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Genome-wide association (GWA) studies on coronary artery disease (CAD) have been very successful,
identifying a total of 32 susceptibility loci so far. Although these loci have provided valuable insights into the
etiology of CAD, their cumulative effect explains surprisingly little of the total CAD heritability. In this review,
we first highlight and describe the type of genetic variants potentially underlying the missing heritability of
CAD: single nucleotide polymorphisms (SNPs) or structural variants, each of which may either be common or

rare. Although finding missing heritability is important, we further argue in this review that it constitutes

Keywords:
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only a first step towards a fuller understanding of the etiology of CAD development. To close the gap between
the genotype and phenotype, we propose a systems genetics approach in the post-GWA study era. This
approach that integrates genetic, epigenetic, transcriptomic, proteomic, metabolic and intermediate outcome
variables has potential to significantly aid the understanding of CAD etiology.

© 2012 Elsevier Ireland Ltd. All rights reserved.
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1. Interpretation and limitations of genome-wide association
findings for CAD

Coronary artery disease (CAD) is the leading cause of death in
Western societies. For example, in the United States the total
prevalence of CAD is 7.0% in adults over 20 years of age and it
caused about 1 of every 6 deaths in 2007 [1]. It can be viewed to
result from a combination of genetic and environmental factors as
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well as their interactions. Epidemiological studies have identified
many traditional risk factors for CAD, including tobacco use,
physical inactivity, poor nutrition, obesity, hypertension, high blood
cholesterol, and diabetes. In addition to these modifiable risk
factors, CAD and its main complication, myocardial infarction (MI),
have a strong genetic basis [2]. For example, a family history for
CAD was associated with CAD independent of other cardiovascular
risk factors [3]. Based on a 36-year follow-up study of more than
20,000 Swedish twins the heritability (h?) of fatal coronary events
was estimated at 0.57 for males and 0.38 for females [4].

The CAD gene database (CADgene) [5] includes information on
more than 300 candidate genes, but many of the genetic mecha-
nisms that predispose people to CAD remained unknown until the

Table 1

development of a highly dense genotyping array to analyse common
variants genome-wide. This provided new opportunities to identify
genetic risk factors associated with CAD. The genome-wide associ-
ation (GWA) study on CAD was pioneered in 2002 by a Japanese
group using a genotyping array of >90,000 single nucleotide poly-
morphisms (SNPs) in 94 MI cases and 658 controls [6,7]. These early
studies pointed to two susceptibility loci (LTA and LGALS2) that are
involved in inflammation and induction of cell-adhesion molecules,
but later studies failed to replicate their association [8]. However,
a third gene in the same pathway (BRAP) yielded one of the strongest
associations with a single SNP in a CAD GWA study (OR = 1.42;
Table 1) [9,10]. The first wave of seven high-throughput array-based
association studies on CAD [9,11—16] identified a total of 12 risk loci

Summary of 34 independent risk variants at 32 CAD susceptibility loci identified by GWA studies.

Genome Risk Association with (traditional)

Locus No region Risk SNP allele AF Odds ratio Genes risk factors® Ref

1 1p13.3 rs646776 T 0.81 1.19 CELSR2, PSRC1, SORT1 LDL, response to statin, [25]
progranulin level, total
cholesterol, Lp-PLA2
activity and mass

2 1p32.2 rs17114036 A 0.91 117 PPAP2B [20]

3 1p32.3 rs11206510 T 0.81 1.15 PCSK9 LDL [12,20]

4 1g41 1rs17465637 C 0.72 1.14 MIA3 [12,14,20]

5 2q33.1 rs6725887 C 0.14 117 WDR12 [12,20]

6 3q22.3 rs9818870 T 0.15 1.15 MRAS [13]

7 6p21.31 rs17609940 G 0.75 1.07 ANKS1A [14]

8 6p21.33 rs3869109 G 0.56 1.14 HCG27, HLA-C Triglycerides [24]

9 6p24.1 rs12526453 C 0.65 1.12 PHACTR1 [12,20,25]

1$6903956° A 0.03 1.51 c6orf105 [21]

10 6q23.2 rs12190287 C 0.62 1.08 TCF21 [20]

11 6925.3 rs3798220 C 0.02 1.92 SLC22A3, LPAL2, LPA Lp(a) level [20]

rs10455872% G 0.07 1.70 [19]

12 7921 rs1859023°¢ A 0.31 0.72¢ PFTK1 [26]

13 7q22.3 rs10953541 C 0.74 1.08 BCAP29 [25]

14 7q32.2 rs11556924 C 0.62 1.09 ZC3HC1 [20]

