.0 (major), 40.3 (major), 38.22 (minor), 28.7 (major), 27.2 
(minor), 21.0 (major), 20.99 (minor). 

19
F NMR: (376 MHz, CDCl3) δ = -68.7 (minor), 

-69.4 (major). HRMS (ESI+, m/z): calculated for C14H15F3NO [M+H
+
]: 270.1100, 

found: 270.1088. [α] D

20
 = + 152.4 (c = 1.0 in CHCl3) ee determination by chiral 

HPLC (Chiralpak OJ-H: n-heptane/2-propanol 99:1, 40 °C isotherm, 210 nm, flow 
rate 0.5 mL/min), retention times: 13.3 min (minor), 15.2 min (major).  

 

(S)-2,2,2-Trifluoro-1-(1-vinyl-3,4-dihydroisoquinolin-2(1H)-yl)ethanone 37d 

The title compound was prepared from 32d (33 mg, 0.10 mmol) following the 
general procedure at room temperature. Purification by 
column chromatography (SiO2, Pentane/Et2O 15:1) 
afforded 37d (20 mg, 0.08 mmol, 94% ee, 78%) as a 
colourless oil as a mixture of two conformers in 3.4:1 ratio 
(determined by 

1
H NMR at 20 °C). 

1
H NMR (400 MHz, 

CDCl3) δ 7.25 – 7.11 (m, 4H major + 4H minor), 6.05 – 
5.93 (m, 2H major + 1H minor), 5.55 (d, J = 3.8 Hz, 1H minor), 5.31 (dd, J = 9.8, 
1.1 Hz, 1H major), 5.30 (d, J = 10.2 Hz, 1H minor), 5.12 (dd, J = 16.5, 1.1 Hz, 1H 
major), 5.05 (d, J = 17.1 Hz, 1H minor), 4.51 – 4.45 (m, 1H minor), 4.08 – 4.00 (m, 
1H major), 3.60 (td, J = 12.0, 4.0 Hz, 1H major), 3.33 (td, J = 12.0, 4.5 Hz, 1H 
minor), 3.08 – 2.98 (m, 1H major + 1H minor), 2.88 – 2.80 (m, 1H major + 1H 
minor). 

13
C NMR (101 MHz, CDCl3) δ 155.6 (q, J = 36.0 Hz) (major), 136.6 (minor), 

135.6 (major), 133.9 (minor), 133.6 (minor), 133.2 (major), 133.0 (major), 129.1 
(minor), 128.8 (major), 128.2 (major), 127.7 (minor), 127.7 (minor), 127.3 (major), 
126.6 (major), 126.5 (minor), 118.3 (major), 118.3 (minor), 116.5 (q, J = 287.9 Hz) 
(major), 58.2 (minor), 55.9 (major), 40.1 (major), 38.0 (minor), 29.1 (major), 27.6 
(minor). 

19
F NMR: (376 MHz, CDCl3) δ = -68.7 (minor), -69.4 (major). HRMS (ESI+, 
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m/z): calculated for C13H13F3NO [M+H
+
]: 256.0944, found: 256.0941. [α] D

20
 = + 

186.8 (c = 1.0 in CHCl3) ee determination by chiral HPLC (Chiralpak OJ-H: n-
heptane/2-propanol 98:2, 40 °C isotherm, 220 nm, flow rate 0.5 mL/min), retention 
times: 12.1 min (minor), 14.4 min (major).  

 

1-(7-Chloro-1-ethylidene-3,4-dihydroisoquinolin-2(1H)-yl)-2,2,2-
trifluoroethanone 39 

The title compound was prepared from 32e (0.020 g, 0.055 mmol) following the 
general procedure for the Ir-catalyzed asymmetric 
allylic amidation at 50 °C. Purification by column 
chromatography (SiO2, Pentane/EtOAc 20:1, Rf = 0.95 
in Pentane/EtOAc 10:1) afforded  1-(7-chloro-1-

ethylidene-3,4-dihydroisoquinolin-2(1H)-yl)-2,2,2-
trifluoroethanone 39 (0.010 g, 0.035 mmol, 63% ) as a 
colourless oil. 39 was isolated as a mixture of 2 isomers 
(ratio 1:1.3). 

1
H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 

2.1 Hz, 1H, major), 7.40 (d, J = 2.1 Hz, 1H, minor), 7.25 – 7.14 (m, 1H), 7.04 (d, J = 
8.2 Hz, 1H), 6.32 (q, J = 7.1 Hz, 1H, major), 6.16 (q, J = 7.2 Hz, 1H, minor), 5.03 – 
4.77 (m, 1H), 3.33 – 3.10 (m, 2H), 2.88 – 2.71 (m, 1H), 1.85 (d, J = 7.1 Hz, 3H, 
minor), 1.70 (d, J = 7.1 Hz, 3H, major). 

13
C NMR (101 MHz, CDCl3) δ 130.43, 

130.31, 130.12, 128.18, 127.86, 123.81, 123.39, 121.80, 45.10, 29.62, 27.43. Only 
major peaks are given. 

19
F NMR (376 MHz, CDCl3) δ -69.21 (major), -70.20 

(minor). HRMS: (ESI
+
) calculated for C13H12ClF3NO [M+H

+
]: 290.0554, found: 

290.0547. 

 

(R)-2,2,2-Trifluoro-1-(2-vinylpyrrolidin-1-yl)ethanone 40a 

The title compound was prepared from 35a (0.100 g, 0.371 mmol) following the 
general procedure for the Ir-catalyzed asymmetric allylic 
amidation at 50 °C. Purification by column chromatography 
(SiO2, Pentane/EtOAc 10:1, Rf = 0.75 in pentane/EtOAc 10:1) 
afforded 40a (0.040 g, 0.207 mmol, 96% ee, 56%) as a 
colourless oil. 40a was isolated as a mixture of 2 conformers. 
(ratio 1 : 2.5) 

1
H NMR: (201 MHz, CDCl3) δ = 5.92 – 5.53 (m, 

1H), 5.28 – 4.97 (m, 2H), 4.67 (d, J = 4.9 Hz, 1H), 3.78 – 3.46 
(m, 2H), 2.16 – 1.70 (m, 4H). 

13
C NMR: (101 MHz, CDCl3) δ = 155.4 (q, J = 37.1 

Hz), 136.8 (minor), 135.3 (major), 116.3 (q, J = 287.9 Hz, major), 116.2 (q, J = 
286.6 Hz, minor), 115.4 (major), 115.1 (minor), 60.4 (major), 59.8 (minor), 47.3 
(minor), 46.6 (major), 32.3 (minor), 29.8 (major), 23.8 (major), 20.1 (minor). 

19
F 

NMR: (189 MHz, CDCl3) δ = -70.94 (minor), -72.71 (major). HRMS (ESI
+
): 

calculated for C8H11F3NO [M+H
+
]: 194.0787, found: 194.0790. [α]D

20
 = 44.6 (c = 1.0 

in CHCl3). ee determination by chiral HPLC (Chiralpak AD-H: n-heptane/2-propanol 
98:2, 40 °C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 10.5 min 
(major enantiomer), 11.5 min (minor enantiomer).  
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(R)-2,2,2-Trifluoro-1-(2-vinylpiperidin-1-yl)ethanone 40b 

The title compound was prepared from 35b (0.060 g, 0.212 mmol) following the 
general procedure for the Ir-catalyzed asymmetric allylic 
amidation at 50 °C. Purification by column chromatography 
(SiO2, Pentane/EtOAc 20:1, Rf = 0.90 in pentane/EtOAc 10:1) 
afforded 40b (0.030 g, 0.144 mmol, 88% ee, 68%) as a 
colourless oil. 40b was isolated as a mixture of 2 conformers 
(ratio 1:1.7). 

1
H NMR: (400 MHz, CDCl3) δ = 5.95 – 5.65 (m, 

1H), 5.31 (t, J = 11.5 Hz, 1H), 5.26 (s (br), 1H major), 5.15 (t, J 
= 16.4 Hz, 1H), 4.68 (s, 1H, minor), 4.39 (d, J = 12.7 Hz, 1H, 

minor), 3.80 (d, J = 13.3 Hz, 1H, major), 3.24 (t, J = 13.3 Hz, 1H, major), 2.91 (t, J 
= 13.0 Hz, 1H, minor), 1.90 (d, J = 13.2 Hz, 1H), 1.81 – 1.60 (m, 4H), 1.58 – 1.41 
(m, 1H). 

13
C NMR: (50 MHz, CDCl3) δ = 156.8 (q, J = 36.6 Hz), 135.2 (minor), 

134.6 (major), 117.8 (minor), 117.5 (major), 116.7 (q, J = 186.9 Hz), 54.8 (minor), 
51.9 (major), 42.0 (minor), 39.2 (major), 29.6 (minor), 28.3 (major), 26.0 (major), 
25.3 (minor), 19.3. 

19
F NMR: (376 MHz, CDCl3) δ = -68.75 (minor), -68.79 (major). 

HRMS (ESI
+
): calculated for C9H12F3NONa [M+Na

+
]: 230.0763, found: 230.0752. 

[α]D

20
 = 55.6 (c = 1.2 in CHCl3). ee determination by chiral HPLC (Chiralpak OB-H: 

n-heptane/2-propanol 99.9:0.1, 40 °C isotherm, 230 nm, flow rate 0.5 mL/min), 
retention times: 13.5 min (minor enantiomer), 15.2 min (major enantiomer).  

 

(R)-2,2,2-Trifluoro-1-(2-vinylazepan-1-yl)ethanone 40c 

The title compound was prepared from 35c (0.100 g, 0.336 mmol) following the 
general procedure for the Ir-catalyzed asymmetric allylic 
amidation at 50 °C. Purification by column chromatography 
(SiO2, Pentane/EtOAc 10:1, Rf = 0.90 in pentane/EtOAc 10:1) 
afforded 40c (0.019 g, 0.086 mmol, 92% ee, 25%) as a 
colourless oil. 40c was isolated as a mixture of 2 conformers. 
(ratio 2:3) 

1
H NMR: (400 MHz, CDCl3) δ = 5.87 – 5.64 (m, 1H), 

5.13 (dd, J = 19.5, 10.6 Hz, 1H), 5.05 (d, J = 17.3 Hz, 1H), 4.92 
– 4.81 (m, 1H, minor), 4.45 (s (br), 1H, major), 4.06 (d, J = 13.6 

Hz, 1H, major), 3.81 (d, J = 15.0 Hz, 1H, minor), 3.19 – 3.04 (m, 1H, minor), 2.82 
(t, J = 12.7 Hz, 1H, major), 2.20 (ddd, J = 23.2, 15.0, 7.2 Hz, 1H), 1.98 – 1.79 (m, 
2H), 1.69 - 1.46 (m, 3H), 1.30 (tt, J = 17.3, 8.7 Hz, 2H). 

13
C NMR: (101 MHz, 

CDCl3) δ = 136.7 (major), 135.6 (minor), 114.8 (major), 114.6 (minor), 58.3 (minor), 
57.9 (major), 43.1 (minor), 42.9 (major), 33.7 (major), 32.3 (minor), 30.7 (minor), 
29.6 (major), 28.9 (minor), 26.6 (major), 24.8 (minor), 23.9 (major). The COCF3 
peaks could not be detected. 

19
F NMR: (376 MHz, CDCl3) δ = -68.31 (major), -

68.72 (minor). HRMS (ESI
+
): calculated for C10H15F3NO [M+H

+
]: 222.1100, found: 

222.1103. [α]D

20
 = 76.8 (c = 1.0 in CHCl3). ee determination by chiral HPLC 

(Chiralpak AS-H: n-heptane/2-propanol 99:1, 40 °C isotherm, 220 nm, flow rate 0.5 
mL/min), retention times: 9.4 min (minor enantiomer), 10.0 min (major enantiomer).  
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2,2,2-Trifluoro-N-(octa-5,7-dienyl)acetamide 42 

The title compound was prepared from 35c (0.100 g, 0.336 mmol) following the 
general procedure for the Ir-catalyzed 
asymmetric allylic amidation at 50 °C. 
Purification by column chromatography (SiO2, 
pentane/EtOAc 10:1, Rf = 0.70 in 
Pentane/EtOAc 10:1) afforded 42 (0.019 g, 
0.086 mmol, 92% ee, 25%) as a colourless oil. 

42 was isolated as a mixture of 2 isomers. (ratio 3:2) 
1
H NMR: (400 MHz, CDCl3) δ 

= 6.60 (dt, J = 16.9, 10.6 Hz, 1H, major), 6.41 (s (br), 1H), 6.36 – 6.23 (m, 1H, 
minor), 6.13 – 5.97 (m, 1H), 5.78 – 5.59 (m, 1H, minor), 5.50 – 5.34 (m, 1H, major), 
5.20 (d, J = 16.9 Hz, 1H, major), 5.16 – 5.04 (m, 1H), 4.98 (d, J = 10.1 Hz, 1H, 
minor), 3.36 (dd, J = 13.4, 6.7 Hz, 2H), 2.23 (q, J = 7.3 Hz, 2H, major), 2.12 (dd, J 
= 14.3, 7.1 Hz, 2H, minor), 1.69 – 1.53 (m, 2H), 1.51 – 1.38 (m, 2H). 

13
C NMR: 

(101 MHz, CDCl3) δ = 157.2 (q, J = 39.0 Hz), 137.0, 134.0, 131.9, 131.7, 131.4, 
123.0, 117.5, 115.8 (q, J = 288.0 Hz), 115.3, 39.8, 31.9, 29.7, 28.41, 27.0, 26.5, 
26.1. 

19
F NMR: (376 MHz, CDCl3) δ = -76.00. HRMS (ESI

+
): calculated for 

C10H15F3NO [M+H
+
]: 222.1103, found: 222.1100. 

 

(S)-6,7-Dimethoxy-1-vinyl-1,2,3,4-tetrahydroisoquinoline 45 

Trifluoroacetamide 37a (46 mg, 0.15 mmol) was dissolved in a mixture of 
MeOH/water (7 mL/1 mL) at room temperature. K2CO3 
was added to the solution and the resulting mixture was 
stirred during 16 h. Then, MeOH was removed under 
vacuum, water was added (10 mL) and the aqueous 
solution was extracted with EtOAc (3 x 5 mL). The 
combined organic layer was dried over Na2SO4 and the 
solvent was removed to afford amine 45 as a white solid 

(32 mg, 96%, 97% ee). 
1
H NMR (300 MHz, CDCl3) δ 6.58 (s, 1H), 6.57 (s, 1H), 

5.93 (ddd, J = 17.4 Hz, 10.0, 7.8 Hz, 1H), 5.24 (d, J = 17.4 Hz, 1H), 5.23 (d, J = 
10.0 Hz, 1H), 4.40 (d, J = 7.8 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.27 – 3.19 (m, 
1H), 3.06 – 2.97 (m, 1H), 2.86 – 2.77 (m, 1H), 2.67 (dt, J = 16.1, 4.8 Hz, 1H), 2.13 
(s (br), 1H). 

13
C NMR (75 MHz, CDCl3) δ 147.9, 147.3, 140.8, 128.7, 127.1, 117.5, 

111.8, 110.5, 60.2, 56.2, 55.9, 41.9, 29.3. HRMS (ESI+, m/z): calculated for 
C13H18NO2 [M+H

+
]: 220.1332, found: 220.1325. [α] D

20
 = + 76.0 (c = 0.5, CHCl3). ee 

determination by chiral HPLC (Chiralpak OJ-H: n-heptane/2-propanol 98:2, 40 °C 
isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 30.4 min (major), 38.7 
min (minor).  
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(S)-2-Allyl-6,7-dimethoxy-1-vinyl-1,2,3,4-tetrahydroisoquinoline 46 

(S)-6,7-dimethoxy-1-vinyl-1,2,3,4-tetrahydroisoquinoline 45a (1.00 eq., 0.020 g, 
0.091 mmol) was dissolved in THF (Volume: 10 ml) 
and cooled to -78 °C. Then 1.00 eq. BuLi solution in 
hexanes (c = 1.6 M) (0.057 ml, 0.091 mmol) was 
added dropwise and the reaction was stirred at -78 
°C for 1 h. Then, 2.00 eq. allyl bromide (0.016 ml, 
0.182 mmol) were added and the mixture was 
allowed to warm to r.t. and stirred for 16 h. The 

reaction was quenched by addition of sat. aq. NH4Cl solution (10 mL). Extraction 
with Et2O (2x 30 mL) and subsequent drying of the organic phases over MgSO4, 
filtration and removal of all volatiles under reduced pressure yielded the crude 
product. This was purified by column chromatography (SiO2, pentane/EtOAc 10:1, 
Rf = 0.80 in pentane/EtOAc 8:2) to yield (S)-2-allyl-6,7-dimethoxy-1-vinyl-1,2,3,4-
tetrahydroisoquinoline 46 (0.020 g, 0.077 mmol, 85 %) as a colourless oil. 

1
H NMR 

(201 MHz, CDCl3) δ 6.50 (s, 2H), 6.00 – 5.44 (m, 2H), 5.36 – 5.02 (m, 4H), 3.91 (d, 
J = 8.5 Hz, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.52 – 3.30 (m, 1H), 3.17 – 2.88 (m, 
2H), 2.86 – 2.62 (m, 2H), 2.47 (ddd, J = 12.2, 7.7, 4.8 Hz, 1H). 

13
C NMR (50 MHz, 

CDCl3) δ 147.45, 146.87, 139.33, 135.32, 127.74, 126.53, 118.04, 117.58, 111.07, 
110.90, 66.09, 57.39, 55.72, 55.66, 46.15, 28.11. HRMS: (ESI

+
) calculated for 

C16H22NO2 [M+H
+
]: 260.1645, found: 260.1640. [α]D

20
 = 55.2 (c = 1.1 in CHCl3).  

 

2,2,2-Trifluoro-N-methyl-N-(1-phenylprop-1-enyl)acetamide 67 

67 was prepared in the reaction of 1.0 eq. cinnamyl methyl carbonate 64 (0.020 g, 
0.104 mmol) and 2.0 eq. 2,2,2-trifluoro-N-methylacetamide 65 
(0.026 g, 0.208 mmol) following the general procedure for the 
Ir-catalyzed asymmetric allylic amidation at 50 °C, employing 
L1 as ligand. Purification by column chromatography (SiO2, 
Pentane/EtOAc 20:1, Rf = 0.60 in Pentane/EtOAc 10:1) 
afforded 2,2,2-trifluoro-N-methyl-N-(1-phenylprop-1-en-1-
yl)acetamide 67 (0.016 g, 0.066 mmol, 63%) as a colourless 

oil. 67 was isolated as two double bond isomers (ratio: 1:5.5) 
1
H NMR (201 MHz, 

CDCl3) δ 7.60 – 7.20 (m, 5H), 6.38 (q, J = 7.1 Hz, 1H, major), 6.20 (dd, J = 14.0, 
7.0 Hz, 1H, minor), 3.23 (s, 3H, minor), 3.18 (s, 3H, major), 1.82 (d, J = 7.1 Hz, 3H, 
major), 1.75 (d, J = 7.0 Hz, 3H, minor). 

13
C NMR (50 MHz, CDCl3) δ 128.86, 

128.81, 128.36, 128.31, 124.72, 124.29, 37.10, 13.85. Only major peaks are given, 
the COCF3 peaks were not observed. 

19
F NMR (189 MHz, CDCl3) δ -69.86 (minor), 

-69.97 (major). HRMS: (ESI
+
) calculated for C12H13F3NO [M+H

+
]: 244.0944, found: 

244.0930. 
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Chapter 4 

Synthetic Approaches towards β-
Carbolines 

The catalytic asymmetric synthesis of multifunctional chiral β-carboline compounds 
was attempted through two Ir-catalyzed allylic substitution protocols. The 
asymmetric allylic amination as well as the allylic amidation were investigated. 
Synthetic routes towards the required allylic carbonates were developed, however, 
those compounds could not be transformed to the desired β-carbolines through Ir-
catalyzed allylic substitutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter will be published: Teichert, J.F.; Fañanás-Mastral, M.; Feringa, 
B.L. submitted. 
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1. Introduction 

β-Carboline- or tryptoline-derived alkaloids
1-3

 are a large class of naturally occuring 

compounds which show a wide variety of biological and therapeutic activities 

(Figure 1).
4-6

 As examples of this family
7
 of molecules, the two antihypertensives 

reserpine (3) and ajmalicine (4) are displayed.
8-10

 Both 3 and 4 can be isolated 

from evergreen trees of the Rauwolfia species. Reserpine (3) acts through the 

inhibition of accumulation of biologically active amines, e.g. serotonin and 

catecholamines, in the brain and other body organs.
9
 Structurally related ajmalicine 

(4), however, is an inhibitor of α1-andrenergic receptors
11

 displaying just a small 

variety of the biological activities associated with this class of compounds. Many 

synthetic strategies have been developed to make substituted indoles and 

tryptamines,
12-14

  Pictet-Spengler and Mannich-type condensation reactions being 

among the most prominent ones.
15-17

 

 

Figure 1 Examples of β-carboline compounds 

Some of the synthetic approaches to chiral β-carbolines are discussed in the 

following sections.  

An organocatalytic cascade reaction to give the related quinolizidine compounds 8 

in straightforward manner was recently reported (Scheme 1).
18

 With catalytic 

amounts of prolinol 7 the desired products 8 were accessible in a one-pot 

procedure from -unsaturated aldehydes 5 and tryptamine 6. Compounds 8 were 
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isolated in up to good yields reaching excellent enantioselectivities. Even though 

the aryl-substituted tetracyclic compounds are not commonly found in nature, this 

marks an impressive transformation, generating three stereocenters in one 

reaction. 

 

Scheme 1 Organocatalytic cascade reaction 

The direct asymmetric Pictet-Spengler reaction with tryptamines and aldehydes to 

chiral β-carbolines represents a major challenge since after imine formation from 

the aldehyde and the primary amine fast isomerization to the corresponding 

enamines and subsequent aldol condensations take place.
19

 This problem was 

overcome in related yet different ways recently (Scheme 2).
19-21

 The asymmetric 

Pictet-Spengler reactions were carried out with catalytic amounts of chiral 

phosphoric acids
22,23

 10 and 13. In the first case (Scheme 2a) the aldol 

condensation reaction could be suppressed by geminal substitution with esters 9. 

Via this pathway, the corresponding β-carbolines 11 were isolated in up to very 

good yields and with good enantioselectivities. In the second case (Scheme 2b), 

the primary nitrogen was protected as the sulfenylamine 12 preventing the 

unwanted aldol-condensation from taking place. The sulfenylamine protecting 

group could be removed in situ. Like this, chiral β-carbolines 14 bearing no 

substituents on the piperidine ring were obtained with up to good selectivities. 

These two reports mark important breakthroughs for the asymmetric Pictet-

Spengler reactions, however, it should be noted that the aldehydes and the 

corresponding R groups in products 11 and 14 are mostly unfunctionalized and 

hence prevent easy further application in synthesis, such as annulation to 

tetracyclic compounds. One notable exception to this is the use of an aldehyde 

bearing an acetal-protected ketone.
24

 



 

 

98 

   

Chapter 4 

 

 

Scheme 2 Catalytic asymmetric Pictet-Spengler reactions 

Next to the abovementioned examples of organocatalytic approaches to β-

carbolines also some transition metal-catalyzed reactions are known. In Scheme 3, 

an asymmetric Pd-catalyzed intramolecular allylic substitution is depicted.
25

 When 

tryptamines 15 bearing an allylic carbonate moiety were subjected to allylic 

substitution conditions with catalytic amounts of a Pd/L1 complex, the 

corresponding chiral β-carbolines 16 were isolated in up to excellent yields and 

with very good enantioselectivities. It should be noted, however, that if 16 was 

employed as a chiral building block in further synthesis, deprotection of the N-

benzyl group under hydrogenolytic conditions would jeopardize the terminal double 

bond as well and thus would limit the possible further functionalizations at that 

position. 
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Scheme 3 Pd-catalyzed asymmetric synthesis of β-carbolines 

 

2. Goal  

The aim of this project was to develop a catalytic asymmetric synthesis of chiral β-

carboline building blocks, in analogy to the asymmetric Ir-catalyzed allylic 

amidation for the synthesis of chiral tetrahydroisoquinolines (see Chapter 3). β-

Carbolines and tetrahydroisoquinolines are related structures, the only difference 

being the “backbone” of the molecule containing an indole or a phenyl moiety, 

respectively. We therefore sought to expand the allylic substitution methodology to 

these structures. In analogy to the previously described catalytic asymmetric 

methodology, chiral building blocks with a multitude of starting points for further 

functionalization should be obtained via the envisaged route, furnishing valuable 

synthetic intermediates for further synthesis. 

 

3. Results and discussion 

Two synthetic approaches were taken in this project, the first was to employ a 

direct allylic amination with a primary amine to construct the chiral piperidine of the 

β-carboline cores 18 with an unprotected primary nitrogen (path A in Scheme 4). 

This approach proved to be problematic due to the choice of protecting groups 

necessary for synthesis as well as incompatibility of the synthetic approach to 18 

with the required leaving group for the allylic subsititution, the methyl carbonate. 

The second approach was to attempt the allylic amidation as outlined in Chapter 3, 

making use of a TFA N-protecting group in 20 that can still act as a nucleophile in 
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the Ir-catalyzed allylic substitution (path B in Scheme 4). This approach was 

synthetically more viable, and the desired starting materials 20 for the construction 

of the chiral β-carbolines 19 were accessible in this way. 

 

Scheme 4 Retrosynthetic approach to chiral β-carbolines 

 

3.1 The direct allylic amination approach 

The synthetic approach to primary amine 18 was based upon literature precedents 

for the preparation of synthetic intermediates 22 to 25,
26,27

 employing a phthalimide 

protecting group for the primary amine of tryptamine (Scheme 5). We anticipated 

that the late-stage deprotection of the phthalimide to the primary amine should be 

compatible with the allylic carbonate moiety. After protection of both nitrogen atoms 

of 21 with a Boc and a phthalimide group, respectively, tryptamine 24 was 

converted to bromide 25 with pyridinium tribromide in excellent yields. Compound 

25 served as precursor for the first key step in the synthesis of β-carbolines, since 

the allyl alcohol moiety would be installed via Pd-catalyzed cross coupling 

methodology.  
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Scheme 5 Synthesis of bromide 25 

 

Suzuki cross coupling 

Among the first attempts to install the allyl alcohol moiety in the 2-position of the 

indoles was the investigation of a Suzuki coupling
28-32

 of bromide 25 with boronate 

28,
26

 which had been prepared from catecholborane (26) and TBS-protected 

propargylic alcohol 27 (Scheme 6).  

 

Scheme 6 Preparation of catecholboronate 28 

The results of the Suzuki coupling are summarized in Table 1. First, literature 

conditions
26

 were applied for the transformation of 25 (Table 1, entry 1), however, it 

was observed that only low coversion to the desired coupling product 29 was 

achieved. Milder conditions (Table 1, entry 2) did not lead to any conversion either. 

However, when a catalyst comprising of palladium(II) acetate and 
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triphenylphosphine in the presence of aqueous sodium carbonate solution was 

investigated under different reaction conditions (Table 1, entries 3,4), it was found 

that both in propanol/water and THF/water mixtures the corresponding protected 

allylic alcohols 29 could be obtained with good yields after short reaction times. 

However, it turned out that these reactions were not reproducible, as the 

conversion was very low in most of the cases. Unfortunately, even after tedious 

purification of both 25 and 28, the Suzuki coupling could not be rendered 

reproducible, so that it was necessary to investigate other cross coupling reactions. 

Table 1 Suzuki coupling of bromide 25  

 

Entry Conditions Additive(s) Comment 
Yield of 

29 

1
26

 
5.0 mol% Pd(PPh3)4 

toluene, 100 °C 

2N NaOH, 

5.0 mol% LiCl 
Low conversion n.d. 

2 

5.0 mol% Pd(PPh3)4 

2.0 eq. Na2CO3 

THF/H2O 5:1, rt 

- No conversion - 

3 

5.0 mol% Pd(OAc)2 

10 mol% PPh3 

2.0 eq. Na2CO3 

n-propanol/H2O 5:1, reflux 

- 

Full conversion in 

30 min, reaction is 

not reproducible 

70% 

4 

5.0 mol% Pd(OAc)2 

10 mol% PPh3 

2.0 eq. Na2CO3 

THF/H2O 5:1, reflux 

5 drops 

ethylene glycol 

Full conversion in 

30 min, reaction is 

not reproducible 

78% 
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Heck cross coupling 

The Heck reaction
31,33,34

 of bromide 25 with allyl alcohol or derivatives thereof (30) 

was attempted next. With acetal-protected acrolein (Table 2, entry 1) no turnover 

was found with the standard catalyst comprising palladium(II) acetate and 

triphenylphosphine. Under the same conditions, TBS-protected allylic alcohol as 

well as allylic alcohol itself (Table 2, entries 2,3) were giving full conversion in short 

reaction times (~1 h), however the desired product 31 was isolated as a mixture 

with all other double bond isomers (E/Z, terminal/vicinal substitution), which could 

not be separated, rendering this coupling not useful for the further synthesis. The 

same result was found when Pd-BIAN
35

 complex 32, which had been successfully 

used in the related oxidative Heck reaction,
36

 was employed for the Heck reaction 

with allyl alcohol. 

Table 2 Heck reaction of bromide 25 

 

Entry Catalyst 
Allyl 

alcohol 
Comment  

1 
5.0 mol% Pd(OAc)2 

10.0 mol% PPh3  
No conversion  

2 
5.0 mol% Pd(OAc)2 

10.0 mol% PPh3 
 

Full conversion, mixture 

of double bond isomers 

(65%) 

 

3 
5.0 mol% Pd(OAc)2 

10.0 mol% PPh3 
 

Full conversion, mixture 

of double bond isomers 

4 5.0 mol% 32  
Full conversion, mixture 

of double bond isomers 
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Kumada cross coupling 

The Kumada cross coupling
37

 of 25 with vinylmagnesium bromide was also 

investigated. The corresponding terminal olefin 34 was anticipated to be further 

transformed to the desired allyl carbonate by cross metathesis (compare Chapters 

2 and 3). However, it was found that under the reaction conditions, the phthalimide 

protecting group was not tolerated, as a fast and selective attack on the imide to 

give 35, was observed. 

 

Scheme 7 Attempted Kumada coupling 

 

Stille cross coupling 

As the last option, we attempted the Stille reaction to install the allylic alcohol 

moiety in the 2-position of the indole. Since it is known that the Stille reaction works 

best with unsaturated iodides as coupling partners,
38-40

 we set out to synthesize the 

corresponding iodide, starting off from fully protected tryptamine 36. As illustrated 

in Table 3, a variety of conditions were investigated. Most of the entries – with the 

exception of entry 3 – do give conversion to the desired iodide 37, however, the 

products are accompanied by side-products or not-separable impurities. Similar 

results were found with lithiation and subsequent trapping with iodine or 1,2-

diiodoethane
41

 (Table 3, entries 1,2). With the strongly electrophilic iodonium 

monochloride, deprotection of the Boc group was observed (Table 3, entry 3), most 

probably due to a Lewis acid-promoted elimination of the tert-butoxy moiety. Using 

the highly active bispyridine iodonium tetrafluoroborate (Table 3, entry 4),
42

 the 
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desired product 37 was observed in the reaction mixture, but could not be obtained 

pure. To our delight, a mercury-mediated iodination
43

 gave excellent results in 

terms of yields and selectivities, and 37 could be obtained in up to 2 g scale via this 

method (Table 3, entry 5). 

Table 3 Iodination of tryptamine 36  

 

Entry Conditions Conversion Comment 

1 
2.4 eq. tBuLi, 2.6 eq. I2 

THF, -78 °C to rt 
Mixture of products  

2 1.1 eq. tBuLi, 1.0 eq. 38
41

 Mixture of products  

3 1.1 eq. ICl, CH2Cl2, rt 

Full conversion, 

deprotection of Boc 

group 

 

4
42

 
1.1 eq. IPy2, 2.2 eq. HBF4, 

CH2Cl2, rt 
Mixture of products 

 

5
43

 
1.3 eq. Hg(OTFA)2, CH2Cl2, rt 

1.5 eq. I2 

Selective reaction, 

quantitative yield 
can be scaled to 2g 

 

With iodide 37 in hand, we investigated the Stille coupling reaction (Table 4) with 

stannane 39, which was obtained in one step from propargyl alcohol.
44

 We started 

off optimizing the reaction conditions, employing Pd(PPh3)4 as catalyst and LiCl as 

additive.
38

 However, with various solvents tested, little or no conversion to the 

coupling product 40 was observed (Table 4, entries 1-3). Addition of CsF and 
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catalytic amounts of CuI, which had led to improved results in earlier studies,
45

 

showed no effect on the envisaged reaction (Table 4, entry 4). However, at 

elevated temperatures and with a Pd(II) precatalyst, the desired product was 

obtained in acceptable yield (Table 4, entry 5). Furthermore, this reaction proved to 

be scalable without compromizing the yields. From the optimization, it is not clear 

yet whether the temperature or the additive in combination with the Pd precursor 

was the decisive change for the positive outcome of the reaction. 

Table 4 Optimization Stille coupling 

 

Entry Conditions Additives Comment 

1 5.0 mol% Pd(PPh3)4, DMF, 50 °C 3.0 eq. LiCl Low conversion 

2 5.0 mol% Pd(PPh3)4, THF, 50 °C 3.0 eq. LiCl Low conversion 

3 5.0 mol% Pd(PPh3)4, toluene, 50 °C 3.0 eq. LiCl Low conversion 

4
45

 5.0 mol% Pd(PPh3)4, DMF, 50 °C 
2.0 eq. CsF 

10 mol% CuI 
Low conversion 

5 5.0 mol% PdCl2(PPh3)2, DMF, 75 °C 3.0 eq. LiCl 65% yield 

 

Allylic alcohol 40 could be smoothly transformed to the corresponding methyl 

carbonate 41 (Scheme 8), which bears the necessary leaving group for the 

anticipated Ir-catalyzed allylic substitution. 
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Scheme 8 Synthesis of allylic carbonate 41 

With allylic carbonate 41 in hand, we set off to investigate the deprotection of the 

phthalimide protection group. This was expected to be a difficult transformation, 

since phthalimides are generally cleaved with nucleophilic reagents. However, the 

allylic carbonate which is also present in 41 should also be susceptible to 

nucleophilic attack. The same holds true if a reductive pathway should be chosen. 

Therefore, judicious choice of deprotection conditions was expected to be 

necessary. As a third requirement, the Boc protection of the indole moiety in 41 

should remain intact, since indoles are known to be N-nucleophiles in the Ir-

catalyzed allylic amination.
46

 Protection of this position ensured supression of a 

competing intermolecular allylic substitution.  

We started off by investigating the deprotection of the phthalimide group with 

hydrazine hydrate (Table 5).
47

 Under standard conditions in ethanol at ambient 

temperature, it was observed that 41 did not dissolve and with one equivalent of 

hydrazine, no reaction took place (Table 5, entry 1). When more equivalents of 

hydrazine were added, little conversion to the desired deprotected primary amine 

was observed (Table 5, entry 2). However, when the reaction mixture was allowed 

to stir overnight, full conversion of the primary amine 42 to the ring-closed β-

carboline 43 was observed, most probably due to the basicity of hydrazine (Table 

5, entry 3). Reactions which employed hydrazine stock solutions in either EtOH or 

THF led to no conversion (Table 5, entries 4-6), with the exception of the reaction 

using an excess of hydrazine in THF, which led to equal amounts of the desired 42, 

next to the ring-closed 43 and aminoalcohol 44 (Table 5, entry 7). It is known in 

literature that phthalimides can also be deprotected with primary amines,
47-49

 so we 

investigated this possibility next. Indeed, this manner of deprotection proved to be 

more fruitful, since we observed full conversion of phthalimide 41 with an excess of 

methylamine in water (Table 5, entry 8), albeit with complete conversion to β-

carboline 43. When the solvent was changed to ethanol, full conversion to the 

desired primary amine 42 was achieved, however in this case, diamide 45 and 
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semi-deprotected diamide 46 being inseparable impurities (Table 5, entries 9,10). It 

was compound 42 from these reactions that was used for further studies. Finally, 

the deprotection with butylamine was attempted to achieve an easier purification of 

42, but these reaction either led to low conversion to 42 overnight, or to complete 

deprotection to amino alcohol 44 (Table 5, entries 11,12). 

Table 5 Deprotection of phthalimide 41 

 

Entry Conditions Comment 42/43
a
  

1 1.0 eq. H2NNH2•H2O, EtOH, rt After 1h, no conv. - 
41 does not 

dissolve 

2 3.0 eq. H2NNH2•H2O, EtOH, rt 
After 1h, low conv. 

(~10%) 
100/0 

41 

dissolves 

3 3.0 eq. H2NNH2•H2O, EtOH, rt 
After 16h, low 

conv. (~20%) 
0/100 

41 

dissolves 

4 1.0 eq. H2NNH2•H2O
b
, EtOH, rt No conv. after 16h - - 

5 5.0 eq. H2NNH2•H2O
b
, EtOH, rt No conv. after 16h - - 

6 1.0 eq. H2NNH2•H2O
c
, EtOH, rt No conv. after 16h - - 

7 4.0 eq. H2NNH2•H2O
c
, EtOH, rt 2h, (50% conv.) 20/20 

44 as 

sideproduct 

8 
5.0 eq. MeNH2 (40% in H2O), 

EtOH, rt, 16h 
Full conv. 0/100 50% 43 

9 
5.0 eq. MeNH2 (33% in EtOH), 

EtOH, rt, 16h 
50% conv. 100/0 

Major 

impurities 

45 + 46 
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Entry Conditions Comment 42/43
a
  

10 
10.0 eq. MeNH2 (33% in EtOH), 

EtOH, rt, 16h 
Full conv. 100/0 

Major 

impurities 

45 + 46 

11 10.0 eq. BuNH2 , EtOH, rt, 16h 20% conv. 100/0  

12 10.0 eq. BuNH2 , EtOH, rt, 48h 80% conv. - 
Only 44 

found 

a
Arbitrary units, ratio measured by 

1
H NMR. 

b
Hydrazine hydrate stock solution in EtOH (1M). 

c
H2NNH2 

solution in THF (1M). 

 

From the attempts to deprotect phthalimide 41 selectively, it can be concluded that 

one the one hand, employing hydrazine the desired selective deprotection could 

not be achieved due to overreaction to 43. On the other hand, with methylamine 

the reaction does work and can be summarized as follows: The first nucleophilic 

attack on the phthalimide to give diamide 46 is very fast (1 h), the second attack on 

46 itself is then much slower, which is accompanied by unwanted side reactions to 

amino alcohol 44. 

With impure 42 in hand, we attempted the Ir-catalyzed allylic amination with 

iridacycle 48 (Table 6). Generally, this reaction does not require a base,
50

 but 

under these conditions, no conversion of 42 was found (Table 6, entry 1). With 

more drastic conditions employing Cs2CO3 as a base and elevated temperatures, 

which had been employed earlier for the allylic substitution with indoles,
51

 also no 

conversion to 47 was found either (Table 6, entry 2). 
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Table 6 Attempted Ir-catalyzed allylic amination 

 

Entry Conditions Comment 

1 rt, 16h No conversion 

2 2.0 eq. Cs2CO3, 50 °C, 16h No conversion 

 

From these results is was not clear as to why the anticipated reaction did not work 

as envisaged. It could be that the impurities of 42 played a role, although a 

possible coordination of the Boc-group to the Ir-catalyst and subsequent 

deactivation of the catalyst could not be excluded. It is also interesting to note that 

under basic conditions during the deprotection of the phthalimide with hydrazine 

(see Table 5) the corresponding β-carboline 43 was observed, but not in the case 

of the reaction with Cs2CO3 with elevated temperatures. Thus, another possibility of 

deactivation of the catalyst could be the strong interaction of the allylic carbonate 

42 with the catalyst that would lead to deactivation by formation of a catalytically 

inactive Ir complex.  

