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CHAPTER 1

INCREASING THE DIALECTOLOGY
IN DIALECTOMETRY

alectology is an attractive field to study, as dialectal speech signals the

provenance of the speaker and allows us some insight in the speaker’s
social environment. Furthermore, similarity between different dialects are in-
dications of contact, both in the present and in the past. Perhaps the attrac-
tiveness of studying dialects is best explained by Walt Wolfram and Natalie
Schilling-Estes (2006, p. 20):

THIS dissertation revolves around dialectology, the study of dialects. Di-

“[O]ur natural curiosity is piqued when we hear speakers of dif-
ferent dialects. If we are the least bit interested in different mani-
festations of human behavior, then we are likely to be intrigued by
the facets of behavior revealed in language”

This thesis attempts to extend the remit of dialectometry within dialectol-
ogy. Dialectometry is a subfield of dialectology and dialectometrists have fo-
cused on a selection of the problems studied in dialectology. Dialectologists
generally have characterized variation by identifying a small set of varying lin-
guistic features in connection with the (social) characteristics of the speakers
or with their geographical location (i.e. dialect geography). Dialectometry was
developed as a quantitative method to investigate dialectal variation more ob-
jectively, by measuring dialect distances on the basis of (i.e. aggregating over)
hundreds of linguistic features (instead of only a few). In contrast to researchers
in social dialectology, dialectometrists have focused on dialect geography and
have mainly disregarded the (social) characteristics of the speakers. The lack
of focus on the social dimension, and the problem of identifying individual
features in the results of an aggregate analysis have resulted in harsh criticism
of the dialectometric approach by linguists (Schneider, 1988; Woolhiser, 2005).
The main purpose of this thesis, therefore, is to introduce and evaluate several
methods which combine the merits of dialectometry and social dialectology,
and which should be attractive to researchers in both fields. First, however,
we will give a brief introduction to dialectology and dialectometry. A much
more detailed introduction to dialectology is provided by Chambers and Trud-
gill (1998) and Niebaum and Macha (2006), while dialectometry is covered in
more detail by Goebl (2006) and Nerbonne (2009).
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1.1 Dialectology

Dialectology originated as dialect geography in which the relationship between
dialectal variants and their geographic location was documented using maps
(Chambers and Trudgill, 1998, Ch. 2). Later dialectologists also took social
factors into account by embracing a sociolinguistic perspective.

111 Dialect geography

The first systematic approach to investigate dialect geography is often attributed
to Georg Wenker, who conducted a large-scale dialect survey among almost
45,000 schoolmasters starting in 1876 (e.g., Chambers and Trudgill, 1998, p. 15).
The schoolmasters were asked to write down forty sentences in their local di-
alect, obviously resulting in an enormous amount of data. Wenker published
only two sets of maps based on a limited set of features and geographical loca-
tions (Wenker, 1881). However, a larger part of Wenker’s work was used in the
Deutscher Sprachatlas which was published between 1927 and 1956 (Wrede et
al., 1927-1956). More information about this atlas is provided by Niebaum and
Macha (2006, Ch. 2).

In contrast to common belief, however, Alexander Ellis was the first to start
a large-scale systematic dialect survey (even though it was published later). In
his study, which already began in 1868 (Ellis, 1889, p. xviii), Ellis obtained in-
formation on English dialects in 1145 locations. Initially, he used several small
paragraphs of text which had to be ‘translated’ into dialectal speech. In order to
better obtain the desired idioms, he later employed a word list containing 971
separate words. A third approach using only 76 words, dubbed the ‘dialect test,
was specifically used to detect dialectal sound variation. All three approaches
were indirect, in the sense that they relied on orthographically represented di-
alectal pronunciations by “educated people who did not speak dialect naturally,
and hence had only more or less observed what was said, and imitated it as well
as they could” (Ellis, 1889, p. 3). Fortunately, this method of data collection was
enriched by fieldwork in which “old and if possible illiterate peasants” were in-
terviewed (Ellis, 1889, p. 4). These pronunciations were transcribed following
the ‘dialectal paleotype’ (a precursor of the International Phonetic Alphabet)
devised by Ellis (1889, pp. 76*-88%). Based on Ellis’ extensive data collection
and analysis, he mapped the main dialectal divisions in England, Wales and
Scotland. As an illustration of dialect geography, Figures 1.1 and 1.2 on pages 6
and 7 show the dialect areas (and borders) identified by Ellis in England and
Wales, and Scotland, respectively.

While dialect geography was very popular in the first half of the 20th cen-
tury, the interest in the field diminished around the 1950s. In the 1980s however,
interest resurfaced. Chambers and Trudgill (1998, pp. 20-21) attribute this to
the technological advancements which enabled the improved analysis of the



large amounts of data available, but also to the positioning of dialectology in a
conceptual framework provided by sociolinguistics.

1.1.2  Social dialectology

When dialectologists recognized that focusing on the geographical dimension
excluded attention to social factors, they started to take into account the social
dimension. This new research field, sociolinguistics, was pioneered by William
Labov. In his study on vowel use on Martha’s Vineyard (Labov, 1972), he showed
that differences in vowel pronunciation were related to social factors (i.e. a na-
tive versus tourist identity in Martha’s Vineyard). In another well-known study,
Labov (1966) showed that the type of /r/ pronunciation depended on the social
stratification of the speakers (in three different department stores, catering to
different layers of society). Since then, many researchers have investigated the
influence of social factors on language variation. For example, Trudgill (1974b)
showed that women used prestigious standard forms more frequently than men
(in British English in Norwich), while Milroy and Margrain (1980) showed that
the frequency of use of non-standard phonological features correlated with the
social network of the speakers (in Belfast English). Obviously the new inter-
est in social variation also entailed rethinking methods. Pre-sociolinguistic re-
search used informants who varied as little as possible socially, the so-called
non-mobile, older, rural males (NORMs). Once social variation was the focus,
informants necessarily varied in age, gender, status, urban vs. rural residence,
or background.

1.1.3 Individual linguistic variables

Modern dialectologists have generally focused on studying individual linguis-
tic variables. For example, the type of /r/ pronunciation in the aforementioned
study of Labov (1966), or the variability in /ng/ pronunciation across gender
(Trudgill, 1974b). There are several reasons for focusing on individual linguistic
variables as opposed to aggregating over many different variables. First, it al-
lows researchers to study linguistic structure in variation. For example, Labov
et al. (1972) reported a series of innovations in the vowels of English spoken
in urban centers in the northern part of the U.S. (e.g., Chicago, Detroit, etc.),
dubbed the Northern Cities Shift (i.e. a rotation of the low and mid vowels).
Furthermore, much variation is phonemically organized. For instance, Kloeke
(1927) (see also Bloomfield, 1933) found that the phoneme /ui/ (pronounced
[uw:], [y:], [#:] or [@y]) in the Dutch words huis, ‘house, and muis, ‘mouse’ gen-
erally shared a single pronunciation in one location (although not exclusively).
Finally, studying individual linguistic variables enables researchers to investi-
gate perceived salient differences between dialects or social groups. For exam-
ple, Van de Velde et al. (2010) investigated one of the most salient differences
between speakers in the north and south of the Netherlands, the soft versus

T Y4LdVHO
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ENGLISH DIALECT DISTRICTS, by Alexander J. Ellis, 18877‘. 3

1 1 'a
 ENGLAND & WALES

Fnglish Yiles

$~._ George's i

Cra e e e e s
George Philip & Son, Lendord Liverpool
To tllustrate Alex. J. Ellis’s “ EXISTING PHONOLOGY OF ENGLISH DIALECTS,”

amnd “ENGLISH DIALECTS—THEIR SOUNDS AND HOMES.”

Figure 1.1. Dialect division of England and Wales. The striped/dashed red lines indicate
the main dialectal borders. The thick and thin red lines indicate major and
minor dialect areas. The original image was taken from Ellis (1889).



LOWLAND DIALECT DISTRIGTS, by J. A.H. Murray & A.J. Ellis.

I
|
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7 6

SCOTLAND,
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?OCEAN
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Longitude West 4 of Greenwich
e ———— ——— Beorge Philip & SonLondondLivepuol -
To illustrate Alex. J. Ellig's “ EXISTING PHONOLOGY oF ENaLisH DIALECTS,”
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hard /g/. In the south of the Netherlands a palatal fricative is commonly used,
while the north of the Netherlands uses a voiceless velar (or uvular) fricative
instead.

1.2 Dialectometry

Dialectometry focuses on characterizing dialects by measuring their distances
on the basis of a large number of features. This approach was pioneered by
Jean Séguy (1971), whose goal was to find a more objective way of revealing
dialect differences. Since then many researchers have embraced the dialecto-
metric approach, including Goebl (1984), Nerbonne et al. (1996), Kretzschmar
(1996), Heeringa (2004) and Szmrecsanyi (2011).

In his paper, Séguy (1971) calculated the linguistic distance between pairs
of sites by counting the number of items (out of 100) for which the dialects
used a different lexical form. By aggregating in this way over a large set of
data, one prevents “cherry picking” the features which confirm the analysis one
wishes to settle on (Nerbonne, 2009). Later, Séguy (1973) also took other types
of linguistic items into account (i.e. with respect to pronunciation, phonology,
morphology and syntax) in determining the linguistic distance between dialect
pairs. Séguy (1973) visualized these dialect distances by drawing a line with a
number (indicating the linguistic distance) between all pairs of neighboring
sites. Goebl (1984) independently took a similar approach to that of Séguy, but
he measured similarity instead of distance and proposed to weight infrequent
items more heavily than frequent items. He also introduced more advanced
mapping techniques (see Goebl, 2006 for an overview).

In contrast to the binary same-different distinctions as proposed by Séguy
and Goebl], it is also possible to calculate more sensitive distances per item.
When investigating transcribed pronunciations, the Levenshtein distance (Lev-
enshtein, 1965) yields the minimum number of insertions, deletions and substi-
tutions to transform one pronunciation into the other (and consequently also
results in an alignment of corresponding sound segments). In this way pro-
nunciations which only differ slightly (e.g., in a single sound) will be closer
than those which differ more (e.g., in multiple sounds). Kessler (1995) was the
first to use the Levenshtein distance for comparing dialectal pronunciations,
and the method has been used frequently in dialectometry since then (e.g., see
Heeringa, 2004 and Nerbonne, 2009). The Levenshtein distance (and its un-
derlying sound alignments) also plays an important role in this thesis and is
introduced in Chapter 2. An example of a dialectometric visualization identi-
fying different dialect areas (in the Netherlands and Flanders) on the basis of
aggregate Levenshtein distances is shown in Figure 1.3. The Dutch dialect data
underlying this visualization is discussed in Chapter 4.



Figure 1.3. Visualization of six Dutch dialect areas. The image is based on Dutch
dialect data available in the online dialect analysis application Gabmap
(http://www.gabmap.nl; Nerbonne et al., 2011).

1.3 A new dialectometric approach

It is not surprising that modern social dialectologists have not embraced the
dialectometric approach. Dialectometry mainly focuses on dialect geography,
while generally disregarding social factors. There are, of course, some excep-
tions. For example, Montemagni et al. (accepted) and Valls et al. (accepted)
considered speaker age, and Valls et al. (accepted) investigated the difference
between urban and rural communities. However, they evaluated the effect of
these social factors by visually comparing maps, as opposed to statistically test-
ing the differences. Furthermore, the aggregation step, central in many dialec-
tometric studies, effectively hides the contribution of individual linguistic vari-
ables (which are important in dialectology).

In this thesis, we proceed from the dialectometric view that investigating
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a large set of data will provide a more reliable view of linguistic variation than
selecting only a small set of linguistic features. We also follow dialectometry
in calculating dialect distances (mainly on the basis of pronunciation data). In
line with social dialectology, however, the methods we propose enable a focus
on individual linguistic features, and also allow us to add a social perspective
to dialectometry by taking various sociolinguistic factors into account.

The traditional dialectometric focus on aggregate differences freed its prac-
titioners from the obligation of discriminating between linguistic items very
finely. Since this dissertation aims to extend dialectometry to phenomena be-
low the aggregate level (i.e. at the word and sound segment level), we need
a more sensitive measure of difference between linguistic items. We therefore
start by evaluating several methods to obtain pronunciation distances in Chap-
ter 2. Based on those results we opt for an adapted Levenshtein distance algo-
rithm employing automatically determined sensitive sound segment distances
(i.e. similar sounds, such as [o] and [u] will be assigned a low distance, while
the distance between [o0] and [i] will be large). Chapter 3 evaluates these sound
segment distances in detail, by comparing them to acoustic vowel distances.

In contrast to simply distinguishing dialect areas on the basis of aggregate
dialect distances, Chapters 4 and 5 introduce and evaluate a novel method to
determine geographical dialect areas while simultaneously yielding the linguis-
tic basis (in terms of sound segment correspondences). Chapter 4 reports the
results on the basis of Dutch dialect data, while Chapter 5 discusses the geo-
graphical clustering and linguistic basis of English dialects.

The final part of this thesis introduces a novel regression approach which
allows us to predict linguistic distances (per word) with respect to a certain
reference point (in our case, the standard language) on the basis of geography,
but also various social factors. In addition, the benefit of considering a large set
of words is that it enables us to investigate the influence of word-related factors
(such as word frequency), which is especially interesting in the light of lexical
diffusion (Wang, 1969; see also Chapter 6). We illustrate the usefulness of the
regression approach by applying it to a Dutch, a Catalan and a Tuscan dialect
dataset in Chapters 6, 7 and 8, respectively.

In summary, the main contribution of this dissertation is to integrate both
social factors and a focus on individual linguistic features in the dialectometric
approach, and consequently increasing the dialectology in dialectometry.
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CHAPTER 2

IMPROVING PRONUNCIATION
ALIGNMENTS

Abstract.  Pairwise string alignment is an important general tech-
nique for obtaining a measure of similarity between two strings. The cur-
rent chapter focuses on introducing and evaluating several pairwise string
alignment methods at the alignment level instead of via the distances it in-
duces. About 3.5 million pairwise alignments of phonetically transcribed
Bulgarian dialect pronunciations are used to compare four algorithms
with a manually corrected gold standard. The algorithms include three
variants of the Levenshtein distance algorithm, as well as the Pair Hidden
Markov Model. Our results show that while all algorithms perform very
well and align around 95% of all sequence pairs correctly, there are spe-
cific qualitative differences in the (mis)alignments of the different algo-
rithms. Due to its good performance, efficiency and intuitive interpreta-
tion, the Levenshtein distance algorithm using automatically determined
sound segment distances is our method of choice.!

2.1 Introduction

archives and their digital portals, it is alive and well in the varied cul-
tural habits practiced today by the various peoples of the world. To
research and understand this cultural heritage we require instruments which
are sensitive to its signals, and, in particular sensitive to signals of common
provenance. The present chapter focuses on speech habits which even today
bear signals of common provenance in the various dialects of the world’s lan-
guages, and which have also been recorded and preserved in major archives of
folk culture internationally. We present work in a research line which seeks to
develop digital instruments capable of detecting common provenance among
pronunciation habits, focusing in this chapter on the issue of evaluating the
quality of these instruments.
Pairwise string alignment (PSA) methods, such as the popular Levenshtein
distance algorithm (or in short, Levenshtein algorithm; Levenshtein, 1965)

O UR cultural heritage is not only accessible through museums, libraries,

'This chapter is based on Wieling, Proki¢ and Nerbonne (2009) and Wieling and Nerbonne
(2011b).
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which uses insertions (alignments of a segment against a gap), deletions (align-
ments of a gap against a segment) and substitutions (alignments of two seg-
ments), often form the basis of determining the distance between two strings.
Since there are many alignment algorithms, and specific settings for each al-
gorithm influencing the distance between two strings (Nerbonne and Kleiweg,
2007), evaluation is very important in determining the effectiveness of these
methods.

As indicated in Chapter 1, determining the distance (or similarity) between
two phonetic strings is an important aspect of dialectometry, and alignment
quality is important in applications in which string alignment is a goal in itself.
For example, when determining if two words are likely to be cognate (Kondrak,
2003), detecting confusable drug names (Kondrak and Dorr, 2006), or deter-
mining whether a string is the transliteration of a name from another writing
system (Pouliquen, 2008).

In this chapter we evaluate string distance measures on the basis of data
from dialectology. We therefore explain a bit more of the intended use of the
pronunciation distance measure.

Dialect atlases normally contain a large number of pronunciations of the
same word in various places throughout a language area. All pairs of pronun-
ciations of corresponding words are compared in order to obtain a measure of
the aggregate linguistic distance between dialectal varieties (Heeringa, 2004).
It is clear that the quality of the measurement is of crucial importance.

Almost all evaluation methods in dialectometry focus on aggregate results
and ignore the individual word pair distances and individual alignments on
which the distances are based. The focus on the aggregate distance of 100 or so
word pairs effectively hides many differences between methods. For example,
Heeringa et al. (2006) find no significant differences in the degrees to which
several pairwise string distance measures correlate with perceptual distances
when examined at an aggregate level. Wieling et al. (2007b) and Wieling and
Nerbonne (2007) also report almost no difference between several PSA algo-
rithms at the aggregate level. As it is important to be able to evaluate the dif-
ferent techniques more sensitively, this chapter examines alignment quality at
the segment level.

Kondrak (2003) applies a PSA algorithm to align words in different lan-
guages in order to detect cognates automatically. Exceptionally, he does pro-
vide an evaluation of the string alignments generated by different algorithms.
But he restricts his examination to a set of only 82 gold standard pairwise align-
ments and he only distinguishes correct and incorrect alignments and does not
look at misaligned phones.

In the current chapter we introduce and evaluate several alignment algo-
rithms more extensively at the alignment level. The algorithms we evaluate in-
clude the Levenshtein algorithm (with syllabicity constraint, which is explained
below), which is one of the most popular alignment methods and has success-
fully been used in determining pronunciation differences in phonetic strings

14



(Kessler, 1995; Heeringa, 2004). In addition, we look at two adaptations of the
Levenshtein algorithm. The first adaptation includes the swap-operation (Wag-
ner and Lowrance, 1975), while the second adaptation includes sound segment
distances which are automatically generated by applying an iterative pointwise
mutual information (PMI) procedure (Church and Hanks, 1990). Finally, we
include alignments generated with the Pair Hidden Markov Model (PHMM)
as introduced to language studies by Mackay and Kondrak (2005). The PHMM
has also successfully been applied in dialectometry by Wieling et al. (2007b).

2.2 Material

The dataset used in this evaluation consists of 152 words collected from 197
sites equally distributed over Bulgaria. The transcribed word pronunciations
include diacritics and suprasegmentals (e.g., intonation). The total number of
different phonetic types (or segments) is 98. The dataset was analyzed and dis-
cussed in detail by Proki¢ et al. (2009a) and is available online at the website
http://www.bultreebank.org/BulDialects.

The gold standard pairwise alignments were automatically generated from
a manually corrected gold standard set of multiple alignments (i.e. alignments
of more than two pronunciations; see Proki¢ et al., 2009) in the following way:

« Every individual string (including gaps) in the multiple alignment was
aligned with every other string of the same word. With 152 words and
197 sites and in some cases more than one pronunciation per site for a
certain word, about 3.5 million pairwise alignments were obtained.

o If a resulting pairwise alignment contained a gap in both strings at the
same position (a gap-gap alignment), these gaps were removed from the
pairwise alignment. We justify this, reasoning that no alignment algo-
rithm may be expected to detect parallel deletions in a single pair of
words. There is no evidence for this in the single pair.

As an illustration, consider the multiple alignment of three Bulgarian di-
alectal variants of the word T (as in ‘T am’):*

j a s
a z 1
] a

a z 1

*For presentation purposes, stress is not marked in the pronunciation examples.

15
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2.3 Algorithms

We evaluated four algorithms with respect to the quality of their alignments,
including three variants of the Levenshtein algorithm, as well as the Pair Hid-
den Markov Model.

2.3.1 The VC-sensitive Levenshtein algorithm

The Levenshtein algorithm (Levenshtein, 1965)? is a very efficient dynamic pro-
gramming algorithm, which was first introduced by Kessler (1995) as a tool for
computationally comparing dialects. The Levenshtein distance between two
strings is determined by counting the minimum number of edit operations (i.e.
insertions, deletions and substitutions) needed to transform one string into the
other.

For example, the Levenshtein distance between [jas] and [azi], two Bul-
garian dialectal variants of the word T; is 3:

jas  deletej 1
as  subst.z/s 1
az  inserti 1
azi

3

The corresponding alignment is:
j a s

a z i

1 11

The Levenshtein algorithm has been used frequently and successfully for
measuring linguistic distances in several languages, including Irish (Kessler,
1995), Dutch (Heeringa, 2004) and Norwegian (Heeringa, 2004). Additionally,
the Levenshtein algorithm has been shown to yield aggregate results that are
consistent (Cronbach’s « = 0.99) when applied to about 100 transcriptions at
each site and valid when compared to dialect speakers’ judgements of similarity
(r ~ 0.7; Heeringa et al., 2006).

Following Heeringa (2004), we have adapted the Levenshtein algorithm
slightly, so that it does not allow alignments of vowels with consonants (i.e. the
syllabicity constraint, mentioned above).

3The more famous Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) maximizes
the similarity between two strings and allows for a segment similarity matrix, whereas the orig-
inal Levenshtein algorithm (Levenshtein, 1965) minimizes the distance between two strings and
only uses a binary segment distinction (i.e. same and different). More recently, the Levenshtein
algorithm has been adapted to allow for sensitive segment distances (Kessler, 1995; Heeringa,
2004), effectively making it equal to the Needleman-Wunsch algorithm.
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2.3.2 'The Levenshtein algorithm with the swap operation

Because metathesis occurs frequently in the Bulgarian dialect dataset (in 21 out
of 152 words), we extend the VC-sensitive Levenshtein algorithm as described
in Section 2.3.1 to include the swap-operation (Wagner and Lowrance, 1975)
which allows two adjacent characters to be interchanged. The swap-operation
is also known as a transposition, which was introduced with respect to de-
tecting spelling errors by Damerau (1964). As a consequence, the Damerau
distance refers to the minimum number of insertions, deletions, substitutions,
and transpositions required to transform one string into the other. In contrast
to Wagner and Lowrance (1975) and in line with Damerau (1964), we restrict
the swap operation to be allowed only for string X and Y when x; = y;,, and
¥i = Xy, (with x; being the token at position i in string X):

Xi Xit1
Yi Yin
>< 1

Consider the alignment of [vry] and [v¥r], two Bulgarian dialectal variants
of the word ‘peak’ (mountain). The alignment involves a swap and results in a
total distance of 1:

\ T ¥
v ¥ T
>< 1

However, the alignment of the transcription [vry] with another dialectal tran-
scription [var] does not allow a swap and yields a total distance of 2:

A% T R
A a
1 1

Including the option of swapping identical segments in the implementa-
tion of the Levenshtein algorithm is relatively easy. We set the cost of the swap
operation to one* plus twice the cost of substituting x; with y;., plus twice the
cost of substituting y; with x;,,. In this way the swap operation will be pre-
ferred when x; = y;1, and y; = x;,,, but not when x; # y;4, or y; # x;4,. In the
first case the cost of the swap operation is 1, which is less than the cost of the
alternative of two substitutions. In the second case the cost is either 3 (if either
Xi # Yip1 OF ;i # X;y,) or 5 (if both x; # y;4, and y; # x;4,), which is higher
than the cost of only using insertions, deletions and substitutions.

Just as in the previous section, we do not allow vowels to align with conso-
nants (except in the case of a swap).

4More specifically, the cost is set to 0.999 to prefer an alignment involving a swap over an alter-
native alignment involving only regular edit operations.
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2.3.3 The Levenshtein algorithm with automatically generated
PMI-based segment distances

As we are investigating dialectal pronunciations which are reasonably similar
to each other, we expect that similar sounds, such as [i] and [1], will align more
frequently than more distant sounds, such as [i] and [a]. We use pointwise mu-
tual information (PMI; Church and Hanks, 1990) to convert these frequencies
to distances.

The PMI approach consists of obtaining initial string alignments by using
the VC-sensitive Levenshtein algorithm. Based on these initial alignments, the
algorithm collects correspondences such as [i]:[1] in a large segment x segment
contingency table (i.e. a VARIATION MATRIX, see also Chapter 3). For example,
the ([i],[1]) cell of the table records how often the [i] aligned with the [1]. These
counts are subsequently used in the pointwise mutual information formula to
determine the association strength between every pair of sound segments:

o) 2 log [ L20)
PMI(%.7) ng(poc)p(y))
Where:

« p(x,y) is estimated by calculating the number of times sound segments
x and y occur in correspondence in two aligned pronunciations X and
Y, divided by the total number of aligned segments (i.e. the relative oc-
currence of the aligned sound segments x and y in the whole dataset).

o p(x) and p(y) are estimated as the number of times sound segment x
(or y) occurs, divided by the total number of segment occurrences (i.e.
the relative occurrence of sound segments x or y in the whole dataset).
Dividing by this term normalizes the correspondence frequency with re-
spect to the frequency expected if x and y are statistically independent.

