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Abstract—Private houses are more and more enabled with
devices that can produce renewable energy, and the not so
remote chance of selling the surplus energy makes them new
players in the energy market. This market is likely to become
deregulated since each energy home-producer can negotiate
the energy price with consumers, typically by means of an
auction; on the other hand, consumers can always rely on
energy companies, even if their energy is more expensive.
This scenario could lead to advantages for users, but it is
certainly complex and dynamic, and needs an appropriate
management. To this purpose, in this paper we propose an
agent-based application to deal with the negotiation among
different parties producing and consuming energy. Software
agents, thanks to their autonomy in taking decisions, well suit
the requirements of the proposed scenario. For our application,
we adopt a strategy derived from game theory, in order to
optimize energy production and supply costs by means of
negotiation and learning. The effectiveness of our approach is
proved by simulation results of a situation involving energy
buyers, energy producers using renewable micro-generation
facilities and large-scale traditional electricity companies.

Keywords-Energy; Market; Agents; Game theory;

I. INTRODUCTION

The evolution of the energy market started when the

centralized approach, that is characterized by a monop-

olistic scenario of energy providers strictly regulated by

the governments, opened towards the introduction of new

players. However, the real evolution towards a completely

new paradigm is accomplished by the growing diffusion of

solar panels and wind turbines (also inserted in domestic

environments): first, the user could produce clean energy

using renewable sources and decide to feed surplus energy

to the electricity grid for obtaining bill discounts from the

service providers as reward. In a second and still ongoing

step of this deregulation, Transmission and Distribution

System Operators (TSOs and DSOs) are also undergoing

a liberalization process. They might extend their services

to domestic users who rely on renewable energy devices

in order to let them participate as consumers and at the

same time producers, forming a completely new form of

actor (the prosumer). The new kind of player introduces new

paradigms of tariff profiles [1] as well as new negotiation

procedures (e.g: the auction [2]). All these changes are

perfectly compliant to the introduction of the Smart Grid,

giving the possibility to ordinary consumers to retrieve their

needed energy from the neighbouring prosumers that can

supply both those domestic environments, creating a new

kind of decentralized distribution net involving several kinds

of sellers with added dynamism and an higher time granular-

ity for contracts’ stipulation. The novelty introduced in this

paper is to propose a specific agent oriented architecture in

which different software agents could act like different type

of users: from the ordinary energy consumer represented

by a buyer agent, to the specific designed prosumer agent,

but also considering agents acting on behalf of traditional

big energy producers. This choice of agents refers to the

short-term paradigm for contracts’ stipulation: taken into

account that the introduction of the Smart Grid will require

autonomous systems able to deal with the negotiation aspect

on behalf of the end user. Obviously, such an architecture

needs appropriate design choice to deal with system hetero-

geneity, reliability, scalability and security issues. To achieve

these challenges we have used JADE1 as agent platform to

perform our tests. Such tests have to deal with all the most

important aspects of the energy problem: balancing electric-

ity demand, forecasting supplies and also negotiation with

specific market adaptation strategies. Since the autonomous

agents have to decide how to obtain the cheapest energy

contract, the class of minority game adapted to this project,

will help the market participants to find the best strategy

in the short-term energy market, making them able to take

decisions regarding contacting the most convenient sellers.

Sellers can be represented by two categories (the prosumer

and the Genco, with the latter one being the big traditional

energy supplier). The Multi Agent System (MAS) designed

represents a very interesting application in the field to model

this future energy exchange scenario. The real application

of such project in an environment should feature a constant

monitoring of thousands of domestic nodes; this will result

obvious difficulties in realization: however as far as the

metering aspect is concerned, an hybrid scenario with a real

domestic environment with multiple other agent simulated

nodes have been previously provided [3]. As for all the other

1http://jade.tilab.com/
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aspects, a MAS simulation will be presented in this work.

After reviewing the related literature (Section II), this

paper presents an overview of the models and agents used

(Section III) followed by technical considerations regarding

the platform related issues (Section IV). In Section V the

market adaptation algorithm will be presented, showing

simulations and results in Section VI. Final remarks and

future work possibilities end the paper in Section VII.

II. RELATED WORK

For implementation purposes we used JADE , therefore

using several reports for reference (e.g: [4], [5]). Nonethe-

less, agents are not the only solution proposed by researches

in this field: an alternative architecture featuring web based

approach in a Java powered framework with extensive usage

of JSP/Servlet pages as resources have been previously

investigated [6]. Further discussions on using different tech-

nologies can be found in Section IV. Interesting applications

featuring agents in the energy market can be found in [7].