15 9p21.3 rs4977574 G 0.56 1.29 CDKN2A, CDKN2¢ Abdominal aortic aneurysm, [10,12,14-16,
intracranial aneurysm 20,25,27]

16 9p21.3 rs7865618 A 0.59 1.18 MTAP® Type 2 diabetes [27]

17 9q34.2 rs579459 C 0.21 1.10 ABO Serum phytosterol level, plasma [20]
levels of liver enzymes, venous
thromboembolism, E-selectin
levels, adhesion levels

18 10p11.23 rs2505083 C 0.43 1.08 KIAA1462 Non-alcoholic fatty liver [20,25]
disease histology

19 10q11.21 rs1746048 C 0.84 117 CXCL12 [12,20]

20 10g23.2 rs1412444 T 0.37 1.1 LIPA Systolic blood pressure [25,27]

21 10q24.32 rs12413409 G 0.89 1.12 CYP17A1, CNNM2, NT5C2 Systolic blood pressure, [20,25]
intracranial aneurysm

22 11q22.3 rs974819 T 0.22 1.07 PDGFD [25]

23 11923.3 rs964184 G 0.13 113 ZNF259, APOA5-A4-C3-Al HDL, hypertriglyceridemia, [20]
triglycerides

24 12q24.12 rs11066001° C 0.34 1.42 BRAP fs [10]

12q24.12 1s671° A 0.23 143 ALDH2 fs [10]

25 13q34 rs4773144 G 0.44 1.07 COL4A1, COL4A2 [20]

26 14q32.2 rs2895811 C 043 1.07 HHIPL1 [20]

27 15g25.1 rs3825807 A 0.57 1.08 ADAMTS7,MORF4L1" [20,23]

15@25.1 rs4380028 C 0.65 1.07 ADAMTS7! [25]

28 17p11.2 rs12936587 G 0.56 1.07 RASD1, SMCR3, PEMT [20]

28 17p13.3 1s216172 C 0.37 1.07 SMG6, SRR Aortic root size, [20]
type 2 diabetes

30 17q21.32 rs46522 T 0.53 1.06 UBE2Z, GIP, ATP5G1, SNF8 [20]

31 19p13.2 rs1122608 G 0.75 1.15 LDLR [12,20]

32 21q22.11 rs9982601 T 0.13 1.20 SLC5A3, MRPS6, KCNE2 [12,20]

2 The associations were extracted from the GWA Catalog database (www.genome.gov/gwastudies/). The traits are listed here if their associated SNPs are in linkage

disequilibrium with CAD SNPs (1? > 0.5, based on the HapMap II and IIl CEU panel).
b Association detected only in Chinese Han or Japanese populations.
¢ Assocation detected only in African American populations.
4 Hazard Ratio.

¢ These loci are reported as independent; LD (?) < 0.3 in the HapMap II and IIl CEU panel.
f These loci are not reported as independent but map to different genes; r? > 0.7 for rs11066001 and rs671 in 1000 Genomes Pilot 1 data for CHB -+ JPT; 12 > 0.5 for

rs3825807 and rs4380028 in the HapMap Il CEU panel.

& This variant has been found through a study employing a gene-centric chip designed to assay SNPs in genes implicated in cardiovascular, metabolic and inflammatory

disease [28].
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with mostly modest effect sizes of odds ratios (ORs) in the 1.1-1.2
range and collectively explaining only a small part of the estimated
CAD heritability. For example, the cumulative effect of nine loci
identified in the Myocardial Infarction Genetics (MIGen) Consortium
explained just 2.8% of the variance in risk for early-onset MI[12]. This
suggests that these GWA studies were probably underpowered due
to modest sample sizes. Therefore, the majority of CAD heritability
remained missing, which limited the clinical translation of these
genetic findings [17,18]. Realizing this, some of the five most recent
GWA studies had very large sample sizes [19—24] (e.g., over 22,000
cases and 64,000 controls in the CARDIoOGRAM discovery set) and
were conducted on different ethnic groups (Europeans, South
Asians, Han Chinese and African Americans). These studies have now
brought the number of independent risk variants up to a total of 34 at
32 genomic loci (Table 1).

Most of these loci have small effect sizes with ORs in the
1.05—1.20 range. Interestingly, 12 out of the 32 loci are also
associated with traditional CAD risk factors and related traits,
including blood pressure, low-density lipoprotein (LDL)

CD

g

ED

cholesterol and plasma lipoprotein(a) [Lp(a)] level. This provides
genetic evidence for the causal effect of these traditional risk
factors on CAD risk.