With the results of the unsuccessful allylic amination to give β-carbolines and the 

problems associated with the deprotection of the phthalimide protecting group in 

hand, we decided to adapt our synthetic approach. Having established the key 

synthetic steps to construct the allylic carbonate via Stille coupling of a 2-iodoindole 



 

 

  111 

Synthetic approaches towards β-carbolines 

(vide supra), we decided to change the protecting group strategy, but keep the 

same synthetic approach. We envisioned to investigate the use of an N-

substitutent that would serve on the one hand as a protecting group during the Pd-

catalyzed cross coupling, and on the other hand act as the nucleophile for an allylic 

substitution (see also Chapter 3). Furthermore, the protecting group of the indole-

nitrogen was varied, so that possible influences of the Boc-group of the previous 

approach could be investigated. 

 

3.2 The allylic amidation approach 

Our synthetic approach started from commercially available tryptamines 21 

(Scheme 9). After protection of the indole nitrogen and trifluoroacetylation of the 

primary amine we obtained the protected tryptamines 48a-c in very good yields. 

Furthermore, trifluoroacetamide 47d without a substituent on the indole nitrogen 

could be synthesized. 

 

Scheme 9 Synthesis of trifluoroacetamide-protected indoles 

We then went on to investigate the possible iodination of 48 in the 2-position of the 

indole system. The reported Hg-mediated iodination
43

, that had been used earlier 

on Boc-protected indoles 36 (vide supra) worked also fine for the trifluoroacetamide 

48d with a Boc protecting group (Scheme 10). However, in the case of indoles 48a-

c with a different substitution than Boc on the indole-nitrogen, this transformation 

proved to be difficult when scaling up the reactions.  This outcome was 

unexpected, and could be explained by solubility problems of either the indoles 

48a-c or the mercury salt, as very high dilutions have been shown to be necessary 

for the reaction to proceed smoothly. About a further coordination or a stabilizing 

role of the previously employed Boc-protecting group can only be speculated at this 

point.  
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Scheme 10 Hg-mediated iodination of 48 

We turned to the use of iodine monochloride as an electrophilic iodination agent for 

48, which we had successfully applied on electron-rich phenylethylamine 

derivatives (see Chapter 3).
52,53

 In the case of tryptamines 48a and 47d this 

showed to be no feasable synthetic pathway, as the corresponding chlorides 50 

were isolated (Scheme 11), resulting from a reaction of the indole moiety of 

47d/48a in the 2-position with ICl. The following Stille reaction (see also Scheme 

12) with stannane 52 showed no turnover with the chlorides 50.   

 

Scheme 11 Attempted Stille reaction with chlorotryptamines 

For the synthesis of the desired iodoindoles 49, suitable reagents for the envisaged 

Pd-catalyzed carbon-carbon coupling reaction later on in the synthetic route, we 

refrained to a lithiation-iodination protocol. After metalation of 48 with butyllithium, 

iodine as electrophile furnishes the desired iodine-substituted indoles 49 in 

moderate yields. (For the trapping of the lithiated species with another electrophile, 

see Scheme 16) For the following cross-coupling, the role of the trifluoroacetamide 

group as a protecting group was exploited. Since Pd-catalyzed couplings only 

rarely proceed in the presence of primary amines, this feature comes in to our 

advantage. Subsequently, the allylic alcohol moiety was introduced via Stille 

coupling with stannane 52.
44

 In the case of the iodides 49, the coupling proceeded 

smoothly to the desired allylic alcohols 51 (68 - 71%). These could be transformed 

to the corresponding methyl carbonates 53 in a straightforward manner (Scheme 

12). 
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Scheme 12 Synthesis of protected allylic carbonates 

With allylic carbonates 53 in hand, we set off to investigate whether they would 

serve as precursors to a selection of transition metal-catalyzed allylic amidation 

reactions, based on Ir or Pd catalysts. Both methodologies had been proven viable 

for the related phenylethylamine derivatives
53,54

 to give tetrahydroisoquinolines, 

and, in the case of the Ir-catalyzed allylic amidation, also chiral saturated N-

heterocycles (see Chapter 3). 

The results of the attempted Ir-catalyzed allylic amidation are summarized in Table 

7. First, the influence of different substitutions on the indole moiety were 

investigated with a catalyst comprising 2.5 mol% of [Ir(COD)Cl]2, 5.0 mol% 

phosphoramidite L2 and two equivalents of DBU (Table 7, entries 2-6). Under 

these conditions, neither of the allylic carbonates 53 gave any conversion to 54, 

supporting the notion that the influence of the Boc-group which was believed to 

prevent the Ir-catalyzed allylic amination from occuring earlier (Table 6) does not 

have a major influence on the catalyst. Also, L3 was employed in one case (Table 

7, entry 4) but no improvement was observed. When the temperature was raised to 

90 °C, a small amount of the desired product 53 was observed (Table 7, entries 7-

10), however, it could be shown that this was the product of a blank reaction 
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independent of the presence of Ir-catalyst and 54 was thus formed in a racemic 

fashion (Table 7, entry 8). Finally, the influence of a variety of bases was 

investigated with benzyl-protected indole 53 (Table 7, entries 11-17). Again, it was 

found that the influence of the base on the envisaged reaction is remarkable, with 

TBD leading to decomposition of the starting material (Table 7, entry 11) and 

K3PO4 leading to no conversion at all (Table 7, entry 13). However, it could be 

established that the blank reaction without Ir catalyst proceeded cleanly to the 

desired products at elevated temperatures in dioxane with Cs2CO3 as a base 

(Table 7, entry 17). The employment of the much stronger base NaH led to 

decomposition of allylic carbonate 53 to the corresponding allylic alcohol 51 (Table 

7, entries 18,19).  

Table 7 Attempted Ir-catalyzed allylic amidation 

 

Entry R R’ Catalyst Conditions Comment 

1 H Boc - 2.0 eq. DBU, THF, 50 °C, 16h no conversion 

2 H Boc [Ir(COD)Cl]2/L2 2.0 eq. DBU, THF, 50 °C, 16h no conversion 

3 H Me [Ir(COD)Cl]2/L2 2.0 eq. DBU, THF, 50 °C, 16h no conversion 

4 H Me [Ir(COD)Cl]2/L3 2.0 eq. DBU, THF, 50 °C, 16h no conversion 

5 H Bn [Ir(COD)Cl]2/L2 2.0 eq. DBU, THF, 50 °C, 16h no conversion 
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Entry R R’ Catalyst Conditions Comment 

6 OMe Bn [Ir(COD)Cl]2/L2 2.0 eq. DBU, THF, 50 °C, 16h no conversion 

7
a
 H Me 48 

2.0 eq. DBU, THF, 50 °C to 90 

°C, 16h 
no conversion 

8 H Me - 
2.0 eq. DBU, dioxane, 90 °C, 

16h 

~10% 

conversion
b
 

9 H Me 48 
2.0 eq. DBU, dioxane, 90 °C, 

16h 

~10% 

conversion
b
 

10 H Me [Ir(COD)Cl]2/L3 
2.0 eq. DBU, dioxane, 90 °C, 

16h 

~10% 

conversion
b
 

11 H Bn 48 
2.0 eq. TBD, dioxane, 100 °C, 

16h 

decomposition 

of 53 

12 H Bn 48 
2.0 eq. DABCO, dioxane, 100 

°C, 16h 

~50% 

conversion
b,c

 

13 H Bn 48 
2.0 eq. K3PO4, dioxane, 100 °C, 

16h 
no conversion 

14 H Bn 48 
2.0 eq. Cs2CO3, dioxane, 100 

°C, 16h 

~70% 

conversion
b,c

 

15 H Bn 48 
2.0 eq. Cs2CO3, toluene, 100 

°C, 16h 

~10% 

conversion
b,c

 

16 H Bn 48 
2.0 eq. Cs2CO3, dioxane, 100 

°C,
d
 16h 

Full 

conversion
b,c

 

17 H Bn - 
2.0 eq. Cs2CO3, dioxane, 100 

°C, 16h 
full conversion 

18 H Bn - 1.0 eq. NaH, THF, rt 
full conversion 

to 51 

19 OMe Bn - 1.0 eq. NaH, THF, rt 
full conversion 

to 51 

a
Reaction was carried out in a sealed tube. 

b 
Determined by 

1
H NMR. 

c
53 was isolated as a racemic 

mixture. 
d
Microwave heating (300W, 2h). 
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From these results it was concluded that the Ir-catalyzed intermolecular allylic 

amidation to form β-carbolines was not successful. It could be speculated as to 

why this reaction did not take place, keeping in mind that the related 

tetrahydroisoquinolines were easily accessible through this synthetic pathway (see 

Chapter 3). In the case of 54, the six-membered heterocycles formed is part of a 

ring system that is annulated to a five membered ring, namely the indole. This is in 

contrast to the tetrahydroisoquinolines, where a phenyl ring was attached to the 

piperidine to be formed. This structural change could have lead to steric constraints 

which prevented the Ir-catalyst to attack, or prevent an intermediate Ir-allyl complex 

from reacting further to the desired products. Furthermore, it could be speculated 

that the electronic changes brought about by the indole moiety change the 

electronic nature of the allylic carbonate in such a way that an allylic substitution is 

prevented from taking place. A last possibility would be the formation of a 

catalytically inactive Ir-indole complex which would lower the concentration of 

active catalyst in the reaction mixture. To probe some of these issues, a variety of 

test reactions were carried out.  

 

Competition Experiments 

To probe as to why the Ir-catalyzed allylic amidation of 53 would not take place, we 

conducted a competition experiment (Scheme 13). Carbonate 53 was subjected to 

the standard asymmetric allylic amidation conditions for 1 h, after which 53 was 

found to be completely unreacted in the mixture. Then, linear allylic carbonate 55 

was added and stirred under the same conditions for 5 more hours. After this time, 

carbonate 55 had been fully converted to chiral piperidine 56 as previously 

reported (see Chapter 3), whereas tryptamine-derived carbonate 53 was left 

unreacted in the mixture. From this experiment it can be concluded that no stable Ir 

complex with tryptamine 53 is formed, since no deactivation of the catalyst was 

observed when a second substrate was added. The formation of a catalytically 

active species of the Ir complex with 53 seemed to be prevented due to the steric 

and/or electronic parameters of 53. The competition experiment was also carried 

out in deuterated THF and followed by 
31

P NMR spectroscopy, but no catalytically 

active species was observed, so no clear conclusions could be drawn from this 

experiment. The observation of an active catalytic species in Ir-catalyzed allylic 

substitutions has generally been elusive.
55-58
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Scheme 13 Competition experiment 

 

Intermolecular allylic amination 

To test whether or not an Ir-allyl complex, which is generally accepted to be the key 

catalytic intermediate in Ir-catalyzed allylic substitutions
56,58,59

 was formed, an 

intermolecular allylic amination was carried out under previously published reaction 

conditions (Scheme 14).
55

 When allylic carbonate 53 was reacted with an excess of 

benzylamine in the presence of iridacycle 48 as catalyst, no conversion of the 

starting material was observed.
60

 From this observation it can be concluded that 

most probably there is no Ir-allyl species formed, which is a prerequisite for the 

allylic substitution to occur. Therefore, it seems that attack of the Ir catalyst on 

allylic carbonate 53 is prevented either by steric or electronic factors. 

 

Scheme 14 Attempted intermolecular allylic amination 

  

Pd-catalyzed allylic amidation 

Finally, an effort was made to examine the allylic amidation with a Pd-

phosphoramidite complex as catalyst. This had been published earlier as an 
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efficient catalyst to prepare a chiral tetrahydroisoquinoline from the corresponding 

allylic carbonates and trifluoroacetamides.
54

 However, under these conditions 

(Scheme 15), no conversion of 53 was observed. This hints at a problem with the 

reactivity of the starting material, since two transition metal-based catalysts, 

previously successful for the synthesis of tetrahydroisoquinolines, did not achieve 

any conversion to the desired product 54. 

 

Scheme 15 Attempted Pd-catalyzed allylic amidation 

To make the allylic carbonate more accessible for a potential transition metal-

based catalyst, we attempted to synthesize an allylic carbonate with a “reversed” 

allyl moiety, meaning that the corresponding secondary allylic alcohol would be 

synthesized. These kind of substrates had been shown to undergo allylic amination 

with Ir-phosphoramidite catalysts as well.
61

 When iodoindole 48b was lithiated as 

shown previously and then quenched with acrolein as electrophile, secondary 

allylic alcohol 58 could be obtained. It was then attempted to transform 58 to the 

desired carbonate 59, however the standard conditions for the transformation of an 

alcohol to a carbonate failed to give any conversion (Scheme 16). When the same 

experiment was carried out with the stronger base BuLi, the rearranged linear 

allylic carbonate 53 was isolated. This route was not followed further.  
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Scheme 16 Attempted synthesis of an indole carrying a secondary allyl carbonate 

In the end, racemic β-carbolines were synthesized via the route that had been 

discovered during the catalyst screening process (compare Table 7). When allylic 

carbonates 53a-c were reacted with Cs2CO3 as a base at elevated temperatures, 

the corresponding β-carbolines 60a-c were obtained in good yield (Scheme 17). 

 

Scheme 17 Racemic synthesis of β-carbolines 

It is interesting to note that the products 60a-c were isolated as mixtures of 

isomers/rotamers. Whereas 60a shows two distinct signals in 
19

F NMR, which we 

attribute to the E/Z isomers of the trifluoroacetamide, 60b and 60c show two 

additional resonances, giving a set of four signals in 
19

F NMR. We assigned these 

extra signals to two rotamers resulting from the hindered rotation of the benzyl 

protecting group. To probe this hypothesis, we have conducted variable 

temperature 
19

F NMR measurements of 60b in DMSO-d6 (Figure 2). From the 

NMR spectra can be seen that 2 signals (1 and 3 in Figure 2) coalesce at 80 °C, as 

can be expected from rotamers. The fourth resonance (4 in Figure 2) gradually 

disappears at higher temperatures, a phenomenon that can be attributed to E/Z 

isomers of the trifluoroacetamide moiety, since at higher temperature the 
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thermodynamically more stable species (signal 2 in Figure 2) should be prevalent 

in the mixture. 

 

 

Figure 2 VT
19

F NMR of 60b in DMSO-d6, t from 25 °C (= 1) to 95 °C (= 15) in increments of 5 °C 

 

4. Conclusions 

It was attempted to develop an Ir-catalyzed intramolecular allylic substitution with 

nitrogen nucleophiles for the synthesis of chiral β-carboline building blocks. The 

synthesis of the precursors of the final asymmetric metal-catalyzed step was 
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achieved and is based upon a key Pd-catalyzed cross coupling to introduce the 

allyl alcohol moiety in the 2-position of the indole. A direct allylic amination was 

attempted but this could not be realized through difficulties with the selective 

synthesis of a primary amine in the presence of the allylic carbonate required for 

the Ir-catalyzed step. A second approach to develop an allylic amidation 

circumvented this problem, but suffered from the fact that the Ir-based catalysis did 

not take place. From a number of test experiments it can be concluded that the 

formation of the key intermediate for the catalysis, the Ir-allyl species, does not 

form with the indole precursors due to steric and/or electronic reasons. However, 

the racemic synthesis of the desired products could finally be achieved. It should 

be noted that also for this transformation to run smoothly, judicious choice of base 

is necessary (with Cs2CO3 being the base of choice in this case).  

It is not clear with the present results whether the envisaged intramolecular allylic 

amination or amidation can be rendered feasible with transition metal-based 

catalysts. However, many methods for catalytic asymmetric allylic substitution are 

known and it could be investigated in how far they are applicable for the synthesis 

of β-carboline compounds. 

 

5. Experimental section 

General 

For general remarks, see chapter 3. Stannane 52 was prepared according to 
literature.

44
 L3 was prepared according to literature.

62
 

 

tert-Butyl 3-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-2-iodo-1H-indole-1-carboxylate 
(37) 

tert-Butyl 3-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-1H-indole-1-carboxylate 36
63

 (1.0 eq., 
4.00 g, 10.25 mmol) was dissolved in 200 mL CH2Cl2 at 
21 °C. Then 1.3 eq. bis(2,2,2-trifluoroacetoxy)mercury 
(5.68 g, 13.32 mmol) was added and the mixture was 
stirred for 20 min. Then it was washed with 2M aq. KI 
solution (2x 100 mL), dried over Na2SO4 and filtered. To 
the filtrate was added 1.5 eq. iodine (3.90 g, 15.37 mmol) 
and the mixture was stirred for another 3 h at 21 °C. The 
red precipitate was filtered and the filtrate was washed 
with saturated solution of Na2S2O3 (2x 100 mL), dried over 
Na2SO4 and all volatiles were removed under reduced 
pressure  to give tert-butyl 3-(2-(1,3-dioxoisoindolin-2-
yl)ethyl)-2-iodo-1H-indole-1-carboxylate 37 (3.86 g, 7.48 

mmol, 73%) as an off-white solid. 
1
H NMR (201 MHz, CDCl3) δ 8.17 – 7.98 (m, 
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1H), 7.97 – 7.74 (m, 2H), 7.74 – 7.55 (m, 3H), 7.39 – 7.07 (m, 2H), 4.12 – 3.75 (m, 
2H), 3.32 – 2.97 (m, 2H), 1.70 (s, 9H). 

13
C NMR (50 MHz, CDCl3) δ 168.04, 

149.20, 137.97, 133.80, 132.05, 129.46, 125.99, 124.36, 123.10, 122.76, 118.02, 
115.53, 85.01, 79.15, 36.62, 28.24, 27.34, 27.04. HRMS: (ESI

+
) calculated for 

C23H21lN2O4 [M+H
+
]: 516.0541, found: 516.0507. 

 

General procedure for the N-protection of tryptamines (Synthesis of 47) 

1.0 eq. of the appropriate tryptamine was dissolved in DMF (Volume: 50 ml / 20 
mmol) at 21 °C and added to a solution of 1.1 eq. sodium 
hydride in DMF (Volume: 50 ml / 20 mmol) and the 
solution was stirred for 30 min. Then, it was cooled to 0 °C 
and 1.1 eq. methyl iodide was added dropwise. After 
stirring at 21 °C for 1 h, the reaction was quenched with 
water and the mixture extracted with EtOAc. After drying 
over MgSO4 and removal of all volatiles under reduced 
pressure, 47 were isolated as brown solids. These 
products were used without further purification.  

 

N-(2-(1H-Indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (47d) 

Tryptamine 21 (1.0 eq., 1.00 g, 6.24 mmol) was dissolved in CH2Cl2 (Volume: 50 
ml) and cooled to 0 °C. Then, 4.0 eq. pyridine (0.530 
ml, 6.55 mmol) were added and subsequently, 5.0 eq. 
trifluoroacetic anhydride (0.926 ml, 6.55 mmol) were 
added dropwise. The mixture was allowed to warm to 
room temperature and stirred for 16 h. After completion 
(as judged by TLC), the mixture was washed with 2N 
aq. HCl (3x 20 mL) and dried over MgSO4. After 
filtration and removal of all volatiles under reduced 

pressure, N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 47d (1.567 g, 6.12 
mmol, 98%) was obtained as a brown solid. This was used without further 
purification. 

1
H NMR: (201 MHz, CDCl3) δ 8.46 (s (br), 1H), 7.71 (d, J = 7.6 Hz, 

1H), 7.51 – 7.20 (m, 3H), 7.17 – 6.97 (m, 2H), 3.70 (q, J = 6.6 Hz, 2H), 3.10 (t, J = 
6.9 Hz, 2H). 

13
C NMR: (50 MHz, CDCl3) δ 157.40 (q, J = 36.9 Hz), 136.31, 126.85, 

122.28, 122.02, 119.31, 118.19, 115.84 (q, J = 286.8 Hz), 111.36, 111.29, 40.17, 
24.31. 

19
F NMR: (189 MHz, CDCl3) δ -75.89. HRMS: (ESI

+
, m/z) calculated for 

C12H12F3N2O1 [M+H
+
]: 257.0896, found: 257.0877. 

 

General procedure for the preparation of trifluoroacetamides 48  

1.0 eq. 47 was dissolved in CH2Cl2 (Volume: 50 ml / 20 mmol) and the solution was 
cooled to 0 °C. Then, 1.05 eq. pyridine was added and subsequently 1.05 eq. 
2,2,2-trifluoroacetic anhydride was added dropwise. The mixture was allowed to 
warm to room temperature and stirred for 16 h. After completion, the mixture was 
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washed with 2N aq. HCl (3x 50 mL / 20 mmol) and dried over MgSO4. After 
filtration and removal of all volatiles under reduced pressure, compounds 48 were 
obtained as brown solids. These products were used without further purification. 

 

2,2,2-Trifluoro-N-(2-(1-methyl-1H-indol-3-yl)ethyl)acetamide (48a) 

Following the general procedure, the reaction of 1.0 eq. 2-(1-methyl-1H-indol-3-
yl)ethanamine 47a (3.48 g, 20 mmol) gave to 2,2,2-

trifluoro-N-(2-(1-methyl-1H-indol-3-yl)ethyl)acetamide 
48a (4.70 g, 17.40 mmol, 87%). 

1
H NMR: (201 MHz, 

CDCl3) δ 7.59 (d, J = 7.8 Hz, 1H), 7.42 – 7.09 (m, 3H), 
6.91 (s, 1H), 6.70 – 6.30 (s (br), 1H), 3.76 (s, 3H), 3.68 
(dd, J = 12.9, 6.5 Hz, 2H), 3.15 – 2.97 (m, 2H). 

13
C 

NMR: (50 MHz, CDCl3) δ 137.18, 127.37, 126.91, 
121.98, 119.16, 118.50, 110.14, 109.44, 40.28, 32.61, 
24.56. COCF3 peaks not observed. 

19
F NMR: (189 

MHz, CDCl3) δ -76.00. HRMS: (ESI
+
, m/z) calculated for C13H14F3N2O1 [M+H

+
]: 

271.1053, found: 271.1035. 

 

N-(2-(1-Benzyl-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (48b) 

Following the general procedure, the reaction of 1.0 eq. 2-(1-benzyl-1H-indol-3-
yl)ethanamine 47b (5.01 g, 20 mmol) gave N-(2-(1-

benzyl-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
48b (6.44 g, 18.60 mmol, 93%). 

1
H NMR: (201 MHz, 

CDCl3) δ 7.81 – 7.59 (m, 1H), 7.51 – 7.11 (m, 8H), 
7.09 – 6.90 (m, 2H), 5.31 (s, 2H), 3.73 (dd, J = 13.1, 
6.7 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H). 

13
C NMR: (50 

MHz, CDCl3) δ 137.24, 136.68, 128.77, 128.60, 
127.58, 127.51, 126.66, 126.13, 122.00, 119.26, 

118.59, 110.84, 109.80, 49.68, 40.04, 24.41. COCF3 peaks not observed. 
19

F 
NMR: (189 MHz, CDCl3) δ -75.74. HRMS: (APCI, m/z) calculated for C19H18F3N2O1 
[M+H

+
]: 347.1366, found: 347.1361. 

 

N-(2-(1-Benzyl-5-methoxy-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (48c) 

Following the general procedure, the reaction of 1.0 eq. 2-(1-benzyl-5-methoxy-1H-
indol-3-yl)ethanamine 47c (1.475 g, 5.26 mmol) 
gave N-(2-(1 benzyl-5-methoxy-1H-indol-3-
yl)ethyl)-2,2,2-trifluoroacetamide 48c (1.657 g, 
4.40 mmol, 84%). 

1
H NMR: (400 MHz, CDCl3) δ 

7.35 – 7.22 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 
7.10 (d, J = 6.5 Hz, 2H), 7.02 (s, 1H), 6.95 (s, 
1H), 6.91 – 6.83 (m, 1H), 6.41 (s (br), 1H), 5.25 
(s, 2H), 3.86 (s, 3H), 3.68 (dd, J = 12.7, 6.4 Hz, 

2H), 3.02 (t, J = 6.6 Hz, 2H). 
13

C NMR: (101 MHz, CDCl3) δ 154.13, 137.31, 
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132.10, 128.77, 127.89, 127.69, 126.85, 126.73, 112.47, 110.83, 110.23, 100.32, 
55.85, 50.14, 40.00, 24.64. COCF3 peaks not observed. 

19
F NMR: (376 MHz, 

CDCl3) δ -75.97. HRMS: (ESI
+
, m/z) calculated for C20H19F3N2O2Na [M+Na

+
]: 

399.1291, found: 399.1277. 

 

General procedure for the iodination of tryptamines 48 (Synthesis of 49) 

Trifluoroacetamide 48 (1.0 eq.) was dissolved in Et2O (Volume: 10 ml / 2 mmol) 
and the solution cooled to 0 °C. Then, 2.5 eq. BuLi were added dropwise and the 
reaction was allowed to warm to room temperature. After 2 hours, the reaction 
mixture was cooled to 0 °C again, and 1.5 eq. iodine was added. After warming to 
room temperature, the reaction was quenched by addition of a saturated Na2S2O3 
solution (10 ml / 2 mmol), the mixture was washed with water (3x 10 mL / 2 mmol) 
and extracted with Et2O (2x 20 mL / 2 mmol). After drying over MgSO4, all volatiles 
were removed under reduced pressure. Purification of the crude mixture by column 
chromatography gave 49. 

 

2,2,2-Trifluoro-N-(2-(2-iodo-1-methyl-1H-indol-3-yl)ethyl)acetamide (49a)  

Following the general procedure, the reaction of 1.0 eq. 2,2,2-trifluoro-N-(2-(1-
methyl-1H-indol-3-yl)ethyl)acetamide 48a (0.500 g, 
1.850 mmol) gave 2,2,2-trifluoro-N-(2-(2-iodo-1-methyl-
1H-indol-3-yl)ethyl)acetamide 49a (0.403 g, 1.018 
mmol, 55%) as a white solid after purification by column 
chromatography (Rf = 0.80 in pentane/EtOAc 8:2, SiO2, 
pentane/EtOAc 8:2). 

1
H NMR: (201 MHz, CDCl3) δ 7.60 

(d, J = 7.6 Hz, 1H), 7.32 (t, J = 8.3 Hz, 1H), 7.18 (dd, J 
= 15.9, 7.9 Hz, 2H), 7.07 (s (br), 1H), 3.75 (s, 3H), 3.65 

(q, J = 6.7 Hz, 2H), 3.09 (t, J = 6.9 Hz, 2H). 
13

C NMR: (50 MHz, CDCl3) δ 159.29 
(q, J = 36.8 Hz), 138.40, 127.36, 122.03, 119.50, 117.49, 116.63, 115.76 (q, J = 
288.6 Hz), 109.69, 87.84, 39.92, 33.99, 26.61. 

19
F NMR: (189 MHz, CDCl3) δ -

75.67. HRMS: (APCI, m/z) calculated for C13H13F3N2O1 [M+H
+
-I]: 270.0980, found: 

269.9763. 

 

N-(2-(1-Benzyl-2-iodo-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (49b) 

Following the general procedure, the reaction of 1.0 eq. N-(2-(1-benzyl-1H-indol-3-
yl)ethyl)-2,2,2-trifluoroacetamide 48b (2.00 g, 5.77 
mmol) gave N-(2-(1-benzyl-2-iodo-1H-indol-3-yl)ethyl)-
2,2,2-trifluoroacetamide 49b (1.309 g, 2.77 mmol, 
48%) as a white solid after purification by column 
chromatography (Rf = 0.66 in pentane/EtOAc 10:1, 
SiO2, pentane/EtOAc 10:1). 

1
H NMR: (201 MHz, 

CDCl3) δ 7.64 – 7.51 (m, 1H), 7.37 – 7.21 (m, 4H), 
7.20 – 7.09 (m, 2H), 7.07 – 6.97 (m, 2H), 6.35 (s (br), 
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1H), 5.44 (s, 2H), 3.69 (q, J = 6.4 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H). 
13

C NMR: (101 
MHz, CDCl3) δ 157.21 (q, J = 36.4 Hz), 138.37, 136.87, 128.65, 127.78, 127.44, 
126.24, 122.48, 119.99, 117.74, 117.44, 115.75 (q, J = 286.8 Hz), 110.34, 87.87, 
50.60, 39.87, 26.83. 

19
F NMR: (376 MHz, CDCl3) δ -75.77. HRMS: (APCI, m/z) 

calculated for C19H17F3N2O1 [M+H
+
-I]: 346.1293, found: 346.0073. 

 

N-(2-(1-Benzyl-2-iodo-5-methoxy-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
(49c) 

Following the general procedure, the reaction of 1.0 eq. N-(2-(1-benzyl-5-methoxy-
1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 48c 
(1.657 g, 4.40 mmol) gave N-(2-(1-benzyl-2-

iodo-5-methoxy-1H-indol-3-yl)ethyl)-2,2,2-
trifluoroacetamide 49c (1.150 g, 2.289 mmol, 
52%) as a white solid after purification by column 
chromatography (Rf = 0.55 in pentane/EtOAc 
10:1, SiO2, pentane/EtOAc 10:1). 

1
H NMR: (201 

MHz, CDCl3) δ 7.43 – 7.21 (m, 4H), 7.15 (d, J = 
8.9 Hz, 1H), 7.01 (dd, J = 9.3, 2.5 Hz, 2H), 6.78 (dd, J = 8.9, 2.4 Hz, 1H), 6.37 (s 
(br), 1H), 5.39 (s, 2H), 3.84 (s, 3H), 3.68 (dd, J = 12.7, 6.4 Hz, 2H), 3.07 (t, J = 6.6 
Hz, 2H). 

13
C NMR: (50 MHz, CDCl3) δ 154.41, 137.00, 133.78, 128.76, 128.56, 

127.55, 126.98, 126.27, 116.70, 112.81, 111.30, 99.36, 55.79, 50.92, 39.88, 26.88. 
COCF3 peaks not observed. 

19
F NMR: (189 MHz, CDCl3) δ -75.88. HRMS: (ESI

+
, 

m/z) calculated for C20H18F3IN2O2Na [M+Na
+
]: 525.0257, found: 525.0236. 

 

tert-Butyl 2-iodo-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 
49d 

tert-Butyl 3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indole-1-carboxylate (1.0 eq., 
0.278 g, 0.780 mmol) 48

64
 was dissolved in CH2Cl2 

(50 ml) at 21 °C. Then 1.3 eq. bis(2,2,2-
trifluoroacetoxy)mercury (0.433 g, 1.015 mmol) was 
added and the mixture was stirred for 20 minutes. 
Then it was washed with 2M aq. KI solution (2x 30 
mL), dried over Na2SO4 and filtered. To the filtrate 
was added 1.5 eq. diiodine (0.297 g, 1.171 mmol) and 
the mixture was stirred for another 3h at 21 °C. The 

red precipitate was filtered and the filtrate was washed with saturated aq. solution 
of Na2S2O3 (2x 30 ml), dried over Na2SO4 and all volatiles were removed under 
reduced pressure  to give the crude product. This was purified by column 
chromatography (Rf = 0.85 in pentane / EtOAc 8:2, SiO2, pentane/EtOAc 10:1) to 
yield tert-butyl 2-iodo-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 
49d (0.248 g, 0.515 mmol, 66%) as white solid. 

1
H NMR (201 MHz, CDCl3) δ 8.18 

– 7.99 (m, 1H), 7.48 (ddd, J = 10.3, 6.2, 2.8 Hz, 1H), 7.35 – 7.16 (m, 2H), 6.76 (s 
(br), 1H), 3.62 (q, J = 6.7 Hz, 2H), 3.06 (t, J = 6.9 Hz, 2H), 1.71 (s, 9H). 

13
C NMR 

(50 MHz, CDCl3) δ 158.15 (q, J = 39.9 Hz), 157.03, 149.15, 138.04, 129.33, 
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125.58, 124.69, 122.94, 117.77, 115.69 (q, J = 286.1 Hz), 115.61, 85.37, 39.23, 
28.21, 26.95. 

19
F NMR (189 MHz, CDCl3) δ -75.87. 

 

N-(2-(2-Chloro-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (50a) 

1.0 eq. N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 47d (2.00 g, 7.81 mmol) 
was dissolved in CH2Cl2 (Volume: 60 ml) at 21 °C. 
Then, a solution of 1.1 eq. iodine monochloride in 
CH2Cl2 (1N)  (11.71 ml, 11.71 mmol) was added 
dropwise. The reaction mixture was stirred at this 
temperature, and the progress of the reaction was 
followed by TLC. After full conversion, the mixture was 
washed with water and brine and the organic phases 
were dried over MgSO4. After removal of all volatiles, 

the crude product was purified by column chromatography (Rf = 0.75 in 
pentane/EtOAc 8:2, SiO2, pentane/EtOAc 10:1) to yield N-(2-(2-chloro-1H-indol-3-
yl)ethyl)-2,2,2-trifluoroacetamide 50a (1.807 g, 6.22 mmol, 80%) as a light brown 
solid. 

1
H NMR: (201 MHz, CDCl3) δ 8.43 (s (br), 1H), 7.56 – 7.43 (m, 1H), 7.38 – 

7.06 (m, 3H), 6.60 (s (br), 1H), 3.64 (q, J = 6.5 Hz, 2H), 3.03 (t, J = 6.6 Hz, 2H). 
13

C 
NMR: (50 MHz, CDCl3) δ 134.49, 127.08, 122.64, 121.71, 120.46, 117.68, 110.75, 
107.79, 39.77, 23.15. COCF3 peaks not observed. 

19
F NMR: 189 MHz, CDCl3) δ -

76.06. HRMS: (APCI, m/z) calculated for C12H1oF3N2O1 [M-Cl
-
]: 255.0745, found: 

255.0737. 

 

N-(2-(2-chloro-1-methyl-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide (50b) 

1.0 eq. 2,2,2-trifluoro-N-(2-(1-methyl-1H-indol-3-yl)ethyl)acetamide 48a (1.920 g, 
7.10 mmol) was dissolved in CH2Cl2 (Volume: 50 ml) at 
21 °C. Then, a solution of 1.1 eq. iodine monochloride 
(1M in CH2Cl2) (7.81 ml, 7.81 mmol) was added 
dropwise. The reaction mixture was stirred at this 
temperature, and the progress of the reaction was 
followed by TLC. After full conversion, the mixture was 
washed with water and brine and the organic phases 
were dried over MgSO4. After removal of all volatiles, 

the crude product was purified by column chromatography (Rf = 0.80 in 
pentane/EtOAc 8:2, SiO2, pentane/EtOAc 10:1) to yield N-(2-(2-chloro-1-methyl-
1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 50b (1.688 g, 5.54 mmol, 78%) as a 
yellow solid. 

1
H NMR: (201 MHz, CDCl3) δ 7.52 (d, J = 7.6 Hz, 1H), 7.35 – 7.25 (m, 

2H), 7.24 – 7.08 (m, 1H), 6.48 (s (br), 1H), 3.74 (d, J = 2.5 Hz, 3H), 3.64 (q, J = 6.4 
Hz, 2H), 3.06 (t, J = 6.6 Hz, 2H). 

13
C NMR: (50 MHz, CDCl3) δ 135.82, 126.20, 

124.50, 122.22, 120.19, 117.70, 109.30, 106.86, 39.87, 29.89, 23.58. COCF3 
peaks not observed. 

19
F NMR: (189 MHz, CDCl3) δ -76.06. HRMS: (APCI, m/z) 

calculated for C13H12F3N2O1 [M-Cl
-
]: 269.0902, found: 269.0894. 
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General procedure for the Stille coupling of iodides 37/49 (Synthesis of 40/51) 

1.0 eq. of iodide 49, 1.5 eq. of (E)-3-(tributylstannyl)prop-2-en-1-ol 52, 5.0 mol% 
bis(triphenylphosphine)palladium(II) chloride and 3.0 eq. of lithium chloride were 
dissolved in DMF (Volume: 20 ml / mmol) and the mixture was heated to 75 °C. 
The reaction mixture was stirred at this temp for 16 h. The reaction was quenched 
by addition of water (20 ml / mmol), EtOAc (50 ml / mmol) was added and the 
organic phases were washed with brine (2x 50 mL / mmol). After drying over 
MgSO4 and removal of all volatiles the crude mixture was purified by column 
chromatography to give 51. 

 

(E)-tert-Butyl 3-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-2-(3-hydroxyprop-1-enyl)-
1H-indole-1-carboxylate (40) 

Following the general procedure, 0.304 g (E)-tert-butyl 3-(2-(1,3-dioxoisoindolin-2-
yl)ethyl)-2-(3-hydroxyprop-1-en-1-yl)-1H-indole-1-

carboxylate 40 (0.681 mmol, 65%) were isolated from 
the reaction of tert-butyl 3-(2-(1,3-dioxoisoindolin-2-
yl)ethyl)-2-iodo-1H-indole-1-carboxylate 37 (0.541 g, 
1.048 mmol) after purification by column 
chromatography using EtOAc/pentane 1:1 as eluent. (Rf 
= 0.85 in pentane/EtOAc). 

1
H NMR (400 MHz, CDCl3) δ 

8.19 – 7.97 (m, 1H), 7.89 – 7.77 (m, 2H), 7.75 – 7.58 (m, 
3H), 7.37 – 7.19 (m, 2H), 6.78 (d, J = 16.1 Hz, 1H), 6.25 
(ddd, J = 16.1, 5.7, 4.1 Hz, 1H), 4.42 (d, J = 5.0 Hz, 2H), 
3.95 – 3.77 (m, 2H), 3.24 – 2.98 (m, 2H), 1.65 (s, 9H). 
13

C NMR (101 MHz, CDCl3) δ 168.13, 150.22, 135.33, 
134.85, 133.89, 132.89, 131.90, 129.58, 124.48, 123.13, 122.80, 122.36, 118.48, 
115.76, 115.44, 83.87, 63.51, 37.71, 28.11, 23.75. HRMS: (ESI

+
) calculated for 

C26H25N2O5 [M+H
+
]: 445.1758, found: 445.1761. 

 

(E)-2,2,2-Trifluoro-N-(2-(2-(3-hydroxyprop-1-enyl)-1-methyl-1H-indol-3-
yl)ethyl)acetamide (51a) 

Following the general procedure, the reaction of 1.0 eq. 2,2,2-trifluoro-N-(2-(2-iodo-
1-methyl-1H-indol-3-yl)ethyl)acetamide 49a (0.300 g, 
0.757 mmol) gave (E)-2,2,2-trifluoro-N-(2-(2-(3-

hydroxyprop-1-en-1-yl)-1-methyl-1H-indol-3- 
yl)ethyl)acetamide 51a (0.167 g, 0.512 mmol, 68%) as 
an orange solid after purification by column 
chromatography (Rf = 0.30 in Pentane / EtOAc 1:1, 
SiO2, pentane/EtOAc 1:1). 

1
H NMR: (201 MHz, CDCl3) 

δ 7.58 (dd, J = 7.8, 0.7 Hz, 1H), 7.44 – 7.22 (m, 3H), 
7.20 – 7.07 (m, 1H), 6.69 (d, J = 16.3 Hz, 1H), 6.29 (dd, J = 13.4, 8.1 Hz, 1H), 4.40 
(d, J = 5.3 Hz, 2H), 3.69 (s, 3H), 3.59 (dd, J = 13.7, 6.8 Hz, 2H), 3.14 (t, J = 7.3 Hz, 
2H). 

13
C NMR: (50 MHz, CDCl3) δ 157.44 (q, J = 37.3 Hz), 137.16, 134.46, 133.84, 

127.26, 122.17, 119.43, 118.92, 118.09, 115.78 (q, J = 287.9 Hz), 109.19, 109.09, 
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63.31, 40.45, 30.42, 23.92. 
19

F NMR: (189 MHz, CDCl3) δ -75.88. HRMS: (APCI, 
m/z) calculated for C16H18F3N2O2 [M+H

+
]: 327.1320, found: 325.1147. 

 

(E)-N-(2-(1-Benzyl-2-(3-hydroxyprop-1-enyl)-1H-indol-3-yl)ethyl)-2,2,2-
trifluoroacetamide (51b) 

Following the general procedure, the reaction of 1.0 eq. N-(2-(1-benzyl-2-iodo-1H-
indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 49b (0.285 g, 
0.604 mmol) gave (E)-N-(2-(1-benzyl-2-(3-hydroxyprop-

1-en-1-yl)-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
51b (0.172 g, 0.427 mmol, 71%) as a white solid after 
purification by column chromatography (Rf = 0.50 in 
pentane/EtOAc 1:1, SiO2, pentane/EtOAc 1:1). 