In this latter work, Ramchurn et al. describe a decentralized

agent approach for avoiding energy consumption peaks,

achieving less polluting emissions and average lower con-

tract prices using all the features a Smart Meter can offer.

Vytelingum et al. in [8] used the game theoretic approach

in order to find the Nash equilibrium to determine whenever

an agent inserted in a Smart Grid is supposed to use a

previously stored amount of energy or obtain electricity

from the grid. We have to specify that our approach relies

on the fact the buffering and/or storing electric energy is

difficult and expensive to achieve and hardly fits the short-

term approach to the market that (especially for wind power)

is proven to be more effective [9]. Definitions and notations

for the game theoretic concepts commonly used later in this

work can be found in Layton-Brown and Shoham work [10]

and [14]. For deeper knowledge investigations on repeated

games, see for instance [11], while the reference example

of minority game used in solving the presented problem

has been already investigated in [12], [13]. The minority

game features several specifications and example scenarios,

however the scenario presented by the previously cited

authors is the one that we refer with the term ”minority

game”.

III. MODELLING OF AGENTS APPLICATION

In this section we give a complete overview of the agents

set required in the energy trading scenario proposed: in

particular we describe the kind of agents involved in the

energy market with a in depth explanation of the most

important steps of their behaviors.

Buyers are energy consumers and they usually outnumber

the sellers; they do not produce energy so they are searching

for obtaining their electricity demand supplied by stipulating

contracts related to a specific time interval. Each market day

is divided into several time intervals and for each one every

buyer has to decide in advance who is going to be its energy

supplier for the next time interval. In the developed software,

a balancer agent controls the amount of energy exchanged in

the negotiation process (the details are explained later in this

section). Buyers can predict how much energy they need for

the following time interval. This can be obtained by reading

previous electric measurement and by applying an energy

consumption forecasting algorithm. It is important to per-

form this forecast before any negotiation, so that the buyer

can choose the most suitable seller according to the energy

availability of the suppliers. A really effective forecasting

algorithm that fits our short-term paradigm is thoroughly

described in [15] and it is based on an adaptive two-stage

hybrid network with a Self-Organized Map (SOM). Every

buyer is in competition with other buyers: each consumer

has the goal to stipulate the cheapest contracts by deciding

to attend an auction handled by prosumers (constituted by

an iterative process of sending sealed bids) or by contacting

a big energy producer (Genco) for obtaining the cheapest

short-term contract before the Genco reaches a congestion

threshold of its production lines.

Prosumers produce and consume energy; even if there

are more prosumers then gencos, they produce a smaller

quantity of electricity compared to traditional suppliers.

Their production derives from the use of solar panels

or wind turbines and if the amount of produced energy

is higher than their domestic needs, they may decide to

sell the surplus of electricity to other neighbors (buyers).

Prosumers have also information about weather conditions

in order to have a forecast on the amount of energy that will

be produced (an example on how to automatically retrieve

weather forecasting information is by using existing web

services).

A buyer can stipulate a contract with a prosumer after

winning an auction round, based on sealed bids. For a

prosumer once the investment in a small-scale energy

production plant based on renewables is realized, any

positive amount derived by selling energy contributes to

the investment return. Therefore in order to be attractive,

prosumers’ starting prices can be considered substantially

lower than Gencos’ initial contract prices. Prosumers
communicate to buyers an initial starting price that is

influenced by contracts with DSOs/TSOs and a random

cost due to the devices used to produce electricity (e.g.,

maintenance costs). The energy produced by a prosumer
has to be sold and cannot be stored or buffered. Every

prosumer is in direct competition with other sellers: they

have to propose an appealing starting price and make an

intelligent use of refusing bids in order to rise the price

and, at the same time, avoid pushing buyers in contacting

other sellers.

Gencos are big energy generating companies. They have
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a theoretically infinite amount of energy supplies, but sold

at a fixed price, so there is no auction negotiation and

every contract can be stipulated much faster compared to

the prosumers’ auction system.

However their prices are higher than prosumers’ starting

price and they depend on TSO/DSO contracts, raw mate-

rial prices and (most important in our scenario) threshold

exceeding costs. This aspect is thoroughly explained in the

following paragraph and represents a modeling choice to

prevent overloading production lines as well as avoiding

concentrating a huge number of consumers for a single big

producer. A Genco receives a request from a buyer; then

it just calculates the price according to the above-explained

variables and communicates the final price back to the buyer.

Gencos’ threshold system. A key point is how much

energy a generating company can produce without having

to buy a quantity on the market (e.g., a foreign and

more expensive market) or switching to more polluting

production lines. Thus we assume that every Genco has a

supply threshold, and once reached, the Genco has to buy

energy abroad (the energy production of that seller is under

stress). So the energy cost can be calculated as follows:

Cu =

{
Costenergy if below supply threshold
Costenergy + (EC ×A) if above supply threshold

where Cu is a single energy unit cost, EC > 1 is an external

cost constant and A > 0 is the number of energy units

above the threshold.