We always add a tiny fractional value (< 1) to the frequency of occurrence of x,
y, and the correspondence frequency of x and y. This ensures the numerator
is always larger than zero. As the addition is very small, the effect is negligible
for sound correspondences which align together. In contrast, sounds which
do not align together now obtain the lowest (negative) PMI score (penalizing
them severely).

Positive PMI values indicate that sounds tend to correspond relatively fre-
quently (the greater the PMI value, the more two sounds tend to align), while
negative PMI values indicate that sounds tend to correspond relatively infre-
quently. Sound distances (i.e. sound segment substitution costs) are generated
by subtracting the PMI value from zero and adding the maximum PMI value
(to ensure that the minimum distance is zero), and finally scaling these values
between zero and one. Note that the lack of a segment (a gap) is also treated
as a segment in the PMI procedure. The PMI-based sound segment distance
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(i.e. PMI distance) between identical segments is always set to zero, as from an
alignment perspective no cost accrues to aligning identical sounds.

After the sound segment substitution costs have been calculated for the first
time (using the procedure above), the pronunciations are aligned anew with
the Levenshtein algorithm using the adapted sound segment distances. This
process (i.e. calculating new sound segment distances on the basis of the align-
ments and then obtaining new alignments by using these new sound segment
distances) is repeated until the pronunciation alignments and sound distances
remain constant. In general, it takes fewer than ten iterations for the align-
ments to remain constant. When two sound segments are not aligned at all,
their distance will be very high (due to the very low PMI score, see above) and
this effectively ensures they will never align in subsequent iterations.

When introducing the PMI-based Levenshtein algorithm (Wieling et al.,
2009), all segments were included in the calculations to determine the PMI
distance (between non-identical sound segments; the distance between iden-
tical sound segments is always set to zero). From an alignment perspective,
however, aligning identical sounds does not involve a cost. Therefore, we also
experimented with a version where pairs of identical sounds did not contribute
towards the counts in the PMI formula (Wieling and Nerbonne, 2011b; here the
procedure played a supporting role in removing the effects of inconsistent tran-
scription practices). In the remainder of this chapter we will refer to these two
different versions as the diagonal-inclusive (DI) and the diagonal-exclusive (DE)
version of the PMI-based Levenshtein algorithm, respectively.

The potential merit of using PMI-generated segment distances can be made
clear by the following example. Consider the transcriptions [vyn] and [vynks],
two Bulgarian dialectal variants of the word ‘outside’ The VC-sensitive Leven-
shtein algorithm yields the following (correct) alignment:

v Y
v Y

=]

k o
1
But also the alternative (incorrect) alignment:

VoY
v ¥y 7 )
1

1

SR

The VC-sensitive Levenshtein algorithm generates the erroneous align-
ment because it has no way to identify that the consonant [n] is more similar
to the consonant [1] than to the consonant [k]. In contrast, the PMI-based
Levenshtein algorithm only generates the correct (first) alignment, because the
[n] and [n] align with a higher relative frequency than [n] and [k]. Therefore,
the distance between [n] and [n] will be lower than the distance between [n]
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and [k]. The alignment according to the PMI-based Levenshtein algorithm is
shown below.

v ¥ 1 k )
0.015 0.036 0.042

The idea behind this procedure is similar to the approach of Ristad and
Yianilos (1998), who automatically generated string edit distance costs using
an expectation maximization algorithm. Our approach differs from theirs as
we only learn segment distances based on the alignments generated by the VC-
sensitive Levenshtein algorithm, while Ristad and Yianilos (1998) obtained seg-
ment distances by considering all possible alignments of two strings.’

2.3.4 The Pair Hidden Markov Model

The Pair Hidden Markov Model (PHMM) also generates alignments based on
automatically obtained segment distances and has been used successfully in
language studies (Mackay and Kondrak, 2005; Wieling et al., 2007b).

A Hidden Markov Model (HMM) is a probabilistic finite-state transducer
that generates an observation sequence by starting in an initial state, going from
state to state based on transition probabilities, and emitting an output symbol in
each state based on the emission probabilities in that state for the output symbol
(Rabiner, 1989). The PHMM was originally proposed by Durbin et al. (1998)
for aligning biological sequences and was first used in linguistics by Mackay
and Kondrak (2005) to identify cognates. The PHMM differs from the regular
HMM as it outputs two observation streams (i.e. a series of alignments of pairs
of individual segments) instead of only a series of single symbols. The PHMM
displayed in Figure 2.1 has three emitting states: the substitution (‘match’) state
(M) which emits two aligned segments, the insertion state (Y) which emits a
segment and a gap, and the deletion state (X) which emits a gap and a segment.

The following example shows the state sequence for the pronunciations
[jas] and [azi] (English T):

j a s
a z i
X M M Y

Before generating the alignments, all probabilities of the PHMM have to be
estimated. These probabilities consist of the 5 transition probabilities shown in
Figure 2.1: ¢, A, §, 7xy and 7,,. Furthermore, there are 98 emission probabilities

5We also experimented with using the Levenshtein algorithm without the vowel-consonant align-
ment restriction to generate the initial PMI segment distances, but this adversely affected per-
formance.
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Figure 2.1. Pair Hidden Markov Model. Image courtesy of Mackay and Kondrak (2005).

for the insertion state and the deletion state (one for every segment) and 9604
emission probabilities for the substitution state. The probability of starting in
one of the three states is set equal to the probability of going from the substitu-
tion state to that particular state. The Baum-Welch expectation maximization
algorithm (Baum et al., 1970) can be used to iteratively reestimate these proba-
bilities until a local optimum is found.

To prevent order effects in training, every word pair is considered twice
(e.g., wq —wy, and wj, — w,). Consequently, the resulting insertion and deletion
probabilities are the same (for each segment), and the probability of substitut-
ing x for y is equal to the probability of substituting y for x, effectively yielding
4802 distinct substitution probabilities.

Wieling et al. (2007b) showed that sensible segment distances were ob-
tained using Dutch dialect data for training; acoustic vowel distances on the
basis of spectrograms correlated significantly (r ~ —o0.7) with the vowel substi-
tution probabilities of the PHMM. In addition, probabilities of substituting a
segment with itself were much higher than the probabilities of substituting an
arbitrary vowel with another non-identical vowel (mmutatis mutandis for conso-
nants), which were in turn much higher than the probabilities of substituting a
vowel for a consonant.

After training, the well known Viterbi algorithm is used to obtain the best
alignments (Rabiner, 1989).
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2.3.5 Evaluation procedure

As described in Section 2.2, we use the generated pairwise alignments from
a gold standard of multiple alignments for evaluation. In addition, we look
at the alignment performance with respect to a baseline, which is constructed
by aligning the strings according to the Hamming distance (i.e. only allowing
substitutions and no insertions or deletions; Hamming, 1950).°

The evaluation procedure consists of comparing the alignments of the pre-
viously discussed algorithms (including the baseline algorithm) with the align-
ments of the gold standard. The evaluation proceeds as follows:

1. The pairwise alignments of the four algorithms, the baseline and the gold
standard are generated and standardized (see below). When multiple
equal-scoring alignments are generated by an algorithm, only one (i.e.
the final) alignment is selected.

2. For each alignment, we convert every pair of aligned segments to a sin-
gle token, so that every alignment of two strings is converted to a single
string of segment pairs.

3. For every algorithm these transformed strings are aligned with the trans-
formed strings of the gold standard using the standard Levenshtein al-
gorithm.

4. The resulting Levenshtein distances are added together, resulting in the
total distance between every alignment algorithm and the gold standard.
Only if individual segments match completely, the segment distance is o,
otherwise it is 1.

To illustrate this procedure, consider the following gold standard alignment
(detecting the swap) of [vl¥k] and [v¥lk], two Bulgarian dialectal variants of
the word ‘wolf’:

v I v k

v v | k

Every aligned segment pair is converted to a single token by adding the symbol
‘/” between the segments and using the symbol ‘-’ to indicate a gap. This yields
the following transformed string:

viv. 1y /1 k/k

SStrictly speaking, the Hamming distance is defined as a measure of distance between strings of
equal length. If they do not have equal length, we calculate the Hamming distance between the
(sub)strings consisting of the first n segments (where 7 is the length of the shortest string) and
add the difference in length (in segments) to the total Hamming distance.
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Suppose another algorithm generates the following alignment (not detecting
the swap):

The transformed string for this alignment is:
viv. /- /v -1 ki/k

To evaluate this alignment, we align this string to the transformed string of the
gold standard and obtain a Levenshtein distance of 3:

viv. 1y ¥/l k/k
viv /- xix -1 kik
1 1 1

By repeating this procedure for all alignments and summing up all distances,
we obtain the total distance between the gold standard and every individual
alignment algorithm. Algorithms which generate high-quality alignments will
have a low distance from the gold standard, while the distance will be higher
for algorithms which generate low-quality alignments.

Standardization

The gold standard contains a number of alignments which have alternative
equivalent alignments, most notably an alignment containing an insertion fol-
lowed by a deletion (which is equal to the deletion followed by the insertion), or
an alignment containing a syllabic consonant such as [1], which in fact matches
both a vowel and a neighboring /r/-like consonant and can therefore be aligned
with either the vowel or the consonant. In order to prevent punishing the al-
gorithms which do not match the exact gold standard in these cases, the align-
ments of the gold standard and all alignment algorithms are transformed to
one standard form in all relevant cases.

For example, consider the correct alignment of [via] and [vij], two Bulgar-
ian dialectal variations of the English plural pronoun ‘you”:
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To avoid punishing the latter, we transform all insertions followed by deletions
to deletions followed by insertions, effectively scoring the two alignments the
same.

For the syllabic consonants we transform all alignments to a form in which
the syllabic consonant is followed by a gap and not vice versa. For instance,
aligning [vix] with [varx] (English: ‘peak’) yields:

% I X
\% a r X

Which is transformed to the equivalent alignment:

2.4 Results

We will report both quantitative results using the evaluation method discussed
in the previous section, as well as the qualitative results, where we focus on the
characteristic errors of the different alignment algorithms.

2.4.1 Quantitative results

Because there are two algorithms which use generated segment distances (or
probabilities) in their alignments, we first check if these values are sensible and
comparable to each other.

Comparison of segment distances

Similar to Wieling et al. (2007b), we found sensible PHMM substitution prob-
abilities (convergence was reached after 1675 iterations, taking about 7 CPU
hours): the probability of matching a segment with itself was significantly
higher than the probability of substituting one vowel for another (similarly for
consonants), which in turn was higher than the probability of substituting a
vowel with a consonant (all £s > 9, p < 0.001).

These comparisons are not very informative for the PMI-based Levenshtein
algorithms, as the distance between identical segments is always set to zero and
no vowel-consonant alignments are allowed. The PMI-based Levenshtein al-
gorithms, however, are much faster than the PHMM algorithm, as convergence
was reached in less than 10 iterations, taking only a few minutes of CPU time.

Because the occurrence frequency of the sound segments influences the
PHMM substitution probabilities, we do not compare these substitution prob-
abilities directly to the PMI distances. To obtain comparable scores, the PHMM
substitution probabilities are divided by the product of the relative frequencies

24



of the two sound segments used in the substitution. Since substitutions involv-
ing similar infrequent segments now get a much higher score than substitutions
involving similar, but frequent segments, the logarithm is used to bring the re-
spective scores into a comparable scale.

As the residuals of the linear regression between the PHMM similarities
and PMI distances were not normally distributed, we used Spearman’s rank
correlation coefficient to assess the relationship between the two variables.

We found high significant correlations between the PHMM probabilities
and the PMI sound segment distances (not taking same-segment distances
and vowel-consonant distances into account as these remain fixed in the PMI
approach). For the diagonal-inclusive version of the PMI-based algorithm
(i.e. not ignoring same-segment alignments) Spearmans p = -0.965(p <
o.oo1). For the diagonal-exclusive version (i.e. ignoring same-segment align-
ments) Spearman’s p = —0.879 (p < 0.001). When looking at the insertions
and deletions we also found a significant relationship between the PHMM and
the PMI-based Levenshtein algorithms: Spearman’s p = —0.740 (p < 0.001).
These results indicate that the relationship between the PHMM similarities and
the PMI distances is very strong. As the PHMM takes all sound correspon-
dences into account, it is not surprising that the correlation is higher for the
diagonal-inclusive version of the PMI-based Levenshtein algorithm than for
the diagonal-exclusive version.

Evaluation against the gold standard

Using the procedure described in Section 2.3.5, we calculated the distances be-
tween the gold standard and the alignment algorithms. Besides reporting the
total number of misaligned tokens, we also divided this number by the total
number of aligned segments in the gold standard (about 16 million) to get an
idea of the error rate. Note that the error rate is zero in the perfect case, but
might rise to nearly two in the worst case, which is an alignment consisting
of only insertions and deletions and therefore up to twice as long as the align-
ments in the gold standard. Finally, we also report the total number of align-
ments (word pairs) which are not completely identical to the alignments of the
gold standard.

The results are shown in Table 2.1. We can clearly see that all algorithms
beat the baseline and align about 95% of all string pairs correctly. While the
Levenshtein PMI algorithm (diagonal-exclusive version) aligns most strings
perfectly, it misaligns slightly more individual segments than the PHMM al-
gorithm (i.e. it makes more errors per individual string alignment). The VC-
sensitive Levenshtein algorithm performs significantly worse than all other
non-baseline algorithms. It is clear that the (newer) diagonal-exclusive version
of the PMI-based Levenshtein algorithm outperforms the (original) diagonal-
inclusive version.
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Algorithm Alignment errors (%) Segment errors (rate)

Baseline (Hamming) 726844 (20.92%) 2510094 (0.1579)
Levenshtein VC 191674 (5.52%) 490703 (0.0309)
Levenshtein Swap 161834 (4.66%) 392345 (0.0247)
PHMM 160896 (4.63%) 362423 (0.0228)
Levenshtein PMI (DI) 156440 (4.50%) 399216 (0.0251)
Levenshtein PMI (DE) 152808 (4.40%) 387488 (0.0244)

Table 2.1. Comparison to gold standard alignments. All differences are significant (p <
o0.01). The diagonal-exclusive (DE) version of the PMI-based Levenshtein al-
gorithm excludes pairs of identical sounds from the calculations needed to
determine the sound distances, whereas the diagonal-inclusive (DI) version
does not.

2.4.2 Qualitative results

Let us first note that it is almost impossible for any algorithm to achieve a per-
fect overlap with the gold standard, because the gold standard was generated
from multiple alignments and therefore incorporates other constraints. For ex-
ample, while a certain pairwise alignment could appear correct in aligning two
consonants, the multiple alignment could show contextual support (from pro-
nunciations in other varieties) for separating the consonants. Consequently, all
algorithms discussed below make errors of this kind.

In general, the specific errors of the VC-sensitive Levenshtein algorithm
can be separated into three cases. First, as illustrated in Section 2.3.3, the VC-
sensitive Levenshtein algorithm has no way to distinguish between aligning a
consonant with one of two neighboring consonants and sometimes chooses the
wrong one (this also holds for vowels). Second, it does not allow alignments of
vowels with consonants and therefore cannot detect correct vowel-consonant
alignments such as correspondences of [u] with [v]. Third, the VC-sensitive
Levenshtein algorithm is not able to detect metathesis of vowels with conso-
nants (as it cannot align these).

The misalignments of the Levenshtein algorithm with the swap-operation
can also be split into three cases. It suffers the same two problems as the VC-
sensitive Levenshtein algorithm in choosing to align a consonant incorrectly
with one of two neighboring consonants and not being able to align a vowel
with a consonant. Third, even though it aligns some of the metathesis cases
correctly, it also makes some errors by incorrectly applying the swap-operation.
For example, in the following case the swap-operation is applied by the algo-
rithm:
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However, the two r's are not related (according to historical linguistics) and
should not be swapped, which is reflected in the gold standard alignment:

s 1 1 n i
s 1 n 1

The incorrect alignments of (both versions of) the Levenshtein algorithm
with the PMI-generated segment distances are mainly caused by its inability
to align vowels with consonants and therefore, just as the VC-sensitive Lev-
enshtein algorithm, it fails to detect metathesis and correct vowel-consonant
alignments. On the other hand, using segment distances often solves the prob-
lem of selecting which of two plausible neighbors a consonant (or vowel) should
be aligned with.

The two different versions of the PMI-based Levenshtein algorithm gener-
ated slightly different alignments. Same-segment alignments (included in the
diagonal-inclusive version) increase the relative frequency of the segments in-
volved, which results in a lower PMI score (and a higher segment distance). As
gap-gap alignments cannot occur, gaps do not have that effect and alignments
involving a gap (i.e. an insertion or a deletion) have a relatively low distance
compared to substitutions. As the diagonal-exclusive version ignores same-
segment alignments, it does not suffer from a preference for insertions and
deletions (over substitutions), and consequently alignment quality is improved
slightly.

Because the PHMM employs segment substitution probabilities, it also of-
ten solves the problem of aligning a consonant (or vowel) with one of two
plausible neighbors. In addition, the PHMM often correctly aligns metathe-
sis involving equal as well as similar segments, even realizing an improvement
over the Levenshtein algorithm with the swap operation. Unfortunately, many
wrong alignments of the PHMM are also caused by allowing vowel-consonant
alignments.

2.5 Discussion

In this chapter we introduced several pairwise string alignment methods, and
showed that they improve on the popular Levenshtein algorithm with respect
to alignment accuracy.

While the results indicated that the PHMM misaligned the fewest seg-
ments, training the PHMM is a lengthy process which lasts several CPU
hours. Considering that the Levenshtein algorithm with PMI distances is much
quicker to apply, and that it has only slightly lower performance with respect
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to the segment alignments, we prefer it over the PHMM. Another argument
in favor of this choice is that it is a priori clearer what type of alignment er-
rors to expect from the PMI-based Levenshtein algorithm, while the PHMM
algorithm and its errors are less predictable and harder to comprehend.

It would be interesting to investigate if using the PMI-based segment dis-
tances while also including the swap operation is beneficial. One approach
could be to use the Levenshtein algorithm with the swap operation to generate
the initial alignments for the PMI procedure. In this case, two segments in-
volved in a swap will obtain a lower PMI distance, and will be more likely to
correspond in subsequent alignments. A drawback of this approach, however,
is that these segments will also be more likely to align if no swap is involved (as
no context is taken into account in the PMI-based Levenshtein algorithm).

We only looked at the PMI-based measure of association strength, but of
course other measures are also possible. Evert (2005) evaluates various mea-
sures with respect to collocation identification (i.e. words which are commonly
found together) and it would be interesting to evaluate the performance of these
measures here as well.

In the next chapter we will see that the sound segment distances gener-
ated by the PMI-based Levenshtein algorithm (diagonal-exclusive version) are
also acoustically sensible. Consequently, the algorithm is very suitable for de-
termining individual sound correspondences (see Chapter 4) and, given the
close link between alignment and distance (see Section 2.3.1), also for improv-
ing word pronunciation distances (see Chapters 6 and 7).
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CHAPTER 3

INDUCING PHONETIC DISTANCES
FROM VARIATION

€ Y4LdVHO

Abstract. Structuralists famously observed that language is "un sys-
téme ot tout se tient" (Meillet, 1903, p. 407), insisting that the system of re-
lations of linguistic units was more important than their concrete content.
In this chapter we attempt to derive content from relations, in particular
phonetic (acoustic) content from the distribution of alternative pronun-
ciations used in different geographical varieties. We start from data docu-
menting language variation, examining six dialect atlases each containing
the phonetic transcriptions of the same sets of words at hundreds of sites.
We then use the pointwise mutual information (PMI) procedure, intro-
duced in the previous chapter, to obtain the phonetic distances and eval-
uate the quality of these distances by comparing them to acoustic vowel
distances. For all dialect datasets (Dutch, German, Gabon Bantu, U.S. En-
glish, Tuscan and Bulgarian) we find relatively strong significant correla-
tions between the induced phonetic distances and the acoustic distances,
illustrating the usefulness of the method in deriving valid phonetic dis-
tances from distributions of dialectal variation. In addition, these results
provide further support for using the PMI-based Levenshtein algorithm
in pronunciation comparison.!

3.1 Introduction

N this chapter we evaluate the success of the pointwise mutual information
(PMI) approach, introduced in Section 2.3.3, by comparing derived pho-
netic segment distances to independent acoustic characterizations. Since
there is a consensus that formant frequencies characterize vowels quite well,
we compare in particular the phonetic segment distances of vowels gener-
ated by our method to vowel distances in acoustic space. As we know of no
well-accepted method to measure acoustic differences between consonants,’
we cannot evaluate these, but we do examine them. In the following, we will

'This chapter is based on Wieling, Margaretha and Nerbonne (2011a) and Wieling, Margaretha
and Nerbonne (2012).

%See, however, Mielke (2005) for an interesting recent attempt using Dynamic Time Warping, a
continuous analogue of the Levenshtein distance.
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elaborate on the motivations for automatically deriving phonetic segment dis-
tances.

3.1.1  Dialectology

As indicated in Chapters 1 and 2, improving the measure of similarity (or dis-
tance) between two phonetic strings is important in dialectometry, especially
when focusing on word pronunciation distances. Kessler (1995) and especially
Heeringa (2004, pp. 27-119) experimented with a large number of segment dis-
tance measures, which form an optional component of edit-distance measures
such as the Levenshtein distance, seeking to validate the measures using the
correlation between aggregate varietal distance as measured by the Levenshtein
distance algorithm with dialect speakers’ judgements (of overall similarity to
their own dialect). Unfortunately, none of Kessler’s or Heeringa’s measures im-
proved (much) on the very simple, binary measure which distinguishes only
identical and non-identical segments (Kessler, 1995; Heeringa, 2004, pp. 27-
119, 186). We suggest that the difficulty of demonstrating improvement arose
because these researchers compared results at relatively high levels of aggrega-
tion.

By using automatically determined sound segment distances, we will refine
the measure, but we are aware that the refinement may be better and still not
lead to improvements at larger levels of aggregation. Consider improving on
the precision of a centimeter-based measure of people’s height by using more
precise millimeters: this would be more accurate, but comparisons of average
heights in different populations would be unlikely to benefit, indeed unlikely to
even change. We do expect the new measure (if acoustically sensible) to prove
more useful as one turns to more sensitive uses, such as validations involving
pairs of individual pronunciations.

3.1.2 Historical linguistics

The Levenshtein distance is basically an inverse similarity measure, and histor-
ical linguists are clear about rejecting similarity as a basis for inference about
historical relatedness (Campbell, 2004, p. 197). But an improvement in measur-
ing segment distance also improves alignments (see Chapter 2), which means
in turn an improved ability in (automatically) identifying the sound corre-
spondences which historical linguistics does rely on (Hock and Joseph, 1996,
Ch. 4 and 16). This is therefore a second linguistic area which may benefit
from improved measures of segment distance. Indeed, historical examination
normally relies on detecting regular sound correspondences such as the fa-
mous [p]:[f] correspondence between Romance and Germanic languages, seen
in pairs such as Lat. pater, Eng. ‘father’; Lat. plenus, Eng. ‘full’ or Lat. pisces,
Eng. ‘fish’ The step we imagine improving is the extraction of large numbers
of correspondences, which may then be analyzed using phylogenetic inference
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(Bryant et al., 2005). Covington (1996), Oakes (2000) and Kondrak (2003) have
experimented with automatic alignment in service of historical linguistics, fo-
cusing on the ability to identify cognates. Proki¢ (2010, Ch. 6) has taken first
steps to use multiple aligned data in phylogenetic inference.

3...3 Phonetics and phonology

As Laver (1994, p. 391) notes, there is no widely accepted procedure for de-
termining phonetic similarity, nor even explicit standards: “Issues of phonetic
similarity, though underlying many of the key concepts in phonetics, are hence
often left tacit”

Itis clear that there has nonetheless been a great deal of work on related top-
ics in phonetics and laboratory phonology. In phonetics, Almeida and Braun
(1986) developed a measure of segment distance in order to gauge the fidelity
of phonetic transcriptions. It was used, e.g., to evaluate intra- and intertran-
scriber differences. Cucchiarini (1993) refined this work and Heeringa (2004)
also experimented with Almeida and Braun’s segment distance measure in di-
alectometry.