Translating GWA signals to biological function is seldom
straightforward. Therefore, we conducted a pathway analysis of all
the 31 CAD associated loci discovered up until the end of 2011 in
order to provide some initial functional insight. A functional
connection network and annotation analysis on 86 potential
candidate genes underlying the 31 associated loci highlighted
several dominant processes. Some of these were expected such as
glycerolipid and steroid metabolism, cell proliferation and the
circulatory system (Fig. 1). However, others may not be immedi-
ately obvious and may suggest new hypotheses regarding under-
lying mechanisms for CAD.

Although the recent large-scale GWA studies on CAD have more
than doubled the number of risk loci offering more insight into the
disease etiology, they did not confirm associations for the majority
of the candidate genes from the CADgene database. Moreover, the
combined effect of the associated loci still only explains

glycerolipid metabolic process

(]
# steroid metabolic process
(]

ribonucleoprotein complex

¥ regulation of phosphate metabolic process

? response to organic substance

§ circulatory system process

0 cell proliferation

Fig. 1. Pathways underlying CAD associated loci. Each colour coded node represents a gene. The genes in brown are candidate genes at CAD associated loci whereas those in white
are genes that show functional connections with the CAD genes. The links between genes indicate their functional connection: those in grey are the combined functional
connections with median confidence predicted by STRING, those in red are the direct protein—protein interactions predicted by DAPPLE. Selections of enriched biological processes
as annotated by Gene ontology are highlighted for each gene. Only the processes in bold remain significant with FDR<0.05 after taking multiple testing into account. Details of the

analysis can be found in the supplementary methods.
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approximately 10% of the additive genetic variance of CAD, leaving
the majority of its heritability unexplained [20].

In this review, we first highlight and describe the importance of
the potential sources of the missing heritability in CAD/MI. Then we
will argue that pinpointing the specific factors underlying the
heritability is essential but far from sufficient to fully understand
disease etiology for several reasons. First, it will remain a challenge
to translate newly identified genetic signals to biological function.
Second, numerous important contributors to disease risk are not
covered by the heritability estimate, including gene—gene inter-
action, epigenetic variation and gene—environment interaction. We
then propose that a systems biology approach that integrates
environmental, genetic and epigenetic factors as well as tran-
scriptomic, proteomic, metabolic and intermediate outcome vari-
ables would be the best way forward and would aid significantly to
the understanding of CAD etiology.

2. Factors underlying the missing heritability

If we limit ourselves to the narrow-sense heritability, which only
reflects additive genetic effects (i.e., no dominant or epistatic effects)
[29], suggested explanations of missing heritability include addi-
tional common SNPs with (very) small effect, rare SNPs with larger
effects, and structural variants. Optimal designs, technologies and
statistical approaches to detect sources of unexplained heritability
for common complex traits and diseases have recently been
reviewed in considerable depth [30—33] and leading geneticists
have offered their opinions on the subject [34]. Therefore, we
discuss these issues only briefly here and focus on the sources of
missing heritability and their importance for CAD.

2.1. Common SNPs with (very) small effect
Genotyping platforms currently used in GWA studies are

designed to tag most known common SNPs (minor allele frequency
[MAF] > 0.05), thereby testing the “common disease — common

+ 1.20

h?=0.38

variant” hypothesis. With only a few exceptions, the identified risk
alleles of CAD have small to modest effects with ORs between 1.05
and 1.2 and frequencies ranging from 0.13 to 0.91 (Table 1). The as of
yet unidentified common risk alleles may have (very) small effects
limiting the possibility to detect them individually with the current
GWA study sample sizes. This raises the question how many more
of these common SNPs with small effect sizes we would need to
discover to explain the entire CAD heritability. The total number of
such underlying risk variants can be estimated as a function of
disease heritability, disease prevalence and some simplifying
assumptions that all risk alleles have the same relative risk and
frequency [35]. Fig. 2 shows the numbers of risk variants for a range
of effect sizes (ORs between 1.05 and 1.20) and different allele
frequencies for males and females separately. For example, at
a disease prevalence of 7%, 1020 and 1218 risk alleles, each with
a relative risk of 1.1 and frequency of 0.1, are needed to explain the
heritabilities of 0.38 and 0.57 in females and males, respectively.
However, the number of risk alleles increases at an exponential
rate with decreasing relative risk. If the relative risk decreases to 1.05,
the total number of risk alleles increases to 4040 for h? = 0.38 and
4823 for h* = 0.57. More sophisticated estimates can be obtained by
taking into account the full spectrum of expected risk effects and
allele frequencies [36]. The detection of risk alleles with small effect
requires exponential increases in sample sizes, because required
sample sizes scale approximately quadratically with 1/|(OR-1)| [32].
Realizing this need, international consortia have emerged, such as
the Myocardial Infarction Genetics Consortium (MIGen) [12],
CARDIOGRAM [20,37] and the Coronary Artery Disease (C4D)
genetics consortium [25]. These consortia have performed meta-
analyses combining the association signals from multiple GWA
studies, thus maximizing the power to discover risk alleles for CAD.