In addition, surpassing the threshold might also be harm-

ful for the environment since more polluting plants might be

started (e.g., oil based). Asking the Genco for contracts when

this threshold is already surpassed leads to more expensive

contract prices. Those prices rise as we get further from the

specified threshold. This particular pricing strategy already

introduced in [3] is perfectly compliant with the findings

of other researches: from the already cited [7] and [8] to

older studies led by Brazier et al. [16]. These researches

do not provide the same formulation, however the common

conclusion is that satisfying large number of demands will

stress energy production lines introducing additional costs

for the final user.

A. Balacing aspects

Other auxiliary agents, not directly involved in the ne-

gotiation process are represented by the Balancer and the

Time agents. While the latter’s only duty is to provide a time

reference for synchronizing processes, the Balancer agent is

responsible for the demand/supply balancing aspects: it acts

in the very first step of the negotiation round by retrieving

the single demand of every consumer and the production

forecasts of the prosumers.

Having a clear understanding of the balancing needs of the

grid is essential. In fact, recent studies [17] have shown how

the nationwide energy dispatch will react to the introduction

of renewable sources; in particular, the energy production

Figure 1. U.S. Nationwide energy dispatch without (a) and with (b)
renewable contributions. Source [17]

derived from traditional sources will decrease: in the U.S.A

a future projection of four summer days in year 2030 is

depicted in Figure 1 and shows two scenarios, with and with-

out solar penetration and how their percentage of produced

energy compares to traditional sources. The demand satisfied

by the total production from all sources remains constant in

these two scenarios; however, in (b) we can see that the

introduction of PV and CSPs (respectively PhotoVoltaic and

Concentrating Solar Power plants) will cause decreasing in

production by all the traditional suppliers.

The data in Figure 1 refers to GridView2 production cost

model, with hourly load, solar and wind projections for 2030

based on 2006 information to maintain data correlation. On

a separate note, it is important to point out that, in Figure 1,

solar plants have production peaks during central hours of

the examined days.

In our model we are clearly dealing with the (b) situation

when it comes to balancing issues. Several mathematical

models are presented, but most of them are different way to

set to zero the algebraical sum between demand on one side

and supply to the other side [18], taking into account that

rising of renewables will be balanced by a decreasing of

the traditional energy production. Here follows a simplified

mathematical approach that considers all the aspects already

explained in this section.

Given:

Gcx as Genco num.x with SGcx being the supplies provided
by that specific Genco
Ng number of Gencos
Pry as Prosumer num.y with SP ry being the supplies
provided by that specific Prosumer
Mp number of Prosumers
D total demand of the observed Area and Time Interval
with DCtk the demand of the Kth buyer
Ti time interval(s)

2http://www.abb.com/industries/
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Ct number of consumers in the observed Area and Time
Interval

The ability of producing an amount of energy is influenced

mostly by the market of raw materials for the Genco

production line, while the prosumers have to deal with local

weather.

Producing more than the quantity that they are supposed to

supply is risky for the sellers since we assume the absence

of buffering or storing of surplus energy. Moreover, we have

to take into account all the previous considerations regarding

traditional suppliers versus PVs and CSPs.

Demand D is calculated by a specific algorithm of demand

forecasting, but no matter which kind of statistics we are

going to use in order to solve that, we have to specify that

the demand refers to a pre-determined interval of time.

Obviously D is just the sum of all the demands (at a

certain time) needed for all the consumers in the area. It

has to satisfy the balance relationship in equation 1:

Ng∑
i=1

SGci +

Mp∑
j=1

SP rj =
Ct∑
k=1

DCtk (1)

Equation 1 does not take into account unavoidable leaks

and calculating errors. On the other side, if the supply and

demand forecasting are efficient and precise enough, we

can rely on an easy implementation model for simulations.

Equation 1 is quite straightforward in its meaning: the sum

between the two production sources (Gencos and prosumers)

should be equal to the total consumer demand. Also, from

previous sections, we know that dealing with a fixed demand

will cause the other two elements to change accordingly and

it is more likely to see in the future an increment on the

prosumers’ supplies that will be balanced by a decrease of

gencos’ production.

B. Agent and message interactions

Consumers, different kinds of sellers and auxiliary agents

can be easily distributed among several areas and their

messaging topology is represented in Figure2: we can see

how consumers and sellers do not communicate with each

other, but they can exchange messages with all other agents

belonging in the other categories. In Figure3 an example

message topology is shown.