In laboratory phonology, Pierrehumbert (1993) experimented with a sim-
ple feature-overlap definition of similarity to which Broe (1996) added an
information-theoretic refinement discounting redundant features. Frisch
(1996) recast these definitions in terms of natural classes, rather than features,
and Frisch et al. (2004) demonstrate that the Arabic syllable is best described
as involving a gradient constraint against similar consonants in initial and final
position, the so-called ‘Obligatory Contour Principle’ Bailey and Hahn (2005)
measure the degree to which the definitions of Frisch et al. (2004) predict the
frequency of perceptual confusions in confusion matrices (see below), obtain-
ing fair levels of strength (0.17 < r* < 0.42).

In general, the work from phonetics and (laboratory) phonology has ex-
perimented with theoretically inspired definitions of similarity as a means of
explaining phonotactic constraints or potential confusions. Bailey and Hahn
(2005) contrasted theoretically inspired definitions of phonetic similarity to
empirical measures based on confusion matrices. A confusion matrix (Miller
and Nicely, 1955) normally records the outcome of a behavioral experiment. It
is a square matrix in which the rows represent sounds (or symbols) presented
to subjects and the columns the sounds perceived. Each cell (r, ¢) records the
number of times the signal in row r was perceived as the signal in column c.
So cell (0,0) records how often [0] was perceived as [0], and the diagonal then
represents the non-confused, correctly perceived signals.

As opposed to confusion matrices which record variants in speech percep-
tion, we introduce VARIATION MATRICES which record (dialectal) variants in
speech production. In our case the variation matrix is initiated not with a be-
havioral experiment, but rather using distributional data available in dialect at-
lases. Based on alignments of dialectal pronunciations for a large set of words,
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we obtain the frequency with which sound segments align. Continuing with
the example above, cell (0,0) in a variation matrix thus represents the number
of times [0] was used in the pronunciation of one variety, whereas [0] was used
at the corresponding position in the pronunciation of another variety. We will
use these variation matrices to directly extract information about sound seg-
ment similarity in a data-driven manner (as opposed to proceeding from a the-
oretical notion, see above). Specifically, we employ the information-theoretic
PMI measure of association strength (introduced in the previous chapter) to
determine the final sound segment distances.®> Studies involving (data similar
to) confusion matrices have often applied MDS as well (Fox, 1983), just as we
will here.

3.1.4 Computational linguistics

Sequence alignment and sequence distance are central concepts in several areas
of computer science (Sankoft and Kruskal, 1999; Gusfield, 1999), and the Lev-
enshtein distance algorithm and its many descendants are used frequently, not
only for phonetic transcriptions, but also for comparing computer files, macro-
molecules and even bird song (Tougaard and Eriksen, 2006). Computational
linguists have also experimented with variable segment distances for various
reasons.

Kernighan et al. (1990) induced segment distances from teletype data in or-
der to better predict the intended word when faced with a letter sequence that
did not appear in their lexicon. Ristad and Yianilos (1998) applied an expec-
tation maximization algorithm to the problem of learning edit costs, and eval-
uated the results on their effectiveness in classifying phonetic transcriptions
representing spoken words in the Switchboard corpus. The phonetic transcrip-
tions were correctly classified if they corresponded to words that annotators un-
derstood (represented phonemically). Brill and Moore (2000) generalized ear-
lier work to include many-to-one substitutions, testing their scheme on spelling
correction, which Toutanova and Moore (2002) took as a basis for focusing on
pronunciation modeling. As indicated in Section 2.3.4, Wieling and Nerbonne
(2007) applied a Pair Hidden Markov Model (PHMM) to dialect data, demon-
strating that the PHMM could likewise induce acoustic distances (for Dutch)
fairly well (r ~ —0.7), but also that the runtime involved many hours of CPU
time.

3.1.5 Additional motivation

It is clear that the notion ‘phonetically similar’ is often informally invoked, and
not only when describing how deviant a given dialect pronunciation is with

30Ohala (1997) calls for an information-theoretic perspective on confusion matrices, but he is par-
ticularly interested in non-symmetric aspects of the matrices.
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respect to a standard language or other dialects (the issue we are most interested
in). Nor do the various research lines mentioned above exhaust the utility of
the concept.

Phonetic similarity also plays a role when discussing the comprehensibility
of foreigners” speech and how heavy their accents are (Piske et al., 2001; Flege
etal.,1995), when assessing the success of foreign language instruction, or when
discussing the quality of speech synthesizers (Van Heuven and Van Bezooijen,
1995). Sanders and Chin (2009) measure the intelligibility of the speech of
cochlear implant bearers using a measure of phonetic similarity. Kondrak and
Dorr (2006) apply a measure of pronunciation distance to identify potentially
confusing drug names. And, although we will not attempt to make the argu-
ment in detail, we note that the many appeals to “natural” phonetic and phono-
logical processes also seem to appeal to a notion of similarity, at least in the
sense that the result of applying a natural process to a given sound is expected
to sound somewhat like the original, albeit to varying degrees.

3.1.6 Structuralism

It was a major structuralist tenet that linguistics should attend to the relations
(distributions) among linguistic entities more than to their substance proper
(Meillet, 1903, p. 407). For example, a structuralist attends more to phone-
mic distinctions, to sounds which fall in the relation “potentially capable of
distinguishing lexical meaning” than to the details of how the sounds are pro-
nounced, but also to sounds that fall in the complementary distribution rela-
tion (not found in the same phonetic environment) or the free variation rela-
tion (found in the same phonetic environment, but without an effect on lexical
meaning).

In the present case we attend to sounds which participate in the relation
“potentially used as a dialect variant” and we do not privilege either phonemic
or sub-phonemic variation. Some structuralists might well draw the line at con-
sidering variation outside a tightly defined variety, and in that sense we are per-
haps not merely developing structuralist ideas. Other structuralists nonethe-
less recognized that the speech of “the whole community” was the proper con-
cern of linguistics, in spite of the fact that “every person uses speech forms
in a unique way” (Bloomfield, 1933, p. 75). They did not advocate attention
to the idiolects of speakers in “completely homogeneous speech communities”
(Chomsky, 1965, p. 3).

In suggesting a renewed focus on phonetic and phonological relations,
i.e. distributions, we are aware that phonetics — and to some extent phonology
(Cole, 2010) — has largely and successfully ignored the advice to concentrate
on relations, in favor of examining the articulatory, acoustic and auditory basis
of sounds, and we do not presume to question the wisdom of that development.
It nonetheless remains scientifically interesting to see how much information
is present in (cross-speaker) distributions. As we note above, the sort of dis-

33

€ Y4LdVHO




€ YILdVHD

tribution we examine below is perhaps of a different sort than the ones many
structuralists had in mind, but its key property is that it is derived from a large
number of alternative pronunciations.

3.2 Material

3.2.1 Dialect pronunciation datasets

To obtain a representative view of the quality of the sound segment dis-
tances generated by the PMI procedure (see Section 2.3.3; we use the diagonal-
exclusive version), we apply the method to six independent datasets. In addi-
tion to the Bulgarian dataset introduced in Chapter 2, we will generate PMI-
based sound segment distances (i.e. PMI distances) on the basis of a Dutch
dataset, a German dataset, a U.S. English dataset, a Gabon Bantu dataset, and
a Tuscan dataset.

We evaluate the quality of the vowel distances by comparing them to acous-
tic distances in formant space. In order to focus on segmental distances we
ignore suprasegmentals, and in order to limit the number of distinct phonetic
sounds in each dataset, we ignore diacritics. To obtain a reliable set of automati-
cally generated vowel distances, however, we exclude vowels having a frequency
lower than one percent of the maximum vowel frequency in each dataset.

As indicated in Section 2.2, the Bulgarian dataset consists of phonetic tran-
scriptions of 152 words in 197 locations equally distributed over Bulgaria. The
Bulgarian dataset is characterized by a relatively small number of vowels (11):
/i, e, €, u, U, a, a, 0, 9, ¥, o/.

The Dutch dialect data set contains phonetic transcriptions of 562 words in
613 locations in the Netherlands and Flanders. Wieling et al. (2007a) selected
the words from the Goeman-Taeldeman-Van-Reenen-Project (GTRP; Goeman
and Taeldeman, 1996) specifically for an aggregate analysis of pronunciation
variation in the Netherlands and Flanders. The Dutch dataset differentiates 18
vowels (excluding the low-frequency vowels): /a, a, o, a, &, e, €, 1,1, y, 0, 0,
u, U, e, &, @, 9/.

The German dataset contains phonetic transcriptions of 201 words in 186
locations collected from the Phonetischer Atlas der Bundesrepublik Deutschland
(Goschel, 1992) and was analyzed and discussed in detail by Nerbonne and
Siedle (2005). The German dataset differentiates 21 vowels (excluding the low-
frequency vowels): /a, a, o, A, ®, &, €, €, 1, 1, ¥, Y, 0, 9, U, U, W, O, 0, &,
a/.

The U.S. English dataset contains phonetic transcriptions of 153 concepts
in 483 locations (1162 informants) collected from the Linguistic Atlas of the
Middle and South Atlantic States (Kretzschmar, 1994). We obtained the sim-
plified phonetic data from http://www.let.rug.nl/~kleiweg/lamsas/download.
The U.S. English dataset differentiates 17 vowels (excluding the low-frequency
vowels): /i, 1, e, €, u, v, &, a, a, b, 3, G, 0, 2, A, ®, /.
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The Bantu dataset consists of phonetic transcriptions of 160 words in 53
locations and is equal to the subset of the Atlas Linguistique du Gabon ana-
lyzed and discussed in detail by Alewijnse et al. (2007). The Bantu dataset is
distinctive, because several different language varieties (e.g., Fang and Tsogo)
are included. In contrast to the Dutch, German and U.S. English datasets which
distinguish many vowels, the Bantu dataset differentiates only eight vowels (ex-
cluding the low-frequency vowels): /e, €, i, 0, 9, u, a, /.

The Tuscan dataset, finally, consists of 444 words in 213 locations. In every
location on average 10 informants were interviewed. This dataset was analyzed
and discussed by Montemagni et al. (in press) and is a subset of the Atlante
Lessicale Toscane (Giacomelli et al., 2000). As this dataset was compiled with
a view to identifying lexical variation (note that we focused on a single lexical
form per word), transcriptions are quite crude and consequently only a limited
number of vowels were included. The Tuscan dataset therefore only differen-
tiates eight vowels (excluding the low-frequency vowels): /i, e, €, u, o, o, a,
a/.

3.2.2 Acoustic vowel measurements

For every dialect dataset, we obtained formant frequency measurements (in
Hertz) of the first two formants, F1 and F2, of the vowels. We included measure-
ments for all vowels which also occurred in the corresponding dialect dataset.

For Bulgarian, we used the formant frequency measurements of a single
Bulgarian male speaker* (a radio commentator speaking standard Bulgarian)
reported by Lehiste and Popov (1970) for six vowels: /i, e, o, a, o, u/. Every
measurement was based on 18 pronunciations of the (stressed) vowel. Unfor-
tunately, no information was provided about where in the course of the vowel
the measurements were taken and how many time points were sampled.

For Dutch, we used vowel formant frequency measurements of 50 male
(Pols et al., 1973) and 25 female (Van Nierop et al., 1973) standard Dutch speak-
ers. The formant frequency information was obtained from the initial (stable)
part of the vowel waveform and was based on 10 sampling points (i.e. 10 periods
generated as a continuous periodic waveform and input to the wave analyzer).
We included the formant frequency measurements for 12 vowels: /i, 1, y, v, e,
€, a, a, 0, 9, U, ¢/. We averaged the mean frequencies of men and women in
order to obtain a single set of frequencies.

For German, we used vowel formant frequency measurements of 69 male
and 58 female standard German speakers (Sendlmeier and Seebode, 2006) for
14 vowels (stressed, except for the schwa): /i, 1, y, v, e, €, a, 0, 0, u, u, 4, 9,
o/. We averaged the mean frequencies of men and women in order to obtain
a single set of frequencies. Unfortunately, no information was provided about

4We are aware of the variability in formant frequencies between different speakers. Unfortunately
we were not able to find more formant frequency measurements of Bulgarian (and Bantu) speak-
ers.
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where in the course of the vowel the measurements were taken and how many
time points were sampled.

For US. English, we used vowel formant frequency measurements of 45
men and 48 women speaking standard U.S. English (Hillenbrand et al., 1995).
The formant frequency information was obtained from the initial (stable) part
of the vowel waveform and was based on seven sampling points. We included
acoustic measurements for 11 stressed vowels: /i, 1, e, €, &, a, 9, 0, U, u, A/
and we averaged the mean frequencies of men and women in order to obtain a
single set of frequencies.

The Bantu dataset consisted of different languages, but we were only able to
find vowel formant frequency measurements for the Fang language (Nurse and
Philippson, 2003, p. 22). We included acoustic measurements for eight vowels:
/i, e, €, 9, a, 9, 0, u/. Every measurement was based on six pronunciations
of the vowel by a single speaker. Unfortunately, no information was provided
about where in the course of the vowel the measurements were taken, if the
vowels were stressed or not, and how many time points were sampled.

For Tuscan, we used the formant frequency measurements for two Tuscan
dialects (the Pisan and Florentine varieties) reported by Calamai (2003). The
formant frequency information was obtained from the (stable) vowel wave-
form and was based on three sampling points. For both dialects, recordings
of two male speakers for seven stressed vowels (pronounced multiple times)
were used: /a, €, e, i, 0, 0, u/.

3.3 Methods

3.3.1 Obtaining sound segment distances based on dialect
pronunciations

The sound segment distances based on the dialect pronunciations were deter-
mined automatically using the PMI approach explained in Section 2.3.3. As the
diagonal-inclusive version of the PMI-based Levenshtein algorithm was out-
performed by the diagonal-exclusive version, we used the latter version to ob-
tain the sound segment distances.

To appreciate how the present attention to relations is several magnitudes
more encompassing than earlier structuralist work, we note that the procedure
always involves a large number of correspondences. A word has four or five
segments on average, so an aligned pronunciation pair yields about five cor-
respondences. We work with word lists containing 152 - 562 words, meaning
we obtain 760 - 2810 correspondences per pair of sites. As our datasets contain
data from between 53 and 613 sites, there are between 1378 and 187,578 site pairs,
and we collect between 10° and 5 x 10® correspondences per dataset.
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Pearson’s r  Explained variance (r*)  Significance

Dutch 0.672 45.2% p<o.01
Dutch w/o Frisian 0.686 47.1% p<o.o1
German 0.630 39.7% p <o.01
German w/o /o/ 0.785 61.6% p<o.01
U.S. English 0.608 37.0% p<o.01
Bantu 0.642 41.2% p<o.01
Bulgarian 0.677 45.8% p <o.01
Tuscan 0.758 57.5% p<o.01

Table 3.1. Correlations between the acoustic and PMI distances for all datasets. Signif-
icance was assessed using the Mantel test (Mantel, 1967).

3.3.2 Calculating acoustic distances

To obtain the acoustic distances between vowels, we calculated the Euclidean
distance of the average formant frequencies (in Bark, to correct for our non-
linear perception of formant frequency; Traunmiiller, 1990). Unfortunately, as
we mainly obtained the average formant frequencies from published research,
we were not able to apply speaker-based normalization (e.g., Lobanov, 1971).

We employ the acoustic distances to validate the corpus-based PMI proce-
dure, but while the induced segmental distances are based on an entire language
area, the acoustic differences have normally been measured using pronuncia-
tions according to the standard variety. One might object that we should com-
pare with the acoustics of each of the varieties we examine, but we note that
we induce distances from phonetic transcriptions which are used consistently
across an entire language area. We therefore take it that we can use the acoustic
pronunciations of the relevant IPA (International Phonetic Alphabet) vowels
according to the standard variety as validation material.

3.4 Results

For all datasets, Table 3.1 shows the correlation between the acoustic and PMI
distances. We assessed the significance of the correlation coefficients by using
the Mantel test (Mantel, 1967), as our sound distances are not completely in-
dependent. It is clear that the acoustic and PMI distances match reasonably
well, judging by the correlation coefficients ranging from o0.61 to 0.76 (for the
complete datasets).

Given a matrix of vowel distances, we can use multidimensional scaling
(MDS; Togerson, 1952) to place each vowel at the optimal position relative to all
other vowels in a two-dimensional plane. Figure 3.1(a) shows the relative posi-
tions of the Bulgarian vowels on the basis of their acoustic distances (since these
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are based on the first two formants, the complete variance is always visualized
in two dimensions), while Figure 3.1(b) shows the relative positions of the Bul-
garian vowels based on their PMI distances. Similarly, Figures 3.2 through 3.6
show the relative positions of the vowels based on the acoustic distances (a)
as well as the PMI distances (b) for Dutch, German, U.S. English, Bantu and
Tuscan. As the MDS calculations did not allow for missing distances, some
sounds may be missing from the PMI distance visualizations. When the PMI
method did not yield a distance between a pair of sounds (i.e. the two sounds
did not align), we excluded one of these sounds from the MDS procedure.” Of
course, all distances were included when calculating the correlation between
the acoustic and PMI distances (shown in Table 3.1).

In examining the MDS visualizations of the vowels, one should keep in
mind that they are visualizations of the relative distances of the vowels to each
other, and not simply visualizations of vowels in any absolute coordinate sys-
tem. So questions regarding the relative position of a certain vowel compared
to other vowels can be answered, while those about the absolute position of a
vowel (e.g., in the top-right) cannot.

Itis clear that the visualizations on the basis of the acoustic distances resem-
ble the IPA vowel chart (shown in Figure 3.7) quite nicely. The visualizations on
the basis of the PMI distances are somewhat less striking and will be discussed
for every figure separately.

The visualization of the Bulgarian data in Figure 3.1(b) (capturing 86% of
the variation) reveals a deviating position of the [€], presumably caused by its
relatively large distance from (i.e. infrequent alignment with) [o] and [u]. If
we ignore the [¢], the relative positions of the [i], [a] and [u] seem reasonable,
however. Especially when considering the distances are based only on how fre-
quently the sounds align in dialect data. Note that the [0] was excluded from
the MDS visualization, as this sound did not align with all other vowels (and
no missing distances were allowed in the MDS procedure).

The visualization of the Dutch PMI distances in Figure 3.2(b) captures 76%
of the variation and reveals quite acceptable relative positions of the [i], [u], [a]
and similar sounds. However, the relative position of the [o] (schwa) deviates
significantly from the position on the basis of the acoustic distances. Investigat-
ing the underlying alignments revealed that the schwa was frequently deleted
(i.e. aligned against a gap) and this resulted in relatively high distances between
the schwa and the other vowels (which were deleted less frequently) compared
to the other distances. Consequently, excluding the schwa increased the abil-
ity to visualize the distances between the vowels adequately in two dimensions:
the explained variance increased from 76% to 85%. A second striking deviation
for the Dutch dataset is the position of the front rounded vowels, which are
surprisingly back (i.e. [y], [¢] and [ce]). Unfortunately, we do not have an im-
mediate explanation for this, but it is likely that this reflects the frequency with

5We chose the sound to exclude in a way that maximized the number of sounds displayed.
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(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.1. Relative positions of Bulgarian vowels based on their acoustic (a) and PMI
distances (b). The visualization in (a) captures 100% of the variation in the
original distances, while the visualization in (b) captures 86% of the variation
in the original distances.
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(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.2. Relative positions of Dutch vowels based on their acoustic (a) and PMI dis-
tances (b). The visualization in (a) captures 100% of the variation in the
original distances, while the visualization in (b) captures 76% of the varia-
tion in the original distances.

which [u] and [y], etc. correspond, which may ultimately suggest a systematic
limitation of the technique (i.e. sensitivity to umlaut).

The Dutch dataset also includes dialects where the Frisian language is spo-
ken. We experimented with excluding the Frisian dialects from the Dutch
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(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.3. Relative positions of German vowels based on their acoustic (a) and PMI
distances (b). The visualization in (a) captures 100% of the variation in the
original distances, while the visualization in (b) captures 70% of the variation
in the original distances.

dataset as Frisian is recognized as a different language politically and is gener-
ally recognized as historically less closely related to Dutch than (for example) to
English. In addition, Frisian and Dutch dialects have some sound correspon-
dences consisting of rather dissimilar sounds (see Chapter 4), such as [a]:[i]
(e.g., kaas, ‘cheese’: [kas] vs. [tsis]). As excluding the Frisian dialects did not
have a serious effect on the correlation coefficient (an increase of only 0.014 to
r = 0.686, see Table 3.1), we may conclude that the dissimilar sound correspon-
dences are still outweighed in frequency by the phonetically similar sound cor-
respondences. Only if dissimilar correspondences occurred more frequently
than similar ones, would our method generate inadequate phonetic distances.
However, as we generally include as much material as possible, it is unlikely
that dissimilar sound correspondences will dominate.

The visualization of the German PMI distances in Figure 3.3(b) captures
70% of the variation and also reveals quite acceptable relative positions of the
[i], [u], [a] and similar sounds. While the schwa was positioned better in Fig-
ure 3.3(b) than in Figure 3.2(b), the schwa was the most frequently deleted
sound in the German dataset. Consequently, excluding the schwa from the vi-
sualization increased the explained variance from 70% to 82% and also resulted
in a higher correlation between the acoustic and PMI distances (see Table 3.1).

The relative positions of the vowels based on the U.S. English PMI distances
in Figure 3.4(b) (capturing 65% of the variation) are much more chaotic than
the Dutch and German visualizations. If we ignore the [¢], the relative posi-
tions of the [1], [p] and [u] seem reasonable, however. Similar to the Bulgarian
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(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.4. Relative positions of U.S. English vowels based on their acoustic (a) and PMI
distances (b). The visualization in (a) captures 100% of the variation in the
original distances, while the visualization in (b) captures 65% of the variation
in the original distances.

visualization, the deviating position of the [¢] was likely caused by its relatively
large distance from (i.e. infrequent alignment with) [o] and [u]. Note that the
[i], [e], [a] and [a] were excluded from the MDS visualization, as these sounds
did not align with all other vowels (and no missing distances were allowed in
the MDS procedure).

We turn now to the Bantu data. Similar to Dutch and German, the visu-
alization of the Bantu PMI distances (capturing 9o% of the variation) in Fig-
ure 3.5(b) reveals reasonable relative positions of the [i], [u] and [a]. The most
striking deviation is the position of the schwa, caused by its low distance from
the [a] and greater distance from [i] and [u].

The visualization of the Tuscan PMI distances in Figure 3.6(b) captures 97%
of the variation and shows a reasonably good relative placement of all sounds.
Of course, this is not very surprising as there are only five sounds included in
the visualization (i.e. the [a], [0] and [e] were excluded as these sounds did
not align with all other sounds, and the MDS procedure did not allow missing
distances).

As we know of no well-accepted method to measure acoustic differences
between consonants, we were not able to evaluate the quality of the automati-
cally generated consonant distances explicitly. To illustrate that the consonant
distances also seem quite sensible, Figure 3.8 shows the MDS visualization of
several Dutch consonants (capturing 50% of the variation). Note that conso-
nants having a frequency lower than one percent of the maximum consonant
frequency were excluded, as well as consonants which did not align with all
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(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.5. Relative positions of Bantu vowels based on their acoustic (a) and PMI dis-
tances (b). The visualization in (a) captures 100% of the variation in the orig-
inal distances, while the visualization in (b) captures 90% of the variation in
the original distances.

(a) Acoustic distance visualization (b) PMI distance visualization

Figure 3.6. Relative positions of Tuscan vowels based on their acoustic (a) and PMI dis-
tances (b). The visualization in (a) captures 100% of the variation in the orig-
inal distances, while the visualization in (b) captures 97% of the variation in
the original distances.

other consonants (no missing distances are allowed in the MDS procedure).
Figure 3.8 clearly shows sensible groupings of the velar consonants [x], [x], [y],
[g], [g] in the upper-left, the rhotic consonants [r], [r], [c] in the upper-right,
the alveopalatal consonants [j], [s], [n], [t], [d] in the center, the laterals [1],

42



Front Central Back

Close ey tett Weu
1Y U
Closemid — €'e () 940 ¥e0
)
Open-mid eee 3\8— AeD

x

B
Open a O‘EA— deD

Figure 3.7. Vowel chart of the International Phonetic Alphabet
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Figure 3.8. Relative positions of Dutch consonants based on their PMI distances. Fifty
percent of the variation in the original distances is captured.

[1] to the right and the bilabial and labiodental consonants [v], [w], [b], [p],
[v] at the bottom. (Even though the [v] is fairly distant from the other mem-
bers of this group, it is the closest group.) In contrast, the position of the [z]
close to the velars is not easy to explain. Also note that the visualization of the
consonant distances seems to indicate that place and manner characteristics
dominate over voicing.

3.5 Discussion

In this chapter we have shown that the structure of variation matrices reflects
phonetic distance. We used acoustic distances in formant space as an evalu-
ation of the claim that we could derive information about phonetic distances
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from cross-speaker distributions of variation. The level of correlation between
the automatically determined phonetic distances and acoustic distances was
similar in six independent dialect datasets and ranged between 0.61 and 0.76,
a good indication that the relation between functioning as an alternative pro-
nunciation and being similar in pronunciation is neither accidental nor trivial.