1
H 

NMR: (400 MHz, CDCl3) δ 7.59 (d, J = 7.7 Hz, 1H), 
7.33 – 7.10 (m, 6H), 7.00 (d, J = 7.0 Hz, 2H), 6.71 – 

6.54 (m, 2H), 6.18 (dt, J = 16.1, 5.3 Hz, 1H), 5.37 (s, 2H), 4.28 (d, J = 5.2 Hz, 2H), 
3.65 (dd, J = 13.4, 6.8 Hz, 2H), 3.19 (t, J = 7.1 Hz, 2H). 

13
C NMR: (101 MHz, 

CDCl3) δ 137.61, 137.15, 134.73, 134.59, 128.80, 127.56, 127.37, 125.87, 122.68, 
119.98, 118.80, 118.33, 109.88, 109.60, 63.47, 47.31, 40.42, 24.04. COCF3 peaks 
not observed. 

19
F NMR: (376 MHz, CDCl3) δ -76.00. HRMS: (ESI+, m/z) calculated 

for C22H21F3N2O2Na [M+Na
+
]: 425.1447, found: 425.1432. 

 

(E)-N-(2-(1-Benzyl-2-(3-hydroxyprop-1-en-1-yl)-5-methoxy-1H-indol-3-yl)ethyl)-
2,2,2-trifluoroacetamide (51c)  

Following the general procedure, the reaction of N-(2-(1-benzyl-2-iodo-5-methoxy-
1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 49c 
(0.270 g, 0.538 mmol) gave (E)-N-(2-(1-benzyl-
2-(3-hydroxyprop-1-en-1-yl)-5-methoxy-1H-indol-
3-yl)ethyl)-2,2,2-trifluoroacetamide 51c (0.158 g, 
0.366 mmol, 68%) as a white solid after 
purification by column chromatography (Rf = 0.5 
in pentane/EtOAc 1:1, SiO2, pentane/EtOAc 1:1). 
1
H NMR: (400 MHz, CDCl3) δ 7.26 (d, J = 6.7 

Hz, 3H), 7.08 (d, J = 8.6 Hz, 1H), 7.03 (s, 1H), 6.98 (d, J = 6.0 Hz, 2H), 6.91 (s (br), 
1H), 6.83 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 16.2 Hz, 1H), 6.15 (d, J = 15.8 Hz, 1H), 
5.31 (s, 2H), 4.25 (s, 2H), 3.85 (s, 3H), 3.62 (d, J = 5.6 Hz, 2H), 3.14 (s (br), 2H). 
13

C NMR: (101 MHz, CDCl3) δ 157.38 (q, J = 37.6 Hz), 154.40, 137.70, 135.12, 
134.11, 132.39, 128.75, 127.92, 127.30, 125.80, 118.89, 115.83 (q, J = 287.4 Hz), 
112.75, 110.70, 109.22, 100.08, 63.40, 55.83, 47.34, 40.29, 24.06. 

19
F NMR: (376 

MHz, CDCl3) δ -75.94. HRMS: (ESI
+
, m/z) calculated for C23H23F3N2O3Na [M+Na

+
]: 

455.1553, found: 455.1539. 
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(E)-tert-Butyl 2-(3-hydroxyprop-1-enyl)-3-(2-(2,2,2-trifluoroacetamido)ethyl)-
1H-indole-1-carboxylate 51d  

Following the general procedure, the reaction of 1.0 eq. tert-butyl 2-iodo-3-(2-
(2,2,2-trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 

49d (0.240 g, 0.498 mmol) gave (E)-tert-butyl 2-(3-
hydroxyprop-1-en-1-yl)-3-(2-(2,2,2-

trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 51d 
(0.129 g, 0.314 mmol, 63%) as a white solid after 
purification by column chromatography (Rf = 0.5 in 
pentane/EtOAc 1:1, SiO2, pentane/EtOAc 2:1). 

1
H NMR 

(400 MHz, CDCl3) δ 8.79 – 8.54 (m, 1H), 8.14 (dd, J = 
15.1, 7.4 Hz, 2H), 8.01 – 7.70 (m, 2H), 7.51 – 7.24 (m, 

1H), 6.82 – 6.50 (m, 1H), 4.93 (dd, J = 14.8, 8.7 Hz, 2H), 4.11 (d, J = 5.9 Hz, 2H), 
3.66 (dd, J = 23.4, 14.9 Hz, 2H), 2.27 (s, 9H).  

13
C NMR (101 MHz, CDCl3) δ 

157.61 (q, J = 36.0 Hz), 150.40, 135.36, 134.87, 132.45, 129.52, 124.70, 122.96, 
122.90, 118.41, 115.89, 115.83 (q, J = 291.0 Hz), 115.58, 84.25, 63.24, 40.06, 
28.13, 23.87. 

 

General procedure for the synthesis of allylic carbonates 41/53: 

To a solution of allyl alcohol 40 or 51 (1 eq.) and pyridine (3 eq.) in CH2Cl2 (20 mL / 
mmol) methyl chloroformate (1.5 eq.) was added dropwise at 0 °C. After 5 min. The 
solution was warmed to room temperature and stirred for 1 h. Then, it was washed 
with aq. HCl (2N) (3 x 5 mL/mmol) and dried over Na2SO4. The corresponding 
products 41/53 were obtained as white solids after evaporation of the solvent. 

 

(E)-tert-Butyl-3-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-2-(3-
(methoxycarbonyloxy)prop-1-enyl)-1H-indole-1-carboxylate (41) 

Following the general procedure, 0.428 g (E)-tert-butyl 3-(2-(1,3-dioxoisoindolin-2-
yl)ethyl)-2-(3-((methoxycarbonyl)oxy)prop-1-en-1-

yl)-1H-indole-1-carboxylate 41 (0.848 mmol, 91%) 
were isolated from the reaction of (E)-tert-butyl 3-

(2-(1,3-dioxoisoindolin-2-yl)ethyl)-2-(3-
hydroxyprop-1-en-1-yl)-1H-indole-1-carboxylate 

40 (0.415 g, 0.929 mmol) as a white solid. 
1
H 

NMR (400 MHz, CDCl3) δ 8.09 (t, J = 13.4 Hz, 
1H), 7.82 (dt, J = 6.9, 3.5 Hz, 2H), 7.76 – 7.64 (m, 
3H), 7.37 – 7.21 (m, 2H), 6.87 (t, J = 21.8 Hz, 1H), 
6.33 – 6.07 (m, 1H), 4.89 (dt, J = 24.2, 12.1 Hz, 
2H), 3.97 – 3.86 (m, 2H), 3.82 (s, 3H), 3.07 (dt, J 
= 32.4, 14.9 Hz, 2H), 1.65 (s, 9H). 

13
C NMR (101 

MHz, CDCl3) δ 167.90, 155.52, 150.12, 135.57, 
133.86, 133.78, 132.00, 129.50, 126.26, 125.20, 124.73, 123.06, 122.84, 118.70, 
116.55, 115.46, 83.97, 67.93, 54.73, 37.74, 28.08, 24.01. HRMS: (ESI

+
) calculated 

for C28H28N2O7Na [M+Na
+
]: 527.1789, found: 527.1782. 
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(E)-Methyl 3-(1-methyl-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-yl)allyl 
carbonate (53a) 

Following the general procedure, the reaction 1.0 
eq. (E)-2,2,2-trifluoro-N-(2-(2-(3-hydroxyprop-1-

en-1-yl)-1-methyl-1H-indol-3-yl)ethyl)acetamide 
51a (0.160 g, 0.490 mmol) gave (E)-methyl (3-(1-

methyl-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-
indol-2-yl)allyl) carbonate 53a (0.185 g, 0.481 
mmol, 98%) as a yellow foam. 

1
H NMR: (400 

MHz, CDCl3) δ 7.62 – 7.55 (m, 1H), 7.32 – 7.25 
(m, J = 8.3, 7.8, 0.9 Hz, 2H), 7.17 – 7.10 (m, J = 

8.0, 6.6, 1.4 Hz, 1H), 6.84 – 6.72 (m, J = 16.2, 1.3 Hz, 2H), 6.19 (dt, J = 16.2, 6.2 
Hz, 1H), 4.85 (dd, J = 6.2, 1.4 Hz, 2H), 3.83 – 3.82 (s, 2H), 3.73 (s, 3H), 3.60 (q, J 
= 6.8 Hz, 2H), 3.13 (t, J = 7.1 Hz, 2H). 

13
C NMR: (101 MHz, CDCl3) δ 157.14 (q, J 

= 36.5 Hz), 155.47, 137.51, 133.42, 127.18, 126.88, 122.84, 122.70, 119.66, 
118.37, 115.73 (q, J = 288.2 Hz), 110.40, 109.30, 68.29, 54.78, 40.41, 30.70, 
23.96. 

19
F NMR: (376 MHz, CDCl3) δ -75.98. HRMS: (APCI, m/z) calculated for 

C16H16F3N2O1 [M-OCO2Me]: 309.1215, found: 309.1199. 

 

(E)-3-(1-Benzyl-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-yl)allyl methyl 
carbonate (13b) 

Following the general procedure, the reaction 1.0 
eq. (E)-N-(2-(1-benzyl-2-(3-hydroxyprop-1-en-1-

yl)-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
51b (0.230 g, 0.572 mmol) gave (E)-3-(1-benzyl-

3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-
yl)allyl methyl carbonate 53b (0.257 g, 0.558 
mmol, 98%) as a yellow foam. 

1
H NMR: (201 

MHz, CDCl3) δ 7.65 (d, J = 6.9 Hz, 1H), 7.41 – 
7.10 (m, 6H), 7.09 – 6.98 (m, 2H), 7.10 – 6.95 (m, 2H), 6.12 (dt, J = 16.2, 6.1 Hz, 
1H), 5.38 (s, 2H), 4.76 (d, J = 6.1 Hz, 2H), 3.79 (s, 3H), 3.66 (dd, J = 13.2, 6.7 Hz, 
2H), 3.19 (t, J = 7.0 Hz, 2H). 

13
C NMR: (50 MHz, CDCl3) δ 155.39, 137.39, 137.36, 

133.54, 128.74, 127.53, 127.47, 127.34, 125.82, 123.01, 122.57, 120.03, 118.55, 
110.79, 109.83, 68.12, 54.76, 47.29, 40.33, 24.10. COCF3 peaks not observed. 

19
F 

NMR: (189 MHz, CDCl3) δ -75.95. HRMS: (APCI, m/z) calculated for C22H20F3N2O1 
[M-OCO2Me]: 385.1528, found: 385.1507. 
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(E)-3-(1-Benzyl-5-methoxy-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-
yl)allyl methyl carbonate (53c) 

Following the general procedure, the reaction 1.0 eq. (E)-N-(2-(1-benzyl-2-(3-
hydroxyprop-1-en-1-yl)-5-methoxy-1H-

indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
51c (0.137 g, 0.317 mmol) gave (E)-3-(1-

benzyl-5-methoxy-3-(2-(2,2,2-
trifluoroacetamido)ethyl)-1H-indol-2-yl)allyl 

methyl carbonate 53c (0.142 g, 0.290 
mmol, 91%) as a yellow foam. 

1
H NMR: 

(201 MHz, CDCl3) δ 7.35 – 7.20 (m, 3H), 
7.11 (d, J = 8.9 Hz, 1H), 7.05 (d, J = 2.3 

Hz, 1H), 7.03 – 6.96 (m, 2H), 6.85 (dd, J = 8.9, 2.4 Hz, 1H), 6.79 – 66.0 (m, 2H), 
6.07 (dt, J = 16.2, 6.1 Hz, 1H), 5.33 (s, 2H), 4.74 (dd, J = 6.1, 1.2 Hz, 2H), 3.85 (s, 
3H), 3.77 (s, 3H), 3.65 (dd, J = 13.2, 6.7 Hz, 2H), 3.14 (t, J = 7.0 Hz, 2H). 

13
C NMR: 

(50 MHz, CDCl3) δ 157.15 (q, J = 37.0 Hz), 155.41, 154.49, 137.48, 133.95, 
132.65, 128.75, 127.82, 127.34, 127.08, 125.79, 122.74, 115.76 (q, J = 287.2 Hz), 
113.38, 110.74, 110.39, 100.00, 68.18, 55.70, 54.78, 47.41, 40.24, 24.14. 

19
F 

NMR: (189 MHz, CDCl3) δ -75.93. HRMS: (ESI
+
, m/z) calculated for 

C25H25F3N2O5Na [M+Na
+
]: 513.1608, found: 513.1585. 

 

(E)-tert-Butyl 2-(3-(methoxycarbonyloxy)prop-1-enyl)-3-(2-(2,2,2-
trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 53d 

Following the general procedure, (E)-tert-butyl 2-(3-((methoxycarbonyl)oxy)prop-1-
en-1-yl)-3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-

indole-1-carboxylate 53d (0.108 g, 0.230 mmol, 
76%) were isolated from the reaction of (E)-tert-
butyl 2-(3-hydroxyprop-1-en-1-yl)-3-(2-(2,2,2-

trifluoroacetamido)ethyl)-1H-indole-1-carboxylate 
51d (0.125 g, 0.303 mmol) as a white solid. 

1
H 

NMR (201 MHz, CDCl3) δ 8.12 (d, J = 8.2 Hz, 1H), 
7.67 – 7.49 (m, 1H), 7.42 – 7.18 (m, 2H), 6.92 (d, 
J = 16.1 Hz, 1H), 6.81 (s (br), 1H), 5.98 (dt, J = 

16.1, 6.1 Hz, 1H), 4.84 (d, J = 6.1 Hz, 2H), 3.80 (s, 3H), 3.59 (dd, J = 13.9, 6.9 Hz, 
2H), 3.02 (dd, J = 17.3, 10.3 Hz, 2H), 1.66 (s, 9H). 

13
C NMR (50 MHz, CDCl3) δ 

157.28 (q, J = 36.9 Hz), 155.65, 150.13, 135.63, 133.99, 129.34, 126.46, 125.90, 
125.04, 122.98, 118.53, 116.41, 115.78 (q, J = 288.8 Hz), 115.64, 84.32, 67.92, 
54.83, 40.10, 28.13, 23.98. 

19
F NMR (189 MHz, CDCl3) δ -75.96. 
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N-(2-(1-Benzyl-2-(1-hydroxyallyl)-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 
(58) 

N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-2,2,2-trifluoroacetamide 48b (1.0 eq., 1.00 g, 
2.89 mmol) was dissolved in Et2O (Volume: 10 ml) and 
cooled to 0 °C. Then, 2.5 eq. BuLi (3.97 ml, 6.35 mmol) 
were added dropwise and the reaction mixture was 
allowed to warm to room temperature. After 2 hours, the 
reaction mixture was cooled to 0 °C again, and 1.5 eq. 
acrylaldehyde (0.212 ml, 3.18 mmol) were added. After 
warming to room temperature, the reaction was 
quenched by addition of 10ml saturated Na2S2O3 
solution, washed with water (3x 20ml) and extracted 
with Et2O (3x 30 ml). After drying over MgSO4, all 

volatiles were removed under reduced pressure to give the crude product, which 
was purified by column chromatography (Rf = 0.90 in pentane/EtOAc 8:2, SiO2, 
pentane/EtOAc 7:3) to yield N-(2-(1-benzyl-2-(1-hydroxyallyl)-1H-indol-3-yl)ethyl)-
2,2,2-trifluoroacetamide 58 (0.523 g, 1.299 mmol, 45%) as a yellow solid. 

1
H NMR: 

(400 MHz, CDCl3) δ 8.14 (s (br), 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.37 – 7.10 (m, 6H), 
6.97 (d, J = 6.6 Hz, 2H), 6.04 (ddd, J = 17.0, 10.4, 5.0 Hz, 1H), 5.56 (d, J = 5.0 Hz, 
1H), 5.44 (d, J = 4.6 Hz, 2H), 5.33 – 5.11 (m, 2H), 3.64 (dd, J = 11.9, 5.0 Hz, 3H), 
3.37 – 3.08 (m, 2H). 

13
C NMR: (101 MHz, CDCl3) δ 157.52 (q, J = 37.6 Hz), 

137.81, 137.69, 136.81, 135.86, 128.63, 127.27, 127.24, 125.66, 122.47, 119.71, 
118.37, 115.84 (q, J = 288.4 Hz), 115.52, 109.84, 109.69, 67.47, 46.83, 40.60, 
22.47. 

19
F NMR: (376 MHz, CDCl3) δ -75.67. HRMS: (ESI

+
, m/z) calculated for 

C22H21F3N2O2Na [M+Na
+
]: 425.1447, found: 425.1456. 

 

General Procedure for the racemic synthesis of β-carbolines 60 from 
carbonates 53 

1.0 eq. allyl carbonate 53 was dissolved in dioxane (5 ml / 0.1 mmol) and 2.0 eq. 
Cs2CO3 was added. The reaction mixture was allowed to stir for 16 hours at 100 
°C. After cooling, water (5 ml / 0.1 mmol) was added and the mixture was extracted 
with Et2O (2x 10 ml / 0.1 mmol) . After drying over MgSO4 and removal of all 
volatiles under reduced pressure, the crude products were purified by column 
chromatography to yield 60. 

 

2,2,2-Trifluoro-1-(9-methyl-1-vinyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-
yl)ethanone (60a) 

Following the general procedure, the reaction of 1.0 eq. (E)-methyl (3-(1-methyl-3-
(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-yl)allyl) 
carbonate 53a (0.020 g, 0.052 mmol) gave 2,2,2-

trifluoro-1-(9-methyl-1-vinyl-3,4-dihydro-1H-
pyrido[3,4-b]indol-2(9H)-yl)ethanone 60a (0.013 g, 
0.043 mmol, 82%) as a white solid after purification 
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by column chromatography (Rf = 0.95 in pentane/EtOAc 10:1, SiO2, 
pentane/EtOAc 10:1). The product was isolated as a mixture of two rotamers (ratio 
1:7) 

1
H NMR: Only signals of the major isomer are given. (201 MHz, CDCl3) δ 7.57 

– 7.45 (m, 1H), 7.38 – 7.23 (m, 2H), 7.23 – 7.06 (m, 1H), 6.23 (d (br), J = 5.2 Hz, 
1H), 6.17 – 5.95 (m, 1H), 5.48 (d, J = 10.0 Hz, 1H), 5.09 (d, J = 17.0 Hz, 1H), 4.17 
(d (br), J = 14.1 Hz, 1H), 3.71 – 3.47 (m, 4H), 3.12 – 2.74 (m, 2H). 

13
C NMR: (50 

MHz, CDCl3) δ 133.05, 130.56, 129.98, 125.93, 122.02, 121.22, 119.47, 118.26, 
109.07, 107.83, 51.60, 39.91, 29.86, 22.15. COCF3 peaks not observed. 

19
F NMR: 

(189 MHz, CDCl3) δ -68.55 (minor), -68.99 (major). HRMS: (APCI, m/z) calculated 
for C16H16F3N2O1 [M+H

+
]: 309.1209, found: 309.1220. 

 

1-(9-Benzyl-1-vinyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-2,2,2-
trifluoroethanone (60b) 

Following the general procedure, the reaction of 1.0 eq. (E)-3-(1-benzyl-3-(2-(2,2,2-
trifluoroacetamido)ethyl)-1H-indol-2-yl)allyl methyl 
carbonate 53b (0.037 g, 0.080 mmol) gave 1-(9-
benzyl-1-vinyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-
yl)-2,2,2-trifluoroethanone 60b (0.023 g, 0.061 mmol, 
76%) as a white solid after purification by column 
chromatography (Rf = 0.85 in pentane/EtOAc 10:1, 
SiO2, pentane/EtOAc 10:1). The product was isolated 
as a mixture of four isomers ratio 1.5 : 5 : 1.5 : 1. Only 

signals for the major isomer are given. 
1
H NMR: (201 MHz, CDCl3) δ 7.53 – 7.41 

(m, 1H), 7.31 – 7.00 (m, 7H), 6.95 – 6.83 (m, 1H), 6.10 – 1.03 (m, 1H), 6.01 – 5.81 
(m, 1H), 5.45 – 5.25 (m, 2H), 5.18 (d, J = 10.3 Hz, 1H), 5.13 – 4.87 (m, 1H), 4.20 – 
4.00 (m, 1H), 3.63 – 3.42 (m, 1H), 3.08 – 2.72 (m, 2H). 

13
C NMR: (50 MHz, CDCl3) 

δ 137.19, 136.86, 132.94, 128.99, 128.84, 127.54, 126.08, 125.78, 122.34, 121.24, 
120.29, 119.74, 118.34, 109.96, 47.01, 29.70, 22.18. COCF3 peaks not observed. 
19

F NMR: (189 MHz, CDCl3) δ -68.91 (1.5), -68.97 (5), -69.04 (1.5), -70.17 (1). 
HRMS: (ESI

+
, m/z) calculated for C22H20F3N2O1 [M+H

+
]: 385.1522, found: 

385.1511. 

 

1-(9-Benzyl-6-methoxy-1-vinyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-
2,2,2-trifluoroethanone (60c) 

Following the general procedure, the reaction of 1.0 eq. (E)-3-(1-benzyl-5-methoxy-
3-(2-(2,2,2-trifluoroacetamido)ethyl)-1H-indol-2-

yl)allyl methyl carbonate 53c (0.025 g, 0.051 
mmol) gave 1-(9-benzyl-6-methoxy-1-vinyl-3,4-

dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-2,2,2-
trifluoroethanone 60c (0.017 g, 0.042 mmol, 
82%) as a white solid after purification by 
column chromatography (Rf = 0.65 in 
pentane/EtOAc 10:1, SiO2, pentane/EtOAc 

10:1). The product was isolated as four isomers (ratio 2:6:2:1). 
1
H NMR: Only 



 

 

134 

   

Chapter 4 

 

major resonances are reported. (400 MHz, CDCl3) δ 7.44 – 6.77 (m, 8H), 6.11 (d, J 
= 5.4 Hz, 1H), 6.07 – 5.93 (m, 1H), 5.50 – 4.98 (m, 4H), 4.25 – 4.12 (m, 1H), 3.85 
(s, 3H), 3.67 – 3.54 (m, 1H), 3.11 – 2.94 (m, 1H), 2.93 – 2.78 (m, 1H). 

13
C NMR: 

(101 MHz, CDCl3) δ 155.97 (q, J = 35.2 Hz), 154.29, 136.96, 132.96, 131.19, 
128.98, 128.83, 127.52, 126.06, 125.95, 121.13, 116.52 (q, J = 287.7 Hz), 112.17, 
110.77, 108.02, 100.46, 55.90, 51.76, 47.14, 39.92, 22.23 

19
F NMR: (376 MHz, 

CDCl3) δ -68.91 (2), -68.96 (6), -69.02 (2), -70.18 (1). HRMS: (ESI
+
, m/z) 

calculated for C23H22F3N2O2 [M+H
+
]: 415.1628, found: 415.1631. 
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Chapter 5  

Asymmetric Allylic Alkylation in 
Combination with Ring-Closing 
Metathesis for the Preparation of 
chiral N-Heterocycles  

Asymmetric copper-catalyzed allylic substitution with methylmagnesium bromide is 
employed in combination with ring-closing olefin metathesis or ene-yne metathesis 
to achieve the synthesis of chiral, unsaturated nitrogen heterocycles. The resulting 
six- to eight-membered chiral heterocycles are accessible in high yields and with 
excellent enantioselectivities. Preliminary studies to extend this concept to the 
synthesis of chiral lactams have been conducted. 
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1. Introduction 

Nitrogen-containing heterocycles are ubiquitous in naturally occurring compounds, 

in particular alkaloids, and they are also key structural features in many biologically 

active products.
1-4

 Among these, nitrogen heterocycles with various ring sizes 

bearing stereogenic centers are frequently observed.
5-10

 For example, poison dart 

frogs (Dendrobatidae) produce a wide variety of biologically active alkaloids in their 

secretions and thus on their skin. Many of these compounds are poisonous and 

are part of the frog’s defense mechanism. Among these alkaloids, chiral piperidines 

featuring methyl substituents at the stereogenic centers are often found.
11,12

 As 

examples for this class of structures, bicyclic deoxypumiliotoxin 251H (1)
13

 and 

tricyclic indolizidine 251F (2)
14

 are shown in Figure 1. 

 

Figure 1 Alkaloids from poison dart frogs 

Chiral nitrogen-containing heterocycles represent interesting targets for 

synthesis,
15-18

 imposing particular challenges with regard to the construction of the 

stereogenic centers with high selectivity. One approach that has been frequently 

exploited is the use of ring-closing metathesis for the construction of N-

heterocycles.
16,19-22

  

In the synthesis of marine alkaloid manzamine A (7), which shows some antitumor 

activity,
23

 two ring-closing metathesis reactions with Ru-based catalysts
24

 have 

been used to construct the two large nitrogen-containing heterocycles,
25

 

showcasing the potential of this transformation (Scheme 1).  Starting with 

tetracyclic precursor 3 the 13-membered heterocycle was constructed with catalytic 

amounts of Grubbs 1
st
 generation catalyst to give 4 in 67% yield. At a later stage of 

the synthesis, the eight-membered heterocycle was constructed from 5 using the 

same catalyst. However, in the latter case, very low conversion to the desired 

product 6, which contained the pentacyclic core of manzamine A, was observed 

even with equimolar amounts of the ruthenium catalyst.  
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Scheme 1 Ring-closing metathesis in the synthesis of manzamine A 

The combination of asymmetric allylic substitution reactions with ring-closing 

metathesis is a powerful synthetic pathway to chiral hetero- or carbocycles 

(Scheme 2). The allylic substitution furnishes a chiral compound with a terminal 

double bond 9. Compound 9 is an ideal starting point for further functionalization by 

metathesis. If either the backbone R of allylic compound 8 or the backbone of the 

nucleophile carries an olefin (or an alkyne), then different ring structures 10 or 11 

are available by ring-closing metathesis (or ene-yne metathesis, respectively). This 

approach has been applied in a variety of cases (see also Chapter 2), some of 

which are presented in the following. 
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Scheme 2 Combination of asymmetric allylic substitution and ring-closing metathesis 

The combination of Ir-catalyzed allylic amination and ring-closing metathesis for the 

synthesis of chiral pyrrolines 15 was reported.
26

 When chiral primary allylic amine 

12 (also a product of an Ir-catalyzed allylic amination) was reacted with allylic 

carbonate 13 in the presence of catalytic amounts of an Ir/L1 complex, the 

corresponding diallylamine 14 was obtained in good yields and excellent 

diastereoselectivity (Scheme 3). This compound could, after protection as the HBr 

salt, be transformed to chiral pyrroline 15 with catalytic amounts of Grubbs 2
nd

 

generation catalyst. The choice of salt proved to be crucial for the latter 

transformation, as the corresponding HCl salt of 14 led to partial decomposition of 

14. It is important to note that the other diastereomer of 14 (and hence also of 15) 

is available in high stereoselectivity via this synthetic route as well, simply by 

employing the opposite enantiomer of phosphoramidite ligand L1. 

 

Scheme 3 Ir-catalyzed allylic amination in combination with ring-closing metathesis 
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An example of an asymmetric allylic substitution in combination with ring-closing 

metathesis was developed in our laboratories.
27

 When -unsaturated ester 16 

posessing an allylic bromide moiety was subjected to Cu-catalyzed allylic alkylation 

conditions with ethylmagnesium bromide, the corresponding chiral ester 17 was 

obtained in good yield and excellent enantioselectivity (Scheme 4). Compound 17 

could subsequently be transformed to chiral lactone 18 without loss of ee and in 

good yields employing Hoveyda-Grubbs 2
nd

 generation catalyst. In this case, 

styrene is produced as a by-product. 

 

Scheme 4 Cu-catalyzed allylic alkylation in combination with ring-closing metathesis 

A final example of the abovementioned strategy to synthesise chiral cyclic 

structures is a combination of Cu-catalyzed allylic alkylation with Grignard reagents 

to furnish chiral carbocycles (Scheme 5).
28

 Allylic chlorides (19) bearing terminal 

olefins (19) were transformed to the corresponding chiral compounds 20 with a Cu-

phosphoramidite complex as catalyst. It was shown that these intermediates 20 

could be transformed to chiral carbocycles 21 in a one-pot protocol employing 

catalytic amounts of Grubbs 1
st
 generation catalyst. The products 21 are available 

in very good enantioselectivities. 
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Scheme 5 Cu-catalyzed allylic alkylation in combination with ring-closing metathesis 

 

2. Goal 

The aim of this research was to develop a synthetic route to chiral nitrogen-

containing heterocycles with various ring sizes. The proposed approach is to 

comprise two transition metal-based catalytic transformations: First, the Cu-

catalyzed allylic alkylation with Grignard reagents, and second, a ring-closing 

metathesis employing Ru-based catalysts (Scheme 6).  

Allylic bromides with terminal alkenes or alkynes 22 and 25 at the protected 

nitrogen (PG = protecting group) should undergo transformation to chiral amines 

23 and 26 in a straightforward manner. These chiral building blocks bear two 

terminal olefins (23) or an olefin/alkyne substitution (26) that are suitable for a 

subsequent ring-closing or ene-yne metathesis, respectively. This should give rise 

to the chiral N-heterocycles 24 and 27 with various ring sizes. Furthermore, a 

similar approach can be taken to synthesize chiral lactams 30, when starting off 

from the corresponding ,-unsaturated amides 28.  
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Scheme 6 Envisaged synthetic approaches to chiral N-heterocycles 

The envisaged approach has several advantages; it is short and the substituents 

on the stereogenic center stem from the Grignard reagents, which allow for easy 

variation at this position. Furthermore, different ring sizes should be accessible with 

the same approach, making this synthetic route very versatile. 

 

3. Results and Discussion 

3.1 Synthesis of starting materials 

The tosyl-protected allylic bromides 36 bearing olefin substituents with different 

chain lengths for the allylic alkylation were synthesized as depicted in Scheme 7. 

Tosyl-allylamine 32a (n = 1) was prepared from allylamine 31 directly, whereas the 

longer chains (32b and c, n = 2,3) were introduced via a Mitsunobu reaction
29

 from 

the corresponding commercially available alcohols and N-Boc-tosylamine (34) to 

give double protected amines 35b,c in good yields. The Boc group was 

subsequently removed to give tosylamides 32b and 32c, which were transformed 

to the allyl bromides 36 with dibromobutene in good yields. The double protection 

route to amines 32 (via 35) was chosen because of the higher yields of the 

Mitsunobu reaction, even though two extra synthetic steps (protection of 33 with a 

Boc group, deprotection of the Boc group to give 32) are necessary. These 

transformations, however, run smoothly with high yields. 
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Scheme 7 Synthesis of starting materials for allylic alkylation 

For the preparation of allyl bromides 41 posessing a terminal alkyne substituent a 

similar approach was taken (Scheme 8). The amine (38a) with the shortest chain 

length  could be prepared directly from commercially available propargyl bromide 

37 with tosylamide to give 38a, albeit in low yields due to the formation of the 

double substituted tosylamide 39. For substrates bearing longer chains, the 

Mitsunobu approach from the corresponding alcohols with Tosyl-Boc-amine 34 

(see Scheme 7) was followed. The Mitsunobu reaction to give 40b,c followed by 

subsequent deprotection of the Boc group gave the desired products 38b and 38c 

in good yields. Subsequent substitution with dibromobutene gave the allylic 

bromides with alkyne substituents 41 in good yields. 
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Scheme 8 Synthesis of starting materials for allylic alkylation II 

The synthesis of allyl bromide 44 with an -unsaturated amide substituent was 

carried out in a straightforward manner based on a decarboxylative amidation 

protocol developed in our group (Scheme 9).
30

 Cinnamic acid 42 was reacted with 

tosylisocyanate to give tosylamide 43. Compound 43 was then transformed to the 

corresponding allyl bromide 44 by substitution with dibromobutene in moderate 

yield.  

 

Scheme 9 Synthesis of starting material for allylic alkylation III 

 

3.2 Cu-catalyzed allylic alkylation of allyl bromides bearing terminal olefins 

substituents 

The conditions for the allylic alkylation of allyl bromide 36a had been described in 

earlier studies,
31

 and were similar to those reported earlier.
32-34

 During further 

investigations, we found that lower temperatures of -80 °C (instead of -78 °C)
31
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were necessary to ensure full regioselectivity. When allyl bromides 36 with terminal 

olefin substituents were subjected to allylic alkylation conditions (3.0 mol% CuBr • 

SMe2, 4.0 mol% L2 (Taniaphos
35-37

), 1.2 eq. MeMgBr in CH2Cl2 at -80 °C), the 

desired chiral products 45 were obtained in good yields and up to excellent 

enantioselectivities (reaching 99% ee, Table 1, entry 1). Furthermore, at this 

temperature, the product distribution of branched (45) to linear (46) was very good, 

exceeding 92:8 favoring the branched products 45. To reach full conversion of 36c 

(n = 3) (Table 1, entry 3), a higher catalyst loading of 6.0 mol% CuBr • SMe2 and 

8.0 mol% L2 was required. One could speculate that with this particular chain 

length the coordination of the substrate or the corresponding product to the catalyst 

is much stronger, due to the possible coordination of 36c or 45c to the Cu catalyst 

through the terminal olefin moiety. Therefore, a higher catalyst loading was 

necessary to overcome catalyst deactivation. It is remarkable that 45a and 45c are 

formed with excellent enantioselectivity, whereas 45b with an intermediate chain 

length is formed with significantly lower ee. This, hints towards a secondary 

coordination or steric effect of 36b to the catalyst, which interferes with the 

stereodiscriminating step of the transformation. 

Table 1 Asymmetric allylic alkylation of allylic bromides 36 

 

Entry  n Branched (45)/linear (46) Isolated yield (for 45) ee 

1 1 (36a) 95:5 62% (45a) 99% 

2 2 (36b) 98:2 84% (45b) 90% 

3 3
a 

(36c) 92:8 72% (45c) 98% 

a
6.0 mol% CuBr • SMe2 and 8.0 mol% L2 were used. 

 

3.3 Cu-catalyzed allylic alkylation of allyl bromides bearing terminal alkyne 

substituents 

For the synthesis of chiral N-heterocycles carrying a diene motif (27), the synthesis 

started from allylic bromides 41 bearing terminal alkyne substituents of various 

chain lengths. Under standard allylic substitution conditions, the desired chiral 
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products 47 were isolated in good yields (Table 2). In all cases, excellent regio- 

and enantioselectivities were achieved (47/48 >95:5, 99% ee). Since the terminal 

alkyne protons of 41 are acidic and have to be deprotonated first, 2.2 equivalents 

of methylmagnesium bromide were necessary for this transformation to achieve full 

conversion of bromides 41. One exception in this particular series of 

transformations is the reaction of the alkyne 41b, which only went to 75% 

conversion. Remarkably, the reaction to the desired chiral homoallylic tosylamides 

47 still proceeds in the presence of the Mg-acetylidene moiety, in spite of the fact 

that Cu-acetylide complexes are known to be very stable.
38,39

 In this case, the 

stability of the Cu-bisphosphine complex seems to be high enough for the reaction 

to proceed with acceptable yields providing excellent enantioselectivities. As in the 

case of the olefinic substrates 36 (Table 1), the longest spacer length (41c, n = 3) 

required a slightly higher catalyst loading to achieve full conversion to 47c (Table 2, 

entry 3). 

Table 2 Asymmetric allylic alkylation of allylic bromides 41 

 

Entry  n Branched (47)/linear (48) Isolated yield for 47  ee 

1 1 (41a) 95:5 77% (47a) 99% 

2 2 (41b) 96:4 53% (47b)
a
 99% 

3 3
b 

(41c) 95:5 82% (47c) 99% 

a
Reaction reaches 75% conversion of 41b, no side products were observed.

 b
6.0 mol% CuBr • SMe2 and 

8.0 mol% L2 were used. 

 

3.4 Cu-catalyzed allylic alkylation of cinnamide 44 

The allylic alkylation of cinnamide 44 was investigated next, which required a more 

thorough optimization of the reaction conditions. At first, the transformation of 44 to 

the corresponding addition products 49 and 50 with a catalyst comprising 6.0 mol% 

CuBr • SMe2 and 8.0 mol% bisphosphine ligand at -80 °C was investigated (Table 

3). From earlier studies, it was known that ferrocenyl-based ligands L2 and L4 are 

generally the best-performing in terms of enantioselectivities and yields for allylic 
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alkylations,
31,33,34

 and thus they were tested in a variety of solvents (Table 3). 

Dichloromethane outperforms MTBE and Et2O in terms of regio- and 

enantioselectivities (Table 3, entries 1,4; regioselectivity 49/50: >95:5). The low 

conversion in Et2O could be explained by the fact that cinnamide 44 does not fully 

dissolve in this solvent under the reaction conditions. It is also apparent that the 

Taniaphos ligand L2 outperforms Josiphos L4 with regard to enantioselectivity 

(97% (L2) vs. 67% ee (L4)), however, at the expense of conversion (27% (L2) vs. 

full conversion (L4)). It is important to note that this reaction, just as in the case of 

the conjugate addition to coumarins (see Chapter 6), had to be quenched with a 

HCl solution in Et2O. This was necessary to prevent the desired product 49 from 

decomposing during workup. When the reaction was quenched with MeOH, quick 

and complete esterification to methyl cinnamate was observed. 

Table 3 Cu-catalyzed allylic alkylation of 44
a
  

 

Entry L Solvent Conversion
b
 49:50

b
 ee

c
 

1 L2 CH2Cl2 27% >95:5 97% 

2 L2 MTBE 16% 83:17 56% 

3 L2 Et2O 7% 57:43 87% 

4 L4 CH2Cl2 full >95:5 67% 

5 L4 MTBE 85% 71:29 11% 

6 L4 Et2O 80% 76:24 5% 

a
Reaction conditions: MeMgBr (1.5 eq.), 44 (1.0 eq., added slowly (~1h) after all the other reagents), 

CuBr•SMe2 (6.0 mol%) and L (8.0 mol%), -80 °C, 17h, reaction quenched with HCl (3M in Et2O). 

b
Determined by 

1
H NMR. 

c
Determined by chiral HPLC. 
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To further improve the allylic alkylation of 44 in terms of enantioselectivity and 

conversion, some structurally related ferrocenyl-based ligands were tested under 

the optimized reaction conditions (compare Table 3). As can be seen from Table 4, 

none of the ligands could outperform the two orginally tested ones Taniaphos L2 

and Josiphos L4 in terms of enantioselectivity and conversion (Table 4, entries 

1,3). The structurally related ligands L5 – L7 (Table 4, entries 2,4,5) gave much 

lower conversion, and, with the exception of L6, lower enantioselectivity as well. 

This shows that even small structural and/or electronic changes of the ligands, 

especially of the aryl-substituents on the phosphorus atoms, have a large impact 

on the outcome of the reaction. Other ligand classes, like the Mandyphos (L8) and 

the Walphos (L9) class as well as the CuI/tolBINAP (L10) catalyst
40

 (Table 4, 

entries 6-8) could not compete with the previous chiral ligands, again emphasizing 

the special spatial requirements of the allylic alkylation catalyst for this particular 

transformation. 

Table 4 Ligand screening for allylic alkylation of cinnamide 44
a
  

 

Entry L Conversion
b
 49:50

b
 ee

c
 

1 L2 27% >95:5 95% 

2 L5 52% 34:66 7% 

3 L4 full >95:5 67% 

4 L6 full >95:5 64% 
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Entry L Conversion
b
 49:50

b
 ee

c
 

5 L7 66% 69:31 30% 

6 L8 30% 70:30 0% 

7 L9 15% 47:53 23% 

8
d
 L10 95% 70:30 21% 

a
Reaction conditions: MeMgBr (1.5 eq.), 44 (1.0 eq., added slowly (~2h) after all the other reagents), 

CuBr•SMe2 (6.0 mol%) and L (8.0 mol%), -80 °C, 17h, reaction quenched with HCl (3M in Et2O). 

b
Determined by 

1
H NMR. 

c
Determined by chiral HPLC. 

d
 6.0 mol% of CuI was used. 

Summarizing the attempts to develop an efficient allylic alkylation of cinnamide 44, 

it can be said that the results display a dilemma: The desired product 49 is either 

available in very good enantioselectivity, but with low yield, employing L2, or with 

moderate enantioselectivity and high yields, using L4. The regioselectivity in both 

cases is very good, favouring the branched product. Attempts to improve the 

conversion with L2 by employing higher amounts of Grignard reagent or by 

changing the order of addition of substrates and Grignard reagent did not lead to 

better results. Furthermore, it was established that chiral amide 49 is stable under 

the reaction conditions, so that in situ deterioration of the desired product can be 

excluded.  