C. Agents behaviour

Other agents used for simulation purposes are represented

by an Agent Creator who is able to dispatch the other agents

in the respective areas [20] and an exception handler agent

used to increase performances, which has been implemented

during scalability and reliability tests [19].

In order to provide a clearer picture on how the contract

negotiation and the adaptation to the energy market has been

Figure 2. Message topology between peers. Source [19], [20]

Figure 3. Example of contract and messaging net between different agents
scattered in a distributed environment. Source [19]

modelled for our test simulations, this section presents an

overview of the behavior that agents are following during a

single negotiating round. Some auxiliary agents have been

left out, due to their simple tasks that does not require

further explanations, while the Balancer and Prosumer’s

behavioural steps are shown in Figure4. Also the Genco has

been left out due to the simplicity of its behavior compared

to buyers/prosumers auction system and due to the fact that

its threshold pricing model has already been thoroughly

explained.

The steps in figure 4 provide a complete picture on what

happens during a single negotiating round. Some behaviors

are common, such as the discovery of agents according to the

role they have: this is obtained using a feature of the chosen

agent platform. In fact, JADE has a distributed Directory

Facilitator (DF) in which any agent can register itself to be

then found by other agents distributed elsewhere, therefore

the DF acts as a yellow pages service. The registration

itself is not shown in Figure4, since just the steps in the

JADE main behavioural method (i.e: action()) is shown.

Registration in the DF is done just once in the initializing

method, while the search and discovery is done in every

negotiating interval. This latter choice obviously introduces

more computational load, however it is completely justified

for having a dynamic architecture in which the number of

total peers is constantly changing. An introduction of a new

seller, for instance, will be known to the other agents starting

635635638641



Figure 4. Steps in the behavior of the main agents involved in the negotiation and balancing aspects.

from the following time interval. These and others technical

aspects will be explained in Section IV.

Initial steps indicate the retrieving of web services for

both consumers and sellers. The goal of the former is

to obtain the local temperature to know in advance if

an air conditioning system will be active: thinking about

a function for describing the bound between temperature

and the consequent energy consumption, we can roughly

describe a V shaped function in which to the lowest amount

of energy used corresponds to average temperature from 19

to 21 degrees, while we have consumptions peak as far as

we move from this point (meaning that is either too hot or

too cold). An agent can retrieve temperature values using

appropriate web services and a prosumer does the same for

obtaining weather information for forecasting its production

(e.g: wind direction and strength in case it has a micro

generation through wind turbine). Still regarding the buyer’s

initial steps, a buyer can retrieve informations about previous

consumptions and also on going tariffs by interacting with a

Smart Meter (a new generation electric energy consumption

reader). This has been previously and successfully tested

with this presented implementation [3].

Concerning the buyer’s market strategy and adaptation

to the dynamics of the short term electricity contracts, in

Figure4, we can see how the agents’ decisions are taken in

different steps: as soon as they have received the notification

from the balancer to start the negotiation, they have to first

decide to contact a prosumer or a Genco. This is done by

using a minority game derived algorithm (see Section V),

taking into account the limited prosumers supplies compared

to the traditional Gencos. In case of the choice of contacting

a prosumer, also the amount of stakes and maximum number

of sent bids follow the adaptation algorithm: the goal is to

avoid wasting time in sending multiple bids while Gencos

are exceeding their production threshold. The market adapta-

tion deals with the last step: every consumer has to evaluate

if his budget expectations have been respected, changing

how to rise their bids accordingly to the previous negotiation

outcomes. This latter step is obtained by an added fuzzy

logic block.

IV. TECHNOLOGIES AND PLATFORMS

While in the previous section we provided an exhaustive

overview of the agents involved, here we present the used

platform. We justify how an agent approach can perfectly fit

the need of an energy market system, especially compared

to traditional (centralized) approaches that involve a central

web server handling all the necessary information [6].

636636639642



Several past researches (e.g: the PELLUCID related

project [21]) elected JADE (Java Agent Development Envi-

ronment) [4] as the best or one of the best agent platforms

for general purpose uses. It features the FIPA3 standard mes-

saging protocol, as well as an ontology support in an open

source highly customizable environment. The continuous

development of extensions adds further possibilities for the

designer while still maintaining a quite good efficiency [22].