Of course, one might argue that these results are perfectly in line with what
one would expect. Indeed, it is more likely that dialectal pronunciations will
be similar to each other, rather than completely different and, consequently,
similar sounds will align more frequently than dissimilar sounds. However, we
would like to emphasize that our results have quantified how much information
is implicit in (cross-speaker) distributions, something which has largely been
lacking. Whether or not one is surprised at how much information is found in
these distributions undoubtedly depends on one’s theoretical convictions, but
the present chapter has quantified this.

In line with this, the MDS visualizations of the automatically obtained seg-
ment distances were never completely identical to the visualizations based on
the acoustic data. In some cases, this was caused by the frequency with which a
particular sound segment (e.g., the schwa in Dutch and German) was deleted in
the alignments (which consequently affected the other distances), but in other
cases acoustically similar sounds simply aligned infrequently. So, while there is
a clear connection between acoustic distances and the information about pho-
netic distances present in the distribution of alternative pronunciations, it is by
no means perfect. It would be interesting to see if there is some kind of struc-
ture in these deviations. Unfortunately, we do not yet have a clear approach
toward investigating this.

We excluded diacritics in order to limit the number of distinct phonetic
sounds in each dataset. It would be insightful to investigate if including dia-
critics is possible and would still yield reliable sound distances, given the lim-
ited amount of data available. Another extension of the research in this chapter
would be to investigate sound distances obtained using other measures of as-
sociation strength instead of PMI (see also Section 2.5).

Clearly, we first need phonetic events in order to study their distributions.
In this sense, this chapter has demonstrated how to detect phonetic relations
from (cross-speaker) distributions, but we concede that it would be overeager
to imagine that distributions cause the phonetics. We would like to note, how-
ever, that there have been demonstrations that distributions within acoustic
space do influence children’s learning of categories (Maye et al., 2002). There
is room in linguistic theory to imagine that distributions in fact do influence
phonetics.

We emphasize that we tested our inductive procedure against the ground
truth of acoustics, and that we restricted our test to comparisons of vowels only
because there is phonetic consensus about the characterization of vowels in a
way that supports a measure of distance. While we did not investigate the auto-
matically generated consonantal distances in this chapter extensively (as these
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cannot be validated easily), a visual inspection of Dutch consonantal distances
(see Figure 3.8) suggests that the method also yields adequate results for con-
sonants.

Of course, we have not tried to demonstrate that improved segment dis-
tance measures lead to genuine improvements in all the various areas (besides
dialectometry) discussed in the introduction, such as second-language learn-
ing (foreign accents), spelling correction, and the study of speech disorders.
We note merely that there is a broad interest in measures of phonetic segment
similarity, the focused issue to which we contribute. We are well aware that
potential and genuine improvements are two very different matters.

We suggest that the results be viewed as vindicating the structuralists’ pos-
tulate that the sound system of a language is of central importance, as this is
reflected in the relations among variant pronunciations. We have shown that
distributions (of alternative dialectal pronunciations) contain enough informa-
tion to gauge content (i.e. phonetic similarity) to some extent. The only pho-
netic content made available to the algorithm was the distinction between vow-
els and consonants, and yet the algorithm could assign a phonetic distance to
all pairs of vowel segments in a way that correlates fairly well with acoustic sim-
ilarity. We know of no work in the strict structuralist tradition that attempted
to analyze corpora of 10® segment pairs, nor of attempts to analyze entire tables
reflecting pronunciation relations. We nonetheless find it appropriate to em-
phasize that our focus in this chapter is very much in the structuralist tradition
of understanding the systems by studying relations within it.

In conclusion, it is promising that the good alignment performance of the
PMI-based Levenshtein algorithm introduced in Chapter 2 is also supported by
a relatively strong correlation between the PMI segment distances and acous-
tic distances. The opportunity to exploit phonetic segment distances in string
alignment and string distance algorithms will allow us to assess word (string)
distances more accurately and improve pronunciation alignments. As indi-
cated in Chapter 1, this is a result we will take advantage of extensively in many
of the following chapters.
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CHAPTER 4

CLUSTERING DUTCH DIALECTS
AND THEIR FEATURES

Abstract. In this chapter we use hierarchical bipartite spectral graph
partitioning to simultaneously cluster varieties and identify their most
characteristic linguistic features in Dutch dialect data. While clustering
geographical varieties with respect to their features, e.g., pronunciation,
is not new, the simultaneous identification of the features which give rise
to the geographical clustering presents novel opportunities in dialectom-
etry. Earlier methods aggregated sound differences and clustered on the
basis of aggregate differences. The determination of the significant fea-
tures which co-vary with cluster membership was carried out on a post
hoc basis. Hierarchical bipartite spectral graph partitioning simultane-
ously seeks groups of individual features which are strongly associated,
even while seeking groups of sites which share subsets of these same fea-
tures. We show that the application of this method results in clear and
sensible geographical groupings and discuss and analyze the importance
of the concomitant features."

4.1 Introduction

of the cognitive, but especially the social dynamics of language. Al-

though the material is typically presented cartographically, we may
conceptualize it as a large table, where the rows are the sampling sites of the
dialect survey and the columns are the linguistic features probed at each site.
Table 4.1 illustrates the sort of information we wish to analyze. We use con-
structed data to keep the point maximally simple.

The features in the first two columns are intended to refer to the cognates,
frequently invoked in historical linguistics. The first three varieties (dialects) all
have lexicalizations for the concept ‘hoe’ (a gardening instrument), the fourth
does not, and the question does not have a clear answer in the case of the
fifth. The first two varieties use the same cognate for the concept ‘eel, as do
the last three, although the two cognates are different. More detailed material

D IALECT atlases contain a wealth of material that is suitable for the study

'This chapter is based on Wieling and Nerbonne (2009), Wieling and Nerbonne (2010), and
Wieling and Nerbonne (2011a).
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HOE? EEL ... night hog p" th asp.
Appleton + A ... [nart] [hog] + + o+
Brownsville  + A [nat] [hag] + 4+ o+
Charleston + B ... [nat] [hag], [hog] - - -
Downe - B [nat] [hag] - - -
Evanston ? B [nart] [hog] + o+ o+

Table 4.1. Example of dialect atlas data

is also collected, e.g., the pronunciations of common words, shown above in
the fourth and fifth columns, and our work has primarily aimed at extracting
common patterns from such transcriptions. As a closer inspection will reveal,
the vowels in the two words suggest geographical conditioning (assuming that
the first and last sites are near each other). This illustrates the primary interest
in dialect atlas collections: they constitute the empirical basis for demonstrat-
ing how geography influences linguistic variation. On reflection, the influential
factor is supposed to be not geography or proximity simpliciter, but rather the
social contact which geographical proximity facilitates. Assuming that this re-
flection is correct, the atlas databases provide us with insights into the social
dynamics reflected in language.

More abstract characteristics such as whether initial fortis consonants like
[p, t] are aspirated (to be realized then as [p", t"]) is sometimes recorded, or,
alternatively, the information may be extracted automatically (see Chapters 2
and 3). Note, however, that we encounter here two variables, aspiration in /p/
and aspiration in /t/, which are strongly associated irrespective of geography
or social dynamics. In fact, in all languages which distinguish fortis and lenis
plosives /p, b/, /t, d/, etc., it turns out that aspiration is invariably found on
all (initial) fortis plosives (in stressed syllables), or on none at all, regardless of
social conditioning. We thus never find a situation in which /p/ is realized as
aspirated ([p"]) and /t/ as unaspirated (Lisker and Abramson, 1964). This is
exactly the sort of circumstance for which cognitive explanations are generally
proposed, i.e. explanations which do not rely on social dynamics. The work we
discuss below does not detect or attempt to explain cognitive dynamics in lan-
guage variation, but the datasets we study should ultimately be analyzed with an
eye to cognitive conditioning as well.> The present chapter focuses exclusively
on the social dynamics of variation.

Exact methods have been applied successfully to the analysis of dialect vari-
ation for over three decades (see Chapter 1), but they have invariably functioned

*Wieling and Nerbonne (2007) explore whether the perception of dialect differences is subject
to a bias toward initial segments in the same way spoken word recognition is, an insight from
cognitive science.
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by first probing the linguistic differences between each pair of a range of va-
rieties (sites, such as Whitby and Bristol in the UK) over a body of carefully
controlled material (say the pronunciation of the vowel in the word ‘put’). Sec-
ond, the techniques aggregate over these linguistic differences, in order, third,
to seek the natural groups in the data via clustering or multidimensional scaling
(MDS; see Nerbonne, 2009).

Naturally, techniques have been developed to determine which linguistic
variables weigh most heavily in determining affinity among varieties. But all
of the following studies separate the determination of varietal relatedness from
the question of its detailed linguistic basis. Kondrak (2002) adapted a machine
translation technique to determine which sound correspondences occur most
regularly. His focus was not on dialectology, but rather on diachronic phonol-
ogy, where the regular sound correspondences are regarded as strong evidence
of historical relatedness. Heeringa (2004, pp. 268-270) calculated which words
correlated best with the first, second and third dimensions of an MDS analysis
of aggregate pronunciation differences. Shackleton (2005) used a database of
abstract linguistic differences in trying to identify the British sources of Ameri-
can patterns of speech variation. He applied principal component analysis (see
also Chapter 5) to his database to identify the common components among
his variables. Nerbonne (2006) examined the distance matrices induced by
each of two hundred vowel pronunciations automatically extracted from a large
U.S. English dataset, and subsequently applied factor analysis to the covariance
matrices obtained from the collection of vowel distance matrices. Proki¢ (2007)
analyzed Bulgarian pronunciation using an edit distance algorithm and then
collected commonly aligned sounds. She developed an index to measure how
characteristic a given sound correspondence is for a given site.

To study varietal relatedness and its linguistic basis in parallel, we apply bi-
partite spectral graph partitioning. Dhillon (2001) was the first to use spectral
graph partitioning on a bipartite graph of documents and words, effectively
clustering groups of documents and words simultaneously. Consequently, ev-
ery document cluster has a direct connection to a word cluster; the document
clustering implies a word clustering and vice versa. In his study, Dhillon (2001)
also demonstrated that his algorithm identified sensible document and word
clusters.

The usefulness of this approach is not only limited to clustering documents
and words simultaneously. For example, Kluger et al. (2003) used a somewhat
adapted bipartite spectral graph partitioning approach to successfully cluster
microarray data simultaneously in clusters of genes and conditions.

There are two main contributions of this chapter. The first contribution is
to apply a graph-theoretic technique, hierarchical bipartite spectral graph par-
titioning, to dialect pronunciation data in order to solve an important problem
(see Chapter 1), namely how to recognize groups of varieties while simulta-
neously characterizing the linguistic basis (in terms of sound segment corre-
spondences; see Chapters 2 and 3) of the group. The second contribution is the

51

7 Y4LdVHO




7 Y44LdVHD

application of a ranking procedure to determine the most important sound cor-
respondences (with respect to a reference variety) in each cluster of varieties.
This approach is an improvement over the procedure of ranking the most im-
portant elements in a cluster based only on their frequency (Dhillon, 2001),
because it also takes differences between clusters into account.

4.2 Material

In this chapter we use the same Dutch dialect dataset as briefly introduced in
Chapter 3. The Dutch dialect dataset originated from the Goeman-Taeldeman-
Van Reenen-Project (GTRP; Goeman and Taeldeman, 1996; Van den Berg,
2003). The GTRP consists of digital transcriptions for 613 dialect varieties in
the Netherlands (424 varieties) and Belgium (189 varieties), gathered during
the period 1980-1995. For every variety, a maximum of 1876 items was nar-
rowly transcribed according to (a variant of ) the International Phonetic Alpha-
bet. The items consist of separate words and phrases, including pronominals,
adjectives and nouns. A detailed overview of the data collection is given by
Taeldeman and Verleyen (1999).

Because the GTRP was compiled with a view to documenting both phono-
logical and morphological variation (De Schutter et al., 2005) and our purpose
here is the analysis of pronunciation, we ignore many items of the GTRP. We
use the same 562-item subset as introduced and discussed in depth by Wieling
et al. (2007a). In short, the 1876-item word list was filtered by selecting only
single-word items, plural nouns (the singular form was sometimes preceded
by an article and therefore not included), base forms of adjectives instead of
comparative forms, and the first-person plural verb instead of other forms. In
general, the same lexeme was used for a single item.

Since the GTRP transcriptions of Belgian varieties are fundamentally dif-
ferent from transcriptions of the Netherlandic varieties (i.e. they were not based
on the same number of phonetic segments; Wieling et al., 2007a), we will re-
strict our analysis to the 424 Netherlandic varieties. The geographical distri-
bution of these varieties is shown in Figure 4.1. Furthermore, note that we will
ignore diacritics (as these are transcribed less reliably; Goeman, 1999) concen-
trating on the 82 distinct base sound segments present in the dataset. The av-
erage length of every item in the GTRP (without diacritics) is 4.7 segments
(i.e. sound segments in a phonetic transcription).

4.3 Methods

To obtain a clear signal of varietal differences in phonology, we ideally want to
compare the pronunciations of each variety with a single reference point. We
might have used the pronunciations of a proto-language for this purpose, but
these are not available in the same transcription system. We settled on using
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Figure 4.1. Geographical distribution of the Dutch GTRP varieties. The province names
are indicated.

the sound segment correspondences of one reference variety with respect to
all other varieties as a means of comparison. These sound correspondences
form a general and elaborate basis of comparison for the varieties. The use of
the correspondences as a basis of comparison is general in the sense that we
can determine the correspondences for each variety, and it is elaborate since it
results in nearly 1000 points of comparison (sound correspondences).

But this strategy also leads to the question of what to use as a reference
point. There are no pronunciations of standard Dutch in the GTRP and tran-
scribing the standard Dutch pronunciations ourselves would likely have in-
troduced between-transcriber inconsistencies. Especially at the segment level,
it is likely that these transcriber differences will be detrimental to the results,
more so than at a higher level of aggregation (i.e. word or dialect distances; see
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Chapter 6) where transcriber differences are likely to be smoothed out more.
Heeringa (2004, pp. 274-276) identified pronunciations in the variety of Haar-
lem as being the closest to standard Dutch. Because Haarlem was not included
in the GTRP varieties, we chose the transcriptions of Delft (also close to stan-
dard Dutch) as our reference point.

4.3.1 Obtaining sound correspondences

To obtain the sound correspondences for every site in the GTRP with respect
to the reference variety Delft, we used the PMI-based Levenshtein algorithm
(diagonal-exclusive version) as explained in Section 2.3.3. In this chapter, how-
ever, we incorporated some additional linguistic information in the initializa-
tion step of the PMI-based Levenshtein algorithm by allowing, e.g., the align-
ment of the central vowel [o] with sonorant consonants (e.g., [m] and [n]).

After obtaining the final string alignments, we used a matrix to store the
presence or absence of each segment substitution for every variety (with respect
to the reference variety). We thus obtained a binary m x n matrix A (matrices
and vectors are denoted in boldface) of m varieties (in our case 423; Delft was
excluded as it was our reference site) by n segment substitutions (in our case
957; not all possible segment substitutions occurred). A value of one in A (i.e.
Ajj =1) indicates the presence of segment substitution j in variety i (compared
to the reference variety), while a value of zero indicates the absence. To alleviate
the effect of noise, we only regarded a sound correspondence as present in a
variety when it occurred in at least three aligned pronunciations. Consequently,
we reduced the number of sound correspondences (columns of A) by more
than half to 477.

4.3.2 Bipartite spectral graph partitioning

An undirected bipartite graph can be represented by G = (R, S, E), where R
and S are two sets of vertices and E is the set of edges connecting vertices from
R to S. There are no edges between vertices in a single set, e.g., connecting
vertices in R. In our case R is the set of varieties, while § is the set of sound
segment substitutions (i.e. sound correspondences). An edge between r; and
s; indicates that the sound segment substitution s; occurs in variety r;. It is
straightforward to see that matrix A is a representation of an undirected bi-
partite graph. Figure 4.2 shows an example of an undirected bipartite graph
consisting of four varieties and three sound correspondences.

If we represent a graph such as that in Figure 4.2 using a binary adjacency
matrix in which a cell (a,b) has the value one just in case there is an edge from a
to b, and zero otherwise, then the spectrum of the graph is the set of eigenvalues
of its adjacency matrix. Note that the adjacency matrix (having (m+n)x(m+n)
elements) is larger than A (having m x n elements), as it contains values for all
possible vertex combinations.
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Figure 4.2. Example of a bipartite graph of four varieties and three sound correspon-
dences. Note that [-] represents a gap and therefore the insertion of a schwa
is indicated by [-]:[2].

Spectral graph theory is used to find the principal properties and structure
of a graph from its graph spectrum (Chung, 1997). Dhillon (2001) applied spec-
tral graph partitioning to a bipartite graph of documents and words, resulting
in a simultaneous clustering of documents and words. In similar fashion, we
would like to obtain a clustering of varieties and corresponding sound segment
substitutions.

The algorithm of Dhillon (2001) is based on the fact that finding the optimal
bipartition having balanced clusters is solved by finding the eigenvector corre-
sponding with the second-smallest eigenvalue of the adjacency matrix. Using
linear algebra, it turns out that this solution can also be found by computing
the left and right singular vectors corresponding to the second (largest) singular
value of the normalized word-by-document matrix (or in our case variety-by-
segment-correspondence matrix). Because the latter matrix is smaller than the
adjacency matrix needed for the first method, the second method is computa-
tionally cheaper.

Instead of repeatedly finding two clusters to obtain a hierarchical cluster-
ing, it is also possible to find k clusters in a single step (i.e. a flat clustering),
using | = [log k] singular vectors.> However, Shi and Malik (2000) indicated
that a hierarchical clustering, obtained by repeatedly grouping in two clusters,
should be preferred over the flat clustering approach as approximation errors
are reduced. More importantly, genealogical relationships between languages
(or dialects) are generally expected to have a hierarchical structure due to the
dynamics of language change in which early changes result in separate varieties

3See Wieling and Nerbonne (2009) and Wieling and Nerbonne (2011a) for the application of the
flat hierarchical spectral graph clustering approach to the Dutch data.
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which then undergo subsequent changes independently (Jeffers and Lehiste,
1979). We therefore apply the hierarchical approach in this chapter.

The hierarchical bipartite spectral partitioning algorithm, following
Dhillon (2001), proceeds as follows:

1. Given the m x n variety-by-segment-correspondence matrix A as dis-
cussed previously, form the normalized matrix

A, = Dl—l/zAD2—1/2

with D, and D, diagonal matrices such that D,(i,i) = X;A;; and
D,(j,j) = ZiAjj

2. Calculate the singular value decomposition (SVD) of the normalized ma-
trix A, to obtain the singular values (A) and the left (the columns of U)
and right (the columns of V) singular vectors

SVD(A,)=Ux*AxV"

and extract the second singular vector u, from U and v, from V

D, *u,
3. Compute z, = |:D2_1/2 v,

4. Run the k-means algorithm with k = 2 on z, to obtain the bipartitioning*

5. Repeat steps 1 to 4 on both clusters separately to create the hierarchical
clustering

To illustrate this procedure, we will co-cluster the following variety-by-
segment-correspondence matrix A in two groups (note that this matrix is vi-
sualized by Figure 4.2).

[(al:[] [F:f6]  [d]:[w]

Appelscha (Friesland) 1
Oudega (Friesland) 1
Vaals (Limburg) 0
Sittard (Limburg) 0

(0]
(0]
1
1

[ S S

We first construct matrices D, and D,. D, contains the total number of
edges from every variety (in the same row) on the diagonal, while D, contains
the total number of edges from every segment substitution (in the same col-
umn) on the diagonal. Both matrices are shown below.

#As the initialization of the k-means algorithm is random, we repeat the clustering procedure 100
times to ensure a stable bipartitioning.
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We can now calculate A,, using the formula displayed in step 1 of the hierarchi-
cal bipartite spectral partitioning algorithm:

0.5 0.35 O
A, - 0.5 0.35 0
0 0.35 0.5
0 0.35 0.5
Applying the SVD to A,, yields:
-0.5 0.5 0.71 o 1 o o
U-|s o5 -on 0 Ao 071 o
“|-0.5 -0 0 —0.71 "o o o
-0.5 -0.5 o 0.71 o o o
-0.5 —0.71 —0.5
Vi=|o.71 ) -0.71

-0.5 0.71 —0.5

For clustering, we use the second singular vector of U (second column)
and V' (second row; i.e. second column of V') and compute the 1-dimensional
vector z,:

T
22:[0.35 0.35 -0.35 —0.35 0.5 O —o.s]

Note that the first four values correspond with the places (Appelscha, Oudega,
Vaals and Sittard) and the final three values correspond to the sound segment
substitutions ([a]:[1], [-]:[o] and [d]:[w]).

After running the k-means algorithm (with random initialization and k =
2) 01 2,, the items are assigned to one of two clusters as follows:

T
[1 1 2 2 1 1 2]

The clustering shows that Appelscha and Oudega are clustered together
(corresponding to the first and second item of the vector, above) and linked to
the clustered segment substitutions of [a]:[1] and [-]:[o] (cluster 1). Similarly,
Vaals and Sittard are clustered together and linked to the clustered segment
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substitution [d]:[w] (cluster 2). Note that the segment substitution [-]:[o] (an
insertion of [9]) is actually not meaningful for the clustering of the varieties
(as can also be observed in A), because the middle value of V" correspond-
ing to this segment substitution equals zero. It could therefore just as likely be
grouped in cluster 2. Nevertheless, the k-means algorithm always assigns every
item to a single cluster.’

This result also illustrates that the connection between a cluster of vari-
eties and sound correspondences does not necessarily imply that those sound
correspondences only occur in that particular cluster of varieties. In general,
however, sound correspondences will occur less frequently outside of the clus-
ter.

The procedure to determine the importance of sound correspondences in
a cluster is discussed next.

4.3.3 Ranking sound correspondences

Before deciding how to calculate the importance of each sound correspon-
dence, we need to consider the characteristics of important sound correspon-
dences.

Note that if a variety contains a sound correspondence, this simply means
that the sound correspondence (i.e. two aligned segments) occurs at least three
times (our threshold) in any of the aligned pronunciations (with respect to the
reference variety Delft).

In the following, we will discuss two characteristics of an important sound
correspondence: representativeness and distinctiveness. Representativeness
(R) indicates the proportion of varieties v in the cluster ¢; which contain the
sound correspondence. A value of zero indicates that the sound correspon-
dence does not occur in any of the varieties, while a value of one indicates that
the sound correspondence occurs in all varieties in the cluster. This is shown
in the formula below for sound correspondence [a]:[b] and cluster ¢;:

R(a,b,¢;) = [v in ¢; containing [a]:[b]|

[vin ¢;]

The second characteristic of an important sound correspondence is distinc-
tiveness. This characteristic indicates how prevalent a sound correspondence
[a]:[b] is in its own cluster ¢; as opposed to other clusters.

Suppose sound correspondence [a]:[b] is clustered in group ¢;. We can
count how many varieties v in ¢; contain sound correspondence [a]:[b] and
how many varieties in the complete dataset contain [a]:[b]. Dividing these two
values yields the relative occurrence O of [a]:[b] in ¢;:

5Note that we could also have decided to drop this sound correspondence. However using our
ranking approach (see Section 4.3.3) already ensures that the uninformative sound correspon-
dences are ranked very low.
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O(a,b,¢;) = |v in ¢; containing [a]:[b]]

|v containing [a]:[b]]

For instance, if [a]:[b] occurs in 20 varieties and 18 belong to c;, the relative
occurrence is 0.9. We intend to capture in this measure how well the correspon-
dence signals the area represented by ¢;. While it may seem that this number
can tell us if a sound correspondence is distinctive or not, this is not the case.
For instance, if ¢; consists of 95% of all varieties, the sound correspondence
[a]:[b] is not very distinctive for ¢; (i.e. we would expect [a]:[b] to occur in 19
varieties instead of 18). To correct for this, we also need to take into account
the relative size S of ¢;:

_|vinc]

S(ci)

We can now calculate the distinctiveness of a sound correspondence by sub-
tracting the relative size from the relative occurrence. Using the previous ex-
ample, this would yield 0.90 — 0.95 = —0.05. A positive value indicates that
the sound correspondence is distinctive (the higher the value, the more dis-
tinctive), while a negative value identifies values which are not distinctive. To
ensure the maximum value equals 1, we use a normalizing term in the formula
to calculate the distinctiveness D:

 Jall v

O(a,b,¢;) - S(c;)
1-S(c;)

Values of D below zero (which are unbounded) indicate sound correspon-
dences which are not distinctive, while positive values (< 1) signify distinctive
sound correspondences.