 

3.5 Ring-closing metathesis of chiral diolefins 

Chiral diolefins 45 could subsequently be transformed to the corresponding N-

heterocycles 51 by ring-closing metathesis (Table 5). With 5.0 mol% Hoveyda-

Grubbs 2
nd

 generation catalyst,
24

 the six- to eight-membered rings were obtained in 

moderate to good yields. The best result was found for the eight-membered 

unsaturated azocane 51c (77%, Table 5, entry 3). It is important to note that the ee 

of the desired products 51 was not compromized during the reaction.  



 

 

  151 

Chiral N-Heterocycles 

Table 5 Ring-closing metathesis of chiral diolefins 

 

Entry n Yield ee 

1 1 (45a) 54% (51a) 99% 

2 2 (45b) 46% (51b) 90% 

3 3 (45c) 77% (51c) 98% 

 

The yield of chiral piperidine 51a (Table 5, entry 1) is comparatively low, even 

though the reaction reaches full conversion. In the crude reaction mixture, one 

unidentified side product is present. It is known from studies of ring-closing 

metathesis of related lactams
41

 that the concentration of the starting materials has 

an influence on the reaction since theoretically, also the homodimer of 45a could 

be obtained. In general, higher concentrations (40 mM) of the starting materials 

yield homodimers, whereas lower concentrations (1 mM) of the starting materials in 

the reaction mixture afford the desired ring-closed products. The ring-closing 

metathesis reactions in Table 5 were run at a concentration of 5 mM and therefore 

the formation of homodimers (and polymers) of 45a could not be excluded, but it 

was unlikely. From the crude 
1
H NMR, no such products were observed, an thus 

the side-products observed must arise from another reaction pathway. 

 

3.6 Ring-closing ene-yne metathesis of chiral terminal alkynes 

For the ene-yne metathesis of compounds 47 to reach full conversion, 5.0 mol% 

Grubbs 1
st
 generation catalyst under an ethene atmosphere was employed.

31
 The 

addition of ethene was found to be essential for the reaction to proceed to 52, as in 

its absence, no conversion was observed (see section 3.7).
42

 The resulting six- and 

seven-membered nitrogen-containing rings with diene motifs 52a,b were isolated in 

good yields (Table 6). Again, no loss of ee was observed in this transformation, 
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making this a viable pathway for the construction of chiral nitrogen-containing 

heterocycles with various ring sizes. 

Table 6 Ene-yne metathesis of chiral terminal alkynes 

 

Entry n Yield ee 

1 1 (47a) 77% (52a) 99% 

2 2 (47b) 65% (52b) 99% 

3 3 (47c) N/A N/A 

 

The reaction of 47c under the given conditions did not produce the desired eight-

membered ring 52c. The ene-yne metathesis proceeded to the linear product 53 in 

moderate yields (Table 7, entries 1,2), where the alkyne moiety of 52c reacted in 

an intermolecular fashion with ethene instead of intramolecularly with the terminal 

olefin. Product 53 did not react any further to the desired ring system under the 

reaction conditions. Furthermore, this reaction could not be improved in terms of 

conversion to 53, as other Ru-based metathesis catalysts under a variety of 

conditions
43

 did not give any conversion to neither 52c nor 53 (Table 7). It is known 

in literature that the synthesis of eight-membered rings via cross-metathesis is 

difficult, due to steric restraints of the products as well as the kinetics of the ring-

closing reactions.
44

 This can lead to unwanted side-reactions such as 

polymerization of the starting materials and/or products. 
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Table 7 Ene-yne metathesis of 47c 

 

Entry Catalyst (mol%) Solvent Atm. Temp. Yield (53) 

1 Grubbs 1
st
 (5.0) CH2Cl2 ethene 40 °C 9%

a,b
 

2 Grubbs 1
st

 (10.0) CH2Cl2 ethene 40 °C 35%
 a,b

 

3 Grubbs 1
st
 (5.0) CH2Cl2 - 40 °C n.d.

a
 

4 Grubbs 1
st
 (5.0) toluene ethene 70 °C n.d.

a
 

5 Grubbs 1
st
 (5.0) toluene - 70 °C n.d.

a
 

6 Hoveyda-Grubbs 2
nd

 (5.0) CH2Cl2 ethene 40 °C n.d.
a
 

7 Hoveyda-Grubbs 2
nd

 (5.0) toluene ethene 70 °C n.d.
a
 

8 Grubbs 2
nd

 (5.0) CH2Cl2 ethene 40 °C n.d.
a
 

a
Low conversion. 

b
Complex mixture of products. 

 

3.7 Role of the ethene atmosphere for the ene-yne metathesis 

It was found that an ethene atmosphere was crucial for the ene-yne metathesis of 

terminal alkynes 47 to cyclic dienes 52, an observation that had been made in 

earlier studies of ene-yne metathesis reactions.
42

 The necessity for the ethene 

atmosphere can be explained with the various equilibria present in an ene-yne 

metathesis reaction (Scheme 10). The Ru-alkylidene catalyst A reacts, due to the 

higher electron density, first with the terminal alkyne of 47a to yield a 

ruthenacyclobutene 54. This undergoes cycloreversion to yield Ru-alkylidene 55. 

The intramolecular olefin metathesis leads to diene 52a via ruthenacyclobutane 56. 

The driving force of this reaction pathway is the thermodynamic stability of the 

diene 52a. However, the Ru-catalyst A can enter a non-productive olefin cross 

metathesis with the terminal diene of 52a leading to ruthenacycle 57, and finally to 

Ru-alkylidene 58 and ethene. This last equilibrium is affected by an ethene 

atmosphere, as it should lie on the side of 57, and therefore also further on the side 

of the desired product, and free alkylidene A. Through the unproductive pathway, 

the effective amount of active catalyst in the reaction mixture is lowered. If an 

ethene atmosphere is present, any ruthenacycle 57 formed is quickly reacted back 
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to the free Ru-alkylidene catalyst A (and possibly onward to ruthenacycle B) and 

the desired product 52a, and thus removed from the unproductive pathway.  

 

Scheme 10 Ene-yne metathesis in the presence of ethene atmosphere 

 

3.8 Ring-closing metathesis for the synthesis of a chiral lactam 

Enantioenriched amide 49, from the reaction with ligand L4 (vide supra), was 

subjected to ring-closing metathesis conditions to probe whether the anticipated 

pathway to synthesize chiral lactams was viable. When 49 was reacted in the 

presence of catalytic amounts of Hoveyda-Grubbs 2
nd

 generation catalyst, the 

corresponding chiral lactam 59 was isolated in good yields without compromizing 

the ee (Scheme 11). This shows that the general approach to chiral lactams is 

indeed feasible as anticipated. 

 

Scheme 11 Ring-closing metathesis for the synthesis of chiral lactam 
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4. Conclusions and future prospects 

In summary, we have demonstrated that chiral unsaturated heterocycles are 

available in excellent enantiomeric excess and good yields via a combination of 

Cu-catalyzed allylic substitution and Ru-catalyzed ring-closing metathesis. Six- to 

eight-membered chiral nitrogen-containing rings are easily available through this 

short synthetic pathway in high enantioselectivity. By employing terminal olefins, 

singly unsaturated rings are accessible, while terminal alkynes were transformed to 

the corresponding dienes in good yields and 99% ee. The obtained compounds are 

ideal chiral building blocks for further functionalization through the olefinic bonds. It 

should be noted that the synthesis of an eight-membered diene was not achieved 

via this synthetic route, since a side reaction to a linear diene moiety was found. 

It has been demonstrated that the same pathway can be employed for the 

synthesis of chiral lactams, when allylic bromides with amide substituents are used. 

The allylic substitution has yet to be optimized, since either high enantioselectivity 

accompanied by low yields, or high yields accompanied with moderate 

enantioselectivities are obtained with the tested catalysts. However, it has been 

shown that the subsequent ring-closing metathesis proceeds without endangering 

the chiral information. 

 

For further extension of this project, some follow-up studies could be envisaged. To 

improve the results of the allylic alkylation of amides different N-protecting groups 

(like Boc) or no N-protecting group of 60 could be tested in the enantioselective 

reaction to give 61. It is possible that the tosyl group used in this study is interfering 

with the catalyst and therefore reducing the catalytic activity. Further transformation 

to chiral lactam 62 (Scheme 12) has been shown to work well and it is not 

expected to encounter problems with different N-protecting groups. 

 

Scheme 12 Change of protecting group for the synthesis of chiral lactams 

Secondly, the newly developed allylic alkylation-ring-closing metathesis protocol 

could be extended to the use of functionalized Grignard reagents, ideally ones 

bearing terminal olefins (Scheme 13). Through this approach, a multifunctional 

chiral building block 64 would be accessible. Posessing three terminal double 

bonds, a variety of chiral carbo- or heterocycles 65 and 66 would be accessible, 
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and it would be interesting to probe whether the ring-closing metathesis step could 

be rendered selective towards one of the products. 

 

Scheme 13 Allylic alkylation with functionalized Grignard reagents 

One of the most interesting future prospects of this work would be to examine the 

asymmetric alkylation to enamides 68 (Scheme 14). The trifluoroacetamide 67 is 

accessible,
45

 and conversion to the corresponding allyl bromide 68 could be 

envisaged. If the asymmetric allylic alkylation of enamides could be accomplished, 

it would not only be the aza-version of the already reported work with esters,
27

 but 

69 itself is an important multifunctional building block. By deprotection of the 

trifluoroacetamide,
46

 chiral primary allylic amines 70 would be accessible. 

Secondly, 69 could be used to prepare chiral aminoacids 71 and 72 by oxidation of 

the double bond either by a hydroboration-oxidation sequence or by ozonolysis 

with oxidative workup. 

 

Scheme 14 Synthesis of chiral nitrogen-containing building blocks 

As a last possible extension of this project, one could envisage the use of the chiral 

building blocks 73, products of the asymmetric allylic alkylation to substrates 

bearing terminal alkynes, in new transformations such as for example the Pauson-

Khand reaction,
47

 which would furnish chiral bicyclic systems 74 (Scheme 15). 

Reduction of the ,-unsaturated ketone
48

 would furnish bicyclic compound 75 

with three stereocenters. 
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Scheme 15 Possible further reactions of 73 

 

5. Experimental Section 

General remarks: 

1
H NMR and 

13
C NMR spectra were recorded on a Varian AMX400 (400 and 100 

MHz, respectively), a Varian VXR300 (300 and 75 MHz, respectively), or a Varian 
VXR200 NMR spectrometer (200 MHz and 75 MHz, respectively) with CDCl3 as 
solvent. Chemical shifts were determined relative to the residual solvent peaks 
(CHCl3, δ = 7.26 ppm for 

1
H NMR, δ = 77.0 ppm for 

13
C NMR). The following 

abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; 
q, quartet; qi, quintet; m, multiplet; br, broad, app, apparent. Enantiomeric 
excesses were determined by chiral HPLC using a Shimadzu LC-10ADVP HPLC 
equipped with a Shimadzu SPD-M10AVP diode array detector, in comparison with 
racemic products or, in some cases, mixtures of both enantiomers. Racemic 
products were obtained by the same procedure as the enantioselective allylic 
alkylation only using CuBr·SMe2 (10 mol%), PPh3 (20 mol%) and MeMgBr (1.15 
eq.) at -40 °C in CH2Cl2. The opposite enantiomer of a product is obtained by using 
the enantiomer of L2, following the general procedure D. Regioselectivities were 
determined by 

1
H NMR. Optical rotations were measured on a Schmidt + Haensch 

polarimeter (Polartronic MH8) with a 10 cm cell (c given in g/100 mL) at 20 °C. 
Thin-layer chromatography (TLC) was performed on Merck TLC Silica gel 60 
Kieselguhr F254. Flash chromatography was performed on silica gel Merck Type 
9385 230-400 mesh. Mass spectra were recorded on a AEI-MS-902 mass 
spectrometer (EI

+
) or a LTQ Orbitrap XL (ESI

+
). 

 

N-Allyl-4-methylbenzenesulfonamide (32a)
1
 

p-Toluenesulfonyl chloride (37.9 mmol, 7.23 g, 0.95 eq.) and pyridine (44 mmol, 
3.5 g, 1.1 eq.) were added to a solution of allylamine (40 mmol, 
2.28 g, 1.0 eq.) in dry CH2Cl2 (25 mL). The mixture was stirred at 
room temperature for 16 h and washed with aqueous 0.5 M HCl 
(3 x 5 mL). The combined aqueous phases were extracted with 
CH2Cl2 (10 mL) and the organic layer was dried and concentrated 

under reduced pressure to afford product 32a (75% yield, 6.3 g, Rf (1:5 
EtOAc/heptane) = 0.51) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 
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8.1 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.76-5.63 (m, 1H), 5.10 (dd, J = 24.9 Hz, 13.7 
Hz, 2H), 4.92 (br, 1H), 3.55 (t, J = 5.9 Hz, 2H), 2.41 (s, 3H). 

13
C NMR (75 MHz, 

CDCl3) δ 145.81, 143.51, 128.66, 127.49, 126.37, 113.35, 43.44, 21.00. HRMS 
calcd. for C10H14NO2S [M+H

+
]: 212.0745, found 212.0740. 

 

4-Methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (38a)
2
 

A mixture of p-toluenesulfonamide (22 mmol, 3.77 g, 1.1 eq.) and K2CO3 (50 mmol, 
6.9 g, 2.5 eq.) in MeCN (500 mL) was stirred at room temperature. 
To this mixture a solution of propargyl bromide (20 mmol, 2.38 g, 
1.0 eq.) in MeCN (20 mL) was added dropwise. The mixture was 
heated to reflux for 16 h, cooled to room temperature and filtered. 
The filtrate was concentrated under reduced pressure and purified 

by flash chromatography (SiO2, 1:7 EtOAc/heptane, Rf (1:5 EtOAc/heptane) = 
0.37) to yield the product (39% yield, 1.64 g) as a colorless oil. The disubstituted 
side product 38a (38%, 1.63 g, Rf (1:5 EtOAc/heptane) = 0.45) was obtained as a 
pale yellow solid. 

1
H NMR (300 MHz, CDCl3) δ 7.77 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 

8.0 Hz, 2H), 4.53 (br, 1H), 3.83 (dd, J = 6.1 Hz, 2.5 Hz, 2H), 2.44 (s, 3H), 2.11 (t, J 
= 2.5 Hz, 1H). 

13
C NMR (75 MHz, CDCl3) δ 143.83, 139.31, 129.93, 126.68, 98.20, 

74.22, 36.39, 21.73. HRMS calcd. for C10H12NO2S [M+H
+
]: 210.0589, found 

210.0583. 

 

tert-Butyl tosylcarbamate (34)
3
 

p-Toluenesulfonamide (30 mmol, 5.14 g, 1.0 eq.) was suspended in CH2Cl2 (25 
mL) containing Et3N (33 mmol, 3.34 g, 1.1 eq.) and DMAP (3 mmol, 
0.37 g, 0.1 eq.). A solution of di-(t-butyl) dicarbonate (36 mmol, 7.86 
g, 1.2 eq.) in CH2Cl2 (40 mL) was added dropwise with stirring over 
8 min. After 2 h, the solution was concentrated under reduced 
pressure and the residue treated with EtOAc (100 mL) and 2 M aq. 

HCl (60 mL). The organic phase was washed successively with water and brine, 
dried and concentrated under reduced pressure to afford a solid. Heating in 
pentane (30 mL), cooling to room temperature and filtration provided the product as 
a white solid (87% yield, 7.06 g, Rf (1:5 EtOAc/heptane) = 0.57). 

1
H NMR (400 

MHz, CDCl3) δ 7.90 (d, J = 7.5 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 2.45 (s, 3H), 1.38 
(s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 149.19, 144.97, 136.15, 129.71, 128.46, 

84.28, 28.09, 21.88. HRMS calcd. For C12H18NO4S [M+H
+
]: 272.0957, found 

272.0951.  
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N-Tosylcinnamamide (43)
4
 

E-Cinnamic acid (6.8 mmol, 1.0 g, 1.0 eq.) was dissolved in dry THF (20 mL) under 
nitrogen and tosyl isocyanate (7.4 mmol, 1.46 g, 1.1 eq.) was 
added to the solution. After stirring at room temperature for 
10 min the inert atmosphere was disconnected and 
triethylamine (7.4 mmol, 0.75 g, 1.1 eq.) was added drop-
wise to the open flask, allowing the release of the formed 
CO2. After stirring for 1h at room temperature the solution 

was diluted with 20 mL of EtOAc and washed with 2M aq. HCl and brine. After 
drying and filtration the organic phase was concentrated in vacuo and the product 
was precipitated by addition of pentane to a saturated ether solution followed by 
decantation and washing with pentane. Compound 43 was obtained as a pale 
yellow solid (71% yield, 1.4 g). 

1
H NMR (200 MHz, CDCl3) δ 8.01 (d, J = 8.4 Hz, 

2H), 7.69 (d, J = 15.7 Hz, 2H), 7.49 – 7.32 (m, 7H), 6.44 (d, J = 15.7 Hz, 2H), 2.42 
(d, J = 4.5 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 163.65, 145.94, 145.10, 135.64, 

133.69, 130.82, 129.62, 128.88, 128.40, 128.36, 117.51, 21.61. HRMS calcd. for 
C16H15NO3SNa [M+Na

+
]: 324.0665, found 324.0659. 

 

General procedure A: Preparation of olefinic and propargylic N-Boc 
protected sulfonamides

5
 (35b,c and 40b,c) 

N-Boc p-toluenesulfonamide 34 (7.37 mmol, 2.0 g, 1.5 eq.) was dissolved in dry 
THF (3 mL) and triphenylphosphine (14.7 mmol, 3.87 g, 3.0 eq.) was added. The 
solution was stirred under nitrogen atmosphere and the olefinic or propargylic 
alcohol (4.9 mmol, 1.0 eq.) was added followed by diethyl azodicarboxylate (12.2 
mmol, 2.12 g, 2.5 eq.). The mixture was stirred at room temperature for 3h, 
concentrated under reduced pressure and the product was purified by flash 
chromatography (SiO2). 

 
(N-tert-Butoxycarbonyl)(but-3-enyl)tosylamide (35b)

6
 

The title compound was prepared from 3-buten-1-ol (5.5 mmol, 0.40 g) following 
general procedure A. Purification by column chromatography 
(SiO2, 1:8 EtOAc/heptane, Rf (1:5 EtOAc/heptane) = 0.54) 
afforded product 35b as a yellow oil (86% yield, 1.54 g). 

1
H 

NMR (200 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 2H), 7.30 (d, J 
= 8.1 Hz, 2H), 5.91 – 5.71 (m, 1H), 5.20 – 5.02 (m, 2H), 3.92 

– 3.85 (m, 2H), 2.58 – 2.46 (m, 2H), 2.44 (s, 3H), 1.34 (s, 9H). 
13

C NMR (75 MHz, 
CDCl3) δ 151.14, 144.26, 137.74, 134.62, 129.42, 128.08, 117.64, 84.34, 46.60, 
34.80, 28.09, 21.81. HRMS calcd. for C16H23NO4SNa [M+Na

+
]: 348.1245, found 

348.1240.  
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(N-tert-Butoxycarbonyl)(but-3-ynyl)tosylamide (35c):  

The title compound was prepared from 4-penten-1-ol (0.81 mmol, 70 mg) following 
general procedure A. Purification by column 
chromatography (SiO2, 1:8 EtOAc/pentane, Rf (1:6 
EtOAc/pentane) = 0.44) afforded product 35c as a 
colorless oil (97% yield, 266 mg). 

1
H NMR (200 MHz, 

CDCl3) δ 7.74 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 
5.81 (ddt, J = 16.7 Hz, 10.2 Hz, 6.5 Hz, 1H), 5.11 – 4.91 

(m, 2H), 3.85 – 3.73 (m, 2H), 2.40 (s, 3H), 2.16 – 2.05 (m, 2H), 1.91 – 1.80 (m, 
2H), 1.30 (s, 9H). 

13
C NMR (50 MHz, CDCl3) δ 150.91, 144.02, 137.47, 137.41, 

129.19, 127.72, 115.17, 84.04, 46.71, 30.82, 29.18, 27.83, 21.54. HRMS calcd. for 
C17H26NO4S[M+H

+
]: 340.1583, found 340.1577. 

 

(N-tert-Butoxycarbonyl)(but-3-ynyl)tosylamide (40b)
7
   

The title compound was prepared from 3-butyn-1-ol (1.4 mmol, 95 mg) following 
general procedure A. Purification by column chromatography 
(SiO2, 5:1 heptane/EtOAc, Rf = 0.24) afforded product 40b as 
an opaque oil (89% yield, 391 mg). 

1
H NMR (300 MHz, 

CDCl3) δ 7.80 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 
4.03 – 3.98 (m, 2H), 2.69 – 2.63 (m, 2H), 2.44 (s, 3H), 2.03 – 

2.01 (m, 1H), 1.35 (s, 9H). 
13

C NMR (75 MHz, CDCl3) δ 150.93, 144.46, 137.45, 
129.47, 128.11, 84.74, 80.65, 70.60, 45.42, 28.06, 21.82, 20.21. HRMS calcd. for 
C16H21NO4SNa [M+Na

+
]: 346.1089, found 346.1084. 

 

(N-tert-Butoxycarbonyl)(pent-4-ynyl)tosylamide (40c) 

The title compound was prepared from 4-pentyn-1-ol (0.64 mmol, 54 mg) following 
general procedure A. Purification by column 
chromatography (SiO2, 5:1 heptane/EtOAc, Rf = 0.27) 
afforded product 40c as an opaque oil (76% yield, 165 mg). 
1
H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.2 Hz, 2H), 7.28 

(d, J = 8.0 Hz, 2H), 3.90 (t, J = 8.0 Hz, 2H), 2.41 (s, 3H), 
2.26 (td, J = 7.1 Hz, 2.4 Hz, 2H), 1.97 (m, 3H), 1.32 (s, 9H). 

13
C NMR (75 MHz, 

CDCl3) δ 151.07, 144.36, 137.53, 129.46, 128.00, 84.42, 83.24, 69.23, 46.48, 
29.10, 28.05, 21.75, 16.20. HRMS calcd. for C12H16NO2S [M-Boc+H

+
]: 238.0896, 

found 238.0889. 

 

General procedure B: Preparation of olefinic and propargylic tosylamides 
(32b,c and 38b,c)

8
 

To a solution of the N-Boc olefinic or propargylic tosylamide 35 or 40 (0.62 mmol, 
1.0 eq.) in CH2Cl2 (10 mL) was added trifluoroacetic acid (12.4 mmol, 1.41 g, 20 
eq.) at 0 °C, and the mixture was stirred at rt for 3 h. The mixture was diluted with 
EtOAc, and the organic layer was washed with saturated aq. NaHCO3 solution and 
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saturated aq. NaCl solution, dried and concentrated to afford the products as 
colorless oils. 

 

N-3-Buten-1-yl-4-methyl-benzenesulfonamide (32b)
9
  

The title compound was prepared from 35b (4.74 mmol, 1.54 g) following general 
procedure B (70% yield, 744 mg). 

1
H NMR (300 MHz, CDCl3) δ 

7.74 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.69 – 5.55 
(m, 1H), 5.07 – 4.98 (m, 2H), 4.66 (t, J = 5.7 Hz, 1H), 3.00 (app 
q, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.19 (app q, J = 6.7 Hz, 2H). 
13

C NMR (75 MHz, CDCl3) δ 143.63, 137.21, 134.39, 129.92, 
127.34, 118.31, 42.31, 33.83, 21.73. HRMS calcd. for C11H16NO2S [M+H

+
]: 

226.0902, found 226.0896. 

 
N-4-Penten-1-yl-4-methyl-benzenesulfonamide (32c)

9
  

The title compound was prepared from 35c (0.77 mmol, 260 mg) following general 
procedure B (86% yield, 157 mg). 

1
H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.3 Hz, 

2H), 7.29 (d, J = 8.1 Hz, 2H), 5.68 (ddt, J = 16.9 Hz, 10.2 
Hz, 6.7 Hz, 1H), 5.01 (t, J = 6.1 Hz, 1H), 4.97 – 4.89 (m, 2H), 
2.91 (dd, J = 13.5 Hz, 6.8 Hz, 2H), 2.41 (s, 3H), 2.02 (app q, 
J = 7.2 Hz, 2H), 1.54 (app qi, J = 7.2 Hz, 2H). 

13
C NMR (100 

MHz, CDCl3) δ 143.29, 137.25, 136.95, 129.66, 127.06, 
115.44, 42.58, 30.60, 28.63, 21.48. HRMS calcd. for C12H17NO2SNa [M+Na

+
]: 

262.0878, found 262.0872.  

 
N-3-Butyn-1-yl-4-methyl-benzenesulfonamide (38b)

10
 

The title compound was prepared from 40b (0.62 mmol, 200 mg) following general 
procedure B (74% yield, 103 mg). 

1
H NMR (300 MHz, CDCl3) δ 

7.75 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.13 (t, J = 
6.2 Hz, 1H), 3.08 (app q, J = 6.6 Hz, 2H), 2.41 (s, 3H), 2.32 (td, 
J = 6.7 Hz, 2.6 Hz, 2H), 1.98 (t, J = 2.6 Hz, 1H). 

13
C NMR (75 

MHz, CDCl3) δ 143.81, 137.13, 130.00, 127.29, 80.61, 71.02, 
41.89, 21.74, 20.00. HRMS calcd. for C11H14NO2S[M+H

+
]: 224.0745, found 

224.0740.  

 

N-4-Pentyn-1-yl-4-methyl-benzenesulfonamide (38c)
11

 

The title compound was prepared from 40c (0.50 mmol, 170 mg) following general 
procedure B (83% yield, 99 mg). 

1
H NMR (300 MHz, CDCl3) 

δ 7.75 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.54 (br, 
1H), 3.08 (app q, J = 6.6 Hz, 2H), 2.43 (s, 3H), 2.22 (td, J = 
6.8 Hz, 2.5 Hz, 2H), 1.95 (s, 1H), 1.69 (qi, J = 6.8 Hz, 2H). 
13

C NMR (100 MHz, CDCl3) δ 143.42, 136.86, 129.71, 



 

 

162 

   

Chapter 5 

 

127.07, 82.89, 69.39, 42.11, 28.12, 21.50, 15.69. HRMS calcd. for C12H16NO2S 
[M+H

+
]: 238.0902, found 238.0896. 

 

General procedure C: Preparation of allylic bromide substrates (36a-c, 41a-c) 

To a suspension of olefinic or propargylic tosylamide 32 or 38 (19.2 mmol, 1.0 eq.) 
and K2CO3 (28.8 mmol, 3.98 g, 1.1 eq.) in 20 mL MeCN was added 1,4-
dibromobut-2-ene (77.0 mmol, 16.5 g, 4.0 eq.) and the mixture was heated to reflux 
for 24 h. The mixture was then concentrated under reduced pressure and water (10 
mL) and Et2O (10 mL) were added. The organic layer was separated and the 
aqueous layer was extracted with Et2O (2 x 5 mL). The combined organic layers 
were dried, filtered and concentrated under reduced pressure. Purification by 
column chromatography (SiO2) yielded desired products. 

 

(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-2-propen-1-yl-benzenesulfonamide 
(36a)

12
 

The title compound was prepared from 32a (19.2 mmol, 4.06 g) following general 
procedure C. Purification by column chromatography 
(SiO2, 1:5 EtOAc/Pentane, Rf = 0.38) afforded 36a 
(70% yield, 4.63 g) as an opaque oil. 

1
H NMR (200 

MHz, CDCl 3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 
8.0 Hz, 2H), 5.85 – 5.68 (m, 1H), 5.66 – 5.43 (m, 2H), 

5.20 – 5.08 (m, 2H), 3.85 (d, J = 7.3 Hz, 2H), 3.78 (d, J = 6.2 Hz, 4H), 2.41 (s, 3H). 
13

C NMR (75 MHz, CDCl3) δ 143.63, 137.36, 132.73, 130.71, 129.99, 129.84, 
127.38, 119.57, 49.94, 47.94, 31.67, 21.75. HRMS calcd. for C14H19BrNO2S 
[M+H

+
]: 344.0320, found 344.0314. 

 
(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-3-buten-1-yl-benzenesulfonamide 
(36b) 

The title compound was prepared from 32b (2.87 mmol, 734 mg) following general 
procedure C. Purification by column chromatography 
(SiO2, 1:5 EtOAc/Pentane, Rf = 0.23) afforded 36b 
(74% yield, 762 mg) as an opaque oil. 

1
H NMR (300 

MHz, CDCl3) δ 7.68 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 
8.1 Hz, 2H), 5.87 – 5.76 (m, 1H), 5.74 – 5.54 (m, 
2H), 5.11 – 4.98 (m, 2H), 3.87 (d, J = 7.4 Hz, 2H), 

3.81 (d, J = 6.3 Hz, 2H), 3.17 (t, J = 6.5 Hz, 2H), 2.42 (s, 3H), 2.27 (app q, J = 6.4 
Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 143.56, 137.15, 134.77, 130.42, 130.37, 

129.94, 127.39, 117.41, 49.37, 47.32, 33.22, 31.51, 21.73. HRMS calcd. for 
C15H21BrNO2S [M+H

+
]: 358.0476, found 358.0471. 
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(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-4-penten-1-yl-benzenesulfonamide 
(36c) 

The title compound was prepared from 32c (0.648 mmol, 155 mg) following 
general procedure C. Purification by column 
chromatography (SiO2, 1:7 Et2O/Pentane, Rf (1:6 
Et2O/Pentane) = 0.23) afforded 36c (47% yield, 
116 mg) as an opaque oil. 

1
H NMR (400 MHz, 

CDCl 3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 
8.1 Hz, 2H), 5.87 – 5.69 (m, 2H), 5.65 – 5.55 (m, 1H), 5.04 – 4.92 (m, 2H), 3.86 (d, 
J = 7.4 Hz, 2H), 3.78 (d, J = 6.5 Hz, 2H), 3.09 (t, J = 8.0 Hz, 2H), 2.42 (s, 3H), 2.02 
(dd, J = 14.2 Hz, 7.2 Hz, 2H), 1.64 – 1.57 (m, 2H). 

13
C NMR (100 MHz, CDCl3) δ 

143.28, 137.42, 136.83, 130.24, 130.09, 129.70, 127.13, 115.27, 49.10, 47.25, 
31.33, 30.66, 27.49, 21.49. HRMS calcd. for C16H23BrNO2S [M+H

+
]: 372.0633, 

found 372.0627. 

 
(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-2-propyn-1-yl-benzenesulfonamide 
(41a)

13
 

The title compound was prepared from 38a (1.20 mmol, 250 mg) following general 
procedure C. Purification by column chromatography 
(SiO2, 1:15 EtOAc/Heptane, Rf (1:9 EtOAc/Heptane) = 
0.25) afforded 41a (73% yield,  299 mg) as a colorless 
oil. 

1
H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.3 Hz, 

2H), 7.30 (d, J = 8.4 Hz, 2H), 5.98-5.90 (m, 1H), 5.75 – 
5.64 (m, 1H), 4.09 (d, J = 2.4 Hz, 2H), 3.92 (d, J = 7.5 

Hz, 2H), 3.85 (d, J = 6.5 Hz, 2H), 2.43 (s, 3H), 2.03 (t, J = 2.5 Hz, 1H). 
13

C NMR 
(100 MHz, CDCl3) δ 143.73, 135.75, 131.46, 129.55, 128.71, 127.72, 76.31, 74.01, 
47.39, 36.03, 31.15, 21.57. HRMS calcd. for C14H16BrNO2SNa [M+Na

+
]: 363.9983, 

found 363.9977. 

 
(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-3-butyn-1-yl-benzenesulfonamide 
(41b) 

The title compound was prepared from 38b (0.34 mmol, 76 mg) following general 
procedure C. Purification by column chromatography 
(SiO2, 1:7 EtOAc/Heptane, Rf (1:5 EtOAc/Heptane) 
= 0.22) afforded 41b (71% yield, 85 mg) as an 
opaque oil. 

1
H NMR (300 MHz, CDCl3) δ 7.69 (d, J = 

8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.84 (dt, J = 
14.8 Hz, 7.4 Hz, 1H), 5.69 – 5.55 (m, 1H), 3.93 – 3.81 (m, 4H), 3.28 (t, J = 7.4 Hz, 
2H), 2.46 (m, 2H), 2.43 (s, 3H), 1.97 (t, J = 2.4 Hz, 1H). 

13
C NMR (75 MHz, CDCl3) 

δ 143.79, 136.93, 130.76, 130.11, 130.03, 127.40, 81.13, 70.51, 49.92, 46.53, 
31.32, 21.74, 19.66. HRMS calcd. for C15H19BrNO2S [M+H

+
]: 356.0320, found 

356.0314. 
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(E)-N-(4-Bromo-2-buten-1-yl)-4-methyl-N-4-pentyn-1-yl-benzenesulfonamide 
(41c) 

The title compound was prepared from 38c (0.12 mmol, 28 mg) following general 
procedure C. Purification by column 
chromatography (SiO2, 1:8 EtOAc/Heptane, Rf 
(1:5 EtOAc/Heptane) = 0.29) afforded 41c (72% 
yield, 78 mg) as an opaque oil. 

1
H NMR (400 

MHz, CDCl 3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.30 (d, 
J = 8.0 Hz, 2H), 5.83 (dt, J = 15.0 Hz, 7.5 Hz, 1H), 5.66 – 5.55 (m, 1H), 3.87 (d, J = 
7.5 Hz, 2H), 3.80 (d, J = 6.5 Hz, 2H), 3.20 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.20 (dt, 
J = 7.0 Hz, 2.6 Hz, 2H), 1.95 (t, J = 2.6 Hz, 1H), 1.75 (app qi, J = 7.2 Hz, 2H). 

13
C 

NMR (100 MHz, CDCl3) δ 143.41, 136.60, 130.44, 129.96, 129.75, 127.18, 83.13, 
69.11, 49.49, 46.65, 31.25, 27.38, 21.51, 15.73. HRMS calcd. for C16H20BrNO2SNa 
[M+Na

+
]: 392.0296, found 392.0290. 

 

N-((E)-4-Bromobut-2-en-1-yl)-N-tosylcinnamamide (44) 

The title compound was prepared from 43 (6.2 mmol, 1.86 g) following general 
procedure C. Purification by column chromatography 
(SiO2, 1:5 EtOAc/heptane, Rf (1:3 EtOAc/heptane) = 
0.48) afforded 44 (75% yield, 2.02 g) as a pale 
yellow oil. 

1
H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 

8.4 Hz, 2H), 7.66 (d, J = 15.4 Hz, 1H), 7.51 – 7.49 
(m, 2H), 7.43 – 7.37 (m, 3H), 7.34 – 7.28 (m, 3H), 6.05 – 5.96 (m, 1H), 5.93 – 5.84 
(m, 1H), 4.56 (d, J = 5.5 Hz, 2H), 3.95 (d, J = 8.0 Hz, 2H), 2.42 (d, J = 7.8 Hz, 
3H).

13
C NMR (75 MHz, CDCl3) δ 165.62, 146.11, 144.90, 136.70, 134.30, 130.59, 

130.27, 129.78, 128.87, 128.26, 127.65, 126.59, 117.83, 46.94, 31.38, 21.53. 
HRMS calcd. for C20H21BrNO3S [M+H

+
]: 434.0426, found 434.0420. 

 

General procedure D: Enantioselective Cu-catalyzed allylic alkylation with 
methylmagnesium bromide (45a-c, 47a-c) 

In a dry Schlenk tube equipped with septum and stirring bar, CuBr·SMe2 (15 μmol, 
3.1 mg, 1.0 mol%) and L2 (18 μmol, 12.4 mg, 1.2 mol%) were dissolved in CH2Cl2 
(2.0 mL) and stirred under nitrogen atmosphere at room temperature for 10 min. 
The mixture was cooled to -80 °C and a solution of methylmagnesium bromide 
(1.73 mmol, 3M solution in Et2O, 1.15 eq.) in 1.0 mL CH2Cl2 was added dropwise 
over 20 min via syringe pump. Subsequently, a solution of allylic bromide 36 or 41 
(1.5 mmol) in 1.0 mL CH2Cl2 was added dropwise over 30 min via syringe pump. 
Once the addition was complete, the resulting mixture was stirred at -80 °C for 16h. 
The reaction was quenched by addition of MeOH (2.0 mL) and was allowed to 
warm up to rt. Aqueous NH4Cl solution (1M, 10 mL) was added and the organic 
phase separated. The aqueous phase was extracted with Et2O (2 x 10 mL). The 
combined organic phases were dried over MgSO4 and concentrated under reduced 
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pressure to yield the crude product which was purified by flash chromatography 
SiO2. 

 
(S)-N-Allyl-4-methyl-N-(2-methylbut-3-en-1-yl)benzenesulfonamide (45a) 

The title compound was prepared from 36a (1.50 mmol, 516 mg) following general 
procedure D. Purification by column chromatography (SiO2, 
EtOAc/pentane 1:9, Rf = 0.44) afforded 45a (74% yield, 277 
mg, ratio 45a:46a = 95:5, 99% ee, [α]D = -1.1 (c 17.4, 
CHCl3)) as a yellow oil. Enantiomeric excess determined by 
chiral HPLC analysis, Chiralpak AD (99% n-heptane/1% i-

PrOH, flow rate 0.5 mL/min), 40 °C, retention times (min) 16.1 (major) and 17.4 
(minor). 

1
H NMR (300 MHz, CDCl3) δ 7.65 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.0 Hz, 

2H), 5.75 – 5.41 (m, 2H), 5.13– 4.92 (m, 4H), 3.76 (d, J = 6.4 Hz, 2H), 3.10 – 2.86 
(m, 2H), 2.51 – 2.42 (m, 1H), 2.36 (s, 3H), 0.96 (d, J = 6.7 Hz, 3H). 

13
C NMR (75 

MHz, CDCl3) δ 143.38, 141.27, 137.31, 133.25, 129.85, 127.38, 119.11, 115.01, 
52.92, 51.32, 36.71, 21.67, 17.62. HRMS calcd. for C15H22NO2S [M+H

+
]: 280.1371, 

found 280.1366.  

 
(S)-N-(But-3-en-1-yl)-4-methyl-N-(2-methylbut-3-en-1-yl)benzenesulfonamide 
(45b) 

The title compound was prepared from 36b (0.017 mmol, 3.4 mg) following general 
procedure D. Purification by column chromatography 
(SiO2, EtOAc/Pentane 1:7, Rf (EtOAc/pentane 1:5) = 
0.64) afforded 45b (84% yield, 69 mg, ratio 45b:47b = 
98:2, 90% ee, [α]D = +1.2 (c 0.5, CHCl3)) as a yellow oil. 
Enantiomeric excess determined by chiral HPLC 

analysis, Chiralcel OJ (99% n-heptane/1% i-PrOH, flow rate 0.5 mL/min), 40 °C, 
retention times (min) 9.3 (major) and 11.6 (minor). 

1
H NMR (300 MHz, CDCl3) δ 

7.68 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 5.76 – 5.59 (m, 2H), 5.07 – 4.95 
(m, 4H), 3.15 (m, 2H), 3.09 – 2.93 (m, 2H), 2.54 – 2.44 (m, 1H), 2.41 (s, 3H), 2.32 
– 2.17 (m, 2H), 1.02 (d, J = 6.7 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 143.30, 

141.21, 137.20, 134.94, 129.79, 127.44, 117.14, 115.13, 54.26, 48.47, 37.06, 
33.16, 21.69, 17.70. HRMS calcd. for C16H24NO2S [M+H

+
]: 294.1528, found 

294.1522. 