The use of JADE to solve and simulate our problem pointed

out several advantages compared to the traditional web ap-

plications for centralized management: issues like mobility

and security [23] can be easily taken into account in a

transparent way still obtaining the same results. The JADE-

LEAP extension allows the designer to load a JADE agent

in devices with limited computational capabilities with no

modifications to the code. In our context, this aspect is

useful when thinking about embedding in a Smart Meter

(a new generation household energy consumption reader)

or on board computing devices in hybrid cars. The same

transparency has been found in conducting tests for securing

exchanged data [23], [20] using JADE-S (JADE Security

extension): security issues are a critical concern in this

kind of applications since sensitive data is passed through

different agents (therefore hosts). Traditional approaches

obtain the same degree of security by further software

implementation for encrypting messages, authorization and

authentication, without the transparency featured by JADE-

S.

While a centralized approach features a single point of

failure architecture, our JADE architecture for the energy

problem can easily run in a distributed environment strongly

decreasing chances of failures for the auxiliary agents. Agent

replication and mobility (also fully supported by JADE) give

us other ways to increase the safety of our architecture, and

that is important due to the criticality of having fault in an

energy provisioning service.

During a single negotiation round each buyer agent

can contact multiple sellers (both prosumers and Gencos),

switching from one to the other according on the negotiation

outcome or insisting in auctions by rising the bids several

times. This implies a necessary large volume of exchanged

FIPA complaint messages that introduces limits while testing

the architecture with a large number of agents. However, the

tests done with a 1000 MBPS Ethernet network between six

machines having an Intel Core2 Duo E6650 @ 2.33 GHz

with 2Gbyte RAM, running on Debian GNU/Linux 6.0 (Ker-

nel 2.6.32-5-686) with JADE version 4.1 and JRE 1.6.0.24

(just-in-time compiler enabled) show that the simulation runs

at a limit of 818 total agents with an average of 2865639

exchanged messages during an hypothetical division of six

time intervals [19]. On a single host, the number of agents

we can test being sure of trustful results decreases to

3http://www.fipa.org/

243. These numbers represent a sufficient sample for our

purposes still being sensibly larger than the number of agents

that would be present in case of an implementation in a

real scenario. In fact, these limits are set by the memory

availability and CPU usage of the host and not by the

amount of message exchanged. In addition, since a single

host represents a single end user, it is very unlikely to have

more then 3 or 4 agents per host. The whole distributed

architecture however, will handle thousands of peers. The

computational load will be actually balanced in thousands

of heterogeneous hosts.

In section III-C we pointed out how an agent features

one or more behaviours that are divided in several steps:

according to [5], the scheduling of behaviours in an agent is

not pre-emptive (as for Java threads) but cooperative. This

means that is up to the programmer to define whenever

an agent switches from the execution of a behavior to

the execution of the next one. Even if all of this implies

the necessity of further programming efforts, it forces the

architecture to handle a single Java thread per agent, but

on the other side it provides better performances since

behaviour switch is extremely faster than Java thread switch.

Other advantages compared to a standard Java programming

lies in the elimination of all synchronization issues between

concurrent behaviours accessing the same resources (with

an obvious performance increase).

V. MODELLING OF AGENT STRATEGIES

As already introduced, the buyer agents in our architecture

are supposed to chose between contacting a Genco or a

prosumer when they first receive a notification for beginning

the negotiation. This two path approach has to lead to the

cheapest energy contract possible for the buyer that acts

on behalf of an human user and therefore has to simulate

his/her rationality. Having a restricted set of actions as initial

choices and a final outcome to be evaluated suggests us to

seek in the game theoretic literature for a similar scenario

that we can apply for solving our problem. In particular in

the class of minority games we can think about a scenario

in which two actions are initially possible and the outcome

of this game depends on the actions of the other players,

provided that each participant does not know in advance

how his competitors will act. In these games, the players

who have chosen the action taken by the minority of the total

participants are rewarded with higher payoffs. Furthermore,

since the energy market model proposed repeats itself in

several negotiating round we should also take into account

the game theoretic notion of repeated game. We are now

presenting an already solved basic game scenario and on

a second step we will show how to extend it to provide

our buyer agents with an adapting strategy for the presented

market model. This model is also described in a previous

work [24], however, the simulations featured in that work,

did not involve JADE software agents.
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Table I
EL FAROL BAR PAYOFF MATRIX

Action Crowded Bar not Crowded Bar

Attend L H

Do not Attend M M
With payoff score H > M > L, with M unconditioned.

A. El Farol Bar game

“El Farol Bar” is an existing bar situated in New Mexico

(USA). Every Thursday night it delivers discounted drink

prices, becoming really appetizing for the local potential

costumers, making obvious why every person living near

the bar, wants to go there on that particular night. The bar

has been used to model the El Farol Bar minority game [12],

[13]. Given N as the population in the nearby area, and a

threshold T representing the bar capacity for hosting people,

for a participant point of view the night can considered as

enjoyable if the number n (≤ N) of participants during a

particular Thursday is below the threshold T (win situation).