To be able to rank the sound correspondences based on their distinctive-
ness and representativeness, we need to combine these two values. A straight-
forward way to determine the importance I of every sound correspondence
based on the distinctiveness and representativeness is to take the average of
both values:

D(a,b,¢;) =

R(a,b,¢;) + D(a,b, ¢;)
2

I(a,b,¢;) =

It is clear that we might explore more complicated combinations, but for
this dataset we regard both representativeness and distinctiveness as equally
important.

Because it is essential for an important sound correspondence to be dis-
tinctive, we will only consider sound correspondences having a non-negative
distinctiveness. As both representativeness and distinctiveness will therefore
range between zero and one, the importance will also range between zero and
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one. Higher values within a cluster indicate more important sound correspon-
dences for that cluster. Since we take the cluster size into account in calculating
the distinctiveness, we can also compare the clusters with respect to the im-
portance values of their sound correspondences. Even though — after the first
round of partitioning — the hierarchical spectral graph partitioning method is
applied repeatedly to a subset of the data (belonging to a cluster, which subse-
quently has to be split up), the importance of a sound segment correspondence
is always calculated with respect to the complete dataset.

Wieling and Nerbonne (2010) reported that the values of the singular vec-
tor v, could be used as an alternative method to determine the most impor-
tant sound correspondences. This would obviate the need for an external rank-
ing method (as the one introduced above). However, experiments on another
dataset (see Chapter 5) revealed that while high (positive) values of v, were
indicative of important sound correspondences for one cluster, low (negative)
values did not signify important sound correspondences for the other cluster.
Rather, it indicated these sound correspondences were unimportant for the first
cluster (which does not necessarily imply importance with respect to the other
cluster). Consequently, we use the external ranking method to determine the
most important sound correspondences in this chapter.®

Connection to precision and recall

If we regard the varieties grouped in a certain cluster as the ‘target’ elements
we are seeking and the varieties in which the correspondence occurs as the
‘selected’ elements, then we clearly see that representativeness (R) is similar to
recall in information retrieval (Manning and Schiitze, 1999, p. 268). Using the
same analogy as above, we see relative occurrence (O) is similar to precision.”

Following this comparison, we note that distinctiveness (D) is a precision
measure corrected for chance effects. The numbers in information retrieval
would hardly change at all if one corrected for chance, but we examine much
smaller sets in dialectology.

4.4 Results

In this section, we will report the results of applying the hierarchical spectral
partitioning method to our Dutch dialect dataset.

We will only focus on the four main clusters, each consisting of at least
ten varieties. While our method is able to detect smaller clusters in the data,
we do not believe these to be stable. We confirmed this by applying three
well-known distance-based clustering algorithms (i.e. UPGMA, WPGMA and

SCoincidentally, the ranking approach using the values of v, does work for the hierarchy reported
in this chapter (see Wieling and Nerbonne, 2010). This is due to the specific hierarchy (see
Figure 4.3), in which for every split only a single cluster is of interest.

7We thank Peter Kleiweg for pointing out the parallels to the information retrieval concepts.
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Ward’s Method; Proki¢ and Nerbonne, 2009) to our data which also only agreed
on four main clusters.

4.4.1 Geographical clustering

Figure 4.3 shows a geographical visualization of the clustering as well as the hi-
erarchy. The first thing to note is that we obtain a sensible geographical group-
ing. The first split clearly separates the Frisian language area (in the province
of Friesland) from the Dutch language area. This is the expected result as
Heeringa (2004, pp. 227-229) also measured Frisian as the most distant of all
the language varieties spoken in the Netherlands and Flanders, and Frisian is
closely related to Anglo-Saxon dialects (Van Bree, 1987, p. 68). In addition,
Frisian has the legal status of a different language rather than a dialect of Dutch.
Note that the separate ‘islands’ in the Frisian language area (see Figure 4.3) cor-
respond to the Frisian cities which are generally found to deviate from the rest
of the Frisian language area (Heeringa, 2004, pp. 235-241).

Similar to Heeringa (2004, pp. 227-229) we also identify both Limburg and
the Low Saxon area (Groningen, Drenthe and Overijssel) as separate groups.
Note, however, that both the Limburg and Low Saxon area contain fewer vari-
eties in our clustering than according to traditional dialectology and Heeringa’s
results (Heeringa, 2004, p. 231; see also Figure 1.3). Our method was also
not able to detect additional dialect areas (e.g., the dialect areas of Zeeland or
Brabant), accepted in traditional Dutch dialectology (Heeringa, 2004, Ch. 9).
However, these dialect areas are less distinctive than the three areas our method
does detect (Heeringa, 2004, p. 229). Especially since our method uses simpli-
fied data (i.e. binary values indicating if a sound correspondence occurs in a lo-
cation with respect to a non-ideal reference variety), it might be hard to achieve
complete overlap with the regions identified in traditional dialectology.

In the following, we will discuss the three distinctive geographical clus-
ters (i.e. Frisian, Low Saxon and Limburg) together with their simultaneously
derived sound correspondences. We will not discuss the group of remaining
varieties, as this group is linguistically much less interesting. For brevity, we
will only focus on explaining the five most important sound correspondences
for each geographical group. The main point to note is that besides a sensible
geographical clustering, we also obtain linguistically sensible results.

4.4.2 Characteristic sound correspondences

We report the most important sound correspondences on the basis of their cal-
culated importance score (see Section 4.3.3). The most important sound cor-
respondences reported here, therefore, deviate slightly from the sound corre-
spondences reported by Wieling and Nerbonne (2010) which were based on
the values of the second singular vector v, (see Section 4.3.3 for additional in-
formation).
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Frisian varieties .

Low Saxon varieties .

Limburg varieties .

Remaining varieties

Figure 4.3. Geographical visualization of the clustering with hierarchy. The shades of
gray in the hierarchy correspond with the map (e.g., the Limburg varieties
can be found in the southeast).

Frisian area

Table 4.2 shows the five most important sound correspondences of the Frisian
area. We commonly find the correspondence [-]:[[] (an insertion of [[]) in
the infinitive form of verbs such as wachten ‘wait, Dutch [waxto], Frisian
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Rank 1 2 3 4 5

Reference (-] (x] (f] (x] (f]

Frisian i (j [-] (2] (w]
Importance 0.95 0.95 0.95 0.94 0.88
Representativeness 0.90 1.00 1.00 0.88 0.85
Distinctiveness 1.00 0.90 0.90 1.00 0.91

Table 4.2. Most important sound correspondences of the Frisian area. The [-] indicates
a gap and consequently marks an insertion or a deletion.

[waxt[a]; vechten ‘fight, Dutch [vexto], Frisian [vextfo]; or spuiten ‘spray,
Dutch [speevto], Frisian [spovt[o], but it also appears (e.g.,) in tegen ‘against,
Dutch [teixo], Frisian [t/m].

The second sound correspondence we identify is [x]:[j] where Dutch /x/
has been lenited, e.g., in geld ‘money, Dutch [xelt], Frisian [jilt] (variety of
Grouw), but note that [x]:[g] as in [gelt] (Franeker) also occurs, illustrating
that sound correspondences from another cluster can also occur in the Frisian
area.

The [f]:[-] correspondence (a deletion of [f]) is found in words such as ster-
ven ‘di€}, Dutch [stecfo], Frisian [steco]. The sound correspondence [x]:[z] oc-
curs, e.g., in zeggen ‘say, Dutch [zexo], Frisian [sizo]. Finally, the [f]:[w] sound
correspondence occurs in words such as wrijven ‘rub, Dutch [freifo], Frisian
[vrywo] (Appelscha).

Note that the previously reported characteristic sound correspondence
[a]:[i] between Dutch and Frisian (in words such as zwaar ‘heavy, [swar] in
Dutch and pronounced [swior] in Holwerd, Friesland; Wieling and Nerbonne,
2010) is not shown in the table as it is ranked sixth.

Low Saxon area

Table 4.3 shows the most important sound correspondences of the Low Saxon
area. The first correspondence is interesting because it is not commented on
often. We notice the [k]:[?] correspondence where /k/ was historically ini-
tial in the weak syllable /-kon/, for example in planken ‘boards, planks, Dutch
[plagke], pronounced [play?y] in Low Saxon. Similar examples are provided
by denken ‘think], pronounced [dey?y] in Low Saxon, and drinken ‘drink], pro-
nounced [drim?y] in Low Saxon.

The [v] corresponds with the [b] in words such as leven ‘live, Low Saxon
[lebm]® (Aduard); bleven ‘remain, Low Saxon [blibm] (Aduard); doven ‘deaf’,

8Because we only focus on the 82 distinct base sound segments without diacritics, syllabic mark-
ers (e.g., [m]) were ignored as well and are not shown in the transcriptions in this section.
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Rank 1 2 3 4 5

Reference k] [v] [f] [p] [0]

Low Saxon 7] [b] [b] (7] [m]
Importance 0.72 0.71 0.71 0.68 0.68
Representativeness 0.71 0.55 0.53 0.53 1.00
Distinctiveness 0.74 0.87 0.89 0.84 0.35

Table 4.3. Most important sound correspondences of the Low Saxon area

Low Saxon [dubm] (Aduard); graven ‘dig, Low Saxon [xrabm] (Anloo); and
dieven ‘thieves, Low Saxon [dibm] (Westerbork). In all these cases we en-
counter a [v] in the reference variety in place of the [b].

The correspondence just discussed involves the lenition, but no devoicing
of the stop consonant /b/, but we also have examples where the /b/ has been
lenited and devoiced, and this is the third correspondence, to which we now
turn. The [f]:[b] correspondence appears in words such as proeven ‘test, Dutch
[prufs], pronounced [proybm] in Low Saxon, in e.g., Barger-Oosterveld and
Bellingwolde; schrijven ‘write, [sxrorfa], pronounced [sxribm] in Low Saxon,
e.g., in Anloo and Aduard; or wrijven ‘rub; [froifo], pronounced [vribm] in Low
Saxon. Similar examples involve schuiven ‘shove’ and schaven ‘scrape, plan€’
Note that the diphthong in [sxrorfo] and [froifo] is not standard Dutch, but
rather the pronunciation in our reference variety Delft.

The correspondence [p]:[?] occurs in words such as lampen Tamps, Dutch
[lampo], Aduard (Low Saxon) [lam?m], but also postvocalically, as in gapen
‘yawn, Dutch [xapo], Aduard (Low Saxon) [xo?m]. It is obviously related to
the [k]:[?] correspondence discussed above.

The best-known characteristic of the Low Saxon area (Goossens, 1977), the
so-called slot-n (‘final-n’), shows up as the fifth sound correspondence. It is
instantiated strongly in words such as strepen, ‘stripes, realized as [strepm] in
the northern Low Saxon area. It would be pronounced [streps] in standard
Dutch, so the difference shows up as an unexpected correspondence of [o] with
[m] (but also with [1], rank 6, and with [n], rank 11).

When comparing the importance values of the sound correspondences
characteristic of the Low Saxon area to those characteristic of the Frisian area,
we clearly see the latter are higher. When including all sound segment cor-
respondences in each cluster, we observe a significant difference between the
importance values of the two areas (t = 3.7, p < 0.001), indicating that the
Frisian area is characterized by more distinctive and representative sound cor-
respondences than the Low Saxon area.
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Rank 1 2 3 4 5

Reference (n] r] (s] (n] [0]
Limburg [x] [x] (3] (] [-]
Importance 0.75 0.68 0.64 0.63 0.61
Representativeness 0.50 0.67 0.61 0.39 0.67
Distinctiveness 1.00 0.69 0.67 0.87 0.55

Table 4.4. Most important sound correspondences of the Limburg area. The [-] indi-
cates a gap and consequently marks a deletion.

Limburg area

Table 4.4 shows the most important sound correspondences of the Limburg
area. The [n]:[x] correspondence appears in words such as bladen ‘magazines,
Dutch [bladon], pronounced [blajox] in (e.g.,) Roermond and Venlo in Lim-
burg; graven ‘graves, Dutch [xraven], pronounced [xpavox] in Gulpen, Horn
and elsewhere in Limburg; and kleden ‘(table)cloths, Dutch [kleden], pro-
nounced [klerdox] in (e.g.,) Kerkrade and Gulpen in Limburg.

The sound correspondence [r]:[x] can be found in words like vuur ‘ire,
Dutch [fyr], pronounced [vyox] in Limburg. The third sound correspondence
[s]:[3] occurs when comparing the standard-like Delft variety to Limburg va-
rieties in words such as zwijgen ‘to be silent, [sweixs], Limburg [3wiya], or
zwemmen ‘swim, [swemo], Limburg [3wemo].

Some regular correspondences merely reflect other, and sometimes more
fundamental differences. For instance, the correspondence between [n] and
[¥] turned out to be a reflection of the older plurals ending in /-r/. For example,
in the word kleden ‘(table)cloths, plural kleden in Dutch, kleder in Limburg.

The final sound correspondence [0]:[-] (a deletion of [0]) can be found in
wonen ‘living, pronounced [wouns] in our reference variety Delft and [wuns]
in Limburg. As the standard Dutch pronunciation is actually [wono], this cor-
respondence is caused by the choice of our reference variety, which is similar,
but unfortunately not identical to standard Dutch.

When comparing the importance values of the sound correspondences
characteristic of the Limburg area to those characteristic of the Frisian and
Low Saxon area, we observe a significant difference between Frisian and Lim-
burg (t = 4.1, p < 0.001), but not between Limburg and Low Saxon (¢ = 1.2,
p = 0.217). Consequently, the Frisian area is characterized by more distinctive
and representative sound correspondences than the Low Saxon and Limburg
area.
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4.5 Discussion

In this chapter we have introduced a novel dialectometric method which si-
multaneously identifies groups of varieties together with their linguistic basis
(i.e. sound segment correspondences). We demonstrated that the hierarchi-
cal bipartite spectral graph partitioning method introduced by Dhillon (2001)
gave sensible clustering results in the geographical domain as well as for the
concomitant linguistic basis.

In line with our discussion in Chapter 1, we are optimistic that the use of
techniques such as the one presented in this chapter can be more successful in
engaging traditional dialectologists exactly, because the relation between the
proposed division into dialect areas and the linguistic basis of the division is
directly accessible. This is not the case in dialectometric studies in which ag-
gregate relations form the basis for the division into dialect areas. In those
approaches, the sum of linguistic differences is used as an indicator of the rela-
tions between varieties. This perspective has its advantages (Nerbonne, 2009),
but it has not converted large numbers of dialectologists to the use of exact
techniques. While the method introduced in the present chapter is more com-
plicated, its linguistic basis is more accessible.

As mentioned above, we did not have transcriptions of standard Dutch,
but instead we used transcriptions of a variety (Delft) close to the standard lan-
guage. While the pronunciations of most items in Delft were similar to standard
Dutch, there were also items which were pronounced differently from the stan-
dard. Even though we do not believe that this will influence the detection of
the three main geographical clusters (although their shape might change some-
what), using standard Dutch transcriptions produced by the transcribers of the
GTRP corpus would make the interpretation of sound correspondences more
straightforward.

We already indicated that the geographical clusters detected by the hier-
archical bipartite spectral graph partitioning method do not overlap perfectly
with the insights from traditional dialectology and on the basis of other dialec-
tometric methods (see Heeringa, 2004, Ch. 9). This might be a problem of the
method, which necessarily operates on simplified data (and in this case, using
a non-ideal reference variety). However, it might also point to localities which
might be similar to their surrounding areas in terms of aggregate linguistic dis-
tance, but not in terms of exact shared sound correspondences.

The important sound correspondences found by our procedure are not al-
ways the historical correspondences which diachronic linguists build recon-
structions on. Instead, they may reflect entire series of sound changes and may
involve elements that do not correspond historically at all. We suspect that di-
alect speakers likewise fail to perceive such correspondences as general indica-
tors of another speaker’s provenance, except in the specific context of the words
such as those in the dataset from which the correspondences are drawn. This
means that some manual investigation is still necessary to analyze the charac-
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teristic elements of the dialects as well.

This study has improved the techniques available for studying the social
dynamics of language variation. In dialect geography, social dynamics are op-
erationalized as geography, and hierarchical bipartite spectral graph partition-
ing has proven itself capable of detecting the effects of social contact, i.e. the
latent geographical signal in the data. In the future, techniques that attempt
not just to detect the geographical signal in the data, but moreover to incor-
porate geography as an explicit parameter in models of language variation (see
Chapters 6, 7 and 8) may be in a position to overcome weaknesses inherent in
current models. The work presented here aims only at detecting the geographi-
cal signal. Other dialectometric techniques have done this as well, but linguists
(e.g., Schneider, 1988) have rightly complained that linguistic factors have been
neglected in dialectometry (see Chapter 1). This chapter has shown that bipar-
tite spectral graph clustering can detect the linguistic basis of dialectal affinity,
and thus provide the information that Schneider and others have missed.

The applicability of this method is not only restricted to Dutch dialects,
as Montemagni et al. (accepted) have successfully used it to investigate the
spreading of consonantal weakening in Tuscany (i.e. Gorgia Toscana). They
also showed that the method was useful when sound correspondences were
distinguished on the basis of their (left and right) context.

In the next chapter, we will further strengthen the support for the method
by applying the hierarchical bipartite spectral graph clustering approach to an
English dataset, and also compare it to other, more traditional approaches.
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CHAPTER 5

CLUSTERING ENGLISH DIALECTS
AND THEIR FEATURES

Abstract. This chapter applies the hierarchical bipartite spectral graph
partitioning method introduced in Chapter 4 to phonetic data from the
traditional English dialects. We compare the results using this approach to
previously published results on the same dataset using cluster and princi-
pal component analysis (Shackleton, 2007). While the results of the spec-
tral partitioning method and Shackleton’s approach overlap to a broad
extent, the three analyses offer complementary insights into the data. The
traditional cluster analysis detects some clusters which are not identi-
fied by the spectral partitioning analysis, while the reverse also occurs.
Similarly, the principal component analysis and the spectral partitioning
method detect many overlapping, but also some different linguistic vari-
ants. The main benefit of the hierarchical bipartite spectral graph parti-
tioning method over the alternative approaches is its ability to simultane-
ously identify sensible geographical clusters of localities with their corre-
sponding linguistic features."

5.1 Introduction

rise to geographic dialects, which have been studied in dialectology for

well over a century. Dissatisfaction with dialectology’s tendency to fo-
cus on details gave rise in the 1970s to dialectometry, which systematizes pro-
cedures and obviates the need for feature selection, at least to some extent. Ner-
bonne (2009) argues that dialectometry has been successful because of its em-
phasis on measuring aggregate levels of differentiation (or similarity), strength-
ening the geographic signals in the linguistic data, which are often complex
and at times even contradictory. As indicated in Chapter 1, the professional
reception of dialectometry has been polite but less than enthusiastic, as some
scholars express concern that its focus on aggregate levels of variation ignores
the kind of linguistic detail that may help uncover the linguistic structure in
variation. For this reason there have been several recent attempts to supple-
ment (aggregate) dialectometric techniques with, on the one hand, techniques

! great deal of language variation is conditioned geographically, giving

!'This chapter is based on Wieling, Shackleton and Nerbonne (accepted).
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to identify linguistic variables which tend to be strongly associated throughout
geographic regions and, on the other hand, techniques to extract prominent
linguistic features that are especially indicative of aggregate differentiation.

Ruette and Speelman (submitted) introduced a type of three-way multi-
dimensional scaling (i.e. individual differences scaling) to variationist studies.
Just as the standard two-way multidimensional scaling technique (Nerbonne,
2010), it operates on a distance matrix to group similar varieties. In addition,
however, it also reveals the structure of the underlying linguistic variables.

Building on the ranking approach introduced in Chapter 4, Proki¢ et al.
(2012) examined each item in a dataset seeking those that differ minimally
within a candidate area and maximally with respect to sites outside the area.

Grieve et al. (2011) analyzed a large dataset of written English with respect
to lexical variation. They used spatial autocorrelation to detect significant ge-
ographical patterns in 4o individual lexical alternation variables, and subse-
quently applied factor analysis to obtain the importance of individual lexical
alternation variables in every factor (which can globally be seen as represent-
ing a geographical area). In the following step, they applied cluster analysis to
the factor scores in order to obtain a geographical clustering.

Shackleton (2007) used cluster analysis and principal component analysis
(PCA) to identify linguistic variables which tend to correlate when compared
across many localities. We illustrate the basic idea with an example: if the lo-
calities in which a standard /e/ is raised to [¢] tend to be the same as those in
which /e/ is also raised (to [e1]), then a good cluster analysis should identify
a cluster of localities that share those variables, while PCA should identify a
principal component which is common to the two linguistic variables. Shack-
leton (2007) identified several interesting clusters and components, which we
discuss below at greater length.

In the previous chapter, the hierarchical bipartite spectral graph partition-
ing (BiSGP) method was introduced, which clusters localities on the basis of
the features they share, and features on the basis of the localities in which they
co-occur. To continue with the example from the last paragraph, a good BiSGP
would identify the two variables as associated and also the sites in which this
and other associations are evident. From a dialectometric point of view, BiSGP
is attractive in attributing a special status to features as well as to the locali-
ties, but like all procedures for seeking natural groups in data, it needs to be
evaluated empirically.

In the present chapter we provide more support of the general applicabil-
ity of the BiSGP analysis by applying it to Shackleton’s (2007) data. We com-
pare these results to those on the basis of cluster analysis and PCA reported by
Shackleton (2007).
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5.2 Material

In this chapter we use the dataset described by Shackleton (2007), derived
mainly from Anderson’s (1987) A Structural Atlas of the English Dialects (hence-
forth SAED). The SAED contains more than 100 maps showing the geograph-
ical distribution and frequency of occurrence of different phonetic variants in
groups of words found in the Survey of English Dialects (Orton et al., 1962-1971;
henceforth SED), the best broad sample of traditional dialect forms that were
still in use in 313 rural localities throughout England in the mid-20th century.
The dataset assembled from the SAED maps classifies over 400 responses from
the SED by assigning each to one of 39 groups. All of the words in a given
group include a segment or combination of segments that is believed to have
taken a single uniform pronunciation in the ‘standard’ Middle English dialect
of the Home Counties of southeastern England. The segments include all of the
Middle English short and long vowels, diphthongs, and most of the relatively
few consonants that exhibit any variation in the English dialects. For each ide-
alized Middle English pronunciation, in turn, the responses may take any of
several 20th-century pronunciations, and, in any given location, may take dif-
ferent pronunciations for different words in the group. The dataset thus tabu-
lates frequencies of use for a total of 199 different variant pronunciations of the
39 idealized phonemes. For example, one group includes a number of words,
such as root and tooth, all of which included a segment /o:/ in Middle English.
Several maps are associated with that group, one for each modern variant. One
of the maps shows the frequency with which /o:/ has become [u:] (that is, the
percentage of the words with the vowel articulated as [u:]) in each locality in
the SED, another shows the frequency with which /o:/ has become [v:], and
so on. (Throughout this chapter, we write the Middle English form considered
common to the group as /x/ and the variants recorded in the SED as [x].) The
complete list of variants is given by Shackleton (2010, pp. 180-186).>

In a few cases, Anderson classified localities from geographically separate
regions as having ‘different’ variants, even though the variants are actually the
same, on the grounds that the variant is likely to have arisen independently in
the two regions. Moreover, many maps actually show a range of distinguishable
pronunciations that Anderson somewhat arbitrarily took to be similar enough
to be classified into a single variant. Although it tends to understate the true
range of variation in the speech it characterizes, the dataset summarizes a large
body of phonetic information in a tractable form that enables straightforward
quantitative analyses of phonetic variation in the traditional English dialects.

Most variants have a relatively unique distribution among and frequency
of use within localities, and very few large geographic correlations with others.
Variants with a large number of high geographic correlations with each other

*This list (containing 209 variants) includes ten variants which were not included in this chapter
as they did not occur in any of the locations.
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are found either in the far southwest or in the far north of England, suggesting
that those regions tend to have relatively distinctive speech forms with several
features that regularly co-occur in them (exemplified by the very similar geo-
graphic distributions of voiced fricatives in the southwest). The comparative
lack of geographic correlation raises challenges for analytic techniques, such as
the hierarchical bipartite spectral graph partitioning presented here, that seek
to identify groups of linguistic features characterizing regional dialects.

5.3 Methods

In this chapter, the bipartite graph is represented by a geographic locality x lin-
guistic variant matrix where every position in the table marks the relative vari-
ant frequency (i.e. ranging between zero and one) as used by Shackleton (2007)
in his analysis. To ensure every variant carries comparable weight in the analy-
sis, we scaled all individual columns of the matrix (relative variant frequency)
between zero and one; that is, for each variant, all of the relative frequencies
are divided by the highest relative frequency for that variant.? This approach
potentially places greater emphasis than other approaches on regionally dis-
tinctive but comparatively uncommon variants.* After applying the hierarchi-
cal bipartite spectral graph partitioning method (explained in Section 4.3.2) to
the scaled input matrix, we obtain a hierarchical clustering where localities are
clustered together with the linguistic variants.