 

(S)-4-Methyl-N-(2-methylbut-3-en-1-yl)-N-(pent-4-en-1-yl)benzenesulfonamide 
(45c) 

The title compound was prepared from 36c (0.11 mmol, 42 mg) following general 
procedure D. Purification by column chromatography 
(SiO2, Et2O/pentane 1:8, Rf = 0.39) afforded 45c 
(72% yield, 25 mg, ratio 45c:46c = 92:8, 98% ee, [α]D 

= +0.7 (c 0.8, CHCl3)) as a yellow oil. Enantiomeric 
excess determined by chiral HPLC analysis, 

Chiralpak OD-H (99.5% n-heptane/0.05% i-PrOH, flow rate 0.5 mL/min), 40 °C, 
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retention times (min) 45.4 (minor) and 47.9 (major). 
1
H NMR (400 MHz, CDCl 3) δ 

7.68 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.80 – 5.63 (m, 2H), 5.06 – 4.94 
(m, 4H), 3.11 – 3.05 (m, 2H), 3.05 – 2.94 (m, 2H), 2.53 – 2.43 (m, 1H), 2.42 (s, 
3H), 2.00 (dd, J = 14.2 Hz, 7.4 Hz, 2H), 1.67 – 1.57 (m, 2H), 1.02 (d, J = 6.7 Hz, 
3H). 

13
C NMR (75 MHz, CDCl3) δ 143.22, 141.27, 137.67, 137.14, 129.76, 127.45, 

115.47, 115.08, 54.35, 48.71, 37.17, 31.13, 27.75, 21.69, 17.72. HRMS calcd. for 
C17H25NO2SNa [M+Na

+
]: 330.1504, found 330.1498. 

 

(S)-4-Methyl-N-(2-methylbut-3-en-1-yl)-N-(prop-2-yn-1-yl)benzenesulfonamide 
(47a) 

The title compound was prepared from 41a (22 mmol, 75 mg) following general 
procedure D. Purification by column chromatography (SiO2, 
EtOAc/petroleum ether 40-60 1:9, Rf = 0.59) afforded 47a 
(77% yield, 47 mg, 99% ee, [α]D = -4.9 (c 1.4, CHCl3)) as a 
colorless oil. Enantiomeric excess determined by chiral 
HPLC analysis, Chiralpak AD (99% n-heptane/1% i-PrOH, 

flow rate 0.5 mL/min), 40 °C, retention times (min) 17.6 (major) and 19.1 (minor). 
1
H NMR (300 MHz, CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 5.72 

(ddd, J = 17.5 Hz, 10.3 Hz, 7.5 Hz, 1H), 5.11 – 5.01 (m, 2H), 4.20 – 4.06 (m, 2H), 
3.14 – 3.02 (m, 2H), 2.57 – 2.44 (m, 1H), 2.41 (s, 3H), 1.99 (t, J = 2.5 Hz, 1H), 1.04 
(d, J = 6.7 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 143.63, 141.04, 136.21, 129.62, 

127.95, 115.28, 76.68, 73.99, 51.74, 36.92, 36.35, 21.73, 17.71. HRMS calcd. for 
C15H20NO2S [M+H

+
]: 278.1215, found 278.1209. 

 

(S)-N-(But-3-yn-1-yl)-4-methyl-N-(2-methylbut-3-en-1-yl)benzenesulfonamide 
(47b) 

The title compound was prepared from 41b (84 μmol, 30 mg) following general 
procedure D. Purification by column chromatography 
(SiO2, 1:7 Et2O/ petroleum ether 40-60, Rf (1:5 Et2O/ 
petroleum ether 40-60) = 0.43) afforded 47b (53% yield, 
13 mg, 99% ee, [α]D = -1.4 (c 1.0, CHCl3)) as an opaque 
oil. Enantiomeric excess determined by chiral HPLC 

analysis, Chiralpak AD (95% n-heptane/5% i-PrOH, flow rate 0.5 mL/min), 40 °C, 
retention times (min) 8.1 (major) and 9.6 (minor). 

1
H NMR (400 MHz, CDCl3) δ 7.69 

(d, J = 7.9 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.74 – 5.59 (m, 1H), 5.08 – 4.93 (m, 
2H), 3.33 – 3.20 (m, 2H), 3.12 – 2.99 (m, 2H), 2.54 – 2.47 (m, 1H), 2.47 – 2.43 (m, 
2H), 2.41 (s, 3H), 1.99 – 1.92 (m, 1H), 1.01 (d, J = 6.7 Hz, 3H). 

13
C NMR (100 

MHz, CDCl3) δ 143.58, 141.03, 136.78, 129.91, 127.45, 115.39, 81.22, 70.44, 
54.82, 47.94, 37.17, 21.73, 19.47, 17.73. HRMS calcd. for C16H22NO2S [M+H

+
]: 

292.1371, found 292.1366. 
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(S)-4-Methyl-N-(2-methylbut-3-en-1-yl)-N-(pent-4-yn-1-yl)benzenesulfonamide 
(47c) 

The title compound was prepared from 41c (0.26 mmol, 80 mg) following general 
procedure D. Purification by column chromatography 
(SiO2, 1:7 EtOAc/heptane, Rf (1:6 EtOAc/heptane) = 
0.45) afforded 47c (82% yield, 66 mg, 99% ee, [α]D = 
-3.2 (c 1.1, CHCl3)) as an opaque oil. Enantiomeric 
excess determined by chiral HPLC analysis, 

Chiralcel OJ (97% n-heptane/3% i-PrOH, flow rate 0.5 mL/min), 40 °C, retention 
times (min) 11.7 (major) and 13.7 (minor). 

1
H NMR (200 MHz, CDCl3) δ 7.69 (d, J = 

8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.69 (ddd, J = 17.5 Hz, 10.3 Hz, 7.4 Hz, 1H), 
5.10 – 4.95 (m, 2H), 3.25 – 3.13 (m, 2H), 3.12 – 2.91 (m, 2H), 2.61 – 2.45 (m, 1H), 
2.42 (s, 3H), 2.18 (td, J = 6.9 Hz, 2.6 Hz, 2H), 1.96 (t, J = 2.6 Hz, 1H), 1.85 – 1.67 
(m, 2H), 1.02 (d, J = 6.7 Hz, 3H). 

13
C NMR (50 MHz, CDCl3) δ 143.13, 140.97, 

136.60, 129.59, 127.25, 115.00, 69.03, 54.52, 48.02, 44.41, 36.91, 27.35, 21.47, 
17.55, 15.92. HRMS calcd. for C17H23BrNO2SNa [M+Na

+
]: 328.1347, found 

328.1342. 

 

(S)-N-(2-Methylbut-3-en-1-yl)-N-tosylcinnamamide (49) 

The title compound was prepared from 44 (0.114 mmol, 50 mg) following general 
procedure D, except that the reaction was quenched 
with 3.0 M HCl solution in Et2O (1 mL). Purification by 
column chromatography (SiO2, Et2O/Pentane 1:9, Rf 
(Et2O/Pentane 1:7) = 0.43) afforded 49 (71% yield, 30 
mg, ratio 49:50 = 95:5, 67% ee, [α]D = +20.5 (c 0.7, 
CHCl3)) as a colorless oil. Enantiomeric excess 
determined by chiral HPLC analysis, Chiralpak OJ-H 

(99% n-heptane/1% i-PrOH, flow rate 0.5 mL/min), 40 °C, retention times (min) 
17.3 (major) and 19.1 (minor).  

1
H NMR (200 MHz, CDCl3) δ 7.80 – 7.24 (m, 11H), 

5.85 – 5.62 (m, 1H), 5.15 – 4.95 (m, 2H), 3.96 – 3.70 (m, 2H), 2.80 – 2.65 (m, 1H), 
2.39 (s, 3H), 1.10 (d, J = 6.8 Hz, 3H). 

13
C NMR (100 MHz, CDCl 3) δ 166.32, 

145.57, 144.68, 140.56, 137.22, 134.53, 130.51, 129.78, 128.91, 128.29, 127.30, 
118.70, 115.53, 51.39, 38.50, 21.58, 17.53. HRMS calcd. for C21H23NO3SNa 
[M+Na

+
]: 392.1291, found 392.1275. 

 
General procedure E: Ru-catalyzed olefin ring-closing metathesis (51a-c) 

Substrate (45a-c) was dissolved in degassed CH2Cl2 (5 mL) and Hoveyda-Grubbs 
2

nd
 generation catalyst (5.0 mol%) was added to the solution under a N2 

atmosphere. The mixture was stirred at rt until full conversion (3h) was achieved, 
as judged by TLC. The mixture was concentrated under reduced pressure and 
purified by column chromatography to yield the desired product 51a-c as colorless 
oils.  
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(S)-3-Methyl-1-tosyl-1,2,3,6-tetrahydropyridine (51a) 

The title compound was prepared from 45a (0.80 mmol, 223 mg) following general 
procedure E. Purification by column chromatography (SiO2, 1:9 
EtOAc/heptane, Rf (1:5 EtOAc/heptane) = 0.45) afforded 51a (54% 
yield, 80 mg, 99% ee, [α]D = -0.4 (c 5.2, CHCl3)) as a colorless oil. 
Enantiomeric excess determined by chiral HPLC analysis, Chiralpak 
AS-H (95% n-heptane/5% i-PrOH, flow rate 0.5 mL/min), 40 °C, 
retention times (min) 17.1 (minor) and 17.8 (major). 

1
H NMR (300 

MHz, CDCl3) δ 7.66 (d, J = 7.1 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 5.63 – 
5.54 (m, 2H), 3.68 (d, J = 16.4 Hz, 1H), 3.45 – 3.33 (m, 1H), 2.55 – 2.45 (m, 2H), 
2.42 (s, 3H), 0.99 (d, J = 6.4 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 143.68, 133.56, 

131.63, 129.84, 127.85, 121.84, 49.60, 44.94, 30.49, 21.72, 18.49. HRMS calcd. 
for C13H18NO2S [M+H

+
]: 252.1058, found 252.1053. 

 
(S)-3-Methyl-1-tosyl-2,3,6,7-tetrahydro-1H-azepine (51b) 

The title compound was prepared from 45b (0.14 mmol, 34 mg) following general 
procedure E. Purification by column chromatography (SiO2, 1:9 
EtOAc/heptane, Rf = 0.34) afforded 51b (61% yield, 19 mg, 90% ee, 
[α]D = -1.8 (c 1.0, CHCl3)) as a colorless oil. Enantiomeric excess 
determined by chiral HPLC analysis, Chiralpak OJ-H (99% n-
heptane/1% i-PrOH, flow rate 0.5 mL/min), 40 °C, retention times 
(min) 40.9 (minor) and 42.2 (major). 

1
H NMR (400 MHz, CDCl3) δ 

7.69 – 7.63 (m, 2H), 7.30 – 7.28 (m, 2H), 5.69 – 5.62 (m, 1H), 5.55 – 
5.49 (m, 1H), 3.55 – 3.45 (m, 2H), 2.97 (ddd, J = 13.1 Hz, 7.4 Hz, 4.0 Hz, 1H), 2.76 
(dd, J = 13.0 Hz, 9.1 Hz, 1H), 2.57 (br, 1H), 2.42 (s, 3H), 2.35 – 2.25 (m, 2H), 1.05 
(d, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 143.24, 137.29, 129.86, 128.40, 

127.23, 77.42, 54.58, 48.63, 35.63, 29.98, 21.69, 19.47. HRMS calcd. for 
C14H20NO2S [M+H

+
]: 266.1215, found 266.1209. 

 

(S)-7-Methyl-1-tosyl-1,2,3,4,7,8-hexahydroazocine (51c) 

The title compound was prepared from 45c (34 μmol, 10.5 mg) following general 
procedure E. Purification by column chromatography (SiO2, 1:8 
Et2O/pentane, Rf (1:7 Et2O/pentane) = 0.37) afforded 51c (77% 
yield, 7.0 mg, 98% ee, [α]D = +5.7 (c 0.7, CHCl3)) as a colorless oil. 
Enantiomeric excess determined by chiral HPLC analysis, Chiralpak 
OD-H (98% n-heptane/2% i-PrOH, flow rate 0.5 mL/min), 40 °C, 
retention times (min) 26.2 (major) and 27.6 (minor). 

1
H NMR (200 

MHz, CDCl 3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 9.1 Hz, 2H), 
5.70 – 5.54 (m, 1H), 5.40 – 5.30 (m, 1H), 3.54 – 3.43 (m, 1H), 3.36 

(dt, J = 14.8, 4.1 Hz, 1H), 2.87 (ddd, J = 14.8, 10.7, 4.1 Hz, 1H), 2.75 – 2.63 (m, 
1H), 2.47 – 2.34 (m, 2H), 2.47 – 2.31 (m, 5H), 2.10 – 1.99 (m, 2H), 1.52 – 1.39 (m, 
1H), 1.01 (d, J = 6.9 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 142.85, 135.46, 

129.57, 129.55, 126.84, 57.39, 48.42, 33.21, 29.84, 29.68, 24.09, 21.46, 18.80. 
HRMS calcd. for C15H21NO2SNa [M+Na

+
]: 302.1202, found 302.1181. 
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(R)-5-Methyl-1-tosyl-5,6-dihydropyridin-2(1H)-one (59) 

The title compound was prepared from 49 (43 mmol, 16 mg) following general 
procedure E. Purification by column chromatography (SiO2, 1:30 
MeOH/toluene, Rf (1:25 MeOH/toluene) = 0.53) afforded 59 (65% 
yield, 7.5 mg, % ee, [α]D = +36.0 (c 1.2, CHCl3)) as a colorless oil. 
Enantiomeric excess could not be determined by chiral HPLC 
analysis or chiral GC analysis. 

1
H NMR (200 MHz, CDCl3) δ 7.93 

(d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.65 (dd, J = 9.7, 3.6 
Hz, 1H), 5.77 (dd, J = 9.8, 1.9 Hz, 1H), 4.16 (dd, J = 12.2, 5.1 Hz, 
1H), 3.65 (dd, J = 12.2, 8.2 Hz, 1H), 2.83 – 2.71 (m, 1H), 2.42 (s, 

3H), 1.18 (d, J = 7.1 Hz, 3H). 
13

C NMR (75 MHz, CDCl3) δ 166.98, 150.46, 144.94, 
136.13, 129.57, 128.77, 124.00, 50.39, 30.69, 21.86, 17.08. HRMS calcd. for 
C13H16NO3S [M+H

+
]: 266.0845, found 266.0842. 

 

General procedure F: Ru-catalyzed ene-yne metathesis (52a-b) 

Substrate (47a-b) was dissolved in degassed CH2Cl2 (5 mL) and Grubbs 1
st
 

generation catalyst (1.0 mol% per hour during 5 h) was added to the solution. The 
mixture was refluxed under an ethylene atmosphere (1 atm, balloon) until full 
conversion was reached, as judged by TLC. The mixture was concentrated under 
reduced pressure and purified by column chromatography to yield the desired 
products 52a-b as a colorless oils.  

 

(S)-3-Methyl-1-tosyl-5-vinyl-1,2,3,6-tetrahydropyridine (52a) 

The title compound was prepared from 47a (0.15 mmol, 42 mg) following general 
procedure F. Purification by column chromatography (SiO2, 1:9 
Et2O/petroleum ether 40-60, Rf (5:95 Et2O/ petroleum ether 40-
60) = 0.15) afforded 52a (77% yield, 31 mg, 99% ee, [α]D = +33.6 
(c 0.6, CHCl3)) as a colorless oil. Enantiomeric excess 
determined by chiral HPLC analysis, Chiralpak AS-H (99% n-
heptane/1% i-PrOH, flow rate 0.5 mL/min), 40 °C, retention times 
(min) 29.6 (minor) and 31.3 (major). 

1
H NMR (300 MHz, CDCl3) δ 

7.70 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.24 (dd, J = 17.8 Hz, 11.0 Hz, 
1H), 5.63 (s, 1H), 5.11 – 4.93 (m, 2H), 3.88 (d, J = 15.4 Hz, 1H), 3.51 – 3.46 (m, 
2H), 2.52 – 2.46 (m, 2H), 2.43 (s, 3H), 1.02 (d, J = 6.7 Hz, 3H). 

13
C NMR (75 MHz, 

CDCl3) δ 143.71, 136.57, 132.97, 131.59, 129.89, 127.85, 118.71, 111.91, 49.65, 
44.26, 30.79, 21.71, 18.36. HRMS calcd. for C15H20NNaO2S [M+Na

+
]: 300.1046, 

found 300.1026 
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(S)-3-Methyl-1-tosyl-5-vinyl-2,3,6,7-tetrahydro-1H-azepine (52b) 

The title compound was prepared from 47b (38 μmol, 11 mg) following general 
procedure F. Purification by column chromatography (SiO2, 1:6 
Et2O/ petroleum ether 40-60, Rf (1:4 Et2O/ petroleum ether 40-60) = 
0.38) afforded 52b (65% yield, 7 mg, 99% ee, [α]D = -8.4 (c 1.0, 
CHCl3)) as a colorless oil. Enantiomeric excess determined by 
chiral HPLC analysis, Chiralpak OJ-H (95% n-heptane/5% i-PrOH, 
flow rate 0.5 mL/min), 40 °C, retention times (min) 22.5 (minor) and 
25.4 (major). 

1
H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.1 Hz, 2H), 

7.29 (d, J = 8.4 Hz, 2H), 6.24 (dd, J = 17.5, 10.8 Hz, 1H), 5.55 (d, J 
= 3.4 Hz, 1H), 5.07 – 4.93 (m, 2H), 3.67 (ddd, J = 13.1, 8.0, 2.3 Hz, 1H), 3.60 – 
3.53 (m, 1H), 2.89 (ddd, J = 13.0, 8.9, 1.9 Hz, 1H), 2.71 – 2.66 (m, 2H), 2.59 – 2.50 
(m, 1H), 2.41 (s, 3H), 1.08 (d, J = 6.3 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 

143.38, 140.37, 139.20, 138.82, 136.13, 129.90, 127.31, 111.41, 53.80, 47.10, 
34.37, 27.55, 21.73, 19.98. HRMS calcd. for C16H22NO2S [M+H

+
]: 292.1371, found 

292.1366. 

 

(S)-4-Methyl-N-(2-methylbut-3-en-1-yl)-N-(4-methylenehex-5-en-1-yl) 
benzenesulfonamide (53) 

The title compound was prepared from 47c (43 μmol, 13 mg) following general 
procedure F with the following modification: 
Grubbs 1

st
 generation catalyst was added to the 

reaction mixture (2.0 mol%) and the same amount 
again after 8 h and the reaction was heated to 
reflux for 7 days. Purification by column 
chromatography (SiO2, 1:7 Et2O/ petroleum ether 

40-60, Rf = 0.42) afforded 53 (35% yield, 5 mg, [α]D = +4.0 (c 0.3, CHCl3)) as a 
colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 6.6 Hz, 2H), 7.27 (dd, J = 

9.9, 4.7 Hz, 2H), 6.34 (dd, J = 17.0, 10.1 Hz, 1H), 5.67 (dd, J = 17.2, 7.4 Hz, 1H), 
5.14 (d, J = 17.7 Hz, 1H), 5.09 – 4.88 (m, 5H), 3.10 (t, J = 10.3 Hz, 2H), 3.05 – 2.89 
(m, 2H), 2.53 – 2.43 (m, 1H), 2.41 (s, 3H), 2.14 (t, J = 7.7 Hz, 2H), 1.70 (dd, J = 
14.8, 6.9 Hz, 2H), 1.01 (d, J = 6.7 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 145.09, 

143.00, 141.05, 138.59, 136.98, 129.56, 127.23, 116.00, 114.88, 113.39, 54.00, 
48.63, 36.92, 28.50, 26.45, 21.46, 17.52. HRMS calcd. for C19H28NaNO2S [M+Na

+
]: 

370.1823, found 370.1801. 
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Chapter 6 

Catalytic Asymmetric Conjugate 
Addition of Grignard Reagents to 
Coumarins – Synthesis of Versatile 
Chiral Building Blocks 

 

A new protocol for the Cu-catalysed asymmetric conjugate addition of Grignard 
reagents to coumarins has been developed. The corresponding products are 
formed in high yields and enantioselectivites. Through a sequential protocol 
involving conjugate addtion followed by nucleophilic ring opening of the chiral 
enolate,  chiral esters and amides are readliy accessible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter will be published: Teichert, J.F.; Feringa, B.L. Chem. 
Commun. 2011, DOI: 10.1039/C0CC05160H. 
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1 Introduction 

1.1 Cu-catalyzed conjugate addition of organometallic reagents 

The Cu-catalyzed asymmetric conjugate addition of organometallic reagents, such 

as diorganozinc, triorganoaluminum and organomagnesium compounds, to 

unsaturated carbonyl compounds is a well-established synthetic methodology that 

has been studied extensively and reviewed thoroughly.
1-8

 A wide variety of chiral 

copper catalysts, based on various ligands has been reported. Notable are the 

catalysts based on N-heterocyclic carbene,
9-13

 phosphoramidite,
5,14-18

 peptide-

derived,
14,15,19

 BINAP-derived
20

 and ferrocenyl-based
21-24

 ligands.  

As a representative example, the asymmetric Cu-catalyzed conjugate addition of 

Grignard reagents to -unsaturated esters based on a chiral Cu-Josiphos 

complex is depicted in Scheme 1.
21

 This reaction is especially suited for the 

transformation of alkyl Grignard reagents, leading to the corresponding chiral 

conjugate addition products in high yields and with excellent enantiomeric 

excesses. A wide variety of alkyl- as well as aryl-substituted esters 1 are 

transformed to β-chiral esters.  

 

Scheme 1 Cu-catalyzed asymmetric 1,4-addition of Grignard reagents with Josiphos 

 

1.2 Asymmetric Cu-catalyzed conjugate reduction reactions 

A related synthetic methodolgy is the conjugate reduction of -unsaturated 

carbonyl compounds based on copper hydride complexes.
25

 This marks an 

extension of the previously reported asymmetric catalytic reduction of ketones with 
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the same catalysts.
26,27

 If a stoichiometric external reducing agent, for example a 

silane,
28

 is employed, the conjugate reduction of ,-unsaturated carbonyl 

compounds can be conducted with catalytic amounts of Cu-H complexes.
29,30

 

Furthermore, if the ,-unsaturated substrate bears substituents either in the α- or 

the β-position, this transformation can be rendered enantioselective. As an 

example, the Cu-catalyzed asymmetric conjugate reduction of cyclopentenones 

and cyclohexenones 3 is depicted (Scheme 2).
29

 When 3 is subjected to conjugate 

reduction conditions with a catalyst comprising of [(PPh3)CuH]6 (“Stryker’s 

reagent”)
31

 and SEGPHOS ligand L2, the resulting chiral ketones 4 are available in 

excellent yields and enantioselectivities. In this case, polymethylhydrosiloxane 

(PMHS) is employed as a stoichiometric reducing agent. 

 

Scheme 2 Cu-catalyzed asymmetric conjugate reduction 

This methodology has recently been applied to the asymmetric conjugate 

reductions of coumarin derivatives.
32

 A variety of 3-aryl coumarins 5 could be 

reduced with the abovementioned catalyst. However, overreduction to the 

corresponding lactols could not be suppressed, so that an additional oxidation step 

was necessary to obtain the desired chiral lactones 6 reaching excellent yields and 

enantioselectivities (Scheme 3). In this transformation, diethoxymethylsiloxane 

(DEMS) was used as the stoichiometric reducing agent. The products 6 were 

shown to be valuable chiral building blocks for the synthesis of a variety of 

biologically active compounds. In this study, the reactivity of the chiral lactones 6 

and the corresponding lactols was exploited in various ways e.g. ring-opening, 

demonstrating the synthetic utility of those structures. 
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Scheme 3 Cu-catalyzed conjugate reduction of coumarins 

 

1.3 Rh-catalyzed asymmetric conjugate addition of boronic acids to 

coumarins 

The Rh-catalyzed conjugate addition is a well-established synthetic methodology to 

construct chiral β-aryl carbonyl compounds, which is especially well suited for 

cyclic enones and arylboronic acids as substrates.
33,34

 This transformation has also 

been applied in the asymmetric conjugate addition to coumarins, employing chiral 

Rh complexes with diene and phosphine ligands.
35,36

 The application of this 

methodology for the synthesis of (R)-Tolterodine (9), a drug against incontinence, 

was recently disclosed.
36

 When 6-methyl coumarin 7 was reacted with a large 

excess of phenylboronic acid in the presence of a chiral rhodium catalyst, the 

corresponding lactone 8, a synthetic intermediate for the synthesis of (R)-

Tolterodine, was isolated with excellent enantioselectivities (Scheme 4). 

 

Scheme 4 Rh-catalyzed asymmetric conjugate addition of phenylboronic acid/synthesis of (R)-

tolterodine 
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Other asymmetric approaches to chiral coumarin derivatives include asymmetric 

electrochemical reduction,
37,38

 or asymmetric sparteine-mediated lithiation of 

amides followed by ring-closing
39

 or Cu-catalyzed asymmetric conjugate addition to 

α-nitrocoumarins 10.
40

 The latter reaction is depicted in Scheme 5. When 3-

nitrocoumarins 10 were subjected to conjugate addition with dialkylzinc reagents 

using a Cu/L4 complex, the corresponding addition products 11 were accessible in 

good yields and stereoselectivities (up to 20:1 d.r. and 92% ee). The presence of 

the nitro group is crucial for this reaction to occur, as most likely a conjugate 

addition to the nitroolefin moiety
5
 takes place. When we studied this particular 

catalytic system with the unsubstituted coumarin (see Table 1 below), no reaction 

took place. 

 

Scheme 5 Cu-catalyzed conjugate additions to 3-nitrocoumarins 

 

2 Goal 

The aim of this research project was to develop an asymmetric conjugate addition 

protocol of Grignard reagents to coumarins. It has been shown that the 

corresponding chiral lactones are versatile chiral building blocks in synthesis. By 

employing the asymmetric Cu-catalyzed conjugate addition, it would be possible to 

introduce alkyl chains at the sterogenic center of the coumarin derivatives. These 

products are not accessible via Rh-catalyzed conjugate addtions of boronic acids, 

since this methodology is limited to arylboronic acids. Furthermore, this new 

approach would offer a substantial advantage over the related conjugate reduction, 

since it would be much more modular and thus circumvent the necessity to 

introduce the substituents at the stereogenic center in earluer stages of the 

synthesis. 
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3 Results and Discussion 

3.1 Catalyst screening and optimization 

The low reactivity of coumarin (12) made it necessary to develop a new catalyst 

system. Our investigation started with the conjugate addition of dialkylzinc reagents 

to 12 employing phosphoramidite ligands.
5,17

 This catalytic system did not prove to 

be reactive enough and did not result in any turnover (Table 1, entry 1). When we 

turned our attention to the conjugate addition reaction with the more reactive 

Grignard reagents
2,3

 employing Josiphos ligand L1 (compare Scheme 1), full 

conversion to the desired 1,4-adduct 13a with 82% ee was observed,
41

 when 12 

was reacted with ethylmagnesium bromide (Table 1, entry 3). Ligand L6, which had 

been previously employed in the related 1,6-conjugate addition,
42

 proved to be the 

ligand of choice to reach high levels of enantiocontrol. At -78 °C, the conjugate 

addition product 13a was formed with 96% ee, albeit in a low yield (Table 1, entry 

4). Neither Taniaphos (L7) nor the Cu-tolBINAP (L5) catalyst, which had previously 

been reported for conjugate addition reactions with Grignard reagents,
20

 could 

compete with our findings in terms of conversion or enantioselectivity (Table 1, 

entries 2,8). It appeared that fine-tuning of the electronic properties of the ligand 

was necessary to obtain the conjugate addition product with high enantioselectivity. 

To achieve full conversion with L6, higher amounts of Grignard reagent were 

necessary along with a slightly higher reaction temperature of -72 °C (Table 1, 

entry 7).
43

 Furthermore, the catalyst loading could be lowered to 2.5 mol% of Cu 

without compromising the yield or the enantioselectivity. The absolute configuration 

of the conjugate addition product 13a was established by comparison of the sign of 

the optical rotation values to literature sources.
44,45

 All other absolute configurations 

were assigned in accordance to this compound. 
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Table 1 Ligand Screening / Optimization
a 

 

Entry Ligand Solvent Temperature 
Conversion 

(yield) 
ee

b
 

1
c
 L4 toluene -40 °C - - 

2
d
 L5 MTBE -40 °C Full (55%) 21% (R) 

3 L1 MTBE -78 °C Full (57%) 82% (R) 

4 L6 MTBE -78 °C 50% (26%) 96% (R) 

5 L6 CH2Cl2 -78 °C 40% (25%) 81% (R) 

6
e
 L6 MTBE -78 °C 80% (62%) 95% (R) 

7
e
 L6 MTBE -72 °C Full (92%) 95% (R) 

8 L7 MTBE -78 °C Traces (-) - 

a
 Reaction conditions: CuBr • SMe2 (0.01 mmol, 5.0 mol%, 2.1 mg) and 5.5 mol% (0.0105 mmol) of the 

appropriate ligand were dissolved in 5 mL solvent and stirred at RT for 15 min. After cooling to the 

appropriate temperature, 1.2 eq. of EtMgBr solution (c = 3.0M in Et2O, 0.24 mmol, 0.08 mL) were added 

dropwise over 10 min. Then, 1.0 eq. of a coumarin solution (0.20 mmol, 0.029 g) in 2.5 mL solvent was 
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added dropwise over a period of 1 h. Quenching with 2.0 mL of HCl in Et2O (2M). 
b
 Determined by chiral 

HPLC. 
c
11.0 mol% of ligand, and 5.0 mol% of Cu(OTf)2 and 2.0 eq. ZnEt2 were used. 

d
 5.0 mol% CuI 

were used.
 e 

2.5 eq. EtMgBr were used.  

During the catalyst optimization experiments, it was observed that, in contrast to 

the high conversion, the isolated yields of the desired addition product 13a was 

low. It was found that the cause of this problem was the quenching method 

employed, which led to the unwanted transformation of the intermediate 

magnesium enolate to a side product. The standard quenching protocol, by adding 

methanol at low temperatures (usually -78 °C) followed by warming to room 

temperature and washing with saturated aq. NH4Cl solution, led to the formation of 

considerable amounts of side products, one of which was identified to be ester 15 

(Scheme 6). Under those conditions, varying amounts of the ring-opened ester 15 

were isolated next to the desired product 13a. To overcome this problem, a 

different procedure for quenching the reaction had to be devised. When the 

reaction was quenched with methanol and stirred at room temperature longer than 

1 hour before the wash/extraction with NH4Cl was carried out, full conversion to 

ester 15 was found. However, the enantiomeric excess of the product remained the 

same (97% ee). 

 

 

Scheme 6 Nucleophilic ring opening of enolate 14 during quenching 

This reaction can be explained as follows: The intermediate magnesium enolate 14 

and/or the excess of Grignard reagent in solution leads to deprotonation of 

methanol to form methoxide, which acts as a nucleophile to faciliate the ring 

opening of lactone 13a to give ester 15 (Scheme 7). To prevent the subsequent 

ring-opening during workup, the reaction could simply been quenched by addition 

of HCl solution (2M) in Et2O at low temperatures followed by the usual 

extraction/workup protocol. However, it was found that this side reaction could be 

exploited to develop a sequential conjugate addition/nucleophilic ring opening for 

the synthesis of chiral esters and amides (vide infra). 
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Scheme 7 Plausible mechanism for the formation of ester 15 

 

3.2 Scope of Grignard reagents 

With the optimised conditions in hand, we set off to investigate the scope of the 

reaction. A variety of alkyl Grignard reagents are compatible with this 

transformation (Table 2). Similar trends in reactivity to our previously reported 

conditions with ferrocenyl-based ligands were observed,
21-23

 which implied high 

catalyst control of the envisaged  transformation. There is a preference for linear 

unfunctionalized alkyl Grignard reagents, which could be transformed to chiral 

lactones 13 in high yields and enantioselectivites reaching 99% ee (Table 2, 

entries 1,3,5-8). Use of the relatively unreactive methylmagnesium bromide gave 

no conjugate addition product. As previously observed, α-branched reagents such 

as isopropylmagnesium bromide gave low enantioselectivity for 13d, whereas the 

β-branched reagent was smoothly incorporated into the desired chiral products 13e 

with high ee (Table 2, entries 4,5). One key feature of the catalyst is the fact that it 

tolerates functionalized Grignard reagents; an important advantage with foresight 

to possible synthetic applications of this method. However, slightly higher catalyst 

loadings were necessary to achieve acceptable results in terms of yields. Butenyl-

substituted 13f as well as halogenated products 13h were accessible with excellent 

enantioselectivities when a higher catalyst loading was employed (Table 2, entries 

6,8). The attempt to employ aryl Grignard reagents such as phenylmagnesium 

bromide gave only trace amounts of the desired product (Table 2, entry 9). 
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Table 2 Scope of Grignard reagents
a 

 

Entry R Yield
b
 ee

c
 

1 
 

13a 96% 95% 

2 
 

13b - - 

3 
 

13c 95% 99% 

4 

 

13d 95% 63% 

5 
 

13e 72% 93% 

6
d
 

 
13f 66% 93% 

7
d
 

 
13g 73% 94% 

8
 d ,e

 
 

13h 46% 98% 

9 
 

13i traces - 

a
 For reaction conditions, see experimental section. 

b
 Isolated yields. 

c
 Determined by chiral HPLC. 

d 
5.0 

mol% CuBr • SMe2 and 5.5 mol% L6 were used. 
e
 The product was isolated as a mixture with traces of 

the dehalogenated product. 

From Table 2 can be seen that higher catalyst loadings were necessary to achieve 

acceptable yields with functionalized Grignard reagents (Table 2, entries 6-8). To 

probe whether the conversion and thus the isolated yield could be improved by 

raising the temperature, a series of experiments with varying temperatures were 

carried out (Table 3). Coumarin (12) was reacted under optimized catalyst loading 

and amount of Grignard reagent with phenylethylmagnesium bromide. At -78 °C, 
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13g was formed with 94% ee, however turnover was low (Table 3, entry 1). When 

the temperature was raised slightly to -72 °C, a remarkable improvement in 

conversion was observed, and 13g was isolated in 73% yield with the same ee 

(Table 3, entry 2). Raising the temperature even further led to full conversion to 

13g but this improvement in yield was accompanied by a decrease of 

enantioselectivity (Table 3, entry 3), thus all reactions with various Grignard 

reagents were carried out at -72 °C, which seemed to be acceptable in terms of 

enantioselectivity and yield. 

Table 3 Temperature dependence of conjugate addition 

 

Entry Temp Conversion ee 

1 -78 °C ~ 40% (TLC) 94% 

2 -72 °C ~ 90% (TLC)
a
 94% 

3 -60 °C Full 80% 

a 
73% isolated yield. 

 

3.3 Coumarin Scope 

Subsequently, the scope of our new catalytic transformation with regard to 

substituted coumarins 16 was investigated (Table 4). Methyl substituents in 

positions 6 and 7 were readily tolerated as the desired conjugate addition products 

could be isolated with very good yields and enantioselectivities (Table 4, entries 

1,2). Furthermore, halogen substituents are tolerated and give addition products 

17c and 17d with similarly good results (Table 4, entries 3,4). Dimethoxycoumarins 

16e and 16f could also be converted to the corresponding conjugate addition 

products, albeit with lower yield and enantioselectivity (Table 4, entries 5,6). This 

marks a limitation of this transformation. Two electron-donating groups on the 

aromatic ring result in a lower reactivity to conjugate addition reactions compared 

to coumarin itself. The lower enantioselectivity of 17f compared to 17e could be 
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explained by the fact that the methoxy-substituent in the 5-position of 16f interferes 

with the Cu-catalyst. To overcome this problem the conjugate addition was 

attempted with 6,7-dihydroxy coumarin 16h. A higher amount of Grignard reagent 

was employed, but the reaction did not yield the desired product (Table 4, entry 8), 

possibly due to strong coordination of the dioxycoumarin dianion to the Cu catalyst 

through a chelating effect, and subsequent deactivation of the catalyst. This 

problem could be overcome in the future by preparing the corresponding coumarin 

boronate,
46

 followed by the conjugate addition, as the conjugate addition reaction is 

known to tolerate boron-based functional groups.
47

 The strongly electron-

withdrawing nitro-group of 16g (Table 4, entry 7) is not tolerated due to fast 

decomposition of the starting material under the reaction conditions.  

Table 4 Scope of coumarins
a 

 

Entry Coumarin 3 Product Yield
b
 ee

c
 

1 

 

17a 92% 94% 

2 

 
17b 93% 97% 

3 

 

17c 80% 95% 

4 

 

17d 86% 96% 

5
d
 

 

17e 55% 64% 

6
d
 

 

17f 66% 48% 
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Entry Coumarin 3 Product Yield
b
 ee

c
 

7
d
 

 

17g traces - 

8
e
 

 

17h - - 

a
 For reaction conditions, see experimental section. 

b
 Isolated yields. 

c
 Determined by chiral HPLC. 

d 
5.0 

mol% CuBr • SMe2 and 5.5 mol% L6 were used. 
e
 5.0 eq. of EtMgBr were used. 

3.4 Synthesis of coumarins 

The two 6-halosubstituted coumarins 16c and 16d were not commercially 

available, and were therefore synthesized. The synthesis was carried out according 

to a modified literature procedure for a tandem phenol ether 

deprotection/lactonization reaction (Scheme 8).
48

 Starting from the commercially 

available salicylaldehydes 18, O-methylation with MeI and a subsequent Witttig 

reaction yielded -unsaturated esters 20 in very good yields. It was reported
48

 

that one equivalent of BBr3 and refluxing CHCl3 was sufficient to facilitate the 

lactone formation, however, in our hands, the reaction proceeded smoothly only 

with 2.0 equivalents of BBr3 in refluxing toluene to give the desired halocoumarins 

21 in good yields. 

 

Scheme 8 Synthesis of 6-halocoumarins  

3.5 Trapping of intermediates / nucleophilic ring opening 

One of the major advantages of the conjugate addition reaction to coumarins was 

discovered during the course of this study: The intermediate chiral magnesium 
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enolate 14 is a highly versatile chiral building block and can be converted in situ to 

a variety of important chiral products. The absence of a fully conjugated enone 

results in a higher reactivity of intermediate 14, which can be exploited by reactions 

with nucleophiles to invoke a ring-opening, as well as electrophiles to trap the 

enolate. When 14 was quenched with ethanol at -72 °C and then warmed up to 

room temperature, the resulting chiral ester 22 was isolated in very good yields 

without compromising the stereogenic center (Scheme 9). It is important to note 

that ortho-phenol esters like 22 were previously not accessible via the conjugate 

addition methodology,
2-4,21-23

 rendering this transformation a valuable addition to 

the present conjugate addition protocols. 

 

Scheme 9 Synthesis of chiral ortho-phenolic ester 22 

 

By intercepting the chiral magnesium enolate 14 with an excess of propylamine, 

amide 24 could be obtained in good yield (Scheme 10). This result marks the first 

formal catalytic asymmetric conjugate addition to amides, a reaction pathway that 

was previously elusive, since -unsaturated amides are not known to be 

susceptible to catalytic asymmetric conjugate additions with Cu-catalysts.  

It is known in literature that the enolates of conjugate addition reactions can be 

trapped with a variety of electrophiles.
5,18,49,50

 Along those lines, enolate 14 could 

be trapped with benzaldehyde to give the corresponding aldol product 23 with 

three contiguous stereocenters in good yields. Two diastereomers of 23 could be 

detected, (in a ratio 3:1) which were attributed to an incomplete stereoinduction at 

the exocyclic stereocenter formed, i.e. the benzylic alcohol. For the relative 

configuration of the first two stereocenters formed, it is expected with inference to 

related reactions in literature
17,18,49,51-53

 that those will be formed with trans 

configuration.  
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Scheme 10 Trapping / ring opening reactions of enolate 14 

  

4 Conclusion and Future Prospects  

To conclude, we have developed a new, highly selective Cu-catalyzed conjugate 

addition of Grignard reagents to coumarins. The corresponding chiral products are 

available with up to excellent enantioselectivities. Furthermore, we have 

demonstrated that the corresponding enolate is a highly versatile starting point for 

the synthesis of a variety of chiral products such as esters and amides which were 

previously not readily available. 

The presented findings on the asymmetric conjugate additions to coumarins could 

lead to some further research: first of all, the generality of the sequential conjugate 

addItion/amide formation could be investigated. Since an asymmetric conjugate 

addition protocol to amides is elusive, this could be a viable pathway towards β-

chiral amides (Scheme 11). Esters 25 could be converted to amides 27 in a one-

pot procedure via their corresponding enolates 26. 