2.2. Rare SNPs with large effect

SNPs with MAF less than 5% in the general population are
considered to be of low frequency (i.e., rare). The occurrence of rare

<+ 1.20

h?=0.57

Fig. 2. Estimate of the number of common variants that contribute risk to CAD. The number of risk variants underlying heritability can be modelled as
n = Infh? + (1 — h¥)K] — In(K)/2{In[1 + p(l2 — 1] —In[1+p(A- 1)]2}, where n refers to the number of risk variants; h? is the heritability of the disease; K is the disease prevalence
in the population; 4 is the relative risk of a risk allele and p is the frequency of the risk allele, assuming all risk alleles have the same relative risk and frequency [35]. At the disease
prevalence K of 0.07, the plots show the number of common variants needed to explain heritabilities of 0.38 for females and 0.57 for males based on a 36-year follow-up study of

>20,000 Swedish twins [4] depending on the relative risk and allele frequency.
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variants in the population can be due to selection pressure, random
genetic drift or introduction of recent mutations [46,47]. These
alleles, although individually rare, are collectively frequent and
might contribute substantially to genetic susceptibility underlying
complex traits and diseases [31,48]. However, GWA arrays
predominantly include common SNPs and in general these do not
tag the rare variants well. Therefore our knowledge of the impact of
rare variants on CAD remains limited. To address this issue
a number of novel experimental strategies and statistical models
for the detection of rare variants and their association with complex
traits and diseases have emerged [30,49]: 1) as rare variants are
often of recent origin they can typically be tagged by the haplotype
on which they arose, because recombination has had insufficient
time to break down the linkage disequilibrium (LD) surrounding the
variant [30,49]; 2) recent advances in high-throughput sequencing
technology have accelerated the discovery of rare risk alleles; 3)
custom-made arrays have specifically included rare variants in
target regions thereby allowing genotyping of such variants in large
sample sizes. These advances have uncovered the association
between CAD and several rare variants. For example, the associa-
tion of rs3798220 (MAF: 0.02) at the SLC2A-LPAL2-LPA locus was
first detected by haplotype association [11] and subsequently
identified by a custom-made array [19] (Box 2). Application of
haplotype association analysis to the Wellcome Trust Case Control
Consortium (WTCCC) GWA data identified rare variants at one
known locus (CDKN2B) and three novel loci for CAD: EIF4H, HFE2,
and ZBTB43 [50]. These rare variants often have larger effects than
common variants. For example, the OR of rs3798220 is 1.92, much
larger than the effects of common variants with an OR between 1.05
and 1.2.

2.3. Structural variants

Besides variation at a single nucleotide position, a segment of
DNA can be deleted, duplicated or rearranged. This type of DNA
variation is known as structural variation. One common type of
structural variation is the copy number variant (CNV) that refers to
DNA deletion or duplication >1000 base pairs in size [51], which
might contribute substantially to risk for common diseases as
shown recently for obesity [52]. Previous studies have identified
the association of CAD risk with low kringle IV type 2 copy number
at the SLC2A-LPAL2-LPA locus [44,53] and high number of CA
repeats at the NOS3 locus [54]. Another well-known example in
relation to CAD involves Heterozygous Familial Hypercholesterol-
emia (HeFH), which is an autosomal dominant disorder that affects
1in 500 people. The genetics underlying the disease in the majority
of HeFH patients include SNPs as well as CNVs or small deletions
within the LDL receptor gene LDLR, making it impossible for the
liver to catabolize LDL cholesterol. The resulting rise in plasma LDL
cholesterol leads to atherosclerosis and up to a 100 times greater
risk of CAD [55].

So far, GWA studies have been unsuccessful in detecting effects
of CNVs on CAD, perhaps because they only capture the common
CNVs. Despite good coverage of CNVs no significant associations
were detected in the MIGen [12] and WTCCC studies [56]. They
concluded that common CNVs that can be typed on existing plat-
forms are unlikely to contribute greatly to the genetic basis of
common human diseases.