In line with Section 4.3.3, we rank the importance of a variant in a cluster
based on the linear combination of its distinctiveness and representativeness.
Normally (see Chapter 4) representativeness and distinctiveness are averaged
to obtain the importance score for every variant, but it is also possible to as-
sign different weights to representativeness and distinctiveness. When the in-
put matrix contains many variants which occur almost everywhere, representa-
tiveness will be very high for these (non-informative) sound correspondences.
In that case it makes sense to weight distinctiveness more heavily than repre-
sentativeness. Alternatively, if there are many variants occurring only in a few
localities, the distinctiveness of these (non-informative) variants will be very
high. In that situation, it makes sense to weight representativeness more heav-
ily than distinctiveness. As our matrix contained many frequent variants, we
weighted distinctiveness twice as heavily as representativeness.

3In Chapter 4 we used a binary matrix (with a threshold), but here we opted to use the scaled
values as the SAED input matrix already included an aggregation step by having grouped several
words, e.g., root and tooth, and we did not wish to add another aggregation step.

4Note that when using the raw frequencies, results were generally similar to those using the scaled
frequencies (as most columns already had a maximum value of one).
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Figure s5.1. Bipartite spectral graph partitioning in two groups

5.4 Results

Applied to the data from Shackleton (2007), the BiSGP analysis initially distin-
guishes northern and southern English dialects along a line that roughly traces
the border separating northern from Midlands and southern dialects in Shack-
leton’s (2007) cluster analysis. Figure 5.1 shows this division. The southern re-
gion includes 198 (63%) of the localities and 123 (62%) of the variants, while the
northern region includes the remaining 115 (37%) localities and 76 (38%) vari-
ants. A few of the roughly 70 high-scoring southern variants are widely found
throughout the region, including those reflecting movements or lengthening of
the Middle English short vowels, but most are members of several groups that,
on closer inspection, tend to be restricted to areas of the south; these include
upgliding diphthongization of the Middle English long vowels (e.g., [lein] or
[leein] for lane) occurring mainly in the southeast, voicing of fricatives and re-
tention of rhoticity (e.g., [varm] for farm) largely in the southwest, and fronting
of many vowels (e.g., [nym] for noon) in Devon. The roughly 50 high-scoring
northern variants are similar in that some reflect widely distributed conserva-
tive retentions of the Middle English short vowels (e.g., [man] for man) along
with more restricted ingliding diphthongs for some Middle English long vow-
els (e.g., [lion] for lane), limited retention of rhoticity, and fronting of some
vowels (e.g., [bgin] for bone) in the far north.
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Figure 5.2. Bipartite spectral graph partitioning in four groups

The second round of partitioning divides England into four separate re-
gions (shown in Figure 5.2) , somewhat more clearly reflecting regionally coher-
ent distributions of variants. A small region in the far north emerges, restricted
mainly to Northumberland, with 11 localities and 21 variants including retained
rhoticity ([r] and, in one location in Cumberland, [r]) and aspirates as well as
fronting or ingliding of Middle English long vowels (e.g., [lion] for lane), while
the rest of the north — 104 localities with 55 variants — includes a number of
other features irregularly distributed throughout that region. The southwest —
51 localities with 42 variants — includes the voiced fricatives characteristic of
the entire region (e.g., [varm] for farm) as well as the fronted vowels character-
istic only of Devon (e.g., [nv:n] for noon), while the southeast — 147 localities
with 81 variants — includes the upgliding diphthongization of the Middle En-
glish long vowels characteristic of much of the southeast (e.g., [lein] or [lain]
for lane) as well as a number of more sporadically occurring variants.

A further round of partitioning into eight regions (shown in Figure 5.3)
yields yet more coherent distributions in the north and south. In the far north,
a single locality in Cumberland is distinguished by its alveolar trill [r] (marked
with number 1in Figure 5.3), with the rest of the far north (marked with number
21in Figure 5.3) characterized by the ‘Northumbrian burr’ (a uvular trill [r]), re-
tained aspirates, and fronting or ingliding of Middle English long vowels. Most
of the remaining northerly localities — 82 localities with 44 variants (marked
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Figure 5.3. Bipartite spectral graph partitioning in eight groups with hierarchy

with number 3 in Figure 5.3) — have irregular distributions of variants, but an
irregularly shaped region of 22 localities (marked with number 4 in Figure 5.3)
centered on Staffordshire and Derbyshire is associated with 9 unusual variants
that, on closer examination, include 5 of the 8 variants that Trudgill (1999) asso-
ciates together as characteristics of a regional “Potteries” dialect: [ti:l] for tail,
[beat] for boot, [dain] for down, [[eip] for sheep, and [koot] for caught. In
the southwest, 13 localities in Devon and Cornwall (marked with number 8 in
Figure 5.3) are associated with 14 variants, mainly fronting of Middle English
back vowels (e.g., [nyn] for noon) and the development of a low monophthong
for Middle English /i:/ (e.g., [na:f] for knife), while the remaining 38 localities
(two areas marked with number 7 in Figure 5.3) are associated with 28 other
variants, the highest scoring of which nearly all involve the voicing of frica-
tives and the retention of a retroflex rhotic (e.g., [vaym] for farm). Much of the
southeast (marked with number 6 in Figure 5.3) — 69 localities with 38 vari-
ants — is associated with the upgliding diphthongization of the Middle English
long vowels (e.g., [lein] or [lain] for lane) and particularly strong movements
of Middle English short vowels (e.g., [men] for man), as well as a number of less
extensively distributed variants such as those restricted mainly to East Anglia.
The rest of the south, including most of the West Midlands (marked with num-
ber 5 in Figure 5.3) — 78 localities with 43 variants — is associated only quite
loosely with a wide variety of variants that are generally distributed through-
out a much wider region, or are found only in more isolated areas. The highest-
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scoring variants in this region, for example, include the development (mainly in
the Severn Valley) of a back unrounded vowel [a:] in daughter, law, and cough,
[faiv] for five mainly in Shropshire, and the palatalization of Middle English
/e1/ (e.g., [bjanz] for beans) in the Southwest Midlands.

5.4.1 Comparison to traditional cluster analysis

The results from the BiSGP analysis can be usefully compared with those that
emerge from Shackleton’s (2007) cluster analysis of the same data, thus illus-
trating the comparative strengths of the two approaches. In contrast to the hi-
erarchical bipartite spectral graph partitioning approach described here, clus-
ter analysis may use a variety of techniques to group localities on the basis of
some measure of the aggregate similarity of the localities’ patterns of usage,
rather than optimizing over a balance of representativeness and distinctiveness.
Shackleton (2007) applied several different clustering techniques to the English
dataset and combined them into a single site x site table of mean cophenetic
differences (i.e. distances in dendrograms). He then applied multidimensional
scaling to the cophenetic distances in order to reduce the variation in the re-
sults to a relatively small, arbitrary number of dimensions that summarize fun-
damental relationships in the data. For visualization purposes the variation is
reduced to three dimensions, which can be mapped onto the RGB color spec-
trum. The resulting pattern, shown in Figure 5.4, shows many similarities to
the eight regions resulting from the BiSGP analysis.

As mentioned above, the demarcation of northern and southern dialect re-
gions is similar to Shackleton’s delineation of northern dialects from Midlands
and southern dialects, except that the BiSGP analysis classifies a few localities
in Shackleton’s transitional Central Midlands region into the north. The BiSGP
analysis distinguishes almost exactly the same southeastern and southwestern
regions as Shackleton on the basis of highly similar sets of dialect features, and
does the same for the Northumberland region, except that the BiSGP analysis
isolates the single locality in Cumberland by its rhotic trill [r]. Those periph-
eral regions of the English dialect landscape tend to be distinguished by dis-
tinct sets of variants that have comparatively coherent geographic distributions
— rhoticity and aspirates in the far north, voicing of fricatives in the south-
west, fronting in Devon, and the particularly strong upgliding diphthongiza-
tion found in the southeast — and that are therefore relatively straightforward
to identify.

Differences arise in the two analyses” delineation of dialect regions in the
lower north and much of the Midlands, where the various traditional dialect
developments tend to be less coherently or much more locally distributed. For
example, the BiSGP analysis groups together Shackleton’s Upper Southwest
with most of his Central Midlands region and consequently does not detect a
region corresponding with the Central dialect region as identified by Trudgill
(1999), whereas the cluster analysis (partly) does (Shackleton, 2007).
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Figure 5.4. Multidimensional scaling visualization of cluster analyses. The original im-
age was taken from Shackleton (2010).

Interestingly, however, the BiSGP analysis identifies a region in the North-
west Midlands, centered on Staffordshire and Derbyshire, on the basis of a
number of variants associated by Trudgill (1999) with the “Potteries” region,
that Shackleton’s cluster analysis consistently fails to distinguish.

5.4.2 Comparison to principal component analysis

The regions resulting from the BiSGP analysis can also be usefully compared
to those isolated by Shackleton’s varimax principal component analysis of the
data, illustrating the comparative strengths of both approaches. In contrast to
the BiSGP’s focus on representativeness and distinctiveness of variant usage
in localities, principal component analysis identifies groups of variants that are
strongly positively or negatively correlated — that is, that tend to occur together
or that always occur separately — and combines them into principal compo-
nents that are essentially linear combinations of the correlated variables. A
principal component typically has two ‘poles, one involving large positive val-
ues for a group of variables that tend to be found together, and another involv-
ing large negative values for a different group of variables that are also found
together but never with the first group. (Varimax rotation tends to sharpen the
focus and concentration of each component by increasing the loading on its
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Figure 5.5. Visualization of the component scores for the first varimax rotated principal
component. Darker shades of gray indicate higher component scores. The
original image was taken from Shackleton (2010).

most highly correlated variants, and when applied to linguistic data, tends to
yield groups of variants that are more readily interpretable in linguistic terms.)

Localities can be assigned component scores that indicate the extent to
which the variants in a given principal component appear in that particular
locality, and in many cases a group of localities may have sufficient geographic
cohesion to suggest a dialect region identified by the variants with high scores
in that component. Indeed, principal component analysis of the English dataset
finds groups of identifying variants for about a dozen regions of England, ac-
counting in the process for roughly half of the variation in the dataset. In some
cases, the principal components appear to provide a fairly objective method for
characterizing traditional English dialect regions on a quantitative basis. How-
ever, unlike the BiSGP analysis, principal component analysis does not com-
prehensively divide England into regions; moreover, it often isolates variants
that are unique to fairly small areas or include variants that are not unique to
the relevant region; and few localities in any of the identified regions even use
most of the variants identified by the relevant principal component.

For example, as illustrated in Figure 5.5, the high-scoring localities of the
first component largely overlap with the broad southwest dialect region iden-
tified by the spectral partitioning analysis (regions 7 plus 8 in Figure 5.3), while
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Figure 5.6. Visualization of the component scores for the second varimax rotated prin-
cipal component. Darker shades of gray indicate higher component scores.
The original image was taken from Shackleton (2010).

the loadings indicate that the features most closely associated with the princi-
pal component are the voicing of fricatives (also linked to this region by the
BiSGP analysis) and occasionally the voicing of medial dentals (e.g., [vist] for
fist and [bader] for butter), the plausibly related voicing and dentalizing forti-
tion of medial fricative /s/ (e.g., [1rnt] for isn’t), and lowering and unrounding
of /u/ (e.g., [bat] for but). (The principal component also assigns comparatively
high loadings to strong rhoticity, as well as to a set of vocalic features that nearly
fully describe a nonstandard regional dialect system of vowels, but the rhoticity
is not unique to the southwest while the vocalic features appear only sporad-
ically.) Nonetheless, the variants associated with the principal component are
never found all together in any single southwestern locality and can only rather
loosely be thought of as representing a southwestern dialect. Instead of strictly
delineating a dialect region in the manner of the BiSGP analysis, the principal
component analysis is at best suggestive of where the region’s boundaries might
lie.

The second rotated principal component (shown in Figure 5.6) appears to
be strongly associated with a large region of the upper north that is not identi-
fied by the BiSGP analysis. The defining variants in this principal component
all involve the development of ingliding from a high front onset for low long
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Figure 5.7. Visualization of the component scores for the third varimax rotated principal
component. Darker shades of gray indicate higher component scores. The
original image was taken from Shackleton (2010).

vowels (e.g., [leon] for lane and [kool] for coal). The component also includes
nearly all of the variants that are the most common regional pronunciations of
Middle English long vowels.

The third rotated principal component (shown in Figure 5.7) assigns high
component scores to localities in the far north, and assigns high positive load-
ings to the same variants associated with that region by the BiSGP analysis. In
this case, the variants are sufficiently highly correlated with each other and also
sufficiently unique to the region to allow both approaches to arrive at essen-
tially the same classification. Note that the area shows some overlap with that
of the second principal component (see Figure 5.6).

The fourth principal component (shown in Figure 5.8) rather weakly delin-
eates most of East Anglia on the basis of the development of [w] for /v/ (e.g.,
[winigo] for vinegar) and the development of a centered, unrounded onset in
/iz/ (e.g., [ais] for ice). This classification has no counterpart in the BiSGP anal-
ysis, but it does appear (and is also similar in terms of characteristic variants)
when the number of regions distinguished by the BiSGP approach is increased.
We did not discuss this finer-grained division in this chapter, as this also re-
sulted in many additional (uninformative) regions consisting of only a single
locality.
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Figure 5.8. Visualization of the component scores for the fourth varimax rotated prin-
cipal component. Darker shades of gray indicate higher component scores.
The original image was taken from Shackleton (2010).

Several other principal components (not shown) match dialect regions
identified in the BiSGP analysis. For instance, the sixth principal component
distinguishes Devon (region 8 in Figure 5.3) from the rest of the southwest by
its unique fronting of back vowels, the same features associated with that region
by the BiSGP analysis. Somewhat similarly, the seventh principal component,
to a limited extent, distinguishes the “Potteries” zone (region 4 in Figure 5.3)
by the use of [i:] and [u:] for /a:/ and /o:/, respectively (e.g., [gi:t] for gate and
[gu:t] for goat). The seventeenth principal component isolates the single local-
ity (region 1 in Figure 5.3) on the Scottish border in Cumberland that uses the
alveolar trill [r].

5.5 Discussion

Hierarchical bipartite spectral graph partitioning complements other exact ap-
proaches to dialectology by simultaneously identifying groups of localities that
are linguistically similar and groups of linguistic variants that tend to co-occur.
This introduces an inductive bias in which the linguistic and the geographic
dimensions reinforce one another. In a post hoc step we identified the most im-
portant variants associated with a dialect region, by examining a linear combi-
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nation of the variant’s distinctiveness (usage frequency in the region as opposed
to outside of the region) and representativeness (comparative frequency within
the region). That approach contrasts with and complements one-dimensional
clustering techniques, which identify regions as groups of localities with simi-
lar aggregate patterns of variant frequencies, and principal component analysis,
which identifies correlated groups of variants.

Applied to the English dialect dataset used in this chapter, the BiSGP analy-
sis identifies dialect regions that are broadly similar to those identified by clus-
ter analysis and PCA, and isolates sets of variants distinctive for those regions
that are also broadly similar to many of the sets identified by principal com-
ponent analysis. In some cases, however, the BiSGP analysis failed to identify
such well-accepted clusters as the Central dialect region (Trudgill, 1999), which
was detected (in part) using cluster analysis (Shackleton, 2007). In other cases,
most notably in the “Potteries” region, the BiSGP analysis distinguishes region-
ally distinctive combinations of variants that the other methods largely fail to
identify.

Principal component analysis applied to linguistic material identifies
groups of variables whose values tend to co-occur with one another. It applies
primarily to numerical values, but also works well with frequency counts, once
these attain a substantial size. PCA attaches no special value to solutions which
privilege finding coherent groups of sites, i.e. finding groups of sites which tend
to share strong values for one or more principal components. It is remarkable
that (rotated) principal components normally do identify (suggestive) regions,
i.e. geographically coherent groups of sites where variables tend to co-vary.

BiSGP seeks partitions of an input matrix that simultaneously identify co-
varying linguistic variants (just as PCA does) and also co-varying sites, i.e. sites
which share linguistic variants. It is more broadly applicable than PCA, even
supporting the analysis of binary data (see Chapter 4). As we are interested
in identifying common structure in both the geographic and linguistic dimen-
sions, hierarchical bipartite spectral graph partitioning is intuitively appealing
and provides unique insights into the relationships between dialects.

Based on the results reported in Chapter 4 and the present chapter, we hope
to have provided adequate support for the suitability of the hierarchical bipar-
tite spectral graph partitioning method in countering one of the main criticisms
of dialectometry (see Chapter 1), namely the lack of attention to linguistic fac-
tors.

In the following three chapters, we will integrate not only the geographical
signal in the data, but also investigate the role of social factors which have been
lacking from the clustering approach outlined here.

82



o L Y YPUIY UIPRIY
IEIp = P USUJIP €uXIp
EYOIE  IENECI3Q UNIoM
WQY  AR] UDAJ[ €AEQ[
IA € UJSRIA UCAQH]
loa  u ednox uadaol
eY3J  IONAIdS eYIaIds
eplC  JIEOM UdPIoOM






CHAPTER 6

DETERMINANTS OF DUTCH
DIALECT VARIATION

Abstract. In this chapter we examine linguistic variation and its de-
pendence on both social and geographical factors. We follow dialectom-
etry in applying a quantitative methodology and focusing on dialect dis-
tances, and dialectology in the choice of factors we examine in building a
model to predict word pronunciation distances from the standard Dutch
language to 424 Dutch dialects. We combine linear mixed-effects regres-
sion modeling with generalized additive modeling to predict the pronun-
ciation distance of 559 words. Although geographical position is the dom-
inant predictor, several other factors emerged as significant. The model
predicts a greater distance from the standard for smaller communities,
for communities with a higher average age, for nouns (as contrasted with
verbs and adjectives), for more frequent words, and for words with rela-
tively many vowels. The impact of the demographic variables, however,
varied from word to word. For a majority of words, larger, richer and
younger communities are moving towards the standard. For a smaller mi-
nority of words, larger, richer and younger communities emerge as driv-
ing a change away from the standard. Similarly, the strength of the effects
of word frequency and word category varied geographically. The periph-
eral areas of the Netherlands showed a greater distance from the standard
for nouns (as opposed to verbs and adjectives) as well as for high fre-
quency words, compared to the more central areas. Our findings indicate
that changes in pronunciation have been spreading (in particular for low
frequency words) from the Hollandic center of economic power to the pe-
ripheral areas of the country, meeting resistance that is stronger wherever,
for well-documented historical reasons, the political influence of Holland
was reduced. Our results are also consistent with the theory of lexical dif-
fusion, in that distances from the Hollandic norm vary systematically and
predictably on a word-by-word basis."

9 Y4.LdVHOD

6.1 Introduction

(social) dialectology. As indicated in Chapter 1, dialectologists often focus

IN this chapter, we attempt to integrate the approaches of dialectometry and
on the social dimension of language variation (using a small number of

'This chapter is based on Wieling, Nerbonne and Baayen (2011b).
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features), whereas researchers in dialectometry mainly investigate dialect ge-
ography (aggregating over hundreds of features). We follow dialectometry in
viewing the pronunciation distance between hundreds of individual words as
our primary dependent variable. In contrast to other dialectometric studies,
however, we apply a mixed-effects regression approach,” allowing us to simul-
taneously assess the effect of various sociolinguistic and lexical factors. Fur-
thermore, the strength of the present analysis is that it focuses on individual
words in addition to aggregate distances predicted by geography. As a conse-
quence, this quantitative social dialectological study is the first to investigate the
effect of a range of social and lexical factors on a large set of dialect distances.

In the following we will focus on building a model to explain the pronun-
ciation distance between dialectal pronunciations (in different locations) and
standard Dutch for a large set of distinct words. Of course, choosing standard
Dutch as the reference pronunciation is not historically motivated, as standard
Dutch is not the proto-language. However, the standard language remains an
important reference point for two reasons. First, as noted by Kloeke (1927), in
the sixteenth and seventeenth centuries individual sound changes have spread
from the Hollandic center of economic and political power to the more periph-
eral areas of the Netherlands. Furthermore, modern Dutch dialects are known
to be converging to the standard language (Wieling et al., 2007a; Van der Wal
and Van Bree, 2008, pp. 355-356). We therefore expect geographical distance
to reveal a pattern consistent with Kloeke’s ‘Hollandic Expansion; with greater
geographical distance correlating with greater pronunciation distance from the
Hollandic standard.

Kloeke (1927) also pointed out that sound changes may proceed on a word-
by-word basis. The case for lexical diffusion was championed by Wang (1969)
and contrasts with the Neogrammarian view that sound changes are excep-
tionless and apply to all words of the appropriate form to undergo the change.
The Neogrammarian view is consistent with waves of sound changes emanat-
ing from Holland to the outer provinces, but it predicts that lexical properties
such as a word’s frequency of occurrence and its categorial status as a noun or
verb should be irrelevant for predicting a region’s pronunciation distance to the
standard language.

In order to clarify the extent to which variation at the lexical level co-
determines the dialect landscape in the Netherlands, we combine generalized
additive modeling (which allows us to model complex non-linear surfaces)
with mixed-effects regression models (which allow us to explore word-specific
variation). First, however, we introduce the materials and methods of our study.

?*Dialectologists have frequently used logistic regression designs to investigate social influence on
linguistic features (Paolillo, 2002). More recently, however, they have also used mixed-effects
regression modeling (Johnson, 2009; Tagliamonte and Baayen, in press).
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6.2 Material

6.2.1 Pronunciation data

The Dutch dialect dataset (i.e. GTRP) was introduced in detail in Section 4.2
and contains phonetic transcriptions of 562 words in 424 locations in the
Netherlands. The transcriptions in the GTRP were made by several transcribers
between 1980 and 1995, making it currently the largest contemporary Dutch
dialect dataset available. The word categories include mainly verbs (30.8%),
nouns (40.3%) and adjectives (20.8%). The complete list of words is presented
by Wieling et al. (2007a). For the present study, we excluded three words of
the original set (i.e. gaarne, geraken and ledig) as it turned out these words also
varied lexically.? The standard Dutch pronunciation of all 559 words was tran-
scribed by one of the authors based on Gussenhoven (1999).

Because the set of words included common words (e.g., ‘walking’) as well
as less frequent words (e.g., ‘oats’), we included word frequency information,
extracted from the CELEX lexical database (Baayen et al., 1996), as an indepen-
dent variable.

6.2.2 Sociolinguistic data

Besides the information about the speakers recorded by the GTRP compilers,
such as year of recording, gender and age of the speaker, we extracted addi-
tional demographic information about each of the 424 places from Statistics
Netherlands (CBS Statline, 2010). We obtained information about the average
age, average income, number of inhabitants (i.e. population size) and male-
female ratio in every location in the year 1995 (approximately coinciding with
the end of the GTRP data collection period). As Statistics Netherlands uses
three measurement levels (i.e. neighborhood, district and municipality), we
manually selected the appropriate level for every location. For large cities (e.g.,
Rotterdam), the corresponding municipality (generally having the same name)
was selected as it mainly consisted of the city itself. For smaller cities, located in
a municipality having multiple villages and/or cities, the district was selected
which consisted of the single city (e.g., Coevorden). Finally, for very small vil-
lages located in a district having multiple small villages, the neighborhood was
selected which consisted of the single village (e.g., Barger-Oosterveld).

3These words were not excluded in Chapters 3 and 4, but they represent only a very small fraction
of the complete dataset and are unlikely to affect the results of those chapters significantly.
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6.3 Methods

6.3.1 Obtaining pronunciation distances

For all 424 locations, the pronunciation distance between standard Dutch and
the dialectal pronunciations (for every individual word) was calculated by us-
ing the PMI-based Levenshtein algorithm (diagonal-exclusive version) as ex-
plained in Section 2.3.3. In line with Chapter 4, we incorporated some addi-
tional linguistic information in the initialization step of the PMI-based Lev-
enshtein algorithm by allowing the alignment of the central vowel [o] with
sonorant consonants (e.g., [m] and [n]), as well as the alignment of semivowels
(i.e. [j] and [w]) with both vowels and consonants. Because longer words will
likely have a greater pronunciation distance (as more sounds may change) than
shorter words, we normalized the PMI-based word pronunciation distances by
dividing by the alignment length.