Otherwise, it is better for the single person to remain at home

(lose situation, the pub is too crowded). The payoff matrix

of the above scenario is presented in Table I: an high(low)

payoff is retrieved if the player goes to bar with a number

of people below(above) the threshold, while it is supposed

an unconditioned average payoff in case he decide to stay

at home.

Switching back to our problem, the two possible initial

choices of action are still present in our energy related

scenario: if every agent contacts a Genco, it will result

in overloading the production lines of these big energy

producers, causing them to provision in more expensive

markets with high prices for the end-user and environmental

issues too. Likewise, if every agent contacts (or tries to do

so) the same restricted set of prosumers, only a few number

of participant gets a nice deal, due to the fact that a prosumer
can deliver a little amount of energy, especially compared

to a Genco.

In our problem, we can adapt the different degrees of

payoff of the bar scenario with the difference between what

a single agent expected to spend and what it actually spends

at the end of the negotiation interval (budget evaluation).

B. Solutions for the minority game approach

A simple way to find an equilibrium for the El Farol Bar

game has been proposed originally in [12]. We begin by

illustrating this first intuitive approach.

According to the demonstration in [12] there is a unique

symmetrical mixed strategy solution:

M − L

H − L
=

T−1∑
m=0

(
N − 1

m

)
pm[1− p]N−1−m (2)

Where p is the probability to go at the bar and M , L and

H the payoffs as shown in Table I.

Table II
INITIAL STATE 1 (TAB1)

Action P. has supplies P. has no supplies

Contact Pros. See TAB3 (+2 Ip) See TAB2 (0 Ip)

Contact Genco See TAB4 (+1 Ip) See TAB4 (+1 Ip)

Table III
INITIAL STATE 2 (TAB2)

Action P. has supplies P. has no supplies

Contact other P. See TAB3 (+2 Ip) See TAB2 (0 Ip)

Contact Genco See TAB4 (+1 Ip) See TAB4 (+1 Ip)

Using equation 2, we can see that for each participant we

have a given probability that can be used to decide whether

it is advisable to attend the discounted price night. Repeating

the game we can see that every agent sooner or later will

attend the bar and that most of the times, the pub will not

be so crowded.

When trying to apply the solution shown in the equation 2

to our energy problem, we map some variables as follows:

T for the ratio between the amounts of energy produced

by Prosumers over the total production, N is the total

number of buyer agents and M , H and L are intervals

defined according to the expected/actual money spent. A

difference between the bar game and our energy market is

that in the bar game if a number m of people are attending

the bar with m > T then m players are losing. In our

problem just T − m people are actually going to retrieve

a low payoff.

This initial model still lacks of influential variables like

time constraints and limited prosumers’ supplies, implying

the necessity of adding further stages to our game. We

now present an approach in which several tables represent

different payoff matrices for all the stages forming the

game. This new methodology that mixes the minority game

approach with a stochastic game (every payoff table refers

to a specific participant’s state) is used in order to model the

complexity of the energy problem.

The main idea behind the adaptation of the game we

propose is presented more formally in Figure 5. It is an

infinite game split into finite rounds. The decision each agent

takes at every state is compactly represented in the following

payoff tables.

Tables II and III are called initial state tables while

Tables IV and V are defined as final state tables. The

difference is that only Tables IV and V show an ending

of the negotiation, represented by the letters H , M or L as

the payoff entity inside those cells.

Every buyer starts by taking a decision in the first table

(referring to an element of the state space M). The balancer
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Let I be a set of agents representing the consumers;

P be the set of prosumers, while G represents the Gencos;

Players ∈ I move through different tables shaping the finite

state space M = {m0, m1, m2, m3}.

m0: initial state in which the agent i ∈ I decides who is going

to first contact. It can be a Genco or a specific Prosumer P0

∈ P.

m1: second state in which i decides who will be contacted

next, provided that D(i) > S(P0) with D being the consumer

demand and S is the seller’s supply capacity.

m2: here i decides if it is convenient to place a bid to a pre-

viously contacted prosumer Px ∈ P or abort the negotiation,

provided that D(i) ≤ S(P0).

m3: i decides to accept or not the offer of a specified Genco

Gx ∈ G.

Therefore each player (agent) i ∈ I can perform an action

inside the set(s):

Ai(m0) = Ai(m1) = {Contact Genco, Contact Prosumer};

Ai(m2) = {Place bid, Abort Negotiation};

Ai(m3) = {Accept offer, Refuse offer}.

The probability P to move from the current state mx to next

state (my) after performing a specific action a ∈ A, written

P (mx,a,my) is described in Tables II, III, IV and V with their

assigned payoff chains.