3. Beyond the (narrow sense) heritability

Above we discussed the potential genetic sources of missing
(narrow-sense) heritability of CAD. Although important, just
finding the missing heritability is only a first step towards a fuller
understanding of the disease etiology because the narrow-sense

Box 1. Glossary of terms.

Epigenetic effects — Heritable changes in gene expression
that are not caused by changes in DNA sequence, such as
DNA methylation (addition of methyl groups to a DNA base)
and histone modification (histones are proteins that enable
dense packing of DNA in cell nuclei).

Epistasis — Interaction between genes that may result in
a phenotype different from the expected phenotype in the
case that these genes would not interact.

Heritability — The proportion of individual differences (i.e.
variation) in a certain trait (or phenotype) that can be
attributed to genetic variation. If the genetic variation
includes the total genetic variation, consisting of additive
genetic effects, dominance genetic effects (representing
interactions between alleles at the same locus), and
epistatic genetic effects (representing interactions between
alleles at different loci), this is called the broad-sense heri-
tability. If this genetic variation is limited to the additive
genetic variation only, this is called the narrow-sense
heritability.

Missing heritability — For all of the diseases and traits that
have been studied by means of GWA studies, the identified
variants explain only a small proportion of the total herita-
bility. The proportion of heritability that remains unac-
counted for is generally referred to as the missing
heritability.

Haplotype — A set of alleles or variants that is inherited
together as a unit.

Linkage disequilibrium (LD) — The extent to which two
alleles are non-randomly associated, which is determined
by the degree of recombination.

Omics— A suffix that is added to a wide variety of analyses
to indicate they occur on a large or genome-wide scale.
Transcriptomics for example refers to analysis of genome-
wide expression level of messenger RNAs — the
transcriptome.

Pathway-based analysis — An approach in which genome-
wide results for a trait or disease are analysed and inter-
preted in the context of predefined pathways, which are
collections of genes or proteins with know interaction,
instead of investigating the individual effects of genes. This
type of analysis is frequently applied as part of post GWAS
analyses, to identify potentially important molecular
mechanisms underlying the disease or trait of interest.

Post GWAS analyses — A recently coined term that refers to
a collection of methods and approaches that aim to reveal
the functional consequences of loci identified in GWA
studies.

Quantitative trait loci (QTLs) — These are specific regions in
the genome that influence a quantitative trait. Examples of
quantitative traits include RNA levels (genome-wide
referred to as the transcriptome), and levels of metabolites
(genome-wide referred to as the metabolome).

Systems genetics — A recently coined term that refers to an
integration of genetic analysis approaches aiming to
understand the complexity of genotype and phenotype
relationships in complex traits and diseases, in analogue
fashion to systems biology.

heritability does not capture at least three factors that are
believed to be of vital importance for disease development:
gene—gene interactions, gene—environment interactions and
epigenetic effects.
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Box 2. Genetic architecture and function of the LPA locus.

Lipoprotein(a) [Lp(a)] levels have long been known to be
a risk factor for CAD [38] with very high heritability (~ 90%)
[39,40]. It has also been known that this heritability could
almost entirely be explained by variation at the apolipo-
protein(a) gene on 6925 as shown in linkage studies [41
—43]. The identification of this poster child locus (SLC2A-
LPAL2-LPA) as the strongest for CAD to date and elucidation
of (part of) its genetic architecture is particularly intriguing.
CAD was initially observed to be associated with two
haplotypes of four SNPs [11] (rs2048327, rs3127599,
rs7767084, and rs10755578) that turned out to tag two rare
variants rs3798220 and rs10455872 (see Table 1), and a CNV
of kringle IV type 2 (KIV-2) repeats. Furthermore, this locus
was observed to be associated with expression of the LPA
gene in the liver (rs9355814, P = 2.24x10728) [19]. Interest-
ingly, the CAD associated SNPs rs3798220 and rs10455872
were also highly associated with Lp(a) levels in the serum,
together explaining 36% of the total Lp(a) variation. After
the adjustment for Lp(a) level, their associations with CAD
were abolished, which indicates that Lp(a) level is indeed
a causal intermediary factor [19]. Further research showed
that the CAD risk variants rs3798220 and rs10455872
together with the KIV-2 repeat explained a larger proportion
of variation in Lp(a) concentration than the SNPs by them-
selves [44]. This suggests that both SNPs and CNVs
contribute to CAD risk through their influence on Lp(a)
concentrations. A recent GWA study by Kivimaki et al. [45]
detected a common SNP (rs783147 with a MAF of 0.47)
with a very strong effect on Lp(a) (P = 3.1 x 107%8) that
explained 11.7% of its variance. In conclusion, these results
show a fairly complicated genetic architecture of the LPA
locus with multiple independent variants contributing to
Lp(a) levels including rare SNPs, common SNPs and a CNV.