6.3.2 Modeling the role of geography: generalized additive
modeling

Given a fine-grained measure capturing the distance between two pronuncia-
tions, a key question from a dialectometric perspective is how to model pro-
nunciation distance as a function of the longitude and latitude of the pronun-
ciation variants. The problem is that for understanding how longitude and lat-
itude predict pronunciation distance, the standard linear regression model is
not flexible enough. The problem with standard regression is that it can model
pronunciation distance as a flat plane spanned by longitude and latitude (by
means of two simple main effects) or as a hyperbolic plane (by means of a mul-
tiplicative interaction of longitude by latitude). A hyperbolic plane, unfortu-
nately, imposes a very limited functional form on the regression surface that
for dialect data will often be totally inappropriate.

We therefore turned to a generalized additive model (GAM), an extension
of multiple regression that provides flexible tools for modeling complex inter-
actions describing wiggly surfaces. For isometric predictors such as longitude
and latitude, thin plate regression splines are an excellent choice. Thin plate
regression splines model a complex, wiggly surface as a weighted sum of ge-
ometrically simpler, analytically well defined, surfaces (Wood, 2003). The de-
tails of the weights and smoothing basis functions are not of interest for the
user, they are estimated by the GAM algorithms such that an optimal balance
between undersmoothing and oversmoothing is obtained, using either general-
ized cross-validation or relativized maximum likelihood (see Wood, 2006 for a
detailed discussion). Due to the integration of cross-validation in the GAM fit-
ting procedure, the risk of overfitting is reduced. The significance of a thin plate
regression spline is assessed with an F-test evaluating whether the estimated
degrees of freedom invested in the spline yield an improved fit of the model
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to the data. Generalized additive models have been used successfully in mod-
eling experimental data in psycholinguistics; see Tremblay and Baayen (2010)
for evoked response potentials, and see Baayen et al. (2010), Baayen (2010) and
Baayen et al. (2011) for chronometric data. They are also widely used in biology,
see, for instance, Schmidt et al. (2011) for spatial explicit modeling in ecology.

For our data, we use a generalized additive model to provide us with a two-
dimensional surface estimator (based on the combination of longitude and lat-
itude) of pronunciation distance using thin-plate regression splines as imple-
mented in the mgcv package for R (Wood, 2006). Figure 6.1 presents the result-
ing regression surface using a contour plot. The (solid) contour lines represent
aggregate distance isoglosses. Darker shades of gray indicate smaller distances,
lighter shades of gray represent greater distances from the standard language.

The general geographic pattern fits well with Kloeke’s hypothesis of a Hol-
landic expansion: As we move away from Holland, pronunciation distances
increase (Kloeke, 1927). Kloeke showed that even in the sixteenth and sev-
enteenth centuries the economic and political supremacy of the provinces of
North and South Holland led to the spread of Hollandic speech norms to the
outer provinces.

We can clearly identify the separation from the standard spoken in the
provinces of North and South Holland (in the central west) of the province
of Friesland (in the north), the Low Saxon dialects spoken in Groningen and
Drenthe (in the northeast), and the Franconian dialects of Zeeland (in the
southwest) and Limburg (in the southeast). The 28.69 estimated degrees of
freedom invested in the thin plate regression spline were supported by an F-
value of 1051 (p < 0.0001). The local cohesion in Figure 6.1 makes sense, since
people living in nearby communities tend to speak relatively similar (Nerbonne
and Kleiweg, 2007).

6.3.3 Mixed-effects modeling

A problem with this GAM is that the random-effects structure of our dataset
is not taken into account. In mixed-effects regression modeling (for introduc-
tions, see, e.g., Pinheiro and Bates, 2000; Baayen et al., 2008; Baayen, 2008),
a distinction is made between fixed-effect and random-effect factors. Fixed-
effect factors are factors with a small number of levels that exhaust all possible
levels (e.g., the gender of a speaker is either male or female). Random-effect
factors, by contrast, have levels sampled from a much larger population of pos-
sible levels. In our data, there are three random-effect factors that are likely
to introduce systematic variation that is ignored in our generalized additive
model.

A first random-effect factor is location. Our observations are made at 424
locations where speakers were interviewed. Since these 424 locations are a sam-
ple of a much larger set of communities that might have been sampled, loca-
tion is a random-effect factor. Because we used the pronunciations of a single
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Figure 6.1. Contour plot obtained with a generalized additive model. The contour plot
shows a regression surface of pronunciation distance (from standard Dutch)
as a function of longitude and latitude obtained with a generalized additive
model using a thin plate regression spline. The (black) contour lines rep-
resent aggregate distance isoglosses, darker shades of gray indicate smaller
distances closer to the standard Dutch language, lighter shades of gray rep-
resent greater distances. Note that the empty square indicates the location

of the IJsselmeer, a large lake in the Netherlands.

speaker at a given location, location is confounded with speaker. Hence, our
random-effect factor location represents both location and speaker.

The data obtained from the 424 locations were coded phonetically by 30
different transcribers. Since these transcribers are themselves a sample of a
larger set of possible transcribers, transcriber is a second random-effect factor
in our model. By including transcriber in our model, we can account for biases
in how individuals positioned the data that they listened to with respect to the

standard language.

The third random-effect factor is word. Each of the 559 words was pro-
nounced in most of the 424 locations. The words are also sampled from a much

90



larger population of words, and hence constitute a random-effect factor as well.

In mixed-effect models, random-effect factors are viewed as sources of ran-
dom noise that can be linked to specific observational units, in our case, loca-
tions, transcribers, and words. In the simplest case, the variability associated
with a given random-effect factor is restricted to adjustments to the population
intercept. For instance, some transcribers might be biased towards the standard
language, others might be biased against it. These biases are assumed to follow
a normal distribution with mean zero and unknown standard deviation to be
estimated from the data. Once these biases have been estimated, it is possible
to adjust the population intercept so that it becomes precise for each individ-
ual transcriber. We will refer to these adjusted intercepts as — in this case —
by-transcriber random intercepts.

It is possible, however, that the variation associated with a random-effect
factor affects not only the intercept, but also the slopes of other predictors. We
shall see below that in our data the slope of population size varies with word,
indicating that the effect of population size is not the same for all words. A
mixed-effects model will estimate the by-word biases in the slope of popula-
tion size, and by adding these estimated biases to the general population size
slope, by-word random slopes are obtained that make the estimated effect of
population size as precise as possible for each word.

Whether random intercepts and random slopes are justified is verified by
means of likelihood ratio tests, which evaluate whether the increase in the num-
ber of parameters is justified given the increase in goodness of fit.

Statistical models combining mixed-effects regression and generalized ad-
ditive modeling are currently under development. We have explored the
gamm4 package for R developed by Simon Wood, but this package proved un-
able to cope with the rich random-effects structure characterizing our data. We
therefore used the generalized additive model simply to predict the pronunci-
ation distance from longitude and latitude, without including any further pre-
dictors. We then used the fitted values of this simple model (see Figure 6.1) as a
predictor representing geography in our final model. (The same approach was
taken by Schmidt et al. (2011), who also failed to use the gamm4 package suc-
cessfully.) In what follows, we refer to these fitted values as the GAM distance.

In our analyses, we considered several other predictors in addition to GAM
distance and the three random-effect factors location, transcriber, and word.
We included a contrast to distinguish nouns (and adverbs, but those only oc-
cur infrequently) from verbs and adjectives. Other lexical variables we included
were word frequency, the length of the word, and the vowel-to-consonant ratio
in the standard Dutch pronunciation of each word. The demographic vari-
ables we investigated were average age, average income, male-female ratio and
the total number of inhabitants in every location. Finally, the speaker- and
transcriber-related variables we extracted from the GTRP were gender, year of
birth, year of recording and gender of the fieldworker (not necessarily being the
same person as the transcriber). Unfortunately, for about 5% of the locations
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the information about gender, year of birth and year of recording was miss-
ing. As information about the employment of the speaker or speaker’s partner
was missing even more frequently (in about 17% of the locations), we did not
include this variable in our analysis.

A recurrent problem in large-scale regression studies is collinearity of the
predictors. For instance, in the Netherlands, communities with a larger popula-
tion and higher average income are found in the west of the country. In order to
facilitate interpretation, and to avoid enhancement or suppression due to cor-
relations between the predictor variables (Friedman and Wall, 2005), we decor-
related such predictors from GAM distance by using as predictor the residuals
of a linear model regressing that predictor on GAM distance. For average age
as well as for population size, the resulting residuals correlated highly with the
original values (r > 0.97), indicating that the residuals can be interpreted in the
same way as the original values. Because average income and average popu-
lation age were also correlated (r = 0.44) we similarly corrected the variable
representing average age for the effect of average income.

In order to reduce the potentially harmful effect of outliers, various nu-
merical predictors were log-transformed (see Table 6.1). We scaled all numeri-
cal predictors by subtracting the mean and dividing by the standard deviation
in order to facilitate the interpretation of the fitted parameters of the statisti-
cal model. Our dependent variable, the pronunciation distance per word from
standard Dutch (averaged by alignment length), was also log-transformed and
centered. The value zero indicates the mean distance from the standard pro-
nunciation, while negative values indicate a distance closer and positive values
a distance farther away from standard Dutch.

The significance of fixed-effect predictors was evaluated by means of the
usual t-test for the coefficients, in addition to model comparison likelihood
ratio tests and AIC (Akaike Information Criterion; Akaike, 1974). Since our
dataset contains a very large number of observations (a few hundred thousand
items), the ¢-distribution approximates the standard normal distribution and
factors will be significant (p < 0.05) when they have an absolute value of the
t-statistic exceeding 2 (Baayen et al., 2008). A one-tailed test (only applicable
with a clear directional hypothesis) is significant when the absolute value of the
t-statistic exceeds 1.65.

6.4 Results

The total number of cases in our original dataset was 228,476 (not all locations
have pronunciations for every word). To reduce the effect of noise in the tran-
scriptions, we eliminated all items in our dataset with a pronunciation distance
from standard Dutch larger than 2.5 standard deviations above the mean pro-
nunciation distance for each word. Because locations in the province of Fries-
land are characterized by having a separate official language (Frisian) with a
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Estimate Std. err. t-value Effect size

Intercept -0.0153 0.0105 -1.4561

GAM distance (geography) 0.9684 0.0274 35.3239 0.3445
Population size (log) -0.0069 0.0026 -2.6386 -0.0402
Average population age 0.0045 0.0025 1.8049 0.0295
Average population income (log) -0.0005 0.0026 -0.1988 -0.0042
Word frequency (log) 0.0198 0.0060 3.2838 0.1205
Noun instead of Verb/Adjective 0.0409 0.0122  3.3437 0.0409
Vowel-consonant ratio (log) 0.0625 0.0059 10.5415 0.3548

Table 6.1. Fixed-effect coeflicients of a minimally adequate model fitted to the pronun-
ciation distances from standard Dutch. Effect size indicates the increase or
decrease of the dependent variable when the predictor value increases from
its minimum to its maximum value (i.e. the complete range).

relatively large distance from standard Dutch, we based the exclusion of items
on the means and standard deviation for the Frisian and non-Frisian area sep-
arately. After deleting 2610 cases (1.14%), our final dataset consisted of 225,866
cases.

We fitted a mixed-effects regression model to the data, step by step remov-
ing predictors that did not contribute significantly to the model fit. In the fol-
lowing, we will discuss the specification of the resulting model including all
significant predictors and verified random-effect factors. This model explains
approximately 44.5% of the variance of our dependent variable (i.e. the pronun-
ciation distance from standard Dutch).

The coefficients and associated statistics of the fixed-effect factors and co-
variates are shown in Table 6.1 (note that most values in the table are close to
zero as we are predicting average PMI distances, which are relatively small). To
allow a fair comparison of the effect of each predictor, we included a measure of
effect size by specifying the increase or decrease of the dependent variable when
the predictor increased from its minimum to its maximum value (following the
approach of Baayen et al., 2008). Clearly geography and the word-related pre-
dictors have the greatest influence on the pronunciation distance from standard
Dutch.

The random-effects structure is summarized in Table 6.2. The residuals
of our model followed a normal distribution, and did not reveal any non-
uniformity with respect to location. Table 6.3 summarizes the relation between
the independent variables and the distance from standard Dutch. A more de-
tailed interpretation is provided in the sections below on demographic and lex-
ical predictors.

The inclusion of the fixed-effect factors (except average population income)
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Factor Rnd. effect Std. dev.  Cor.

Word Intercept 0.1394
Population size (log) 0.0186
Average population age 0.0086 -0.856
Average population income (log) 0.0161 0.867 -0.749
Location Intercept 0.0613
Word frequency (log) 0.0161 -0.084
Noun instead of Verb/Adjective 0.0528 -0.595 0.550
Transcriber Intercept 0.0260
Residual 0.2233

Table 6.2. Random-effect parameters of the minimally adequate model fitted to the pro-
nunciation distances from standard Dutch. The columns Cor. contain the
correlations between the random effects. The first column contains the cor-
relations with the by-word random slope for population size (top two values),
and the by-location random intercept (bottom two values). The second col-
umn contains the correlation with the by-word random slope for average age
(-0.749), and the by-location random slope for word frequency (0.550). See
the text for interpretation.

and random-effect factors shown in Table 6.1 and 6.2 was supported by like-
lihood ratio tests indicating that the additional parameters significantly im-
proved the goodness of fit of the model. Tables 6.4 and 6.5 show the increase
in goodness of fit for every additional factor measured by the increase of the
log-likelihood and the decrease of the Akaike Information Criterion (Akaike,
1974). To assess the influence of each additional fixed-effect factor, the random
effects were held constant, including only the random intercepts for word, lo-
cation and transcriber. The baseline model, to which the inclusion of the first
fixed-effect factor (geography) was compared, only consisted of the random
intercepts for word, location and transcriber. Subsequently, the next model
(including both geography and the vowel-to-consonant ratio per word), was
compared to the model including geography (and the random intercepts) only.
This is shown in Table 6.4 (sorted by decreasing importance of the individual
fixed-effect factors). Log-likelihood ratio tests were carried out with maximum
likelihood estimation, as recommended by Pinheiro and Bates (2000).
Similarly, the importance of additional random-effect factors was assessed
by restricting the fixed-effect predictors to those listed in Table 6.1. The base-
line model in Table 6.5, to which the inclusion of the random intercept for word
was compared, only consisted of the fixed-effect factors listed in Table 6.1. The
next model (also including location as a random intercept) was compared to
the model with only word as a random intercept. In later steps random slopes
were added. For instance, the sixth model (including random slopes for pop-

94



Predictor Interpretation

GAM distance (geography) Peripheral areas in the north, east and
south have a higher distance from stan-
dard Dutch than the central western
part of the Netherlands (see Figure 6.1).

Population size (log) Locations with a larger population
have a pronunciation closer to standard
Dutch, but the effect varies per word
(see Figure 6.4).

Average population age Locations with a younger population
have a pronunciation closer to standard
Dutch, but the effect varies per word
(see Figure 6.4).

Average population income (log)  There is no significant general effect of
average income in a population, but the
effect varies per word (see Figure 6.4).

Word frequency (log) More frequent words have a higher dis-
tance from standard Dutch, but the ef-
fect varies per location (see Figure 6.5).

Noun instead of Verb/Adjective =~ Nouns have a higher distance from
standard Dutch than verbs and adjec-
tives, but the effect varies per location
(see Figure 6.6).

Vowel-consonant ratio (log) Words with relatively more vowels have
a higher distance from standard Dutch.

Table 6.3. Interpretation of significant predictors

ulation size and average population age, as well as their correlation) was com-
pared to the fifth model which only included population size as a random slope.
Log-likelihood ratio tests evaluating random-effect parameters were carried
out with relativized maximum likelihood estimation, again following Pinheiro
and Bates (2000).

Due to the large size of our dataset, it proved to be computationally infeasi-
ble to include all variables in our random-effects structure (e.g., the vowel-to-
consonant ratio was not included). As further gains in goodness of fit are to be
expected when more parameters are invested in the random-effects structure,
our model does not show the complete (best) random-effects structure. How-
ever, we have checked that the fixed-effect factors remained significant when
additional uncorrelated by-location or by-word random slopes were included
in the model specification. In other words, we have verified that the t-values of
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AIC-

LL ratio test

LL+
Random intercepts
+ GAM distance (geography) 270.6
+ Vowel-consonant ratio (log) 50.9
+ Noun instead of Verb/Adjective 5.6
+ Population size 3.8
+ Word frequency (log) 3.8
+ Average population age 2.5
+ Average population income (log) 0.0

539.2
99.8
9.2
5.7
5.7
3.1
-2.0

p <0.0001
p <0.0001
p = 0.0008
p = 0.0056
p =0.0056
p =0.0244
P =0.9554

Table 6.4. Goodness of fit of the fixed-effect factors of the model. Each row specifies the
increase in goodness of fit (in terms of log-likelihood increase and AIC de-
crease) obtained by adding the specified predictor to the model including all
preceding predictors (as well as the random intercepts for word, location and
transcriber). Note that the final row indicates that including average income

does not improve the model.

LL+ AIC- LL ratio test
Fixed-effect factors
+ Random intercept word 32797.8 65593.6  p < 0.0001
+ Random intercept location 5394.2 10786.4  p < 0.0001
+ Random intercept transcriber 14.0 26.1  p <0.0001
+ Population size (word) 490.3 978.6  p <0.0001
+ Average population age (word) 96.0 188.0  p <0.0001
+ Average population income (word) 443.9 881.8  p <0.0001
+ Word frequency (location) 220.1 436.3  p <0.0001
+ Noun instead of Verb/Adj. (location) 1064.4 2122.8  p < 0.0001

Table 6.5. Goodness of fit of the random-effect factors of the model. Each row specifies
the increase in goodness of fit of the model (in terms of log-likelihood in-
crease and AIC decrease) resulting from the addition of the specified random
slope or intercept to the preceding model. All models include the fixed-effect

factors listed in Table 6.1.

the fixed-effect factors in Table 6.1 are not anti-conservative and therefore our

results remain valid.

Interpreting fixed and random effects

Because mixed-effects regression is not (yet) a common technique in linguistic
analysis, we will attempt to explain the technique in more detail on the basis of
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the results shown in Tables 6.1 and 6.2. While this section focuses on the tech-
nique, the interpretation of the results is discussed in Section 6.4.1 and 6.4.2.

We start with the explanation of fixed-effect factors and covariates, as these
may be interpreted in the same way as standard linear regression results and
should be most familiar. Table 6.1 shows that the intercept is not significant (the
absolute t-value is lower than 2). This indicates that, in general, the (centered)
distance from the standard language for a certain word in a certain location
does not differ from zero (which is unsurprising, as the mean of the centered
distance from the standard is zero). If we write this in a simple regression for-
mula, y = ax+b, b represents the intercept and is set to zero. Consequently the
value of y (in our case the pronunciation distance from the standard) is only
dependent on the coefficient a and the actual value of the predictor x. If x rep-
resents population size, the value of a equals —0.0069, and indicates that if a
population in location A is one (log) unit larger than in location B, the distance
(for individual words) from standard Dutch will be 0.0069 lower in location A
than in location B. It is straightforward to include more predictors in a linear
regression formula by simply adding them (e.g., y = a,x, +a,x, +...+ a,x, +b).
When considering that the coeflicient for population income does not signifi-
cantly differ from zero and y represents the pronunciation distance from stan-
dard Dutch for an individual word in a certain location, the general regression
formula for this model (based on Table 6.1) equals:

Y = 0.9684X,—0.0069X; +0.0045X, + 0X; +0.0198X s + 0.0409X, +0.0625X, + 0

This formula can also be used to predict the pronunciation distance for a
novel word. In that case, we would substitute the lexical variables with the spe-
cific values for that word (e.g., xy is substituted by the logarithm of the fre-
quency of the word). The pronunciation distance of the novel word in every
individual location can then be calculated by substituting the location-specific
variables as well.

Random-effect factors may be conceptualized as a tool to make precise re-
gression lines for every individual factor included in the random-effects struc-
ture (e.g., every individual word). In the following we will focus on only four
words: voor ‘in front of’, wijn ‘wine; slim ‘smart’ and twee ‘two. While the in-
tercept of the general model does not significantly differ from o, some words
might have a higher pronunciation distance from standard Dutch (and con-
sequently a higher intercept) than others, even after taking into account vari-
ous lexical predictors. Indeed, Table 6.2 shows that the intercepts for individ-
ual words vary to a large extent (a standard deviation of 0.1394). What might
this mean linguistically? There are several possible interpretations, but they all
come down to supposing that certain words simply lend themselves more to
variation than others.

Figure 6.2 visualizes the varying (i.e. random) intercepts for each of the four
words. We clearly see that the word voor has a higher intercept than the inter-
cept of the general model (the dashed line; note that it shows the exact value
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Figure 6.2. Example of random intercepts per word. The dashed line represents the
general model estimate (non-significantly different from zero), while the
solid lines represent the estimates of the intercept for each individual word.

of the intercept, even though it does not significantly differ from zero). Conse-
quently, voor is more different from standard Dutch than the average word. The
words wijn and twee each have an intercept which is only slightly higher than
the intercept of the general model. The word slim shows the opposite pattern,
as its intercept is lower than the intercept of the general model. When looking
at the word-specific regression formulas, the intercept (the b in y = ax + b)
will not be o, but rather 0.1 (wijn and twee), 0.4 (voor), and -o0.4 (slim). 1t is
straightforward to see that this explanation generalizes to the random inter-
cepts for location and transcriber.

Similar to the intercept, the regression coeflicients, or slopes (i.e. ain y =
ax + b) may also vary to make the regression formula as precise as possible for
every individual word. When looking at the regression formula for individual
words, only coefficients which are not connected to word-related predictors
may vary (i.e. word frequency itself already varies per word, so it makes no
sense to vary the effect of word frequency per word as well). For example, the
effect (i.e. coefficient) of population size might vary from word to word. Some
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Figure 6.3. Example of random slopes for population size per word. The dashed line
represents the general model estimate (of the intercept and the coefficient
for population size), while the solid lines represent the estimates of the in-
tercept and the slope for each individual word.

words may be influenced strongly by the population size of a location (e.g.,
there is a large difference in how close the word is to standard Dutch in a large
city, as opposed to a small village), while others might not be influenced at all
by population size. The second line of Table 6.2 indeed shows that the effect
of population size varies significantly per word (the standard deviation equals
0.0186). Figure 6.3 visualizes the varying coefficients (i.e. random slopes) for
each of the four words. We clearly see that the word slim has a slightly negative
coeflicient (i.e. slope), which is somewhat less negative than the coefficient of
the general model, while the words wijn and twee have a more negative slope.
In contrast, the word voor has a positive slope, which is completely opposite
to the pattern of the general model (i.e. the word voor is more different from
the standard in larger cities than in smaller villages, rather than the other way
around). When looking at the regression formulas specific for these words,
the coefficient of population size will not be -0.0069, but rather -0.015 (wijn
and twee), 0.015 (voor), and -0.005 (slim). It is straightforward to see that this
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explanation easily generalizes to other predictors and random-effect factors.
In the following, we will use this information to discuss the demographic
and lexical results in more detail.

6.4.1 Demographic predictors

The geographical predictor GAM distance (see Figure 6.1) emerged as the pre-
dictor with the smallest uncertainty concerning its slope, as indicated by the
huge t-value. As GAM distance represents the fitted values of a generalized
additive model fitted to pronunciation distance from standard Dutch (adjusted
R* = 0.12), the strong statistical support for this predictor is unsurprising. Even
though GAM distance accounts for a substantial amount of variance, location
is also supported as a significant random-effect factor, indicating that there are
differences in pronunciation distances from the standard language that cannot
be reduced to geographical proximity. The random-effect factor location, in
other words, represents systematic variability that can be traced to the different
locations (or speakers), but that resists explanation through our demographic
fixed-effect predictors. To what extent, then, do these demographic predic-
tors help explain pronunciation distance from the standard language over and
above longitude, latitude, and the location (speaker) itself?

Table 6.1 lists two demographic predictors that reached significance. First,
locations with many inhabitants (a large population size) tend to have a lower
distance from the standard language than locations with few inhabitants. A
possible explanation for this finding is that people tend to have weaker social
ties in urban populations, which causes dialect leveling (Milroy, 2002). Since
the standard Dutch language has an important position in the Netherlands
(Smakman, 2006; Van der Wal and Van Bree, 2008), and has been dominant
for many centuries (Kloeke, 1927), conversations between speakers of different
dialects will normally be held in standard Dutch and consequently leveling will
proceed in the direction of standard Dutch. The greater similarity of varieties
in settlements of larger size is also consistent with the predictions of the grav-
ity hypothesis which states that linguistic innovation proceeds first from large
settlements to other large nearby settlements, after which smaller settlements
adopt the innovations from nearby larger settlements (Trudgill, 1974a).

The second (one-tailed) significant demographic covariate is the average
age of the inhabitants of a given location. Since younger people tend to speak
less in their dialect and more in standard Dutch than the older population
(Heeringa and Nerbonne, 1999; Van der Wal and Van Bree, 2008, pp. 355-356),
the positive slope of average age is as expected.