 

Scheme 11 Proposed synthesis of chiral amides 

Secondly, the conjugate addition to 2H-pyranone 28 could be studied. This would 

be the extension of the conjugate addition reaction to coumarins, except that the 

aromatic ring of coumarin would be replaced by just a double bond. This could 

open a variety of interesting routes towards chiral products 31 and 32 among 

others, since pyranone adduct 29 could be transformed in various ways to give 

chiral multifunctional building blocks (Scheme 12). Another interesting question 

would arise if both regio- and enantioselective 1,4- and 1,6-conjugate additions are 

possible on pyranone to give 29 or 30. Both the new 1,4 conjugate addition to 

coumarin as well as the known 1,6 addition to enoates
42

 use the same catalytic 

system, namely reverse Josiphos (L6), so it would be interesting to see whether 

there would be a selectivity towards either one of the products. Furthermore, this 

experiment could give important insight to the mechanism of the conjugate addition 

reaction, since 1,6-addition reactions to cyclic systems have not yet been 

investigated and it would be interesting to determine if the catalyst can compete 

with such a variety of possible coordinating groups in the vicinity of the catalyst. 
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Scheme 12 Suggested conjugate addition to pyranone 

Finally, it could be investigated if the ring-opened esters such as 22 could undergo 

oxidative ring closing after conversion to their corresponding ester-enolates 33, a 

reaction that has been developed in our group (Scheme 13).
54

 This would yield 

ketones with an α-cyclopropyl moiety 34. 

 

Scheme 13 Suggested synthesis of α-cyclopropyl ketones 

 

5 Experimental section 

General 

Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gel 
60,0.25 mm. Components were visualized by UV and cerium/molybdenum staining. 
Progress and conversion of the reaction were determined by GC-MS (GC, 
HP6890: MS HP5973) with an HP1 or HP5 column (Agilent Technologies, Palo 
Alto, CA). Mass spectra were recorded on a AEI-MS-902 mass spectrometer (EI

+
) 

or a LTQ Orbitrap XL (ESI
+
). 

1
H, 

19
F and 

13
C NMR were recorded on a Varian 

AMX400 (400 and 100.59 MHz, respectively), a Varian VXR300 (300 and 75 MHz, 
respectively) or a Varian Gemini 200, using CDCl3 as solvent. Chemical shift 
values are reported in ppm with the solvent resonance as the internal standard 
(CHCl3: δ 7.26 for 

1
H, δ 77.0 for 

13
C). Data are reported as follows: chemical shifts, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = 
multiplet), coupling constants (Hz), and integration. Optical rotations were 
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measured on a Schmidt + Haensch polarimeter (Polartronic MH8) with a 10 cm cell 
(c given in g/100 mL). Enantiomeric excesses (ee values) were determined by 
HPLC analysis using a Shimadzu LC-10ADVP HPLC equipped with a Shimadzu 
SPD-M10AVP diode array detector and chiral columns as indicated. Ees were 
determined by comparison of the racemic mixture with the corresponding chiral 
compounds or the mixtures of both R and S enantiomers. All reactions were carried 
out under a nitrogen atmosphere using oven dried glassware and using standard 
Schlenk techniques. CH2Cl2  was dried and distilled over calcium hydride, THF and 
Et2O were dried and distilled over Na/benzophenone. Toluene was dried and 
distilled over Na. MTBE was dried and distilled over CaH2. CuBr•SMe2 was 
purchased from Sigma-Aldrich, and used without further purification. Grignard 
reagents were purchased from Sigma-Aldrich (MeMgBr, EtMgBr, n-HexMgBr, i-
BuMgBr), all other Grignard reagents were prepared from the corresponding 
bromides with Mg in Et2O. All Grignard reagents were titrated using s-BuOH and 
catalytic amounts of 1,10-phenanthroline before use. L4 was prepared according to 
literature,

55
 L5-L7 were purchased from Sigma-Aldrich.  

 

General procedure for the methylation of salicylic aldehydes  

Salicylic aldehyde (1.0 eq.) was dissolved in DMF (Volume: 100 mL/10 mmol) and 
the solution was cooled to 0 °C. Then, 1.0 eq. sodium hydride (as 60% suspension 
in mineral oil) was added slowly and the reaction was stirred for 15 min at 0 °C (or 
until gas evolution ceased). Then, 2.0 eq. methyl iodide was added dropwise, and 
the reaction mixture was allowed to warm to 21 °C. When TLC showed full 
consumption of the starting material, the reaction was quenched by addition of 
water (100 mL/10 mmol). The mixture was washed with water and brine (50 mL / 
10 mmol each), extracted with EtOAc (2x 50 mL / 10 mmol) and dried over MgSO4. 
Removal of all volatiles under reduced pressure yielded the crude product, which 
was used without further purification. 

 

5-Chloro-2-methoxybenzaldehyde (19a) 

Following the general procedure for methylation of salicylic aldehydes, 2.167 g  5-
chloro-2-methoxybenzaldehyde 19a (12.70 mmol, 99 % yield) was isolated as a 

pale yellow solid from the reaction of 5-chloro-2-
hydroxybenzaldehyde (2.00 g, 12.77 mmol) with methyl 
iodide (1.597 ml, 25.5 mmol). 

1
H NMR: (400 MHz, CDCl3) δ 

10.30 (s, 1H), 7.64 (s, 1H), 7.46 – 7.34 (m, 1H), 6.87 (d, J = 
8.8 Hz, 1H), 3.84 (s, 3H). 

13
C NMR: (101 MHz, CDCl3) δ 

188.12, 160.07, 135.16, 127.53, 126.00, 125.37, 113.18, 
55.79. HRMS: (ESI

+
) calculated for C8H8ClO2 [M+H

+
]: 

171.0207, found: 171.0204. 

 

5-Bromo-2-methoxybenzaldehyde (19b) 
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Following the general procedure for methylation of salicylic aldehydes, 2.097 g 5-
bromo-2-methoxybenzaldehyde 19b (9,75 mmol, 98 % yield) 
was isolated as a pale yellow solid from the reaction of 5-
bromo-2-hydroxybenzaldehyde (2.00 g, 9.95 mmol) with methyl 
iodide (1.244 ml, 19.90 mmol). 

1
H NMR: (201 MHz, CDCl3) δ 

10.31 (s, 1H), 7.83 (d, J = 2.6 Hz, 1H), 7.56 (dd, J = 8.9, 2.6 
Hz, 1H), 6.84 (d, J = 8.9 Hz, 1H), 3.86 (s, 3H). 

13
C NMR: (50 

MHz, CDCl3) δ 188.13, 160.57, 138.12, 130.70, 125.83, 
113.63, 113.19, 55.82. HRMS: (ESI

+
) calculated for C8H8BrO2 [M+H

+
]: 214.9702, 

found: 214.9696. 

 

General procedure for the Wittig reaction of methyl 2-
(triphenylphosphoranylidene)acetate with salicylic aldehydes 

Salicylic aldehyde 19 (1.0 eq.) was dissolved in toluene (Volume: 50 mL/ 10 mmol), 
and 1.2 eq. methyl 2-(triphenylphosphoranylidene)acetate was added to the 
mixture. This was heated to 110 °C until TLC showed full conversion of the starting 
material. After cooling, diethylether (50 mL/10 mmol) was added to precipitate any 
triphenylphosphine oxide, which was subsequently filtered off. All volatiles were 
removed under reduced pressure to give the crude product 20, which was purified 
by column chromatography (SiO2, pentane/EtOAc 8:2) to yield the desired products 
as a mixture of E/Z isomers. 

 

Methyl 3-(5-chloro-2-methoxyphenyl)acrylate (20a) 

Following the general procedure for the Wittig reaction with salicylic aldehydes, 
2.384 g methyl 3-(5-chloro-2-methoxyphenyl)acrylate 
20a (10.52 mmol, 90 % yield) was isolated as a white 
solid from the reaction of 5-chloro-2-
methoxybenzaldehyde 19a (2.00 g, 11.72 mmol) with 
methyl 2-(triphenylphosphoranylidene)acetate (4.70 g, 
14.07 mmol). (Rf = 0.80 in pentane/EtOAc 8:2). 

1
H 

NMR: (400 MHz, CDCl3) δ 7.86 (d, J = 16.2 Hz, 1H), 7.41 (d, J = 2.6 Hz, 1H), 7.23 
(dd, J = 8.9, 2.6 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H), 6.45 (d, J = 16.2 Hz, 1H), 3.81 
(s, 3H), 3.77 (s, 3H). 

13
C NMR: (101 MHz, CDCl3) δ 167.25, 156.61, 138.50, 

130.70, 129.68, 127.97, 125.57, 124.64, 119.30, 112.28, 55.62, 51.50. HRMS: 
(ESI

+
) calculated for C11H12ClO3 [M+H

+
]: 227.0470, found: 227.0465. 

 

 

 

Methyl 3-(5-bromo-2-methoxyphenyl)acrylate (20b) 

Following the general procedure for the Wittig reaction 
with salicylic aldehydes, 1.977 g methyl 3-(5-bromo-2-
methoxyphenyl)acrylate 20b (7.29 mmol, 78 % yield) 
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was isolated as a white solid from the reaction of 5-bromo-2-methoxybenzaldehyde 
19b (2.00 g, 9.30 mmol) with methyl 2-(triphenylphosphoranylidene)acetate (3.73 
g, 11.16 mmol). (Rf = 0.65 in pentane/EtOAc 8:2). 

1
H NMR: (201 MHz, CDCl3) δ 

7.87 (d, J = 16.2 Hz, 1H), 7.57 (d, J = 2.5 Hz, 1H), 7.39 (dd, J = 8.8, 2.5 Hz, 1H), 
6.76 (d, J = 8.8 Hz, 1H), 6.46 (d, J = 16.2 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H). 

13
C 

NMR: (50 MHz, CDCl3) δ 167.32, 157.14, 138.52, 138.49, 133.68, 130.99, 125.20, 
119.39, 112.85, 112.78, 55.66, 51.61. HRMS: (ESI

+
) calculated for C11H12BrO3 

[M+H
+
]: 270.9964, found: 270.9969. 

 

General procedure for the synthesis of coumarin derivatives 21 from methyl 
acrylates 20 

According to a modified literature procedure,
48

 1.0 eq. methyl acrylate 20 was 
dissolved in toluene (Volume: 50 mL/ 5 mmol) and cooled to 0 °C. Then, 2.0 eq. 
boron tribromide was added dropwise. The reaction was heated to 110 °C for 4h. 
After cooling to room temperature, water (50 mL / 5 mmol) was added and the 
aqueous layer was extracted twice with CHCl3 (30 mL / 5 mmol). After drying over 
MgSO4 and removal of all volatiles under reduced pressure, the crude mixture was 
purified by column chromatography (SiO2, pentane/EtOAc 8:2) to yield the desired 
coumarin 21. 

 

6-Chloro-2H-chromen-2-one (21a) 

Following the general procedure for the synthesis of coumarin derivatives from 
esters, 0.613 g 6-chloro-2H-chromen-2-one 21a (3.40 mmol, 
77 % yield) was isolated as a pale yellow solid from the 
reaction of methyl 3-(5-chloro-2-methoxyphenyl)acrylate 20a 
(1.00 g, 4.41 mmol) with boron tribromide (0.834 ml, 8.82 
mmol). (Rf = 0.75 in pentane/EtOAc 8:2). 

1
H NMR: (201 

MHz, CDCl3) δ 7.63 (d, J = 9.6 Hz, 1H), 7.44 (dt, J = 4.9, 2.3 
Hz, 2H), 7.30 – 7.18 (m, 1H), 6.44 (d, J = 9.6 Hz, 1H). 

13
C NMR: (50 MHz, CDCl3) δ 

159.94, 152.32, 142.15, 131.65, 129.58, 127.05, 119.72, 118.20, 117.74. HRMS: 
(ESI

+
) calculated for C9H6ClO2 [M+H

+
]: 181.0051, found: 181.0051. 

6-Bromo-2H-chromen-2-one (21b) 

Following the general procedure for the synthesis of coumarin derivatives from 
esters, 0.522 g 6-bromo-2H-chromen-2-one 21b (2.32 
mmol, 63 % yield) was isolated as an orange solid from the 
reaction of methyl 3-(5-bromo-2-methoxyphenyl)acrylate 
20b (1.00 g, 3.69 mmol) with boron tribromide (0.697 ml, 
7.38 mmol). (Rf = 0.90 in pentane/EtOAc 8:2). 

1
H NMR: (201 

MHz, CDCl3) δ 7.68 – 7.55 (m, 3H), 7.29 – 7.15 (m, 1H), 
6.45 (d, J = 9.6 Hz, 1H). 

13
C NMR: (50 MHz, CDCl3) δ 164.90, 159.88, 142.04, 

134.54, 130.13, 120.28, 118.60, 117.83, 116.94. HRMS: (ESI
+
) calculated for 

C9H6BrO2 [M+H
+
]: 224.9546, found: 224.9548. 
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General procedure for the asymmetric Cu-catalyzed conjugate addition of 
Grignard reagents to coumarins 

5.0 mol % Copper bromide dimethyl sulfide complex and 5.5 mol % (R,SFe)-reverse 
Josiphos were dissolved in MTBE (Volume: 15 mL / 1 mmol substrate) and the 
mixture was stirred at room temperature for 15 min. The mixture was then cooled 
to -72 °C and subsequently 2.5 eq. of the appropriate Grignard reagent were 
added. The mixture was stirred for an additional 10 min at -72 °C. A solution of 1.0 
eq. of the appropriate coumarin in MTBE (Volume: 5 mL / 1 mmol) was added 
dropwise over a period of 1 h. The reaction mixture was stirred until TLC showed 
full conversion. The reaction was quenched by adding HCl solution in Et2O (2.0 mL 
/ 1 mmol substrate) at -72 °C. Saturated aqueous NH4Cl solution (20 mL / 1 mmol) 
was added at low temperature and the reaction mixture was allowed to warm to 
room temperature. The mixture was diluted with Et2O (30 mL / 1 mmol). After 
washing two times with aqueous saturated NH4Cl solution (2x 50 mL / 1 mmol) and 
reextraction of the aqueous layer with Et2O (20 mL / 1 mmol), the combined 
organic layers were dried over MgSO4. All volatiles were removed under reduced 
pressure to give the crude product, which was purified by column chromatography 
(SiO2, EtOAc/Pentane) to yield the desired compounds. 

 

General procedure for the synthesis of racemic products of the Cu-catalyzed 
conjugate addition to coumarins 

The appropriate coumarin (1.0 eq., 0.485 mmol) and 30.0 mol % Copper bromide 
dimethyl sulfide complex (0.030 g, 0.145 mmol) and 60.0 mol % triphenylphosphine 
(0.076 g, 0.291 mmol) were dissolved in MTBE (Volume: 15 ml), cooled to -40 °C 
and the mixture was stirred for 10 min. The appropriate Grignard reagent (2.5 eq., 
1.212 mmol) was added dropwise. The reaction mixture was stirred overnight at -
40 °C. The reaction was quenched by addition of 2.0 mL HCl in Et2O (2N), before 
20 mL saturated aqueous NH4Cl solution was added at low temperature and the 
reaction mixture was allowed to warm to room temperature. The mixture was 
diluted with Et2O (30 mL). After washing two times with aqueous saturated NH4Cl 
solution (2x 50 mL) and reextraction of the aqueous layer with Et2O (20 mL), the 
combined organic layers were dried over MgSO4. All volatiles were removed under 
reduced pressure to give the crude product, which was purified by column 
chromatography (SiO2, EtOAc/Pentane) to yield the desired compounds. 

 

 

 

(R)-4-Ethylchroman-2-one (13a) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.135 g (R)-4-ethylchroman-2-one 13a (0.768 mmol, 
96% yield) was isolated as a pale yellow oil from the reaction of 
2H-chromen-2-one 12 (0.117 g, 0.80 mmol) with ethylmagnesium 
bromide solution (3.0 molar in Et2O) (0.67 ml, 2.00 mmol). The 
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product was purified by column chromatography (SiO2, pentane/EtOAc 10:1, Rf = 
0.68 in pentane/EtOAc 10:1, 95% ee). 

1
H NMR: (400 MHz, CDCl3) δ 7.29 – 7.21 

(m, 1H), 7.21 – 7.15 (m, 1H), 7.11 (dd, J = 10.7, 4.2 Hz, 1H), 7.04 (d, J = 8.1 Hz, 
1H), 2.96 – 2.86 (m, 1H), 2.78 (qd, J = 15.8, 4.9 Hz, 2H), 1.64 (tdd, J = 14.0, 11.3, 
6.2 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 

13
C NMR: (101 MHz, CDCl3) δ 168.48, 151.22, 

128.17, 127.84, 126.42, 124.20, 117.00, 36.52, 34.35, 27.50, 11.11. HRMS: (ESI
+
) 

calculated for C11H12O2Na [M+Na
+
]: 199.0730, found: 199.0730. [α]D

20
 = 53.6 (c = 

1.0 in CHCl3), [α]D

20
 = 114.6 (c = 1.0 in PhH). The two [α]D

20
 values have been used 

for determination of the absolute configuration by comparison with literature.
44,45

 ee 
determination by chiral HPLC (Chiralpak AD: n-heptane/2-propanol 95:5, 40 °C 
isotherm, 220 nm, flow rate 0.5 mL/min), retention times: 8.3 min (major), 8.9 min 
(minor).  

 

(R)-4-Hexylchroman-2-one (13c) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.177 g (R)-4-hexylchroman-2-one 13c (0.760 
mmol, 95 % yield) was isolated as a pale yellow solid 
from the reaction of 2H-chromen-2-one 12 (0.117 g, 0.80 
mmol) with hexylmagnesium bromide solution (2.0 molar 
in Et2O) (1.00 ml, 2.00 mmol). The desired product was 
purified by column chromatography (SiO2, 
pentane/EtOAc 10:1, Rf = 0.78 in pentane/EtOAc 10:1, 
99% ee). 

1
H NMR: (201 MHz, CDCl3) δ 7.30 – 6.95 (m, 

4H), 3.04 – 2.87 (m, 1H), 2.81 – 2.61 (m, 2H), 1.66 – 
1.45 (m, 2H), 1.44 – 1.02 (m, 8H), 0.84 (t, J = 6.4 Hz, 3H). 

13
C NMR: (50 MHz, 

CDCl3) δ 168.26, 151.09, 127.99, 127.65, 126.72, 124.10, 116.85, 34.94, 34.54, 
34.47, 31.47, 28.94, 26.44, 22.41, 13.88. HRMS: (ESI

+
) calculated for C15H20O2Na 

[M+Na
+
]: 255.1356, found: 255.1356. [α]D

20
 = 47.6 (c = 1.0 in CHCl3). ee 

determination by chiral HPLC (Chiralpak OB-H: n-heptane/2-propanol 95:5, 40 °C 
isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 10.5 min (minor), 12.4 
min (major).  

(S)-4-Isopropylchroman-2-one (13d) 

Following the general procedure for the asymmetric Cu-
catalyzed conjugate addition, 0.145 g (S)-4-isopropylchroman-
2-one 13d (0.760 mmol, 95 % yield) was isolated as a pale 
yellow oil from the reaction of 2H-chromen-2-one 12 (0.117 g, 
0.80 mmol) with isopropylmagnesium bromide solution (1.5 
molar in Et2O) (1.33 ml, 2.00 mmol). The desired product was 
purified by column chromatography (SiO2, pentane/EtOAc 10:1, 

Rf = 0.90 in pentane/EtOAc 10:1, 63% ee). 
1
H NMR: (400 MHz, CDCl3) δ 7.27 – 

7.19 (m, 1H), 7.14 (dd, J = 7.5, 1.5 Hz, 1H), 7.11 – 7.04 (m, 1H), 7.01 (d, J = 8.1 
Hz, 1H), 2.85 (dd, J = 10.7, 8.9 Hz, 1H), 2.78 – 2.63 (m, 2H), 1.82 (dd, J = 13.5, 6.7 
Hz, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H). 

13
C NMR: (101 MHz, 

CDCl3) δ 168.65, 151.46, 128.84, 128.09, 125.30, 123.87, 116.81, 41.61, 32.05, 
31.96, 20.00, 19.00. HRMS: (ESI

+
) calculated for C12H15O2 [M+H

+
]: 191.1067, 
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found: 191.1066. [α]D

20
 = 21.6 (c = 1.0 in CHCl3) ee determination by chiral HPLC 

(Chiralpak OB-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, flow rate 0.5 
mL/min), retention times: 15.5 min (major), 17.2 min (minor).  

 

(R)-4-Isobutylchroman-2-one (13e) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.118 g (R)-4-isobutylchroman-2-one 13e (0.576 mmol, 72 % yield) was 

isolated as a pale yellow solid from the reaction of 2H-chromen-
2-one 12 (0.117 g, 0.80 mmol) with isobutylmagnesium bromide 
solution (2.0 molar in Et2O) (1.00 ml, 2.00 mmol). The desired 
product was purified by column chromatography (SiO2, 
pentane/EtOAc 10:1, Rf = 0.78 in pentane/EtOAc 10:1, 93% ee). 
1
H NMR: (400 MHz, CDCl3) δ 7.29 – 7.20 (m, 1H), 7.20 – 7.15 

(m, 1H), 7.09 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 8.1 Hz, 1H), 3.07 
(dd, J = 5.3, 3.9 Hz, 1H), 2.76 (ddd, J = 19.5, 15.8, 4.7 Hz, 2H), 
1.63 (dt, J = 13.4, 6.7 Hz, 1H), 1.42 (dtd, J = 21.2, 13.9, 7.5 Hz, 

2H), 0.98 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H). 
13

C NMR: (101 MHz, CDCl3) 
δ 168.34, 151.20, 128.12, 127.48, 127.17, 124.25, 117.09, 43.62, 34.69, 32.76, 
24.84, 22.59, 22.22. HRMS: (ESI

+
) calculated for C13H17O2 [M+H

+
]: 205.1223, 

found: 205.1223. [α]D

20
 = 72.0 (c = 1.0 in CHCl3). ee determination by chiral HPLC 

(Chiralpak OB-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, flow rate 0.5 
mL/min), retention times: 13.8 min (major), 15.4 min (minor).  

 

(R)-4-(But-3-enyl)chroman-2-one (13f) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.106 g (R)-4-(but-3-en-1-yl)-3,4-dihydronaphthalen-2(1H)-one 13f (0.528 

mmol, 66 % yield) was isolated as a pale yellow oil from the 
reaction of 2H-chromen-2-one 12 (0.117 g, 0.80 mmol) with 
butenylmagnesium bromide solution (2.4 molar in Et2O) (0.84 
ml, 2.00 mmol). The desired product was purified by column 
chromatography (SiO2, pentane/EtOAc 10:1, Rf = 0.85 in 
pentane/EtOAc 10:1, 93% ee). 

1
H NMR: (201 MHz, CDCl3) δ 

7.38 – 6.93 (m, 4H), 5.93 – 5.62 (m, 1H), 5.24 – 4.83 (m, 2H), 
3.10 – 2.93 (m, 1H), 2.91 – 2.61 (m, 2H), 2.25 – 1.95 (m, 2H), 

1.79 – 1.55 (m, 2H). 
13

C NMR: (50 MHz, CDCl3) δ 168.20, 151.23, 137.18, 128.27, 
127.76, 126.42, 124.26, 117.09, 115.61, 34.57, 34.28, 33.51, 30.54. HRMS: (ESI

+
) 

calculated for C13H14O2Na [M+Na
+
]: 225.0886, found: 225.0884. [α]D

20
 = 72.6 (c = 

1.0 in CHCl3). ee determination by chiral HPLC (Chiralpak OD-H: n-heptane/2-
propanol 99:1, 40 °C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 20.4 
min (minor), 21.6 min (major).  

 

(R)-4-Phenethylchroman-2-one (13g) 
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Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.126 g (R)-4-phenethylchroman-2-one 13g (0.499 
mmol, 73% yield) was isolated as an orange solid from the 
reaction of 2H-chromen-2-one 12 (0.117 g, 0.80 mmol) with 
phenylethylmagnesium bromide solution (1.50 molar in Et2O) 
(1.14 ml, 2.00 mmol). The desired product was purified by 
column chromatography (SiO2, pentane/EtOAc 10:1, Rf = 0.65 in 
pentane/EtOAc 10:1, 94% ee). 

1
H NMR: (400 MHz, CDCl3) δ 

7.36 – 7.26 (m, 3H), 7.25 – 7.04 (m, 6H), 3.11 – 2.98 (m, 1H), 2.90 – 2.80 (m, 2H), 
2.79 – 2.58 (m, 2H), 2.04 – 1.85 (m, 2H). 

13
C NMR: (101 MHz, CDCl3) δ 168.06, 

151.17, 140.68, 128.39, 128.25, 128.14, 127.68, 126.30, 126.01, 124.23, 117.02, 
35.86, 34.48, 34.35, 32.56. HRMS: (ESI

+
) calculated for C17H16O2Na [M+Na

+
]: 

275.1043, found: 275.1042. [α]D

20
 = 57.0 (c = 1.0 in CHCl3). ee determination by 

chiral HPLC (Chiralpak AD: n-heptane/2-propanol 95:5, 40 °C isotherm, 210 nm, 
flow rate 0.5 mL/min), retention times: 8.3 min (minor), 9.0 min (major).  

 

(R)-4-(4-Chlorobutyl)chroman-2-one (13h) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.075 g (R)-4-(4-chlorobutyl)chroman-2-one 13h (0.315 mmol, 46 % yield) 

was isolated as a yellow oil from the reaction of 2H-chromen-2-
one 12 (0.117 g, 0.80 mmol) with (4-chlorobutyl)magnesium 
bromide solution (2.3 molar in Et2O) (0.744 ml, 2.00 mmol). The 
desired product was purified by column chromatography (SiO2, 
pentane/EtOAc 10:1, Rf = 0.65 in pentane/EtOAc 10:1, 98% ee). 
The product contains traces of dehalogenated product. 

1
H NMR: 

(400 MHz, CDCl3) δ 7.31 – 7.23 (m, 1H), 7.18 (dd, J = 7.5, 1.5 
Hz, 1H), 7.11 (td, J = 7.4, 1.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 
3.52 (dt, J = 6.5, 5.1 Hz, 2H), 2.99 (dd, J = 5.8, 3.8 Hz, 1H), 2.80 

(ddd, J = 19.7, 15.9, 4.8 Hz, 2H), 1.77 (ddd, J = 7.7, 6.1, 3.7 Hz, 2H), 1.68 – 1.52 
(m, 4H). 

13
C NMR: (101 MHz, CDCl3) δ 168.20, 151.21, 128.39, 127.79, 126.33, 

124.35, 117.18, 44.58, 35.10, 34.75, 33.87, 32.25, 24.05. HRMS: (ESI
+
) calculated 

for C13H16O2 [M+H
+
]: 239.0833, found: 239.0842. [α]D

20
 = 84.6 (c = 1.0 in CHCl3). 

ee determination by chiral HPLC (Chiralpak OD-H: n-heptane/2-propanol 98:2, 40 
°C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 26.0 min (major), 27.0 
min (minor).  

 

 

(R)-4-Ethyl-6-methylchroman-2-one (17a) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.140 g (R)-4-ethyl-6-methylchroman-2-one 17a (0.736 mmol, 92 % yield) 

was isolated as a pale yellow oil from the reaction of 6-methyl-
2H-chromen-2-one 16a (0.128 g, 0.80 mmol) with 
ethylmagnesium bromide solution (3.0 molar in Et2O) (0.67 ml, 
2.00 mmol). The desired product was purified by column 
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chromatography (SiO2, pentane/EtOAc 10:1, Rf = 0.85 in pentane/EtOAc 10:1, 
94% ee). 

1
H NMR: (201 MHz, CDCl3) δ 7.09 – 6.85 (m, 3H), 2.90 – 2.78 (m, 1H), 

2.77 – 2.61 (m, 2H), 2.30 (s, 3H), 1.70 – 1.44 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). 
13

C 
NMR: (50 MHz, CDCl3) δ 168.51, 149.05, 133.63, 128.50, 128.15, 126.03, 116.53, 
36.42, 34.26, 27.43, 20.59, 11.00. HRMS: (ESI

+
) calculated for C12H15O2 [M+H

+
]: 

191.1067, found: 191.1067. [α]D

20
 = 19.0 (c = 1.0 in CHCl3). ee determination by 

chiral HPLC (Chiralpak OJ-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, 
flow rate 0.5 mL/min), retention times: 15.8 min (major), 17.3 min (minor).  

 

(R)-4-Ethyl-7-methylchroman-2-one (17b) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.141 g (R)-4-ethyl-7-methylchroman-2-one 17b 
(0.741 mmol, 93 % yield) was isolated as a pale yellow oil 
from the reaction of 7-methyl-2H-chromen-2-one 16b (0.128 
g, 0.80 mmol) with ethylmagnesium bromide solution (3.0 
molar in Et2O) (0.67 ml, 2.00 mmol). The desired product was 
purified by column chromatography (SiO2, pentane/EtOAc 

10:1, Rf = 0.70 in pentane/EtOAc 10:1, 97% ee). 
1
H NMR: (400 MHz, CDCl3) δ 

7.04 (d, J = 7.7 Hz, 1H), 6.90 (dd, J = 7.7, 0.8 Hz, 1H), 6.84 (s, 1H), 2.89 – 2.81 (m, 
1H), 2.74 (qd, J = 15.7, 4.9 Hz, 2H), 2.31 (s, 3H), 1.59 (qt, J = 13.9, 7.2 Hz, 2H), 
0.93 (t, J = 7.4 Hz, 3H). 

13
C NMR: (101 MHz, CDCl3) δ 168.54, 151.05, 138.28, 

127.47, 124.84, 123.22, 117.30, 36.09, 34.45, 27.50, 20.89, 11.00. HRMS: (ESI
+
) 

calculated for C12H15O2 [M+H
+
]: 191.1067, found: 191.1062. [α]D

20
 = 37.0 (c = 1.0 in 

CHCl3). ee determination by chiral HPLC (Chiralpak OJ-H: n-heptane/2-propanol 
98:2, 40 °C isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 16.9 min 
(major), 18.2 min (minor).  

 

(R)-6-Chloro-4-ethylchroman-2-one (17c) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.135 g (R)-6-chloro-4-ethylchroman-2-one 17c 
(0.641 mmol, 80 % yield) was isolated as an orange oil from 
the reaction of 6-chloro-2H-chromen-2-one 16c (0.144 g, 
0.80 mmol), which was added as a solution in 7 mL 
MTBE/CH2Cl2 (5:2), with ethylmagnesium bromide solution 
(3.0 molar in Et2O) (0.67 ml, 2.00 mmol). The desired 
product was purified by column chromatography (SiO2, 

pentane/EtOAc 10:1, Rf = 0.55 in pentane/EtOAc 10:1, 95% ee). 
1
H NMR: (300 

MHz, CDCl3) δ 7.24 – 7.11 (m, 2H), 6.95 (d, J = 8.5 Hz, 1H), 2.93 – 2.83 (m, 1H), 
2.82 – 2.66 (m, 2H), 1.73 – 1.47 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 

13
C NMR: (75 

MHz, CDCl3) δ 167.55, 149.73, 129.16, 128.09, 127.57, 118.27, 97.86, 36.36, 
33.81, 27.23, 10.91. HRMS: (ESI

+
) calculated for C11H12ClO2 [M+H

+
]: 211.0520, 

found: 211.0517. [α]D

20
 = 16.8 (c = 1.0 in CHCl3). ee determination by chiral HPLC 

(Chiralpak OB-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, flow rate 0.5 
mL/min), retention times: 27.0 min (major), 33.1 min (minor).  
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(R)-6-Bromo-4-ethylchroman-2-one (17d) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.175 g (R)-6-bromo-4-ethylchroman-2-one 17d 
(0.686 mmol, 86 % yield) was isolated as a yellow oil from 
the reaction of 6-bromo-2H-chromen-2-one 16d (0.180 g, 
0.80 mmol), which was added as a solution in 8 mL 
MTBE/CH2Cl2 (5:3), with ethylmagnesium bromide solution 
(3.0 molar in Et2O) (0.67 ml, 2.00 mmol). The desired 
product was purified by column chromatography (SiO2, 

pentane/EtOAc 10:1, Rf = 0.55 in pentane/EtOAc 10:1, 96% ee). 
1
H NMR: (300 

MHz, CDCl3 ) δ 7.41 – 7.23 (m, 2H), 6.90 (d, J = 8.5 Hz, 1H), 2.94 – 2.81 (m, 1H), 
2.81 – 2.61 (m, 2H), 1.60 (td, J = 14.5, 7.0 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). 

13
C 

NMR: (50 MHz, CDCl3) δ 167.44, 150.25, 131.04, 130.48, 128.54, 118.67, 116.68, 
36.31, 33.80, 27.26, 10.93. HRMS: (ESI

+
) calculated for C11H12BrO2 [M+H

+
]: 

255.0015, found: 255.0010. [α]D

20
 = 5.40 (c = 1.0 in CHCl3). ee determination by 

chiral HPLC (Chiralpak OB-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, 
flow rate 0.5 mL/min), retention times: 24.1 min (major), 28.4 min (minor).  

 

(R)-4-Ethyl-6,7-dimethoxychroman-2-one (17e) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.063 g (R)-4-ethyl-6,7-dimethoxychroman-2-one 
17e (0.267 mmol, 55 % yield) was isolated as a brown oil 
from the reaction of 6,7-dimethoxy-2H-chromen-2-one 16e 
(0.100 g, 0.485 mmol), which was added as a solution in 
5.0 mL MTBE/CH2Cl2 (1:1), with ethylmagnesium bromide 
solution (3.0 molar in Et2O) (0.404 ml, 2.00 mmol). The 
desired product was purified by column chromatography 

(SiO2, pentane/EtOAc 8:2, Rf = 0.50 in pentane/EtOAc 8:2, 64% ee). 
1
H NMR: (201 

MHz, CDCl3) δ 6.63 (s, 1H), 6.60 (s, 1H), 3.85 (d, J = 3.3 Hz, 6H), 2.88 – 2.63 (m, 
3H), 1.60 (dd, J = 13.2, 6.6 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). 

13
C NMR: (50 MHz, 

CDCl3) δ 168.56, 148.72, 145.46, 145.00, 117.27, 110.41, 101.28, 56.41, 56.07, 
36.34, 34.49, 27.80, 11.12. HRMS: (ESI

+
) calculated for C13H17O4 [M+H

+
]: 

237.1121, found: 237.1118. [α]D

20
 = 20.8 (c = 1.0 in CHCl3). ee determination by 

chiral HPLC (Chiralpak AD-H: n-heptane/2-propanol 98:2, 40 °C isotherm, 210 nm, 
flow rate 0.5 mL/min), retention times: 32.0 min (major), 44.1 min (minor).  

 

(R)-4-Ethyl-5,7-dimethoxychroman-2-one (17f) 

Following the general procedure for the asymmetric Cu-catalyzed conjugate 
addition, 0.125 g (R)-4-ethyl-5,7-dimethoxychroman-2-one 17f (0.528 mmol, 66 % 

yield) was isolated as a pale yellow solid from the reaction 
of 5,7-dimethoxy-2H-chromen-2-one 16f (0.165 g, 0.80 
mmol), which was added as a solution in 5.0 mL 
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MTBE/CH2Cl2 (1:1), with ethylmagnesium bromide solution (3.0 M in Et2O) (0.667 
ml, 2.00 mmol). The desired product was purified by column chromatography 
(SiO2, pentane/EtOAc 8:2, Rf = 0.75 in pentane/EtOAc 8:2, 48% ee). 

1
H NMR: (201 

MHz, CDCl3) δ 6.22 (dd, J = 7.8, 2.3 Hz, 2H), 3.78 (d, J = 6.2 Hz, 6H), 3.30 – 3.08 
(m, 1H), 2.71 (qd, J = 15.9, 4.1 Hz, 2H), 1.66 – 1.33 (m, 2H), 0.89 (t, J = 7.4 Hz, 
3H). 

13
C NMR: (50 MHz, CDCl3) δ 168.64, 159.96, 157.28, 152.52, 107.63, 94.69, 

93.82, 55.53, 55.42, 33.82, 30.22, 27.30, 11.03. HRMS: (ESI
+
) calculated for 

C13H17O4 [M+H
+
]: 237.1121, found: 237.1121. [α]D

20
 = 10.6 (c = 1.0 in CHCl3). ee 

determination by chiral HPLC (Chiralpak OJ-H: n-heptane/2-propanol 95:5, 40 °C 
isotherm, 210 nm, flow rate 0.5 mL/min), retention times: 24.0 min (major), 27.4 
min (minor).  

 

(R)-Ethyl 3-(2-hydroxyphenyl)pentanoate (22) 

In a flame-dried Schlenk tube, 2.5 mol% copper bromide dimethyl sulfide complex 
(4.11 mg, 0.02 mmol) and 3.0 mol% reverse Josiphos (0.014 g, 0.024 mmol) were 

dissolved in MTBE (Volume: 10.0 ml) and stirred at room 
temperature for 15 min. Then, the mixture was cooled to -
72 °C and 2.5 eq. ethylmagnesium bromide solution (c = 
3.0 M in Et2O, 0.80 ml, 2.4 mmol) were added and the 
mixture stirred for 10 more min. Then, a solution of 1.0 
eq. 2H-chromen-2-one 12 (0.117 g, 0.80 mmol) in MTBE 
(Volume: 5.0 ml) was added dropwise over a period of 1 
h. The reaction was stirred until TLC showed full 

conversion to the 1,4-addition product (~2 h). Then, 5.0 eq. ethanol (0.234 ml, 4.00 
mmol) were added and the reaction mixture was warmed to room temperature and 
stirred at that temperature for 5 h. Then, the reaction was quenched by adding 
saturated aq. NH4Cl solution (50 mL) and the reaction mixture was diluted with 
Et2O (50 mL). After separation of the organic phase it was dried over MgSO4 and 
all volatiles were removed under reduced pressure to give the crude product as a 
yellow oil. This was further purified by column chromatography (SiO2, 
pentane/EtOAc 10:1, Rf = 0.55 in pentane/EtOAc 10:1, 95% ee) to yield (R)-ethyl-
3-(2-hydroxyphenyl)pentanoate 22 (0.154 g, 0.693 mmol, 87 %) as a colourless oil. 
1
H NMR: (201 MHz, CDCl3) δ 7.19 – 6.98 (m, 3H), 6.96 – 6.82 (m, 2H), 4.30 – 3.91 

(m, 2H), 3.36 (dtd, J = 13.1, 7.6, 5.3 Hz, 1H), 2.70 (qd, J = 16.4, 7.3 Hz, 2H), 1.89 – 
1.59 (m, 2H), 1.18 (t, J = 7.22 Hz, 3H), 0.84 (t, J = 7.3 Hz, 3H). 

13
C NMR: (50 MHz, 

CDCl3) δ 174.74, 154.14, 130.49, 127.22, 120.78, 117.03, 60.86, 40.90, 35.98, 
27.77, 13.92, 12.02. HRMS: (ESI

+
) calculated for C13H18O3Na [M+Na

+
]: 245.1148, 

found: 245.1149. [α]D

20
 = -2.0 (c = 1.0 in CHCl3). ee determination by chiral HPLC 

(Chiralpak AD-H: n-heptane/2-propanol 99:1, 40 °C isotherm, 210 nm, flow rate 0.5 
mL/min), retention times: 76.2 min (minor), 80.0 min (major).  

 

(3S,4R)-4-Ethyl-3-(hydroxy(phenyl)methyl)chroman-2-one (23) 
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In a flame-dried Schlenk tube, 2.5 mol% copper bromide dimethyl sulfide complex 
(4.11 mg, 0.02 mmol) and 3.0 mol% reverse Josiphos (0.014 
g, 0.024 mmol) were dissolved in MTBE (Volume: 10.0 ml) 
and stirred at room temperature for 15 min. Then, the 
mixture was cooled to -72 °C and 2.5 eq. ethylmagnesium 
bromide solution (c = 3.0 M in Et2O, 0.80 ml, 2.4 mmol) were 
added and the mixture stirred for 10 more min. Then, a 
solution of 1.0 eq. 2H-chromen-2-one 12 (0.117 g, 0.80 
mmol) in MTBE (Volume: 5.0 ml) was added dropwise over a 
period of 1 h. The reaction was stirred until TLC showed full 
conversion to the 1,4-addition product (~2 h). Then, 5.0 eq. 

benzaldehyde (0.405 ml, 4.00 mmol) were added and the reaction mixture was 
warmed to room temperature and stirred at that temperature for 4 h. Next, the 
reaction was quenched by adding saturated aq. NH4Cl solution (50 mL) and the 
reaction mixture was diluted with Et2O (50 mL). After separation of the organic 
phase it was dried over MgSO4 and all volatiles were removed under reduced 
pressure to give the crude product as a yellow oil. This was further purified by 
column chromatography (SiO2, toluene/MeOH 30:1, Rf = 0.45 (major), 0.35 (minor) 
in toluene/MeOH 30:1) to yield (3S,4R)-4-ethyl-3-(hydroxy(phenyl)methyl)chroman-
2-one 23 (0.176 g, 0.624 mmol, 78 %) as a colourless oil. Compound 23 was 
isolated as a mixture of 2 diastereomers (ratio 3:1), signals are assigned where 
resolved. 