First, genes do not function in isolation. There is increasing
awareness that gene—gene interaction or epistasis plays a role in
susceptibility to complex diseases. We observe that disease-
associated genes identified by GWA studies often converge on
pathways, co-expression networks and protein—protein interaction
networks [49] as illustrated by the functional connection network
of CAD loci shown in Fig. 1. Some gene products even show direct
interaction as observed between PCSK9 and LDLR. The proteinase
PCSK9 can bind to the LDL receptor and mediate the degradation of
LDLR [57]. However, detecting epistatic effects statistically remains
challenging. GWA studies have typically used single-locus strate-
gies and a risk variant may thus be missed if its marginal effect is
not strong enough to pass the genome-wide significance
level. Cordell and others have provided a critical survey of the
methods and software to detect interactions in the context of GWA
studies and showed that epistasis analysis is statistically feasible
[58]. In the near future, pathway-based association analyses are
expected to provide a new paradigm for the second-wave of GWA
studies [59].

Second, the expression of some genes may be dependent on
environmental factors. Sabatti and co-workers performed a GWA
analysis of gene—environment interaction for nine metabolic traits
in the Northern Finland Birth Cohort [60], including some tradi-
tional CAD risk factors such as triglycerides, HDL, LDL, body mass
index and blood pressure. Although the gene—environment inter-
actions detected in this study need further replication, it shows that
prospectively investigating such interactions for CAD risk may
be fruitful. Lanktree and Hegele specifically discussed gene—gene
and gene—environment interactions in CAD development and

concluded that accounting for gene—gene and gene—environment
interactions is important for future strategies of diagnosis, prog-
nosis and management of CAD [44].

Third, one possible mechanism through which environmental
factors contribute risk to complex disease such as CAD is through
mediation of the epigenome [61]. Epigenetic effects refer to all
meiotically and mitotically heritable changes in gene expression
that are not coded in the DNA sequence such as those caused by
methylation and histone modification. Epigenetic mechanisms
collectively enable the cells to respond quickly to environmental
changes. Several studies have argued that epigenetic variation is
a driving force of development, evolutionary adaption, and
complex diseases [62,63]. Recent studies have shown differential
global DNA methylation levels in peripheral blood leukocytes in
CAD patients compared to controls, but the direction of the effect is
inconsistent [61,64—66] probably due to the limited resolution of
the global methylation measures.

4. Integration: role of systems genetics

Whether part of the heritability or not, integration of above-
mentioned disparate determinants of disease etiology in a common
framework is badly needed. We therefore argue that in the post-
GWA era, a systems genetics approach may help us move from
finding heritability towards understanding the complex biological
networks that underlie complex diseases such as CAD. Systems
genetics, by definition, is the approach that studies genetic effects
within the larger scope of systems biology, which integrates envi-
ronmental, genetic and epigenetic factors as well as transcriptomic,
proteomic, metabolomic and intermediate (e.g., physiological)
outcome variables, ideally within the same population [67].

Variation in methylation states and the abundance of molecular
levels (transcripts, proteins and metabolites) in cellular systems can
be treated as quantitative traits. Their associated genomic loci are
therefore called quantitative trait loci (QTLs) for methylation
(methQTL), expression (eQTL), protein (pQTL), metabolites (mQTL),
and physiological traits (phQTL), respectively. Studies in humans
have investigated the genomic architecture of methylation [68],
gene expression [69], lipids [70], and other proteins and metabo-
lites of clinical importance [71]. The resulting comprehensive maps
of different QTLs are valuable resources for prioritizing causal
variants and designing functional experiments. Integrating such
data from multiple molecular levels into explanatory models (i.e.,
systems genetics) provides a powerful holistic approach to study
complex traits and holds several promises.

In the context of evolutionary adaptation, systems genetics may
provide insight into the robustness of biological systems and
buffering of the propagation of genomic variation to the phenotype
level. The HapMap and 1000 Genome projects have catalogued
many millions of genetic variants in the human genome. However,
robustness at the phenotypic level is essential to keep processes
and traits in any living organism within narrow limits, even in the
face of all this genetic variation. We were one of the first to provide
system-wide molecular evidence for phenotypic buffering using
a systems genetics approach in a model system [72]. That is, the
largest fraction of genomic and transcriptomic variants is silent at
the phenotypic level with only a few influential QTL hot spot
regions causing major phenotypic variation across a wide range of
environments. These results are in agreement with recent findings
that many human diseases share their genetic origin with other
diseases to some extent [73]. Fragilities at crucial nodes in the
molecular networks may underlie this phenomenon.