Figure 5. Game formalization.

Table IV
FINAL STATE 3 (TAB3)

Action Pros. accepts Pros. refuses

Place bid H Stay in TAB3 (-1 Ip)

Abort negotiation See TAB2 See TAB2 (0 Ip)

agent is the entity that knows how much energy can be

produced by all the prosumers and by using this information

it can calculate the number of buyers that could be served

by prosumers; this number can be related to the threshold

T in the El Farol game. According to that threshold we can

calculate the probability to contact prosumers instead of a

Genco in this stage of the negotiation (quite similar to how it

was possible to solve the “El Farol Bar” dilemma using the

unique mixed strategy solution). However, at this moment

we do not have a clear vision of future payoffs, but we can

Table V
FINAL STATE 4 (TAB4)

Action Genco above T. Genco below T.

Accept genco’s offer M L
Refuse genco’s offer See TAB2(-1 Ip) See TAB2(-1 Ip)

assign to those initial tables a certain amount of fictional

points that we call “Intermediate points” (Ips). Those Ips

represent the chain of payoffs for the stochastic game

approach: assuming that every action taken by a participant

agent is time consuming, decreasing Ips simulates time flow

as well as a risk increase that the participating agent should

be aware of. On the other side, higher Ips increase the chance

to have a satisfactory game result (H or M final payoff). In

this way the buyer is redirected to other tables until it reaches

a final cell: doing so the number of Ips can increase in case

it is a lucky choice (contacting a prosumer that for sure has

enough supplies) or decrease in the opposite scenario. In

the initial state tables the buyer is redirected to other tables

according to a previously calculated value that is related to

the amount of energy all prosumers can produce. In the final
state tables the algorithm is different: in order to simulate

the importance of the time variable, lower Ip values mean

that the buyer has been travelling around different tables for

such a long time and chances to find a suitable seller or

even a Genco that has not overtaken its threshold will be

scarce. That is because in the ending tables negative values

are present. When the Ip value is very small (<< 0) then

the agent is forced to get a contract with a Genco in order to

avoid wasting other time (and consequently other money).

At the end of each round, each buyer agent evaluates

its outcome. Above we said that the difference between

the expected money spent and the actual money spent can

point out who are the winners and who are the losers,

however ending a negotiation in a H(L) payoff cell of

a matrix not always ensure a win(lose) situation: that is

because the market dynamics (being bounded by swinging

prices of raw energy production materials) leads to constant

changes in energy minimum prices. Therefore obtaining

an higher contract price compared to the pre-determined

budget can happen even if the agent ended its cycle with

an H payoff: in this case it just means that the agent was

expecting an unrealistically low contract price. The same

considerations have to be done in the opposite scenario of

having an L payoff for a cheap contract. This implies the

addition of a fuzzy logic block able to adjust the expected

budget and the amount for the single bids (in case of a

prosumer auction). The further we are from the centre of

the fuzzy logic function, the stronger will be the reaction

of the agent (either to increase or decrease stakes and/or

expected budget), following simple and linear trends.

VI. SIMULATION

In such complex and dynamic scenario, a simulation is

needed to prove if the designed strategy could be used by

agents to negotiate in the market, thus obtaining cheaper

contract prices. In particular, we use 5 consumers, 3 pro-
sumers and 2 Gencos within a 10 round negotiation runs to

test the JADE agents implementation. This simpler scenario

allows us to evaluate the game based algorithm with different
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price scales using agents. The restricted number of agents,

does not compromise the purpose of the test: this is because

the kind of market modelled is more heavily influenced

by the ratio between total demand and prosumers’ supplies

rather than the number of agents per se. The simulation setup

uses a computer featuring an Intel Core 2 duo processor

(2.2 Ghz, 800 Mhz FSB) with 4 GB of RAM. We used

Windows 7 64 bit OS running JAVA SE 6 Update 21, using

JADE agent platform v. 4.0.1.

Several parameters can be adjusted influencing the agent

decision, namely: (1) number of Ips used as threshold in

order to redirect the participant from one final table to the

other; (2) difference between starting prices for the two kinds

of sellers; (3) threshold switching values in the fuzzy logic

block; (4) best way to assign values to H , M and L final

payoffs; (5) price dynamics from one round to the other;

(6) Gencos’ price penalties for exceeding thresholds; (7)

probability for a prosumer to become more expensive than

a Genco; and (8) accuracy about energy supply and demand

forecasting that might not be 100% correct.

The best way to give a precise value to these parameters is

to study an analytical formulation in which we can combine

all the other known values (e.g., number of participants

and amount of demands and supplies) in order to retrieve

the unknown constants. However, due to the complexity

and dynamics of the proposed model, we decided to use

a numerical approach by trying several value combinations

of every input variables of the algorithm.