1
H NMR: (201 MHz, CDCl3) δ 7.48 – 6.92 (m, 9H, major + minor), 4.59 

(d, J = 9.4 Hz, 1H, major), 4.43 (d, J = 10.0 Hz, 1H, minor), 3.27 – 3.03 (m, 2H, 
major + minor), 2.73 (s (br), 1H, major + minor), 2.24 (t, J = 7.3 Hz, 1H, minor), 
1.49 (qd, J = 14.4, 7.3 Hz, 2H, major + minor), 0.90 (t, J = 7.3 Hz, 3H, major), 0.77 
(t, J = 7.3 Hz, 3H, minor). 

13
C NMR: (50 MHz, CDCl3) δ 168.46 (minor), 167.92 

(major), 150.48 (minor), 150.45 (major), 140.77 (major), 140.47 (minor), 129.22, 
128.87 (minor), 128.83 (major), 128.61 (major), 128.55 (minor), 128.36, 128.31 
(minor), 128.26 (major), 128.09, 127.38, 126.80, 126.34, 125.89, 124.87, 124.32 
(minor), 124.26 (major), 116.64 (minor), 116.34 (major), 72.58 (major), 64.91 
(minor), 53.93 (major), 53.29 (minor), 39.70 (minor), 39.07 (major), 28.59 (major), 
28.18 (minor), 11.07 (major), 10.87 (minor). HRMS: (ESI

+
) calculated for 

C18H18O3Na [M+Na
+
]: 305.1148, found: 305.1149. [α]D

20
 = 72.4 (c = 1.0 in CHCl3). 

 

 

 

 

(R)-3-(2-Hydroxyphenyl)-N-propylpentanamide (24) 

In a flame-dried Schlenk tube, 2.5 mol% copper bromide dimethyl sulfide complex 
(4.11 mg, 0.02 mmol) and 3.0 mol% reverse Josiphos 
(0.014 g, 0.024 mmol) were dissolved in MTBE 
(Volume: 10.0 ml) and stirred at room temperature for 
15 min. Then, the mixture was cooled to -72 °C and 
2.5 eq. ethylmagnesium bromide solution (c = 3.0 m in 
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Et2O, 0.80 ml, 2.4 mmol) were added and the mixture stirred for 10 more min. 
Then, a solution of 1.0 eq. 2H-chromen-2-one 12 (0.117 g, 0.80 mmol) in MTBE 
(Volume: 5.0 ml) was added dropwise over a period of 1 h. The reaction was stirred 
until TLC showed full conversion to the 1,4-addition product (~2 h). Then, 5.0 eq. 
propan-1-amine (0.33 ml, 4.00 mmol) were added and the reaction mixture was 
warmed to room temperature and stirred at that temperature for 16 h. Then, the 
reaction was quenched by adding saturated aq. NH4Cl solution (50 mL) and the 
reaction mixture was diluted with Et2O (50 mL). After separation of the organic 
phase it was dried over MgSO4 and all volatiles were removed under reduced 
pressure to give the crude product as a yellow oil. This was further purified by 
column chromatography (SiO2, pentane/EtOAc 1:1, Rf = 0.60 in pentane/EtOAc 
1:1, 96% ee) to yield (R)-3-(2-hydroxyphenyl)-N-propylpentanamide 24 (0.154 g, 
0.656 mmol, 82 %) as a colourless oil. 

1
H NMR: (400 MHz, CDCl3) δ 8.71 (s (br), 

1H), 7.12 – 7.02 (m, 2H), 6.94 – 6.83 (m, 2H), 6.26 (s (br), 1H), 3.34 (dd, J = 11.5, 
7.3 Hz, 1H), 3.07 (dd, J = 13.3, 6.7 Hz, 2H), 2.65 (dd, J = 15.3, 4.3 Hz, 1H), 2.45 
(dd, J = 15.3, 10.2 Hz, 1H), 1.72 (td, J = 14.2, 6.5 Hz, 2H), 1.48 – 1.28 (m, 2H), 
0.81 (t, J = 7.3 Hz, 3H), 0.75 (t, J = 7.4 Hz, 3H). 

13
C NMR: (101 MHz, CDCl3) δ 

173.76, 154.50, 130.74, 127.19, 127.01, 120.50, 117.24, 43.32, 41.32, 36.21, 
27.77, 22.33, 12.15, 11.03. HRMS: (ESI

+
) calculated for C14H22NO2 [M+H

+
]: 

236.1645, found: 236.1644. [α]D

20
 = -38.4 (c = 1.0 in CHCl3). ee determination by 

chiral HPLC (Chiralpak AB-H: n-heptane/2-propanol 95:5, 40 °C isotherm, 210 nm, 
flow rate 0.5 mL/min), retention times: 25.9 min (minor), 32.4 min (major). 

 

6 References 

(1)  Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In Modern Organocopper 
Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, 2002, p 225-255. 

(2)  Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 
2009, 38, 1039-1075. 

(3)  Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. 
Chem. Rev. 2008, 108, 2824-2852. 

(4)  Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 
2008, 108, 2796-2823. 

(5)  Teichert, J. F.; Feringa, B. L. Angew. Chem. Int. Ed. 2010, 49, 2486-2528. 
(6)  López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem. Res. 2007, 40, 179-188. 
(7)  Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171-196. 
(8)  Christoffers, J.; Koripelly, G.; Rosiak, A.; Rossle, M. Synthesis 2007, 1279-1300. 
(9)  Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A. J. 

Organomet. Chem. 2005, 690, 5672-5695. 
(10)  Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. Adv. 

Synth. Catal. 2003, 345, 345-348. 
(11)  Guillen, F.; Winn, C. L.; Alexakis, A. Tetrahedron: Asymmetry 2001, 12, 2083-2086. 
(12)  Pytkowicz, J.; Roland, S.; Mangeney, P. Tetrahedron: Asymmetry 2001, 12, 2087-

2089. 
(13)  Fraser, P. K.; Woodward, S. Tetrahedron Lett. 2001, 42, 2747-2749. 
(14)  Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755-

756. 
(15)  Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 13362-

13363. 



 

 

  201 

Conjugate Additions to Coumarins 

(16)  Maciá, B.; Fernández-Ibáñez, M. A.; Mršić, N.; Minnaard, A. J.; Feringa, B. L. 
Tetrahedron Lett. 2008, 49, 1877-1880. 

(17)  Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew. 
Chem. Int. Ed. 1997, 36, 2620-2623. 

(18)  Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001, 
123, 5841-5842. 

(19)  Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988-14989. 
(20)  Wang, S. Y.; Ji, S. J.; Loh, T. P. J. Am. Chem. Soc. 2007, 129, 276-277. 
(21)  López, F.; Harutyunyan, S. R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. Angew. 

Chem. Int. Ed. 2005, 44, 2752-2756. 
(22)  Mazery, R. D.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, 

B. L. J. Am. Chem. Soc. 2005, 127, 9966-9967. 
(23)  López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 

2004, 126, 12784-12785. 
(24)  Feringa, B. L.; Badorrey, R.; Peña, D.; Harutyunyan, S. R.; Minnaard, A. J. Proc. 

Nat. Ac. Sci. 2004, 101, 5834-5838. 
(25)  Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916-2927. 
(26)  Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 

8779-8789. 
(27)  Lipshutz, B. H.; Chrisman, W.; Noson, K. J. Am. Chem. Soc. 2001, 624, 367-371. 
(28)  Those reactions should be regarded as a hydrosilylation followed by a sequential 

desilylation during basic aqueous workup. 
(29)  Lipshutz, B. H.; Servesko, J. M.; Petersen, T. B.; Papa, P. P.; Lover, A. A. Org. 

Lett. 2004, 6, 1273-1275. 
(30)  Lipshutz, B. H.; Servesko, J. M. Angew. Chem. Int. Ed. 2003, 42, 4789-4792. 
(31)  Brestensky, D. M.; Huseland, D. E.; McGettigan, C.; Stryker, J. M. Tetrahedron 

Lett. 1988, 29, 3749-3752. 
(32)  Gallagher, B. D.; Taft, B. R.; Lipshutz, B. H. Org. Lett. 2009, 11, 5374-5377. 
(33)  Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829-2844. 
(34)  Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169-196. 
(35)  Defieber, C.; Paquin, J. F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873-

3876. 
(36)  Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7, 2285-2288. 
(37)  Nielsen, M. F.; Batanero, B.; Lohl, T.; Schäfer, H. J.; Würthwein, E. U.; Fröhlich, R. 

Chem. Eur. J. 1997, 3, 2011-2024. 
(38)  Abe, S.; Nonaka, T.; Fuchigami, T. J. Am. Chem. Soc. 1983, 105, 3630-3632. 
(39)  Lutz, G. P.; Du, H.; Gallagher, D. J.; Beak, P. J. Org. Chem. 1996, 61, 4542-4554. 
(40)  Versleijen, J. P. G.; van Leusen, A. M.; Feringa, B. L. Tetrahedron Lett. 1999, 40, 

5803-5806. 
(41)  Trace amounts of direct 1,2-addition products were observed. 
(42)  den Hartog, T.; Harutyunyan, S. R.; Font, D.; Minnaard, A. J.; Feringa, B. L. 

Angew. Chem. Int. Ed. 2008, 47, 398-401. 
(43)  The enantioselectivity was unaffected up to a temperature of -65 °C 
(44)  Meyers, A. I.; Whitten, C. E. Tetrahedron Lett. 1976, 1947-1950. 
(45)  Stephan, E.; Rocher, R.; Aubouet, J.; Pourcelot, G.; Cresson, P. Tetrahedron: 

Asymmetry 1994, 5, 41-44. 
(46)  Ketuly, K. A.; Hadi, A. H. A. Molecules 2010, 15, 2347-2356. 
(47)  Carosi, L.; Hall, D. G. Angew. Chem. Int. Ed. 2007, 46, 5913-5915. 
(48)  Dubuffet, T.; Loutz, A.; Lavielle, G. Synth. Commun. 1999, 29, 929-936. 
(49)  Rathgeb, X.; March, S.; Alexakis, A. J. Org. Chem. 2006, 71, 5737-5742. 
(50)  Howell, G. P.; Fletcher, S. P.; Geurts, K.; ter Horst, B.; Feringa, B. L. J. Am. Chem. 

Soc. 2006, 128, 14977-14985. 
(51)  Li, K. Y.; Alexakis, A. Tetrahedron Lett. 2005, 46, 5823-5826. 



 

 

202 

Chapter 6 

 

(52)  Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755-
756. 

(53)  Keller, E.; Maurer, J.; Naasz, R.; Schrader, T.; Meetsma, A.; Feringa, B. L. 
Tetrahedron: Asymmetry 1998, 9, 2755-2755. 

(54)  Rudolph, A.; Bos, P. H.; Feringa, B. L. unpublished results. 
(55)  Smith, C. R.; Mans, D. J.; RajanBabu, T. V. Org. Synth. 2008 85, 238. 
 

 



   

Chapter 7 

Ni-catalyzed Reductive Coupling 
Reactions – Application of 
Phosphoramidite Ligands bearing 
chiral N-Heterocycles 

A new asymmetric nickel-catalyzed reductive coupling of isoprene and 
benzaldehyde has been developed. The corresponding products bear 1,3-
stereogenic centers and are available with excellent diastereoselectivity, albeit with 
moderate enantioselectivity. An extensive ligand screening has been carried out to 
identify leading ligand structures. Furthermore, mechanistic studies based on 

31
P 

and 
1
H NMR experiments give evidence to support the proposed mechanism. 
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1. Introduction 

Transition metal-catalyzed reductive carbon-carbon bond formations represent an 

emerging field of organic synthesis and catalysis. Next to hydrogenative coupling 

catalyzed by rhodium and iridium catalysts,
1-3

 nickel-
4-8

 and cobalt-catalyzed
4,9,10

 

reductive coupling reactions are among the most prominent. One of the most 

important advantages of these reaction is the fact that they do not require an 

organometallic reagent as carbon nucleophile to faciliate the C-C bond formation, 

what considerably reduces the waste generated during those transformations. (It 

should be noted, though, that some of the reactions employ organometallic 

reagents as reducing agents. See below.) The general approach can be 

summarized as follows: a compound bearing an unsaturated C-C bond such as an 

alkene or alkyne 1 is coupled to a suitable electrophile, in this case an aldehyde or 

a ketone 2 (Scheme 1). For this reaction to occur, a reducing agent is necessary to 

deliver an β-H atom to the alkene/alkyne. The obtained products 3 are highly 

functionalized and bear at least one stereogenic center adjacent to the alcohol. 

Furthermore, through judicious choice of the catalyst, different stereoisomers 

(cis/trans and E/Z) are available through this methodology. 

 

Scheme 1 Reductive coupling reactions 

One example of this transformation is depicted in Scheme 2. When internal or 

terminal alkynes 4 were reacted with aldehydes 5 in the presence of catalytic 

amounts of a Ni/phosphine complex employing triethylborane as the reducing 

agent, the corresponding allylic alcohols 6 were obtained reaching very good 

yields, albeit with relatively high catalyst loadings.
11
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Scheme 2 Ni-catalyzed reductive coupling of alkynes with aldehydes 

The proposed catalytic cycle for these transformations
6
 is depicted in Scheme 3. 

The alkyne (4) first coordinates to Ni(0) to give intermediate I. Then Ni can add to 

the alkyne in an oxidative fashion, triggering the nucleophilic attack on the 

activated aldehyde (5) to give nickelacycle II. It is important to note that here BEt3 

serves as a Lewis acid to activate the aldehyde, whereas it will serve as the 

reducing agent later on, so the role of BEt3 is twofold. In the following step, one 

alkyl group of the boron reagent is transmetallated to nickel to give intermediate III. 

Then, a β-hydride elimination can occur, yielding a nickel-hydride complex (IV). 

Subsequent reductive elimination furnishes the desired product as the boroxide 

complex V. Ni(0) can be liberated from intermediate V to enter a new catalytic 

cycle. During workup, the boroxide is protonated to yield the desired product 6.  

 

Scheme 3 Proposed catalytic cycle for the formation of allyl alcohol 6 
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A wide variety of related reactions has been developed,
6
 including an 

intramolecular Ni-catalyzed coupling reaction of alkynes with aldehydes leading to 

nitrogen-containing bicyclic compounds 8 (Scheme 4).
12,13

 In this case triethylsilane 

is employed as the reducing agent, which leads to in situ TMS protection of the 

corresponding alcohols 8. When piperidines 7 were reacted in the presence of a Ni 

catalyst, the corresponding bicyclic TMS-protected alcohols 8 were obtained in 

very good yields and diastereoselectivities (Scheme 4). 

 

Scheme 4 Intramolecular Ni-catalyzed coupling reaction 

Some enantioselective variants of the Ni-catalyzed reductive coupling reactions are 

known, employing chiral phosphine
14,15

 or N-heterocyclic carbene
16

 ligands. While 

this research project was in progress, the application of spiro-phosphoramidites L1 

in a nickel-catalyzed reductive coupling of dienes to aldehydes (Scheme 5) was 

reported.
17

 Using diethylzinc as the reducing agent, 1,4-diphenyl-butadiene 9 was 

coupled to aromatic aldehydes 10 to yield the products 11 in excellent yields and 

ee. In all cases, the 1,2-anti-products 11 were obtained.  

 

Scheme 5 Ni-catalyzed reductive coupling reactions 
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This methodology was extended to a 3-component coupling reaction
18

 of 

dimethylzinc, phenylpropyne 12 and aldehydes 13 to yield chiral allylic alcohols 14 

bearing a tetrasubstituted olefin with excellent enantioselectivities (Scheme 6).
19

 In 

this case, ZnMe2 does not furnish a reducing equivalent in the form of a Ni-H 

complex, since no β-hydrogens are available in ZnMe2. Instead, the methyl group 

is incorporated into the corresponding products 14 and thus serves the role of a 

reducing agent (compare Scheme 3). Again, a phosphoramidite ligand (L2) with a 

spirobiindane backbone gave the best results. 

 

Scheme 6 Ni-catalyzed reductive coupling of alkynes and aldehydes 

 

2. Goal 

Background 

The aim of this research project was to develop an asymmetric nickel-catalyzed 

reductive coupling reaction. We became interested in the reductive coupling 

reaction of 1,3-dienes, especially of isoprene, with aldehydes. This reaction had 

been reported in a non-stereoselective fashion earlier.
20,21

 When an excess of 

isoprene (15) was reacted with benzaldehyde 16 in the presence of Ni(acac)2 as 

catalyst (acac = acetylacetonato), the corresponding homoallylic alcohol 17 could 

be isolated with very good diastereoselectivitiy favoring the anti isomer (Scheme 

7). Both BEt3 and ZnEt2 were examined as reducing agents and were shown to 

give the same product, however, BEt3 as the reducing agent was giving 17 in a 

considerably higher yield. The diastereoselectivity appeared to be unaffected by 

the reducing agent. 
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Scheme 7 Ni-catalyzed reductive coupling of isoprene with benzaldehyde 

The proposed mechanism
7
 of this reaction has close analogy to the previously 

described one (compare Scheme 3), and can generally be described as the 

vinylogous variant thereof. In this reaction, BEt3 (or ZnEt2) serves three purposes: 

first it reduces the Ni(II) precursor to Ni(0), second it activates the aldehyde and 

finally it acts as the reducing agent for the whole transformation. Isoprene (15) can 

coordinate to nickel(0) and subsequently can undergo an oxidative 

insertion/cyclization reaction (A in Scheme 8) with the activated aldehyde 16 to 

give oxallylnickel(II) intermediate II. This reaction represents already the key C-C 

bond forming step and should therefore govern the stereoselectivity at the benzylic 

position. It can be represented as an oxidative insertion of Ni(0) to the terminal, 

sterically less demanding, double bond of isoprene, which will subsequently attack 

the electrophile (16) (A in Scheme 8). The resulting alkoxide can then coordinate to 

Ni(II) to form the neutral cyclic intermediate II. In analogy to the mechanism 

discussed earlier, a transmetallation of one of the alkyl substituents of BEt3 to 

nickel can take place, giving intermediate III. β-Hydride elimination furnishes a 

nickel-hydride complex (IV), which can undergo reductive elimination to form 

boroxide adduct V of the desired product 17. Ni(0) can subsequently enter a new 

catalytic cycle. During the reductive elimination step both the regioselectivity of the 

double bond position as well as the stereoselectivity of the second stereogenic 

center formed at the allylic position are determined. Alternatively, intermediate III 

can be the starting point for a reductive elimination reaction to give the three-

component coupling products 18 and 19.
5
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Scheme 8 Proposed catalytic cycle for the formation of 17 

 

Goal 

This Ni-catalyzed reductive coupling reaction is interesting for a variety of reasons. 

First, it uses cheap and readily available starting materials and takes place at 

ambient temperatures. Second, the products like 17 are highly functional building 

blocks posessing a terminal olefin moiety, a secondary alcohol and an aromatic 

ring. Third, this reaction creates two stereocenters in a 1,3-relationship in only one 

synthetic step. No asymmetric variant of this transformation was known in 

literature, therefore we decided to explore this possible extension. We envisaged to 

start off our study with the investigation of Ni/phosphoramidite complexes as chiral 

catalysts for the reductive coupling of isoprene with aldehydes, since 

phosphoramidite ligands are, due to their modular design, ideally suited for fine-

tuning of their electronic and steric parameters.
22,23

 As already mentioned, during 

the course of this research project, it was demonstrated that those complexes were 
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indeed suitable to induce enantioselectivity in related reactions (see Scheme 5 and 

Scheme 6). It was to be investigated in how far different ligands and/or reducing 

agents would affect the diastereo- as well as the enantioselectivity of the reductive 

coupling of isoprene with aldehydes. Ideally, chiral bishomoallylic alcohols 17 

would be available in high enantiomeric excess and accessible selectively as either 

the syn or the anti diastereomer. 

 

3. Results and Discussion 

3.1 Initial screening results 

Preliminary screening experiments of the envisaged reductive coupling of isoprene 

(15) with benzaldehyde (16) in the presence of Ni/phosphoramidite complexes as 

catalysts revealed several important aspects of this transformation (for selected 

experiments, see Table 1). First of all, we were delighted to observe that the 

envisaged coupling reaction took place with catalysts comprising 

Ni/phosphoramidite complexes with chiral BINOL backbones (Table 1, entries 3-6). 

Even though comparable results in terms of diastereoselectivity with the previously 

published work
20,21

 were found, no stereoinduction was observed with simple 

phosphoramidites L3-L5. With bidentate phosphine ligands, such as BINAP or 

ferrocenyl-based ligands (Josiphos, Taniaphos) no reaction was observed. These 

findings indicated that monodentate ligands are required for the Ni-catalyzed 

reductive coupling to occur. 

A second observation made in preliminary experiments was that dialkylzinc 

reagents had to be employed as reducing agents. When trialkylborane compounds 

were used as reducing agents, no conversion to the desired coupling product 17 

was found (Table 1, entry 3). This is a remarkable observation, since in the original 

reports employing Ni(acac)2 as catalyst, BEt3 had been employed as the reducing 

agent for this particular reaction (also compare Table 1, entry 1).
20,21

 This result 

shows that the electronic properties of the nickel/phosphoramidite complexes differ 

significantly from the properties of their precursors, Ni(acac)2 and Ni(COD)2. Also, 

in terms of yields and enantioselectivity for 17, using a nickel(II) precursor (namely 

Ni(acac)2) or a nickel(0) precursor (Ni(COD)2) did not give different results. This 

suggests a reduction of the Ni(II) precatalyst to Ni(0) by the dialkylzinc reagent 

prior to the actual catalytic cycle, which is consistent with the proposed mechanism 

(see also Scheme 8).
7,20,21

 In the following experiments, Ni(acac)2 was employed 

due to its higher air-stability. 
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To achieve enantioselectivity in the formation of the desired product 17, 

phosphoramidites bearing chiral amine moieties had to be used. Therefore we 

chose bisphenylethylamine-derived phosphoramidite L6, which had been 

successfully employed in a variety of reactions
23

 as the benchmark ligand (Table 1, 

entry 7). With L6 and diethylzinc as the reducing agent, 17 was formed in 56% 

yield and 15% ee. It should be noted that in all cases employing ZnEt2 as the 

reducing agent, full conversion of isoprene (15) was observed. Along with the 

desired product 17, a variety of side products were observed (20 – 22, see Table 

2), including 1-phenylpropanol (22) resulting from nucleophilic attack of ZnEt2 on 

benzaldehyde (16). 

Table 1 Initial screening of ligands and reducing agents
a
 

 

Entry Ligand Reducing agent Yield of 17 d.r.
b
 /ee

c
 

1 - BEt3 92% 20:1 / - 

2 - ZnEt2 55% 20:1 / - 

3 L4 BEt3 - - / - 

4 L4 ZnEt2 71% 10:1 / 0% 

5 L3 ZnEt2 45% 18:1 / 0% 

6 L5 ZnEt2 61% 18:1 / 0% 

7 L6 ZnEt2 56% 19:1 / 15% 

a
Reaction conditions: 0.50 mmol isoprene (15), 0.60 mmol benzaldehyde (16), 0.01 mmol Ni(acac)2 and 

0.011 mmol L were dissolved in 2.5 mL THF at rt. Then, 1.0 mmol of ZnEt2 solution (c = 1.0 M in THF) 

was added dropwise and the reaction mixture was stirred until TLC showed full conversion of 15 (~ 2h). 
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The reaction was quenched with sat. aq. NH4Cl solution, and the product obtained by extraction with 

Et2O.
 b
Determined by GC. The syn diastereomer is the major one. 

c
Determined by chiral GC or HPLC. 

We found that the nickel to ligand ratio needs to be close to 1:1 for the coupling 

reaction to proceed smoothly to 17, with compounds 20 to 22 observed as side-

products (Table 2, entry 1). 22 is the product of the direct addition of ZnEt2 to 

benzaldehyde (16), the formation of 21 could be explained by the double reaction 

of isoprene with two equivalents of benzaldehyde. When a Ni/L ratio of 1:2 was 

employed (Table 2, entry 2), the envisaged coupling reaction still took place, but 

the desired coupling product 17 was accompanied by equal amounts of 

sideproducts 20 to 22. Compound 20 results from the three-component coupling 

(compare intermediate III in Scheme 8). Importantly, 20 is also formed with 15% 

ee, suggesting that 17 and 20 are formed from the same catalytic intermediate in 

which the stereoinformation at the benzylic position is already fixed (intermediate II 

in Scheme 8).  

Table 2 Influence of the Ni/L ratio 

 

Entry Ni/L6 Temperature 17/20/21/22
a
 

1 1 : 1 rt 60 : 20 : 5 : 10 

2 1 : 2 rt 20 : 25 : 30 : 20 

3 1 : 1 0 °C 0 : 70 : 0 : 30 

a
Determined by both, 

1
H NMR and GC/MS. Arbitrary units. 

The abovementioned results suggest that several nickel/L6 complexes with 

different catalytic behaviour are present in solution. Most probably there are 

equilibria present between the various species, since even with a 1:2 Ni/L6 ratio, 

compound 17 is still formed. A 1:1 ratio of metal and ligand favours the formation of 

the desired product 17, a 1:2 ratio leads to the conversion of 15 and 16 to several 

by-products in an unselective manner. This behaviour could be supported by the 
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proposed mechanism presented in Scheme 8, in which the three Ni(II) 

intermediates II to IV leave only one further coordination site to be occupied by a 

ligand to give rise to a 16 electron complex. The data presented in Table 2 suggest 

that a Ni/L2 complex could be catalytically inactive and/or enter different catalytic 

pathways (for mechanistic investigations, see also section 3.6). 

An important finding is reported in Table 2, entry 3. When the reaction was carried 

out at 0 °C with a Ni/L6 ration of 1:1, no formation of 17 was observed, however, 

20 was formed as the major product. This gives important insight to the proposed 

mechanism, as the crucial β-hydride elimination seems to be prevented at lower 

temperatures.
24

 This observation can be explained by the fact that eliminations are 

generally favoured at higher temperatures due to the increase in entropy. 

 

3.3 Screening of reducing agents 

Other reducing agents were investigated in the following studies (Table 3). We 

found that in terms of selectivity, similar results as with ZnEt2 could be observed 

with AlEt3 (Table 3, entry 2). Remarkably, ZniPr2 gave a much more selective 

reaction towards 17 accompanied by a slightly higher ee (Table 3, entry 3). These 

two examples hint towards the fact that the enantiodiscriminating step does 

depend on the metal reagent employed, and sterics of the organic substitutents of 

the organometallic reagent. The related iso-propylzinc bromide (Table 3, entry 4), 

showed similar results in terms of product distribution. However, in this case, the 

syn/anti ratio of 17 was found to be 1:1, and the ee dropped to 17%. These two 

results (Table 3, entries 3,4) demonstrate that with secondary organozinc reagents 

much more selective reactions can be carried out. This could stem from the higher 

steric bulk that the iso-propyl substituents create around the Ni(II)-center. As 

expected, the corresponding Grignard reagent led to only 1,2-addition product 

(Table 3, entry 5). The reactions employing aluminum hydrides or lithium 

triethylborohydride (Table 3, entries 6-8) led to reduction of benzaldehyde (16) to 

benzylalcohol 23. The use of borane gave traces of the desired product 17 along 

with its double bond isomer 20 (R = H), but also in this case, benzylalcohol 23 was 

the major product (Table 3, entry 9). The use of sodium borohydride and sodium 

cyanoborohydride did not lead to any conversion (Table 3, entries 10, 11). 

Attempts to use poly(methylhydrosiloxane (PMHS) as reductant,
25

 as well as the 

attempt to carry out a hydrogenative coupling did not lead to conversion to 17 

(Table 3, entries 12, 13). Since the reaction with ZniPr2 led to higher ee along with 

a considerably higher selectivity for 17 (Table 3, entry 3), we continued to optimize 
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the asymmetric Ni-catalyzed reductive coupling reaction employing this reducing 

agent. 

Table 3 Screening of reducing agents 

 

Entry Reducing agent 17/20/23/24
a
 Comment 

1 ZnEt2 60 : 20 : 0 : 10 - 

2 AlEt3 60 : 20 : 0 : 10 17: 14% ee 

3 ZniPr2 80 : 10 : 0 : 0 17: 23% ee  

4 ZniPrBr 80 : 10 : 0 : 0
b
 17: 17% ee  

5 iPrMgCl 0 : 0 : 0 : 100 - 

6 DIBAL-H 0 : 0 : 100 : 0 - 

7 LiAlH4 0 : 0 : 100 : 0 - 

8 LiHBEt3 0 : 0 : 100 : 0 - 

9 BH3 10 : 10 : 30 23 = 24 

10 NaBH4 - no reaction 

11 NaCNBH3 - no reaction 

12 PMHS
c
 - no reaction 

13 H2
d
 - no reaction 

a
Determined by both, 

1
H NMR and GC/MS. Arbitrary units. 

b
Syn/anti of 17: 1:1.

 c
PMHS = 

Poly(methylhydrosiloxane). 
d
Ni(COD)2 was used as Ni precursor. 
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3.4 Screening of solvents 

With the optimized results for the reducing agents in hand, we went on to 

investigate the influence of the solvent (Table 4). It was found that the envisaged 

transformation is relatively robust with respect to the choice of solvent, as 

conversion to the desired product 17 was found under most conditions tested. The 

majority of the solvents gave the anti diastereomer of 17 as the main product 

(Table 4, entries 1,2 and 4-6), with toluene giving the highest ee for anti-17 (35%). 

Similar results in terms of enantioselectivity were only found with MeCN as solvent 

(Table 4, entry 3), however, in this case accompanied by a reversed 

diastereoselectivity to give the syn diastereomer of 17 as the major one. This could 

be explained by the ability of MeCN to act as a ligand for the Ni catalyst, leading to 

a catalyst with different spatial constraints. It is remarkable, though, that the 

opposite effect is observed employing THF as the solvent, which one could also 

expect to act as a ligand for Ni (Table 4, entry 2). 

Table 4 Solvent screening
a
 

 

Entry Solvent Conversion
b
 anti/syn

b
 ee of 17 Comment 

1 toluene full 19 : 1 35% 95% yield 

2 THF full 20 : 1 23%  

3 MeCN 65% 1 : 2 37%  

4 CH2Cl2 full 14 : 1 25% 10% 20 

5 TBME full 8 : 1 30% traces 20 

6 EtOAc 80% 10 : 1 26%  

a
Reaction conditions: 0.50 mmol isoprene (15), 0.60 mmol benzaldehyde (16), 0.01 mmol Ni(acac)2 and 

0.011 mmol L6 were dissolved in 2.5 mL THF at rt. Then, 1.0 mmol of a ZniPr2 solution (c = 1.0 M in 

THF) was added dropwise and the reaction mixture was stirred until TLC showed full conversion (~ 2h). 

The reaction was quenched with sat. aq. NH4Cl solution, and the product obtained by extraction with 

Et2O. 
b
Determined by both, 

1
H NMR and GC/MS.  
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3.5 Ligand screening 

One of the major advantages of phosphoramidite ligands is because of their 

modularity they can be easily varied and screened for activity and stereoselectivity 

in catalysis.
23,26-28

 With the optimized conditions, we set off to investigate the 

influence of a variety of phosphoramidite ligands, some of which are reported in 

Table 5. Starting off from the benchmark ligand (S,R,R)-L6, we first investigated 

the influence of its diastereomer, (R,R,R)-L6, which gave significantly worse results 

in terms of conversion and stereoselectivity (Table 5, entry 2). This clearly shows a 

matched/mismatched relationship of the two diastereomers of L6 for the envisaged 

reaction. Replacement of one phenylethyl substituent with an isopropyl group led to 

slightly higher enantioselectivity (Table 5, entry 3), the Ph-substituted derivative 

gave the three-component coupling product 20 as the major one (Table 5, entry 4). 

The octahydroBINOL-backbone of L9 as well as 3,3’-substitution as in L10 led to 

lower enantioselectivity (Table 5, entries 5,6). As observed before (see Table 1), 

phosphoramidites with non-chiral amines L11 and L12 gave no enantioselectivity 

(Table 5, entries 7,8). Ligands bearing (S)-prolinate as the amine substituent 

(Table 5, entries 9,14), posessing an ester moiety which could act as a second 

coordination unit, were favouring the three-component coupling product 20. Both 

17 and 20 were formed in a racemic fashion. Higher enantioselectivities were 

observed employing smaller or more flexible diol backbones, as in the case of 

biphenol-derived L14 (43% ee, Table 5, entry 10) and catechol-derived L16 (46% 

ee, Table 5, entry 12). However, structural variatons of these two ligands L15 and 

L17 led to lower enantioselectivities (Table 5, entries 11,13). The same holds for 

TADDOL-derived L19 (Table 5, entry 15). It is remarkable, though, that some of the 

ligands investigated gave exceptional levels of diastereoselectivity, as in the case 

of L15 and azepine-derived ligand L20 (Table 5, entries 11,16). It has been 

reported in the literature that the olefin moiety in L20 can have a remarkable effect 

on catalysis, most probably due to a flexible, or labile coordination to the metal.
29

 A 

similar trend was observed when comparing the two 2,5-dinaphthylpyrrolidine-

derived
30

 ligands L21 and L22 (see also Chapter 2, Table 5, entries 17, 18). 

Whereas both give excellent diastereoselectivities, it can be seen that L22, bearing 

the unsaturated pyrroline moiety gives higher enantioselectivity (40% ee vs 33% 

ee), which could be attributed to an additional hemi-labile coordination of the olefin 

moiety to the Ni.  

In summary, it can be concluded that the screening of phosphoramidite ligands led 

to some insights with respect to preferred and less preferred structural features of 

the ligands, but the ee reached remained rather low (46%, L16, Table 5, entry 12). 
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Further structural elaboration of these ligands did not lead to improvements in 

terms of enantioselectivity. It should be noted though, that some of the reactions 

achieved outstanding diastereoselectivity favouring the anti-product 17. 

Table 5 Ligand Screening
a
 

 

Entry Ligand Comment anti/syn
b
 ee

b
 

1 

 

L6 Full conversion 19 : 1 +35% 

2 

 

L6 
~40% 

conversion 
3 : 1 rac. 

3 

 

L7 - 19 : 1 +39% 

4 

 

L8 Mostly 20 n.d. +6% 

5 

 

L9 - 16 : 1 +29% 



 

 

218 

   

Chapter 7 

 

Entry Ligand Comment anti/syn
b
 ee

b
 

6 

 

L10 - 14 : 1 -22% 

7 

 

L11 - 15 : 1 rac. 

8 

 

L12 - 15 : 1 rac. 

9 

 

L13 17 / 20 1:2 n.d. rac. 

10 

 

L14 - 18 : 1 +43% 

11 

 

L15 - >99 : 1 +22% 

12 

 

L16 - 19 : 1 +46% 
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Entry Ligand Comment anti/syn
b
 ee

b
 

13 

 

L17 - 16 : 1 -24% 

14 

 

L18 17 / 20 1:1 n.d. rac. 

15 

 

L19 - 23 : 1 +18% 

16 

 

L20 - >99 : 1 +17% 

17 

 

L21 - >99 : 1 +33% 

18 

 

L22 - >99 : 1 +40% 

a
Reaction conditions: 0.50 mmol isoprene (15), 0.60 mmol benzaldehyde (16), 0.01 mmol Ni(acac)2  and 

0.011 mmol ligand were dissolved in 2.5 mL THF at rt. Then, 1.0 mmol of ZniPr2 solution (c = 0.5 M in 

toluene) was added dropwise and the reaction mixture was stirred until TLC showed full conversion (~ 



 

 

220 

   

Chapter 7 

 

2h). The reaction was quenched with sat. aq. NH4Cl solution, and the product isolated by extraction with 

Et2O. 
b
Determined by both, 

1
H NMR and GC/MS.  

Besides investigating the influence of various phosphoramidite ligands on the Ni-

catalyzed reductive coupling reaction, we also studied other types of chiral ligands. 

The results are summarized in Table 6. The related BINOL-derived phosphite L23 

gave 20 as the major product (Table 6, entry 1), whereas chiral phosphines L24 

and L25 led to low conversion to 17 and low or no enantioselectivity (Table 6, 

entries 2,3). Remarkably, aminophosphine L26, coined SimplePhos,
31

 led to 17 

with 23% ee and excellent diastereoselectivity favouring the anti isomer of 17 

(Table 6, entry 4). Secondary phosphine oxide L27
32

 gave only compound 20 

(Table 6, entry 5). An interesting result is shown in entry 6, as chiral diene L28
33

 

also led to some stereoinduction, albeit low (15% ee). To the best of our knowledge 

this marks the first example of an catalytic asymmetric transformation with Ni 

catalysts bearing a chiral diene ligand.
34

 Furthermore, this example demonstrates 

that a coordination of olefins can have an important influence on the catalyst, as 

has been seen in the case of some phosphoramidite ligands bearing olefins as 

additional coordination sites (vide supra). Finally, it was shown that N-heterocyclic 

carbene (NHC) ligands can be successfully applied to this kind of transformation, 

as the reaction employing L29
35

 gave 17 in 15% ee and with excellent 

diastereoselectivity (Table 6, entry 7). It has to be noted, though, that in the case of 

NHC ligands, Ni(COD)2 has to be employed. Using Ni(acac)2 as the Ni precursor in 

those cases lead to considerably lower conversion.  

Table 6 Ligand screening II
a
 

 

Entry Ligand Comment anti/syn
b
 ee

b
 

1 

 

L23 80% 20 n.d. 17: rac. 
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Entry Ligand Comment anti/syn
b
 ee

b
 

2 

 

L24 
Slow reaction 

(2d) 
18 : 1 +6% 

3 

 

L25 

Low 

conversion, 

only 20 

- - 

4 

 

L26 - >99 : 1 +23% 

5 

 

L27 only 20 - - 

6 

 

L28 - 15 : 1 -15% 

7
c
 

 

L29 - >99 : 1 +15% 

a
Reaction conditions: 0.50 mmol isoprene (15), 0.60 mmol benzaldehyde (16), 0.01 mmol Ni(acac)2  and 

0.011 mmol ligand were dissolved in 2.5 mL THF at rt. Then, 1.0 mmol of ZniPr2 solution (c = 0.5 M in 

toluene) was added dropwise and the reaction mixture was stirred until TLC showed full conversion (~ 

2h). The reaction was quenched with sat. aq. NH4Cl solution, and the product isolated by extraction with 

Et2O. 
b
Determined by both, 

1
H NMR and GC/MS. 

c
Ni(COD)2 was used instead of Ni(acac)2. 

Summarizing the results of the ligand screening, we were able to demonstrate that 

a variety of chiral monodentate ligands as well as a chiral diene ligand can be 

successfully employed in the Ni-catalyzed reductive coupling reaction of isoprene 

with benzaldehyde. With some ligands excellent diastereoselectivities have been 

achieved, however, the ee of this transformation could not be improved to more 

than 46%. 
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3.6 Mechanistic studies 

Since we found that generally in the Ni-catalyzed reductive coupling of isoprene 

with benzaldehyde only the use of monodentate ligands led to conversion to the 

desired coupling product, we decided to study the mechanism of this reaction using 

Ni/phosphoramidite complexes as a probe for NMR spectroscopy. We anticipated 

that we could employ 
31

P NMR spectroscopy to study the reaction in more detail, 

which might give some support to the proposed mechanism (see Scheme 8).  