One important promise of systems genetics relevant for
complex diseases, is its potential to improve understanding of the
way genetic information is integrated, coordinated and ultimately
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transmitted through molecular, cellular and physiological networks
to enable higher-order functions and alterations of phenotypes.
Causal inference through the construction of causal networks can
provide insight into the route from genotype to phenotype. For
example, eQTL maps have provided an important reference source
for categorizing the effect of disease-associated SNPs on the
expression of genes [74]. SNPs that affect expression of genes at
larger distances or on different chromosomes (trans-eQTLs) allow
us to identify affected genes downstream, with the potential to
reveal novel pathways underlying disease etiology [75]. Similarly,
QTLs for proteins and metabolites may coincide with disease-
associated SNPs as illustrated in Fig. 3 and exemplified by the
recent identification of SORTI as the causal gene responsible for the
CAD GWA signal at the 1p13 locus (Table 1). Munsunuru et al. [76]
integrated eQTL and pQTL (for LDL) information at that locus and
uncovered that a novel pathway for lipoprotein metabolism regu-
lated by altered expression of the SORT1 gene underlies the MI
etiology.

Systems genetics further offers a means to investigate
gene—environment interactions to enhance insight into the path-
ophysiology of complex diseases. Such interactions involve plas-
ticity of genetic regulation responding to both internal
environments (tissues and cell types) [77—80] and external envi-
ronments [81]. Our recent comparison of gene expression between
blood samples and four primary tissues (liver, subcutaneous and
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visceral adipose tissue and skeletal muscle) characterized four
different tissue-dependent manners of genetic regulation of nearby
genes (i.e., in cis): specific cis-regulation, alternative cis-regulation,
different effect sizes and opposite allelic effects. We further showed
that SNPs associated with complex diseases more often exert
a tissue-dependent effect on gene expression. As shown for the
SORT1 gene, the Ml risk variant alters the expression of SORT1 in the
liver, but not in blood, adipose tissues or muscle [76]. These findings
highlight the importance of investigating genetic effects in disease-
relevant tissues and environments, in order to correctly charac-
terize the functional effects of disease-associated variants.

5. Challenges and prospects of systems genetics for CAD

Systems genetics is a powerful method, but applying the
approach to the study of complex diseases such as CAD in humans
is still a challenge and requires the development of more sophis-
ticated experimental strategies and statistical models. First, the
most ideal experiment is to perform system-wide profiling on
genome, epigenome, transcriptome, proteome, metabolome and
phenome on the same subjects. Integrating “omics” data from
different experiments on different subjects can only provide indi-
rect support for etiological hypotheses. Second, we are largely
unable to control the effect of environmental factors in human
genetics. Environmental factors can have different effects on
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Fig. 3. Systems genetics: from finding sources of missing heritability towards understanding the complex biological networks that underlie complex diseases. Systems genetics
aims at constructing a holistic view of biological processes by integrating data from multiple molecular levels into explanatory models of complex diseases. Comprehensive “omics”
data from transcripts, proteins and metabolites are used in order to explain how these affect the final disease outcome. GWA studies using case—control or cohort designs may
discover underlying risk loci as illustrated by the six significant loci in the association (“Manhattan”) plot. Above the Manhattan plot, maps of quantitative trait loci (QTLs) at the
level of transcriptome (eQTL), proteome (pQTL) and metabolome (mQTL) are shown. The dots on the QTL maps represent the QTLs at the six risk loci. The x-axis of the QTL maps
indicates the genome position of the QTLs corresponding to the six risk loci. The y-axis for the eQTL and pQTL maps represents the position of genes affected by the risk variants. If
the affected genes physically locate at the risk loci (the dots at the blue dashed diagonal line) these are called cis-QTLs. If the affected genes reside at different genomic regions
(the dots at the grey dashed vertical line) these are called trans-QTLs. The y-axis of the mQTL map refers to the mass of the metabolites. Risk variants can have different effects on the
different molecular levels. For example, there is only a cis-eQTL at locus1, both cis- and trans-eQTLs at locus 2; a cis-eQTL, a cis- and trans-pQTL and mQTLs at locus 4; cis- and trans-
PQTLs at locus 5. Through integration of the genetic effects on multiple levels as well as interactions with environments, the epigenome and amongst the genetic effects (i.e.,
epistasis), systems genetics endeavours to model the causal network that underlies disease etiology.
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“omics” levels than on disease endpoints. For example, smoking
and diet can have an acute effect on “omics” levels but a chronic
effect on disease outcomes. Compared to case—control studies, the
prospective cohort study, in which a group of individuals is fol-
lowed over time and potential disease outcomes predicted on the
basis of factors such as genetics, molecular biomarkers, physio-
logical traits and environmental exposures, will become more
valuable in human genetic research [82]. The advantages of this
cohort design include better definition of environmental exposures
and better characterization of disease and risk phenotypes over
time. For example, the LifeLines cohort in the Northern three
provinces of The Netherlands, will eventually include 165,000
participants that will be followed for 30 years [83]. Approximately
1000 individuals with MIs will be expected in this cohort after five
years of follow up. Through integration of systems genetics into the
prospective cohort design this study offers great promise for
improving our understanding of the causes and prognosis of the
burden of CAD. However, considerable investments in bio-
informatics and statistical genetics are necessary in order to deliver
on this promise, because the complexity of the statistical analysis
and required sample size to correctly infer causality constitute
a third challenge. Omics data is most valuable when the different
layers of data on genome, epigenome, transcriptome, proteome,
metabolome and phenome (Fig. 3) are mathematically integrated
into predictions of the underlying causal networks. However, the
robustness of biological systems as mentioned earlier may lead to
non-linear relationships between these layers [72]. Even for linear
relationships, fairly large sample sizes are required to reliably
discriminate between different directions of effects (causal, modi-
fying or independent relationships) between two traits associated
with the same locus. A simulation study for this simple scenario
showed that a GWA study population size >10,000 is needed to
provide 50% sensitivity and 90% positive predictive value for causal
inference and realistic QTL effect sizes [84]. On the upside, struc-
tural and functional data (gene sequences, gene ontology, meta-
bolic pathways, and protein—protein interactions) as well as
independent experimental data gleaned from secondary sources
(e.g., gene expression databases) can be used post-hoc to verify the
defined gene and causal interferences.