At the end of each round, the buyer agent calculates

the average expecting budget and the average money spent,

assigning to each round number those other two values (e.g.,

round #, Paid Price, Expected Price).

In order to have a clearer idea of the efficiency and

precision of the strategy, we show the difference between

applying the presented algorithm or use a baseline set of

actions. In the latter scenario, every buyer will contact a

prosumer straightaway, since their starting prices are lower,

becoming more appetizing to a rational agent. In addition,

after signing a contract, the participant does not adjust any

strategy parameter.

We obtain the results shown in Figure 6, under the

following conditions: (1) intersection between average start-

ing prices of the sellers should not exceed 33%; (2) slow

and not exaggerated price swings between each round; (3)

significant price penalties for exceeding Gencos’ threshold;

(4) the higher the error percentage between the forecast

demand values and the actual requested values (negative

error), the better becomes the improvement between using

the presented algorithm compared to the baseline scenario;

positive errors may worsen participant performances; and

(5) very fast reaction to follow the expected price. The

conditions (1) and (3) force the gap between the prices

to be wide enough to justify the minority game approach,

while (2) and (5) deal with the difficulty of the algorithm

in finding equilibria in exaggerate dynamic scenarios. While

(4) is straightforward.

The results of the simulation, as depicted in Figure 6,

show that expected prices follow the previous peak of paid

prices. It is important to highlight that we are also trying to

simulate the impact of swinging prices due to raw material

prices fluctuations and/or payback costs for solar panels or

wind turbines for prosumers. Even if those swings are not

exaggerated due to high granularity for stipulating contracts,

they are indeed an additional challenge to further prove the

reaching of certain equilibrium scenarios.

Figure 6. Prices varying during 10 rounds with and without the presented
algorithm (JADE output). Prices have to be intended as price per energy
unit.

In the simulation, the expected price starts from 0 in the

first round, reaching a convergence during the 8th round.

Starting from that point, it becomes visible how expected

and obtained prices of agents that follows the minority and

stochastic approach (represented by the two continuous lines

in figure 6), will constantly chase each other. Economically

speaking, it means that in earlier rounds a buyer agent

adopting the algorithm with the described strategies is likely

to pay equally or slightly more than an agent following

other strategies. However, if we consider a sufficiently large

number of rounds, the saving compared to agents following

the baseline behaviour (Figure 6, the dotted line) is obtained

more frequently, with significant lowest peaks during the

most expensive period for buying energy.

The test was executed having a constant numbers of

agents, although sellers’ supply capacity was subject to

randomized swings from one round to the other. There-

fore, changing sellers’ number does not drastically affect

the presented results, provided that this number does not

exaggeratedly and unrealistically change in a short period

of time.

Computationally wise, the complexity of the presented

algorithm is variable but does not appear to represent a

problem. While the balancer agent has the duty to solve

equation 2, buyer agents just have to solve an iterated

amount of conditional instruction and comparing variables
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(e.g: if current Ip value is greater than the threshold value

then execute action A, otherwise jump to action B). The

fuzzy logic block is just composed of a mixed set of linear

functions and it is executed just once at the end of the

negotiating round.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an agent-based application

for deregulated energy market taking into account all the

major issues involving the electric energy exchange. Aspects

like balancing, pricing but especially negotiation and adap-

tation in the energy market have been discussed, modeled

and successfully implemented. On the base of a previous

experience with physical Smart Meters connected to user

homes [3], we then presented a simulation environment,

that, using the negotiating rules we modeled, has enabled

us to perform complex negotiations with different kind

of sellers perfectly complaint with the introduction of the

Smart Grid. Moreover, when dealing with negotiation and

market adaptation strategies we adapted the concept of

minority game to provide a better distribution of the available

resources, and we used a stochastic game design to simulate

time flow and risk variation through an accurate intermediate

payoff accumulation during the same negotiating round. All

of this has been simulated with a JADE implementation. The

results presented in Figure 6 show that the gap between the

two situations (i.e., agents following the adaptive strategy

and agents following a baseline behavior) is remarkable

when certain conditions are satisfied. In addition to that, we

can see how expected prices, starting from very low (and

impossible to obtain) values tend to reach an equilibrated

amount that represents the cheapest alternative in almost all

the examined negotiation rounds.

Due to the complexity of the presented scenario further

investigations and mathematical proofs are needed. Also

testing the same implementation with other possible market

scenario as well as implementing more accurate balancing

strategies will be necessary, especially when more agents are

present. However, the modular implementation realized on

top of JADE platform, combined to its efficiency in large

distributed environment won’t make it a difficult task.
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