We started off by carrying out a titration experiment, where various equivalents of 

catechol-based phosphoramidite L16 were added to Ni(COD)2 (Figure 1). We 

observed a fast coordination of L16 to Ni(0) which was accompanied by a change 

of colour from bright yellow to orange. We observed that with Ni/L ratios of 1:1 and 

1:2 a signal at 197 ppm in the 
31

P NMR could be observed. When more equivalents 

of L16 were added, a second peak at 179 ppm appeared. With an even larger 

excess of L16, the peak at 197 ppm disappeared and a new one became visible at 

158 ppm. This can be attributed to the free ligand L16. We conclude from these 

results that more than one Ni/L16 complex is formed, most probably with a different 

stoichiometry. The complex with the signal at 197 ppm should have a higher Ni/L 

ratio in comparison to the one having a signal at 179 ppm, since the latter appears 

at higher concentrations of L16 and seems to have a higher number of ligands 

coordinated to Ni, as with higher concentrations of L16 the uncoordinated ligand 

(at 158 ppm) starts to appear. This behaviour is similar to Ni/PPh3 complexes.
36

 It 

is important to note that the complex with a lower Ni/L ratio (at 179 ppm) seems to 

be symmetric with respect to the coordinating ligands, as only a singlet is 

observed. If the ligands would be inequivalent, one would expect a P-P coupling 

between the ligands,
37,38

 which had been observed with other Ni/phosphoramidite 

complexes (vide infra).  

Figure 1 
31

P NMR of Ni/L6 complexes
a
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a
Reaction conditions: 0.02 mmol Ni(COD)2 and n eq. L16 were dissolved in toluene-d8 at rt and the 

solution stirred for 5 min. At every stage, samples were taken and analyzed by 
31

P NMR. 

When the complexation of Ni(COD)2 with different equivalents of BINOL-derived L5 

in CDCl3 was followed by 
31

P NMR, different results were obtained (Figure 2). It 

should be noted that these experiments were carried out in CDCl3 and therefore a 

different chemical shift in the 
31

P NMR is observed. With 1 and 2 equivalents of L5 

with respect to Ni, the corresponding complexes seemed to have a low stability, as 

quick deposition of elementary Ni on the wall of the NMR tube was observed. 

When we went to higher equivalents of L5, the complexes seemed more stable, 

and could be detected by 
31

P NMR. Two doublets with a roof effect (J = 115 Hz) 

were observed at 137 ppm, which can be interpreted as a Ni/Lx complex with x ≥ 2, 

in which the ligands are not equivalent and therefore couple to each other. This is 

an often observed feature with phosphorus-chelating ligands and transition 

metals.
37-41

 Again, when more L5 was added, the signal of the free ligand (146 

ppm) started to increase. When the spectra of Figure 1 and Figure 2 are compared, 
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it can be seen that the structure of the phosphoramidite ligand has a remarkable 

effect on the symmetry of the corresponding complexes. This could be due to the 

fact that the BINOL backbone of L5 is both, sterically more demanding and axially 

chiral, when compared to the catechol backbone of L6. 

Figure 2 
31

P NMR of Ni/L5 complexes
a 

 

a
Reaction conditions: 0.05 mmol Ni(COD)2 and n eq. 0.05 mmol L5 were dissolved in CDCl3 at rt and  

the solution stirred for 5 min. At every stage, samples were taken and analyzed by 
31

P NMR. 

Next, we turned our attention to following the Ni-catalyzed reductive coupling 

reaction of 15 with 16 under the optimized reaction conditions by 
31

P NMR (Figure 

3). The only change compared to the benchtop reaction that was made was the 

change of solvent to toluene-d8. As expected, when the Ni(II) precursor, Ni(acac)2, 

and L16 were mixed we only observed the signal of the free ligand L16 (158 ppm), 
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and no Ni/L16 coordination took place (A in Figure 3). When the reducing agent 

ZniPr2 was added, two new species could be observed, at 179 and 177 ppm (B in 

Figure 3) with full consumption of uncoordinated L16. When finally the reagents 

were added and the reaction was run in the NMR tube, two resonances, at 179 and 

158 ppm were observed (C in Figure 3). The latter can be attributed to the 

uncoordinated ligand. This result is somewhat surprising, as we have found a 

Ni/L16 complex at 179 ppm with most probably more than one L16 coordinated to 

Ni in previous experiments as well (compare Figure 1). From the optimization of the 

reaction, we know that a Ni/L16 ratio of close to 1:1 is ideal for good selectivity 

towards the desired coupling product. One could speculate on the basis of these 

results that during the reaction a resting state exists in which the Ni is coordinated 

by more than one ligand L16. 

Furthermore, we carried out the same experiment with Ni(COD)2 as the Ni 

precursor (Figure 4), which had been shown to give the same results in terms of 

selectivity towards the coupling product (vide supra). In this case, we found the 

same results, except that already during the mixing of L16 and Ni(COD)2, two 

complexes with signals at 197 and 179 ppm were formed (A in Figure 4), which is 

consistent with our previous findings (see Figure 1). Interestingly, when both the 

reducing agent and the substrates were added (C in Figure 4), the same resting 

state at 179 ppm as in the case of Ni(acac)2 was observed. This leads to the 

conclusion that both reactions have the same catalytic cycle with the same resting 

states, independent of the Ni precursor used. This has also been shown during the 

optimization of the reaction, as the same results in terms of product distribution and 

selectivity were found with both Ni(0) and Ni(II) precursors (see section 3.1). 

Therefore, the ligands of the Ni precursor (acac or COD) seem not to play a role 

during the reaction. 
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Figure 3 
31

P NMR of Ni-catalyzed reductive coupling reaction with L16
 a 

 

 

a
Reaction conditions: 0.01 mmol Ni(acac)2 and 0.011 mmol L16 were dissolved in toluene-d8 at rt and 

the solution stirred for 5 min. (= A). Then, 2.0 eq. ZniPr2 (0.40 mmol) was added (= B). 1.0 eq. isoprene 

(0.20 mmol) and 1.2 eq. benzaldehyde (0.24 mmol) were added (= C). At every stage, samples were 

taken and analyzed by 
31

P NMR. 
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Figure 4 
31

P NMR of Ni-catalyzed reductive coupling reaction with L16
a
 

 

 

a
Reaction conditions: 0.01 mmol Ni(COD)2 and 0.011 mmol L16 were dissolved in toluene-d8 at rt and 

the mixture stirred for 5 min. (= A). Then, 2.0 eq. ZniPr2 (0.40 mmol) was added (= B). Subsequently, 

1.0 eq. isoprene (0.20 mmol) and 1.2 eq. benzaldehyde (0.24 mmol) were added (= C). At every stage, 

samples were taken and analyzed by 
31

P NMR. 

Besides following the reaction with 
31

P NMR, we also used 
1
H NMR for the 

investigation of the Ni-catalyzed reductive coupling. As in the proposed mechanism 

for this reaction (Scheme 8), nickel-hydride intermediates were postulated, we 

were interested in observing those by 
1
H NMR (Figure 5). Indeed, we were able to 
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observe resonances at around -12 ppm, which is typical for Ni-hydrides.
42-44

 

Employing ZniPr2 as the reducing agent, a resonance was observed at -12.0 ppm 

(A in Figure 5), whereas two signals at -11.5 and -13.5 ppm were found employing 

ZniPrBr as the reducing agent (B in Figure 5). In the benchtop experiment, it was 

found that ZniPrBr gave both syn and anti diastereomers of the product in a 1:1 

ratio, whereas ZniPr2 gave the anti coupling product in about 20:1 selectivity 

(compare Table 1). Therefore, we assign the two signals in B to two diastereomeric 

Ni-H complexes leading to syn-17 and anti-17, and the signal in A to an 

intermediate Ni-H complex leading to anti-17. 

Figure 5 
1
H NMR of Ni-catalyzed reductive coupling reaction with L16

 a 

 

 

a
Reaction conditions: 0.01 mmol Ni(acac)2 and 0.011 mmol L16 were dissolved in toluene-d8 at rt and 

the mixture stirred for 5 min. Then, 2.0 eq. ZniPr2 (= A) or ZniPrBr (= B) (0.40 mmol) was added. 

Subsequently, 1.0 eq. isoprene (0.20 mmol) and 1.2 eq. benzaldehyde (0.24 mmol) were added.  
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The observation of nickel-hydride complexes as reaction intermediates in the Ni-

catalyzed reductive coupling reaction gives some evidence for the proposed 

mechanism (Scheme 9). To the best of our knowledge, no further study has been 

carried out so far to support this mechanism. Based on our detection of 

intermediate nickel-hydride complexes, we suggest that the mechanism does go 

via a nickel-hydride intermediate (such as IV in Scheme 9). However, since we 

observed two diastereomeric Ni-H complexes with ZniPrBr, and only one with 

ZniPr2 as the reducing agent, we suggest to adapt the scheme providing the 

reaction intermediates: since previously drawn intermediate IV shows a π-Ni-oxallyl 

compound that has no specified stereochemistry at the second stereocenter, IV 

should be replaced by the σ-Ni-oxallyl complex IVa. Complex IVa represents a 

resonance structure of IV, but displays the stereogenic center bearing the methyl 

group. Therefore, the syn and anti diastereomers of IVa should posess different 

chemical shifts in 
1
H NMR. 

 

Scheme 9 Some intermediates from the proposed mechanism 

To further gain some insight in the catalytic intermediates of the Ni-catalyzed 

reductive coupling of isoprene and benzaldehyde, we carried out high resolution 

mass spectrometry (ESI-TOF) of the reaction mixture. However, no conclusive data 

could be obtained. We attribute this to the fact that the reaction intermediates as 

shown in Scheme 3 and Scheme 9 are not charged particles and therefore need to 
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be ionized first. Most probably the intermediate Ni-complexes fragment during 

ionization and therefore cannot give any further evidence with regards to the 

catalytic cycle. 

 

4. Conclusions and Future Prospects 

In conclusion, we have developed a new asymmetric Ni-catalyzed reductive 

coupling reaction of isoprene and benzaldehyde. We were able to demonstrate that 

a variety of chiral Ni complexes could catalyze this transformation, and that 

monodentate phosphorus-based ligands were beneficial for conversion to the 

desired products. In an extensive screening of phosphoramidite ligands we were 

able to identify some leading ligand structures, however, the maximal 

enantioselectivity in the envisaged reaction remained at 46% ee with L16. It should 

be noted though that unprecedented levels of diastereoselectivity favouring the anti 

product were achieved with some ligands, including N-heterocyclic carbene (NHC) 

ligands. Furthermore, the use of phosphoramidite and NHC ligands allowed for 

lowering the catalyst loading to 2 mol%. 

Furthermore, it was shown that phosphoramidites bearing a second labile 

coordination moiety generally showed good results with regards to 

stereoselectivity. Along the same lines, it was shown that chiral diene ligands lead 

to effective Ni catalysts for the envisaged reductive coupling reaction. These 

findings could serve as a starting point for a more sophisticated ligand design. The 

nature of the reducing agent was also shown to be highly influencial on the 

outcome of the reaction, as the employment of dialkylzinc reagents was found to 

be beneficial in terms of product selectivity and stereoselectivity. 

Based on Ni/phosphoramidite complexes, mechanistic studies showed that the 

reactions with different Ni precursors run via the same reaction intermediates or 

resting states, an observation consistent with our experimental findings. Second, 
1
H NMR analysis of the reactions gave evidence for the presence of Ni-hydride 

species that had previously been postulated. We were able to produce evidence 

for a postulated nickel-hydride catalytic intermediate by means of 
1
H NMR 

spectroscopy. 

 

A good starting point for future research would be the investigation of chiral NHC 

ligands for the Ni-catalyzed reductive coupling reaction. It was demonstrated that 

these ligands lead to some ee in the coupling product in our case. Many 
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applications of chiral NHC complexes have been reported in the literature,
45-49

 

leaving much room for further investigation and optimization of the Ni-catalyzed 

reductive coupling reactions with these chiral complexes. 

As for the reaction itself, a further extension could be the study of the reductive 

coupling reaction of isoprene (15) to imines 25 or related structures (Scheme 10). 

Since it is expected that the intermediate amines would coordinate well to the Ni-

catalyst during the reaction, this could lead to higher enantioselectivity. The non-

enantioselective variant has been reported in the literature, demonstrating that in 

principle Ni catalysts are able to catalyze these transformations.
50

 Chiral secondary 

amines 26 with a 1,3-chiral motif could be valuable chiral building blocks for further 

functionalization. 

 

Scheme 10 Suggested reductive coupling of isoprene with imines 

 

5. Experimental Section 

For general remarks, see Chapter 3. Ligands were prepared according to the 
literature procedures: L3

51
, L4

52
, L5

53
, L6

54
, L7

55
, L8

55
, L9

55
, L10

56
, L11

56
, L12

57
, 

L13
53

, L14
26

, L15
58

, L16
59

, L17
59

, L18
53

, L19
60

, L20
29

, L21
30

, L22
30

, L23
61

, L26
31

, 
L27

32
, L29

35
. L28 was purchased from Sigma-Aldrich. L24 and L25 were kindly 

donated by DSM. 

 

Ni-catalyzed reductive coupling reaction of isoprene and benzaldehyde  

In a flame-dried Schlenck tube, 2.0 mol% Ni(acac)2 (2.59 mg, 10.0 µmol) and 2.1 
mol% L16 (3.82 mg, 10.5 µmol) were dissolved in 2.5 mL dry toluene. Then, 1.00 
eq. isoprene (15) (0.050 ml, 0.50 mmol) and benzaldehyde (16) (0.061 ml, 0.600 
mmol) were added. Subsequently, 2.00 eq. diisopropylzinc solution (c = 0.5 M in 
toluene) (1.0 ml, 1.0 mmol) was added slowly. The colour changed from pale green 
via yellow to orange/red. The reaction mixture was stirred at room temperature for 
2h (or until TLC and/or GC/MS showed full conversion). The reaction mixture was 
quenched with a sat. aq. solution of NH4Cl (5 mL) and extracted with EtOAc (3x 10 
mL). The combined organic phases were dried over MgSO4 and all volatiles were 
removed in vacuo. The resulting yellow oil was purified by column chromatography 
(SiO2, pentane / EtOAc 40:1, Rf = 0.60 in Pentane / EtOAc 10:1) to yield 17 (0.085 
g, 0.480 mmol, 96%) as a colorless oil. The ligand screening described in Table 5 
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was carried out with half of the amounts given using stock solutions for Ni(acac)2, 
Isoprene and Benzaldehyde in toluene. 

 

Anti-3-methyl-1-phenylpent-4-en-1-ol (17) 

1
H NMR (201 MHz, CDCl3) δ 7.42 – 7.22 (m, 5H), 5.79 (ddd, J = 17.8, 10.2, 7.8 Hz, 

1H), 5.09 – 4.91 (m, 2H), 4.73 (t, J = 6.8 Hz, 1H), 2.23 (dt, J = 
13.7, 6.8 Hz, 1H), 1.97 (s (br), 1H), 1.95 – 1.77 (m, 1H), 1.67 
(dt, J = 13.4, 4.8 Hz, 2H), 1.04 (d, J = 6.7, 3H). 

13
C NMR (50 

MHz, CDCl3) δ 144.67, 144.54, 128.46, 127.58, 126.01, 
113.24, 73.04, 45.92, 35.18, 20.46. The enantiomeric excess 
was determined by chiral GC or chiral HPLC. GC: CP-Chiralsil-

Dex-CB (25m x 0.25 mm), 95 °C isotherm. Retention times 61.5 min and 62.8 min. 
HPLC: (Chiralpak OD-H: n-heptane/2-propanol 99:1, 40 °C isotherm, 200 nm), 
retention times: 30.8 min, 34.6 min. GC/MS: 158 (17%), 143 (80%), 128 (73%), 
120 (33%), 115 (33%), 107 (100%), 91 (23%), 79 (60%). 

 

Syn-3-methyl-1-phenylpent-4-en-1-ol (17) 

Isolated from the reaction with ZniPrBr as reducing agent (0.031 g, 0.175 mmol, 
35%) as a colorless oil. Purification by column chromatography 
(SiO2, pentane / EtOAc 40:1, Rf = 0.65 in pentane / EtOAc 
10:1) gave 17 as a colorless oil.  

1
H NMR (201 MHz, CDCl3) δ 

7.47 – 7.19 (m, 5H), 5.93 – 5.61 (m, 1H), 5.21 – 4.94 (m, 2H), 
4.72 (dd, J = 9.2, 3.9 Hz, 1H), 2.55 – 2.28 (m, 1H), 1.87 (s (br), 

1H), 1.86 – 1.71 (m, 1H), 1.60 (ddd, J = 13.7, 9.5, 4.0 Hz, 2H), 1.05 (d, J = 6.8 Hz, 
3H). 

13
C NMR (50 MHz, CDCl3) δ 145.11, 143.84, 128.45, 127.42, 125.70, 113.70, 

72.32, 46.03, 34.87, 20.93. The enantiomeric excess was determined by chiral GC: 
CP-Chiralsil-Dex-CB (25m x 0.25 mm), 95 °C isotherm. Retention times 57.6 min 
and 61.6 min. GC/MS: 158 (19%), 143 (80%), 128 (82%), 120 (45%), 115 (41%), 
107 (100%), 91 (24%), 79 (72%). 
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English Summary 

 

Heterocycles are ubiquitous structural features of naturally occurring and/or 
biologically active chemical compounds. Among these, nitrogen- and oxygen-
containing heterocycles with various ring sizes bearing stereogenic centers are 
frequently observed. The selective construction of these stereogenic centers 
imposes a particular challenge for chemists. 

In this work, a variety of synthetic approaches towards nitrogen- and oxygen-
containing heterocycles have been developed. All methods developed rely on 
asymmetric transition metal catalysis. These methodologies bear the advantage 
that both enantiomers of an envisaged product are accessible, since - in most 
cases - both enantiomers of the chiral catalysts are available. Literature-known 
asymmetric transformations have been applied to new targets to open up new 
routes to chiral heterocyclic compounds, but also new methodologies have been 
developed. In general, the approaches investigated during this work fall into three 
different categories: 

 

1)  The installation of the stereocenter of interest on a linear substrate followed 
 by the construction of the ring through a later transformation (e.g. ring-closing 
 metathesis). (see Chapters 2, 5) 

2)  An asymmetric ring-closing reaction is carried out, which furnishes both the 
 stereocenter and the ring structure in the same transformation. (see Chapters 
 3, 4) 

3) A catalytic asymmetric reaction on a prochiral heterocyclic structure is carried 
 out. (see Chapter 6) 

 

In Chapter 2, the application of iridium-catalyzed allylic amination of allylic 
carbonates with ammonia has been used to construct 2,5-arylpyrrolidines. These 
products are used as chiral auxiliaries, organocatalysts and as key structural motifs 
of phosphoramidite ligands. Ammonia as nitrogen source is a cheap, atom-
economic nucleophile. In the course of the reaction, a double allylic amination 
takes place, as the first addition product, a primary amine, is much more reactive 
than ammonia and directly undergoes a subsequent reaction with another allylic 
carbonate molecule. This particular reaction pathway is exploited, as the resulting 
chiral secondary amine - available in excellent yields and stereoselectivities - can 
be further transformed to a pyrroline by ring-closing metathesis. The desired 
products are obtained by a mild and selective organocatalytic reduction with a 
flavin-derived catalyst. During the course of this research, the latter catalytic 
transformation has been optimized and a new reaction protocol was developed. 
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Chapter 3 marks one of the highlights of the present work. It describes the 
development of the first intramolecular asymmetric Ir-catalyzed allylic amidation. 
This methodology employs chiral Ir/phosphoramidite complexes and exploits the 
use of the trifluoroacetamide group both as a protecting group in the preparation of 
the allylic carbonates as well as nucleophiles for the key asymmetric Ir-catalyzed 
reaction. This transformation furnishes chiral tetrahydroisoquinolines and saturated 
nitrogen heterocyclic compounds in a highly stereoselective fashion. The products 
are useful building blocks, as they can easily be modified through the terminal 
olefin, which has been demonstrated in two attempted syntheses of a naturally 
occurring compound, Crispine A, as well as a biologically active compound, 
Almorexant. 

 

The attempted extension of allylic amidation methodology to the preparation of 
chiral β-carboline compounds is described in chapter 4. Even though ultimately the 
desired transformation could not be rendered feasible, a number of synthetic 
approaches to substituted indole compounds are presented. These investigations 
gave important insights that influenced the development of the asymmetric allylic 
amidation presented in chapter 3. Finally, the desired products could be prepared 
in a racemic fashion via a non-catalyzed pathway. 

 

In Chapter 5, the development of a new entry to nitrogen heterocycles with various 
ring sizes is presented. Here, a similar approach to the one in chapter 2 is followed. 
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An allylic substitution reaction furnishes a stereogenic center and a terminal double 
bond of which the latter is subsequently employed for the construction of a 
heterocycle through a metathesis reaction. By combining copper-catalyzed allylic 
substitution reactions with Grignard reagents with a subsequent olefin or ene-yne 
ring-closing metathesis the corresponding chiral products are available in excellent 
stereoselectivities. One advantage of this variable approach is that six- to eight-
membered heterocycles become available. The products from the ene-yne 
metathesis bear a diene motif, which is perfectly suited for further modifications. It 
has been demonstrated that his methodology can been extended to the 
construction of chiral lactams, however, some more investigations are needed to 
improve yields and enantioselectivities. 

 

In Chapter 6, another approach to chiral heterocycles is taken, as in this case the 
starting materials already possess a heterocycle: the development of an 
asymmetric copper-catalyzed conjugate addition reaction of Grignard reagents to 
coumarins is presented. These substrates had been elusive for this particular 
catalytic transformation, since they are relatively unreactive towards Michael 
addition. However, through judicious choice of ligands, the corresponding chiral 
lactones are accessible in excellent stereoselectivities. One important feature of 
this transformation was discovered in the course of the investigations: the 
intermediate chiral magnesium enolates can be trapped with amines or alcohols to 
give the ring-opened phenol-derived chiral esters and amides. On the one hand, 
these particular chiral esters were previously not accessible, on the other hand, this 
marks the development of a new formal asymmetric conjugate addition to amides.  

 

The research described in chapter 7 was directed towards the development of an 
asymmetric nickel-catalyzed reductive coupling of dienes with aldehydes yielding 
chiral bis-homoallylic alcohols. One of the major advantages of this reaction is that 
it generates two stereocenters in one catalytic transformation. The chiral products 
are highly functional and perfectly suited for further modification through their 
terminal olefin, the alcohol and the aromatic group. It was found that chiral nickel 
complexes with monodentate phosphoramidite or N-heterocyclic carbene ligands 
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lead to the desired products in unprecedented diastereoselectivity, but with only 
moderate enantioselectivity. 

1
H NMR and 

31
P NMR studies were carried out to 

provide some evidence for the postulated reaction mechanism via nickel-hydride 
complexes. 
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Nederlandse Samenvatting 

 

Heterocyclische substructuren zijn in een groot aantal in de natuur voorkomende 
en/of biologisch actieve chemische stoffen te vinden. In de natuur komt men vaak 
stik- en zuurstof bevattende heterocycli van verschillende ring groottes tegen die 
een stereocentrum in de ring hebben. Vooral het selectief maken van deze 
stereocentra in heterocycli is een grote uitdaging voor chemici. 

In dit proefschrift wordt de ontwikkeling van een verscheidenheid aan synthetische 
methoden beschreven die het mogelijk maken stik- en zuurstof bevattende 
heterocycli te synthetiseren. Asymmetrische katalyse, gebruik makend van 
overgangsmetalen, wordt in de hier beschreven methoden gebruikt voor het 
vormen van het gewenste stereocentrum. Een attractief aspect van de nieuw 
ontwikkelde methoden is dat via deze nieuwe methoden beide enantiomeren van 
het product gesynthetiseerd kunnen worden, aangezien -in de meeste gevallen- 
beide enantiomeren van de chirale katalysatoren beschikbaar zijn. Naast het 
toepassen van in de literatuur bekende asymmetrische transformaties op nieuwe 
uitgangsstoffen, om op deze manier nieuwe routes te ontwikkelen voor de 
synthese van chirale  heterocyclische stoffen, zijn in dit proefschrift ook nieuwe 
methoden ontwikkeld voor het synthetiseren van deze klasse van verbindingen. De 
beschreven methoden kunnen worden onderverdeeld in drie categoriën: 

1)  Eerst wordt een stereocentrum in een lineair substraat geintroduceerd, waarna 
in een opvolgende reactie de ring gevormd wordt (bijvoorbeeld via „ring-
closing metathesis‟). (Zie hoofdstukken 2 en 5) 

2)  Een asymmetrische ring-sluitende reactie wordt uitgevoerd om én het 
stereocentrum én de ring structuur te vormen in een enkele transformatie. (Zie 
hoofdstukken 3 en 4) 

3) Een katalytische asymmetrische reactie wordt uitgevoerd op een prochiraal 
heterocyclisch substraat. (Zie hoofdstuk 6) 

 

In hoofdstuk 2 wordt iridium-gekatalyseerde allylische aminering van allylische 
carbonaten met ammonium als nucleofiel gebruikt om 2,5-arylpyrrolidines te 
synthetiseren. De gevormde producten worden gebruikt als chirale „auxiliaries‟, als 
organokatalysatoren en als de belangrijkste structuureenheid van verscheidene 
fosforamidiet liganden. Het gebruik van ammonium als stikstof nucleofiel is én 
kostenefficiënt én atoom efficiënt. Tijdens de reactie vindt een dubbele aminering 
plaats waarbij als eerste additieproduct een primair amine gevormd wordt. Dit 
primaire amine is veel reactiever dan ammonium en voert direct de volgende 
additie uit aan een ander allylisch carbonaat molecuul. Deze specifieke manier van 
synthese wordt gebruikt omdat het aldus gevormde chirale secondaire amine -dat 
wordt verkregen met excellente opbrengst en selectiviteit- via een „ring-closing 
metathesis‟ kan worden omgezet naar het pyrroline. Het gewenste eindproduct 
wordt vervolgens verkregen door het gebruik van een milde en selectieve 
organocatalytische reductie met een katalysator wiens structuur gebaseerd is op 
flavine. Tijdens het hier beschreven onderzoek werd de laatstgenoemde 
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gekatalyseerde transformatie geoptimaliseerd en werd er voor deze omzetting een 
nieuw reactieprotocol ontwikkeld. 

 

Hoofdstuk 3 is een van de hoogtepunten van het hier beschreven werk. In dit 
hoofdstuk wordt de ontwikkeling van de eerste intramoleculaire asymmetrische Ir-
gekatalyseerde allylische amidering beschreven. Voor deze transformatie worden 
chirale Ir/fosforamidiet complexen gebruikt als katalysator. Verder wordt de 
trifluoroacetamide groep gebruikt als beschermgroep én als nucleofiel voor de 
asymmetrische Ir-gekatalyseerde reactie. De ontwikkelde transformatie vormt 
chirale tetrahydroisoquinolines en verzadigde stikstof-bevattende heterocyclische 
verbindingen met uitstekende stereoselectiviteit. De producten zijn bruikbare 
chemische bouwstenen en kunnen bovendien makkelijk verder worden 
gefunctionaliseerd door het omzetten van het eindstandige olefine. De vele 
mogelijkheden voor het gebruik van deze producten wordt geillustreerd door twee, 
ondernomen maar niet voltooide, syntheseroutes van een in de natuur 
voorkomende stof, crispine A, en de synthese van een biologisch actieve stof, 
Almorexant. 

 

Pogingen tot het gebruik van de ontwikkelde allylische amiderings methodologie 
voor de vorming van β-carboline verbindingen worden beschreven in hoofdstuk 4. 
Ondanks dat het uiteindelijke doel, een asymmetrische formatie van de gewenste 
verbindingen, niet haalbaar bleek, worden toch een aantal syntheseroutes voor het 
vormen van indol verbindingen beschreven. De studies naar de asymmetrische 
transformatie hebben ook tot belangrijke inzichten geleid die het mogelijk maakten 
om de asymmetrische allylische amidering te ontwikkelen die is beschreven in 
hoofdstuk 3. Uiteindelijk is het ook gelukt om de gewenste produkten racemisch te 
synthetiseren via een niet-gekatalyseerde route. 
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In hoofdstuk 5 wordt een nieuwe route voor het synthetiseren van stikstof 
heterocycli gepresenteerd. Voor deze nieuwe route wordt een aanpak gebruikt die 
erg lijkt op de aanpak beschreven in hoofdstuk 2. Een allylische substitutie reactie 
geeft een stereogeen centrum én een eindstandige dubbele binding, waarna het 
gevormde olefine wordt gebruikt om een heterocyclisch product te vormen door 
middel van een metathese reactie. Door de koper-gekatalyseerde allylische 
substitutie reactie met Grignard reagentia te combineren met een opeenvolgende 
olefinische of een-yn „ring-closing metathesis‟ worden de overeenkomstige chirale 
producten verkregen met excellente stereoselectiviteit. Een voordeel van de 
modulaire aanpak is dat heterocycli met een grootte van zes tot acht atomen 
gevormd kunnen worden. Verder kunnen de gevormde producten van de een-yn 
metatheses, die een dieen functionele groep bezitten, makkelijk verder worden 
gefunctionaliseerd. Ook wordt gedemonstreerd dat deze methodologie kan worden 
gebruikt om chirale lactamen te vormen, wel moet door verder onderzoek de 
opbrengsten en selectiviteiten van de laatst genoemde reacties worden verbeterd. 

 

In hoofdstuk 6 wordt gebruik gemaakt van een andere aanpak om chirale 
heterocycli te vormen. In dit hoofdstuk wordt beschreven hoe door middel van een 
koper-gekatalyseerde asymmetrische geconjugeerde additie reactie van Grignard 
reagentia aan coumarines, waarbij het substraat dus al een heterocyclus is, chirale 
heterocycli gevormd worden. De gekozen substraten werden nog niet gebruikt voor 
dit soort katalytische transformaties aangezien de coumarines een relatief lage 
reactiviteit als Michael acceptor hebben. Door het kiezen van de juiste katalysator 
kunnen de overeenkomstige chirale lactonen worden verkegen met excellente 
stereoselectiviteit. Een belangrijke eigenschap van deze transformatie werd 
ontdekt tijdens dit onderzoek: het chirale magnesium enolaat, dat gevormd wordt 
als intermediair, kan in-situ verder reageren met alcoholen of amines tot ring 
geopende chirale phenol esters en amides. Voor deze specifieke ring geopende 
chirale esters bestond nog geen syntheseroute voordat dit onderzoek plaatsvond. 
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Verder betekend de ring-opening door amines de eerste in literatuur beschreven 
formele asymmetrische geconjugeerde additie aan amides.  

 

Het onderzoek dat beschreven wordt in hoofdstuk 7 was gericht op het ontwikkelen 
van een asymmetrische nikkel-gekatalyseerde reductieve koppeling van diënen 
met aldehyden dat zou moeten leiden tot chirale bis-homoallylische alcoholen. Een 
van de grote voordelen van deze reactie is dat twee stereocentra in één 
gekatalyseerde transformatie gevormd worden. De chirale producten zijn 
verscheidende malen gefunctionaliseerd en uitstekend geschikt voor verdere 
modificatie via het eindstandige olefine, het alcohol en de aromatische groep. Het 
werd ontdekt dat de chirale nikkel complexen met monodentaat fosforamidiet of N-
heterocyclische carbeen liganden leiden tot het gewenste product met een nog 
nooit vertoonde hoge diastereoselectiveit, maar met slechts middelmatige 
enantioselectiveit. 

1
H NMR en 

31
P NMR studies werden uitgevoerd om bewijs voor 

het gepostuleerde mechanisme via nikkel-hydride complexen te verkrijgen. 
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Deutsche Zusammenfassung 

 

Heterozyklische Strukturelemente sind in einer großen Anzahl in natürlich 
vorkommenden und/oder biologisch aktiven Substanzen zu finden. Darunter finden 
sich häufig stickstoff- oder sauerstoffhaltige Ringsysteme variabler Größe mit 
Stereozentren. Der selektive Aufbau letzterer stellt eine Herausforderung für die 
organische Synthese dar. 

In der vorliegenden Arbeit ist die Entwicklung synthetischer Routen zur 
Konstruktion stickstoff- und sauerstoffhaltiger chiraler Heterozyklen beschrieben. 
Alle angewandten Synthesestrategien greifen auf die asymmetrische Katalyse mit 
Übergangsmetallen zurück. Dies ermöglicht den selektiven Aufbau beider 
Enantiomere des gewünschten Stereozentrums, da in den hier diskutierten Fällen 
beide Enantiomere des jeweils verwendeten chiralen Liganden erhältlich sind. Dies 
stellt einen deutlichen Vorteil gegenüber anderen asymmetrischen 
Synthesemethoden, wie z.B. des Rückgriffs auf den “chiral pool” dar. In dieser 
Arbeit wurden sowohl literaturbekannte Synthesemethoden auf neue Substrate 
angewendet als auch neue Methoden für die Synthese von heterozyklischen 
Verbindungen entwickelt. Die Synthesewege lassen sich in drei Kategorien 
klassifizieren: 

 

1) Die Konstruktion des gewünschten Stereozentrums an einem linearen 
Substrat, welches in der Folge durch Ringschlussreaktionen (wie z.B. der 
Ringschlussmetathese) zu einem Heterozyklus umgesetzt wurde (siehe 
Kapitel 2 und 5). 

 

2) Sowohl das Stereozentrum als auch der Heterozyklus werden in einer 
einzigen Reaktion aufgebaut (siehe Kapitel 3 und 4). 

 

3) Eine katalytisch asymmetrische Transformation an einem prochiralen 
Heterozyklus wird durchgeführt (siehe Kapitel 6). 

 

In Kapitel 2 wird die Synthese von 2,5-Diraylpyrrolidinen mittels asymmetrischer 
iridium-katalysierter allylischer Aminierung von Allylcarbonaten mit Ammoniak 
beschrieben. Die so zugänglichen Produkte finden als chirale Auxiliare, 
Organokatalysatoren sowie Schlüsselbestandteile von chiralen 
Phosphoramiditliganden Anwendung in der organischen Chemie. Die Verwendung 
von Ammoniak als Stickstoffnukleophil ist vorteilhaft, da es günstig und 
atomökonomisch ist. Im Verlauf der Reaktion kommt es zu einer zweifachen 
allylischen Aminierung, da das intermediär auftretende primäre Amin ein deutlich 
besseres Nukleophil als Ammoniak ist und sofort mit einem weiteren Äquivalent 
Allylcarbonat abreagiert. In unserem Fall ist dieser Reaktionsweg erwünscht, da 
das resultierende chirale sekundäre Amin – zugänglich in exzellenten 
Stereoselektivitäten und sehr guter Ausbeute – mittels Ringschlussmetathese zu 
einem chiralen Pyrrolidin umgesetzt werden kann. Die Synthese der gewünschten 
chiralen Pyrrolidine wird durch eine organokatalytische Olefinreduktion mit einem 
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Flavinderivat abgeschlossen. Letztere Reaktion wurde anhand der vorliegenden 
Reaktion optimiert und daraus ein neues Reaktionsprotokoll entwickelt. 

 

Ein Höhepunkt der vorliegenden Arbeit ist in Kapitel 3 beschrieben. Dort wird die 
Entwicklung der ersten asymmetrischen intramolekularen iridiumkatalysierten 
allylischen Amidierung vorgestellt. Diese neue Methode basiert auf der 
Verwendung von chiralen Iridium-phosphoramiditkomplexen sowie der Ausnutzung 
der Reaktivität der Trifluoracetamidgruppe als Schutzgruppe zum einen und als 
Nukleophil in der allylischen Amidierung zum anderen. Die Zielmoleküle dieser 
Umsetzung, chirale Tetrahydroisoquinoline und gesättigte Stickstoffheterozyklen, 
sind mit sehr guter Stereoselektivität zugänglich. Beide Produktklassen stellen 
nützliche Synthesebausteine dar, da sie durch die terminalen Olefine leicht zu 
modifizieren sind. Die Vielseitigkeit dieser Moleküle wurde in zwei versuchten 
Synthesen eines natürlich vorkommenden Alkaloid, Crispine A, sowie eines 
Arzneistoffs, Almorexant, demonstriert. 

Die angestrebte Erweiterung dieser Methode auf die Synthese von chiralen β-
Carbolinverbindungen ist in Kapitel 4 beschrieben. Auch wenn letztendlich die 
gewünschte Umsetzung nicht erreicht wurde, stellt dieses Kapitel einige mögliche 
Ansätze für die Synthese von substituierten Indolverbindungen vor. Diese 
Untersuchungen ergaben wichtige Erkenntnisse, die sich auch für die Entwicklung 
der in Kapitel 3 vorgestellten Tetrahydroisoquinolinsynthese wertvoll erwiesen 
haben. Die angestrebten β-Carbolinverbindungen konnten letztendlich auf einem 
nicht-katalysierten Syntheseweg in racemischer Form hergestellt werden. 
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In Kapitel 5 wird die Entwicklung einer neuen Synthese von chiralen 
Stickstoffheterozyklen variaber Ringgröße diskutiert. Ähnlich der in Kapitel 2 
vorgestellten Syntheseroute wird hier zunächst ein Stereozentrum an einem 
linearen Substrat mittels asymmetrischer allylischer Substitution eingeführt, 
wonach das Ringsystem per Metathese aufgebaut wird. Diese wird durch die 
terminale Doppelbindung, das Produkt der allylischen Substitution, ermöglicht. Die 
Kombination von asymmetrischer kupferkatalysierter allylischer Alkylierung mit 
Ringschlussmetathese liefert die gewünschten sechs- bis achtgliedrigen 
Heterozyklen in exzellenten Stereoselektivitäten. Diese Variabilität der 
Syntheseroute stellt einen großen Vorteil dar. Falls eine Enin-metathese verwendet 
wird, entstehen Heterozyklen mit einem Dienmotiv, welches sich gut für die spätere 
Funktionalisierung, z.B. durch eine Diels-Alder-Reaktion, eignet. Es konnte gezeigt 
werden, dass sich diese Methode auch auf die Synthese von chiralen Laktonen 
erweitern lässt. Allerdings sind weitere Untersuchungen notwendig, um die 
Ausbeuten und Stereoselektivitäten dieser Umsetzung zu verbessern. 

 

Kapitel 6 beschreibt die Entwicklung einer asymmetrischen kupferkatalysierten 
konjugierten Additionsreaktion von Grignardreagenzien an Coumarinderivate. 
Coumarine konnten bisher nicht mit diesem Reaktionstyp umgesetzt werden, da 
sie verhältnismäßig reaktionsträge sind. Durch die richtige Ligandenwahl sind die 
Additionsprodukte jedoch in guten Stereoselektivitäten und Ausbeuten erhältlich.  
Während der Untersuchung dieser Reaktion wurde eine weitere Eigenschaft dieser 
Substratklasse entdeckt: Die intermediären chiralen Magnesiumenolate lassen sich 
mit Aminen oder Alkoholen per Ringöffnungsreaktion zu den entsprechenden 
ortho-Phenolestern oder –amiden umsetzen. Zum einen waren diese Ester mit der 
bisher bekannten Methode nicht herstellbar und zum anderen stellt dies eine neue 

formale konjugierte Additionsreaktion an -ungesättigte Amide dar. 
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Im letzten Abschnitt dieser Arbeit (Kapitel 7) werden die Untersuchungen zur 
Entwicklung einer neuen nickelkatalysierten reduktiven Kupplungsreaktion von 
Dienen mit Aldehyden zur Herstellung von chiralen Bishomoallylalkoholen 
vorgestellt. Ein großer Vorteil dieser Reaktion ist die Tatsache, dass in dieser 
katalytischen Umsetzung zwei Stereozentren zugleich aufgebaut werden können. 
Die chiralen Produkte sind durch das terminale Olefin, den sekundären Alkohol 
sowie durch den Aromaten hochfunktional und damit wertvolle chirale 
Synthesebausteine. Chirale Nickelkomplexe mit Phosphoramidit- oder N-
heterozyklischen Carbenliganden konnten als sinnvolle Katalysatoren zur 
Herstellung der gewünschten Produkte identifiziert werden. Diese konnten mit 
exzellenter Diastereoselektivität, jedoch mit nur mäßiger Enantioselektivität isoliert 
werden. 

1
H NMR- und 

31
P NMR-Studien der Reaktion konnten wichtige Messdaten 

zur Unterstützung des vorgeschlagenen Reaktionsmechanismus via 
Nickelhydridkomplexe liefern. 
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