In conclusion, there is no doubt that the GWA approach has been
successful in identifying and elucidating previously unexpected
genetic candidates for CAD/MI. Including the recent GWA studies
with larger sample sizes a total of 32 CAD loci have been identified
(Table 1). Despite the numerous successes, the GWA approach has
not delivered on some of its promises. A large proportion of heri-
tability remains unexplained and where to find the missing heri-
tability (e.g., largely due to rare variants or to common variants
with very small effect) has been hotly debated [32,34]. On the one
hand, some studies focused on common variants and estimated
that a substantial proportion of variation for a range of common
complex traits and diseases can be explained by considering all
common SNPs across the genome simultaneously. Examples
include Crohn’s disease (~24%), bipolar disorder (~41%), type 1
diabetes (~32%), height (~45%), BMI (~17%), von Willebrand
factor (~25%) and QT interval ( ~21%) [85—87]. On the other hand,
it was suggested that the GWA associations of common SNPs may
result from multiple unobserved rare variants that are in LD with
the common SNP; so-called synthetic associations [88]. However,
others have argued that the empirical data does not support this
hypothesis [89,90]; where both rare and common alleles are
uncovered at the same locus, it is much more likely they constitute
independent signals [91]. Finally, some studies argued that current
estimates of total heritability may be significantly inflated [92],
although assumption free methods to estimate heritability do not
confirm this [93]. Arguments on the mystery of missing heritability

are likely to continue to rage in human genetics and discussions
may benefit from complementary information on model organisms
such as mouse, rat and Drosophila melanogaster [94]. Here, we
further argue that finding (part of) the missing heritability by itself
constitutes only a first step towards a fuller understanding of the
mechanisms underlying complex diseases. First, complex diseases
are the product of the complex interplay between genetic, epige-
netic and environmental factors. These interactions are not
captured by the (narrow-sense) heritability estimate. Second, even
if association can be detected between genotype and phenotype,
drawing causal conclusions remains a major challenge. We propose
a systems genetics approach within a prospective epidemiological
cohort design that integrates molecular traits, including transcripts,
metabolites and proteins and a range of (physiological) endophe-
notypes for CAD. The success of identifying the causal variant and
underlying mechanism of the SORT1 locus illustrates the added
value of the systems genetics approach. Although the system-wide
application of this approach in humans will require major invest-
ments in terms of sample collection, time, and computing-power,
in combination with the prospective cohort design it offers great
promise in elucidating underlying mechanisms of CAD develop-
ment. If successful, its findings will not only have implications for
disease therapy, but through improvement of risk prediction will
also allow prevention efforts to be targeted to those most at risk for
CAD [18,95].
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