Note that Table 6.1 also contains average income as a demographic covari-
ate. This variable is not significant in the fixed-effects structure of the model
(as the absolute ¢-value is lower than 1.65), but is included as it is an important
predictor in the random-effects structure of the model.
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Figure 6.4. By-word random slopes in a mixed-effects regression model fitted to pro-
nunciation distances from standard Dutch. All three possible combinations
of by-word random slopes (i.e. the word-specific coeflicients) for population
size, age and income are shown. The gray quadrant in every graph marks
where most words (dots) are located. The dashed lines indicate the model
estimates of every predictor.

Interestingly, all three demographic predictors required by-word random
slopes (i.e. varying coefficients per word, as explained above). Figure 6.4 shows
the by-word random slopes for all combinations of population size (i.e. the
number of inhabitants), average age and average income. At the extremes in
every graph, the words themselves have been added to the scatter plot (gehad,
‘had’; zand, ‘sand’; hoop, ‘hope’; vrij, ‘free’; mazelen, ‘measles’; bier, ‘beer’). The
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gray quadrant in every graph marks where most words are located. Words in
this quadrant have slopes consistent with the general model (the model esti-
mates shown in Table 6.1 are indicated by the dashed lines).

When looking at the top-left graph, we see that most words (represented by
dots) are located in the lower-left quadrant, consistent with the negative slope
of population size (-0.0069) and the (non-significant) negative slope of average
income (-0.0005; see Table 6.1). Words in this quadrant have negative slopes
for population size, indicating that these words will tend to be more similar
to the standard in larger communities (the more to the left the dot is located,
the more similar it will be to the standard language). At the same time, the
same words also have negative slopes for average income, indicating that these
words will tend to be more similar to the standard in richer communities (the
lower the dot is located, the more similar it will be to the standard language).
This pattern reverses for the words in the opposite quadrant. A word such as
vrij (free) has a large positive coefficient for population size, indicating that in
larger communities this word will differ more from the standard language. The
word vrij also has a positive coefficient for average income. Therefore, speakers
in poorer communities will pronounce the word closer to the standard, while
speakers in richer communities will pronounce it more differently. The corre-
lation parameter of 0.867 in Table 6.2 quantifies the strong connection between
the by-word random slopes for average income and population size.

The top-right graph illustrates that the coefficients of average age and aver-
age income are also closely linked per word (indicated by the high correlation
parameter of -0.749 in Table 6.2). Words in the gray quadrant behave in accor-
dance with the general model (e.g., the word gehad will be more similar to the
standard language in a richer community as well as in a younger community),
while words in the opposite quadrant behave in a reversed fashion (e.g., the
word vrij will differ more from the standard in a richer community as well as
in a younger community).

Finally, the bottom-left graph shows that the coefficients of population size
and average age are also closely connected per word (indicated by the high cor-
relation parameter of -0.856 in Table 6.2). Words in the gray quadrant behave
in accordance with the general model (e.g., the word gehad will be more similar
to the standard language in a larger community as well as in a younger commu-
nity), while words in the opposite quadrant behave in a reversed fashion (e.g.,
the word bier will differ more from the standard in a larger community as well
as in a younger community).

Two important points emerge from this analysis. First, the effects of the
three demographic variables, population size, average age and average income,
differ dramatically depending on what word is being considered. Second,
words tend to be influenced by all three demographic variables similarly. If a
word is influenced more strongly by one variable than predicted by the general
model, it will likely also be influenced more strongly by the other two variables
(e.g., the word gehad). Alternatively, if a word is influenced in the reverse di-
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rection by one variable compared to the general model, it will likely also be
influenced in the reverse direction by the other two variables (e.g., the word
vrij).

Besides these significant variables, we investigated several other demo-
graphic predictors that did not reach significance. One variable we considered
was the male-female ratio at a given location. While the gender of the speaker
is likely to play an important role, we are uncertain if the ratio of men versus
women in a location should play a significant role. With other predictors in the
model, it did not prove significant. We expected a negative influence of aver-
age income, since standard Dutch has a relatively high prestige (Van der Wal
and Van Bree, 2008, Ch. 12). However, as shown in Table 6.1, this effect did not
reach significance, possibly due to the large collinearity with geography; the
highest average income in the Netherlands is earned in the western part of the
Netherlands (CBS Statline, 2010), where dialects are also most similar to stan-
dard Dutch (Heeringa, 2004, p. 274). Average income was highly significant
when geography was excluded from the model.

No speaker-related variables were included in the final model. We were sur-
prised that the gender of the speaker did not reach significance, as the impor-
tance of this factor has been reported in many sociolinguistic studies (Cheshire,
2002). However, when women have a limited social circle (e.g., the wife of a
farmer living on the outskirts of a small rural community), they actually tend
to speak more traditionally than men (Van der Wal and Van Bree, 2008, p. 365).
Since such women are likely present in our dataset, this may explain the absence
of a gender difference in our model. We also expected speaker age to be a sig-
nificant predictor, since dialects are leveling in the Netherlands (Heeringa and
Nerbonne, 1999; Van der Wal and Van Bree, 2008, pp. 355-356). However, as
the speakers were relatively close in age (e.g., 74% of the speakers were born
between 1910 and 1930) and we only used pronunciations of a single speaker
per location, this effect might have been too weak to detect.

The two fieldworker-related factors (gender of the fieldworker and year of
recording) were not very informative, because they suffered from substantial
geographic collinearity. With respect to the year of recording, we found that
locations in Friesland were visited quite late in the project, while their distances
from standard Dutch were largest. Regarding the gender of the fieldworkers, fe-
male fieldworkers mainly visited the central locations in the Netherlands, while
the male fieldworkers visited the more peripheral areas (where the pronuncia-
tion distance from standard Dutch is larger).

6.4.2 Lexical predictors

Table 6.1 lists three lexical predictors that reached significance: the vowel-to-
consonant ratio (having the largest effect size), word frequency, and the con-
trast between nouns and verbs. Unsurprisingly, the length of the word was not
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a significant predictor, as we normalized pronunciation distance by the align-
ment length.

The first significant lexical factor was the vowel-to-consonant ratio. The
general effect of the vowel-to-consonant ratio was linear, with a greater ratio
predicting a greater distance from the standard. As vowels are much more vari-
able than consonants (Keating et al., 1994), this is not a very surprising finding.

The second, more interesting, significant lexical factor was word frequency.
More frequent words tend to have a higher distance from the standard. We re-
marked earlier that Dutch dialects tend to converge to standard Dutch. A larger
distance from the standard likely indicates an increased resistance to standard-
ization. Indeed, given the recent study of Pagel et al. (2007), where they showed
that more frequent words were more resistant to change, this seems quite sen-
sible.

However, the effect of word frequency is not uniform across locations, as in-
dicated by the presence of by-location random slopes for word frequency in our
model (see Table 6.2). The parameters for these random slopes (i.e. the standard
deviation, and the parameter measuring the correlation with the random inter-
cepts) jointly increase the log-likelihood of the model by no less than 220 units,
compared to 3.8 log-likelihood units for the fixed-effect (population) slope of
frequency. Interestingly, although the by-location random slopes for frequency
properly follow a normal distribution, they are not uniformly distributed across
the different regions of the Netherlands, as illustrated in the upper right panel
of Figure 6.5. In this panel, contour lines link locations for which the slope
of the frequency effect is the same. The two dark gray areas (central Holland
and Groningen and Drenthe) are characterized by slopes close to zero, while
the white area in Friesland indicates a large positive slope (i.e. the Frisian pro-
nunciations become more distinct from standard Dutch for higher-frequency
words).

To clarify how geography (GAM distance) and frequency jointly predict
distance from the standard language, we first calculated the fitted GAM dis-
tance for each location. We then estimated the predicted distance from the
standard language using GAM distance and word frequency as predictors,
weighted by the coefficients estimated by our mixed-effects model. Because
the fitted surfaces vary with frequency, we selected the minimum frequency
(Qo), first (Q1) and third (Q3) quartiles, as well as the maximum frequency
(Q4) for visualization (see the lower panels of Figure 6.5). Panel Qo shows the
surface for the words with the lowest frequency in our data. As frequency in-
creases, the surface gradually morphs into the surface shown in the lower right
panel (Q4). The first thing to note is that as frequency increases, the shades
of gray become lighter, indicating greater differences from the standard. This
is the main effect of frequency: higher-frequency words are more likely to re-
sist assimilation to the standard language. The second thing to note is that the
distances between the contour lines decrease with increasing frequency, indi-
cating that the differences between regions with respect to the frequency effect
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Figure 6.5. Geography, word frequency and distance from standard Dutch. Upper left:
distance predicted only from longitude and latitude. Upper right: the ge-
ographical distribution of random slopes for word frequency. Lower four
panels: the combined effect of geography and word frequency on pronunci-
ation distance for the minimum frequency (Qo), the first quartile (Q1), the
third quartile (Q3), and the maximum frequency (Q4). Darker shades of
gray denote smaller values, lighter shades of gray indicate larger values.
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become increasingly more pronounced. For instance, the Low Saxon dialect of
Twente on the central east border with Germany, and the Frisian varieties in
the north profile themselves more clearly as different from standard Dutch for
the higher-frequency words (Q4) than for the lower-frequency words (Qo).

For the lowest-frequency words (panel Qo), the northeast separates itself
from the Hollandic sphere of influence, with pronunciation distances slowly
increasing towards the very northeast of the country. This area includes Fries-
land and the Low Saxon dialects. As word frequency increases, the distance
from standard Dutch increases, and most clearly so in Friesland. For Fries-
land, this solid resistance to the Hollandic norm, especially for high frequency
words, can be attributed to Frisian being recognized as a different official lan-
guage.

Twente also stands out as highly resistant to the influence of the standard
language. In the sixteenth and seventeenth centuries, this region was not under
firm control of the Dutch Republic, and Roman Catholicism remained stronger
here than in the regions towards its west and north. The resistance to protes-
tantism in this region may have contributed to its resistance to the Hollandic
speech norms (see also Van Reenen, 2006).

In Zeeland (in the southwest) and Limburg (in the southeast), we find Low
Franconian dialects that show the same pattern across all frequency quartiles,
again with increased distance from Holland predicting greater pronunciation
distance. The province of Limburg has never been under firm control of Hol-
land for long, and has a checkered history of being ruled by Spain, France,
Prussia, and Austria before becoming part of the kingdom of the Netherlands.
Outside of the Hollandic sphere of influence, it has remained closer to dialects
found in Germany and Belgium. The province of Zeeland, in contrast, has re-
tained many features of an earlier linguistic expansion from Flanders (in the
Middle Ages, Flanders had strong political influence in Zeeland). Zeeland was
not affected by an expansion from Brabant (which is found in the central south
of the Netherlands as well as in Belgium), but that expansion strongly influ-
enced the dialects of Holland. This Brabantic expansion, which took place in
the late Middle Ages up to the seventeenth century, clarifies why, across all
frequency quartiles, the Brabantic dialects are most similar to the Hollandic
dialects.

Our regression model appears to conflict with the view of Kloeke (which
was also adopted by Bloomfield) that high frequency words should be more
likely to undergo change than low frequency words (Kloeke, 1927; Bloomfield,
1933). This position was already argued for by Schuchardt (1885), who dis-
cussed data suggesting that high frequency words are more profoundly affected
by sound change than low frequency words. Bybee (2002) called attention to
language-internal factors of change that are frequency-sensitive. She argued
that changes affecting high frequency words first would be a consequence of
the overlap and reduction of articulatory gestures that comes with fluency. In
contrast, low frequency words would be more likely to undergo analogical lev-
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eling or regularization.

Our method does not allow us to distinguish between processes of articu-
latory simplification and processes of leveling or regularization. Moreover, our
method evaluates the joint effect of many different sound changes for the geo-
graphical landscape. Our results indicate that, in general, high frequency words
are most different from the standard. However, high frequency words can differ
from the standard for very different reasons. For instance, they may represent
older forms that have resisted changes that affected the standard. Alternatively,
they may have undergone region-specific articulatory simplification. Further-
more, since higher-frequency forms are better entrenched in memory (Hasher
and Zacks, 1984; Baayen, 2007), they may be less susceptible to change. As a
consequence, changes towards the standard in high frequency words may be
more salient, and more likely to negatively affect a speaker’s in-group status
as a member of a dialect community. Whatever the precise causes underlying
their resistance to accommodation to the standard may be, our data do show
that the net outcome of the different forces involved in sound change is one in
which it is the high frequency words that are most different from the standard
language.

The third lexical factor that reached significance was the contrast between
nouns as opposed to verbs and adjectives. Nouns have a greater distance from
the standard language than verbs and adjectives. (Further analyses revealed
that the effects of verbs and adjectives did not differ significantly.) This finding
harmonizes well with the results of Pagel et al. (2007), where they also observed
that nouns were most resistant to change, followed by verbs and adjectives.

Similar to word frequency, we also observe a non-uniform effect of the
contrast between nouns as opposed to verbs and adjectives across locations,
indicated by the presence of the by-location random slopes for the word cate-
gory contrast in our model (see Table 6.2). The parameters for these random
slopes (i.e. the standard deviation, and the parameter measuring the correlation
with the random intercepts) jointly increase the log-likelihood of the model by
1064 units, compared to 5.6 log-likelihood units for the fixed-effect (popula-
tion) slope of this contrast. These by-location random slopes are not uniformly
distributed across the geographical area, as shown by the upper right panel of
Figure 6.6. This panel clearly shows that the word category in the northeast
of the Netherlands does not influence the distance from the standard language
(i.e. the slope is zero), while in Friesland nouns have a much higher distance
from the standard than verbs or adjectives.

To clarify how geography (GAM distance) and the word category contrast
jointly predict distance from the standard language, we first calculated the fit-
ted GAM distance for each location. We then estimated the predicted distance
from the standard language using GAM distance, a fixed (median) word fre-
quency, and the word category contrast as predictors, weighted by the coeffi-
cients estimated by our mixed-effects regression model. Because the fitted sur-
faces are different for nouns as opposed to verbs and adjectives, we visualized
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Figure 6.6. Geography, word category and distance from standard Dutch. Upper left:
distance predicted only from longitude and latitude. Upper right: the geo-
graphical distribution of random slopes for the contrast between nouns as
opposed to verbs and adjectives. Bottom panels: the combined effect of ge-
ography and word category on pronunciation distance for verbs/adjectives
(panel V) and nouns (panel N). Darker shades of gray denote smaller values,
lighter shades of gray indicate larger values.
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are more pronounced for nouns than for verbs.

As the pattern of variation at the periphery of the Netherlands is quite sim-
ilar to the pattern reported for high frequency words (i.e. the peripheral areas
are quite distinct from the standard), we will not repeat its discussion here. The
similarity between high frequency words and nouns (as opposed to verbs and
adjectives) is also indicated by the correlation parameter of 0.550 in Table 6.2.

6.5 Discussion

In this chapter we have illustrated that several factors play a significant role in
determining dialect distances from the standard Dutch language. Besides the
importance of geography, we found clear support for three word-related vari-
ables (i.e. the contrast between nouns as opposed to verbs and adjectives, word
frequency, and the vowel-to-consonant ratio in the standard Dutch pronuncia-
tion), as well as two variables relating to the social environment (i.e. the number
of inhabitants in alocation, and the average age of the inhabitants in a location).
These results clearly indicate the need for variationists to consider explanatory
quantitative models which incorporate geographical, social and word-related
variables as independent variables.

We did not find support for the importance of speaker-related variables
such as gender and age. As we only had a single pronunciation per location,
we cannot exclude the possibility that these speaker-related variables do play
an important role (especially considering the results of Chapters 7 and 8, where
speaker age is found to be significant). It would be very informative to inves-
tigate dialect change in a dataset containing pronunciations of both young and
old speakers in the same location, using the apparent time construct (Bailey
et al,, 1991). In addition, being able to compare male and female speakers in a
single location would give us more insight into the effect of gender.

It is important to note that the contribution of the random-effects structure
to the goodness of fit of the model tends to be one or two orders of magnitude
larger than the contributions of the fixed-effect predictors, with GAM distance
(geography) as sole exception. This indicates that the variation across locations
and across words is huge compared to the magnitude of the effects of the socio-
demographic and lexical predictors.

Our model also provides some insight into lexical diffusion. While we did
not focus on individual sound changes, it is clear that the resistance to change at
the word level is influenced by several word-related factors, as well as a number
of socio-demographic factors of which the precise effect varies per word. Con-
sequently, it is sensible to presume that a sound in one word will change more
quickly than the same sound in another word (i.e. constituting a lexically grad-
ual change). However, to make more precise statements about lexical diffusion
as opposed to the lexically abrupt sound changes posited in the Neogrammar-
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ian hypothesis (e.g., see Labov, 1981 for a discussion of both views), it is neces-
sary to look at the level of the individual sound correspondences.

It would, therefore, be rewarding to develop a model to predict if an in-
dividual sound in a dialectal pronunciation is equal to or different from the
corresponding sound in the standard Dutch pronunciation. As the Leven-
shtein distance is based on the alignments of sounds, these sound correspon-
dences are already available (see Chapters 2 and 3). Using a logistic mixed-
effects regression model would enable us to determine which factors predict the
(dis)similarity of individual sounds with respect to the corresponding sounds
in the standard Dutch pronunciations. Of course, this would also increase the
computational effort, but since on average every word consists of about four to
five sounds, this potential study should remain tractable (at least, when focus-
ing on a subset of the data).

In the present study, we connected a larger distance from standard Dutch
with a greater resistance to change (i.e. standardization). While this might be
true, it is also possible that words do not only change in the direction of the
standard language. Ideally this should be investigated using pronunciations of
identical words at different moments in time. For example, by comparing our
data to the overlapping older pronunciations in the Reeks Nederlandse Dialect-
atlassen (Blancquaert and Pée, 1925-1982).

Instead of using standard Dutch as our reference point, we could also use
proto-Germanic, following the approach of Heeringa and Joseph (2007). It
would be rewarding to see if smaller distances from the proto-language corre-
spond to larger distances from the standard language. Alternatively, we might
study the dialectal landscape from another perspective, by selecting a dialectal
variety as our reference point. For example, dialect distances could be calcu-
lated with respect to a specific Frisian dialect.

In summary, our quantitative sociolinguistic analysis has found support for
lexical diffusion in Dutch dialects and has clearly illustrated that convergence
towards standard Dutch is most likely in low-frequent words. Furthermore,
we have shown that mixed-effects regression modeling in combination with a
generalized additive model representing geography is highly suitable for inves-
tigating dialect distances and its (sociolinguistic) determinants.

To demonstrate the wide applicability of this approach, which combines the
merits of both dialectometry and dialectology (see Chapter 1), we will also apply
an improved version of this method to a Catalan dialect dataset in Chapter 7
and a Tuscan dialect dataset in Chapter 8.
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CHAPTER 7

CATALAN LANGUAGE POLICIES
AND STANDARDIZATION

Abstract. In this chapter we investigate which factors are involved
in determining the pronunciation distance of Catalan dialectal pronun-
ciations from standard Catalan. We use pronunciations of 320 speakers
of varying age in 40 places located in three regions where the Catalan
language is spoken (the autonomous communities Catalonia and Aragon
in Spain, and the state of Andorra). In contrast to Aragon, Catalan has
official status in both Catalonia and Andorra, which is likely to have a dif-
ferent effect on the standardization of dialects in these regions. We fitted
a generalized additive mixed-effects regression model to the pronunci-
ation distances of 357 words from standard Catalan. In the model, we
found clear support for the importance of geography (with higher dis-
tances from standard Catalan in Aragon as opposed to Catalonia and
Andorra) and several word-related factors. In addition, we observed a
clear distinction between Aragon and the other two regions with respect
to speaker age. Speakers in Catalonia and Andorra showed a clear stan-
dardization pattern, with younger speakers having dialectal pronuncia-
tions closer to the standard than older speakers, while this effect was not
present in Aragon. These results clearly show the important effect of lan-
guage policies on standardization patterns and border effects in dialects
of a single language. In addition, this chapter provides further support for
the usefulness of generalized additive modeling in analyzing dialect data."

Lg4LdVHD

7.1 Introduction

additive mixed-effects regression model in order to identify sociolinguis-

tic and word-related factors which play an important role in predicting the
distance between dialectal pronunciations and the Catalan standard language.
Using this approach also allows us to investigate border effects caused by differ-
ent policies with respect to the Catalan language quantitatively. We use Cata-
lan dialect pronunciations of 320 speakers of varying age in 40 places located
in three regions where the Catalan language is spoken (i.e. the autonomous
communities Catalonia and Aragon in Spain, and the state of Andorra). As

IN this chapter we investigate a Catalan dialect dataset using a generalized

'This chapter is based on Wieling, Valls, Baayen and Nerbonne (submitted-b).
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the Catalan language has official status in Andorra (as the only language) and
Catalonia (where both Catalan and Spanish are the official languages; Woolard
and Gahng, 2008), but not in Aragon (Huguet et al., 2000), we will contrast
these two regions in our analysis.

7.1.1 Border effects

Border effects in European dialectology have been studied intensively (see
Woolhiser, 2005 for an overview). In most of these studies, border effects have
been identified on the basis of a qualitative analysis of a sample of linguistic
features. In contrast, Goebl (2000) used a dialectometric approach and calcu-
lated aggregate dialect distances based on a large number of features to show the
presence of a clear border effect at the Italian-French and Swiss-Italian borders,
but only a minimal effect at the French-Swiss border. This approach is arguably
less subjective than the traditional approach in dialectology (see Chapter 1), as
many features are taken into account simultaneously and the measurements are
very explicit. However, Woolhiser (2005) is very critical of this study, as Goebl
does not discuss the features he used and also does not consider the sociolin-
guistic dynamics, as well as the ongoing dialect change (i.e. he uses dialect atlas
data).

Several researchers have offered hypotheses about the presence and evolu-
tion of border effects in Catalan. For example, Pradilla (2008a, 2008b) indi-
cated that the border effect between Catalonia and Valencia might increase, as
both regions recognize a different variety of Catalan as the standard language
(i.e. the unitary Catalan standard in Catalonia and the Valencian Catalan sub-
standard in Valencia). In a similar vein, Bibiloni (2002, p. 5) discussed the in-
crease of the border effect between Catalan dialects spoken on either side of the
Spanish-French border in the Pyrenees during the last three centuries. More
recently, Valls et al. (accepted) conducted a dialectometric analysis of Catalan
dialects and found on the basis of aggregate dialect distances (i.e. average dis-
tances based on hundreds of words) a clear border effect contrasting Aragon
with Catalonia and Andorra. Their dialectometric approach is an improvement
over Goebl’s (2000) study, as Valls et al. (accepted) measure dialect change by
including pronunciations for four different age groups (i.e. using the apparent-
time construct; Bailey, 1991) and also investigate the effect of community size.
Unfortunately, however, their study did not investigate other sociolinguistic
variables.

7..2  Regression models to study pronunciation variation

In this chapter we use the same Catalan dialect dataset as studied by Valls et
al. (accepted). We measure the pronunciation distances of a large number of
words (following dialectometry; see Chapter 1), and we will use a generalized
additive mixed-effects regression model to predict these distances per word for
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all individual speakers (eight per location) on the basis of geography, word-
related features and several sociolinguistic determinants.

In our regression analysis we will contrast the area where Catalan is an offi-
cial language (Catalonia and Andorra) with the area where this is not the case
(Aragon). Based on the results of Valls et al. (accepted), we expect to observe
larger pronunciation distances from standard Catalan in Aragon than in the
other two regions. Furthermore, we expect that the regions will differ with re-
spect to the importance of the sociolinguistic factors. Mainly, we expect to see
a clear effect of speaker age (i.e. with younger speakers having pronunciations
closer to standard Catalan) in the area where Catalan has official status, while
we do not expect this for Aragon, as there is no official Catalan language policy
which might ‘attract’ the dialect pronunciations to the standard.

In contrast to the exploratory visualization-based analysis of Valls et al. (ac-
cepted), the regression analysis allows us to assess the significance of these dif-
ferences. For example, while Valls et al. (accepted) state that urban communi-
ties have pronunciations more similar to standard Catalan than rural commu-
nities, this pattern might not be significant.

7.2 Material

7.2.1 Pronunciation data

The Catalan dialect dataset contains phonetic transcriptions (using the Interna-
tional Phonetic Alphabet) of 357 words in 40 dialectal varieties and the Catalan
standard language. The same lexical form was always used for a single word
(i.e. the dataset did not contain lexical variation). The locations are spread out
over the state of Andorra (two locations) and two autonomous communities
in Spain (Catalonia with thirty locations and Aragon with eight locations). In
all locations, Catalan has traditionally been the dominant language. Figure 7.1
shows the geographical distribution of these locations. The locations were se-
lected from twenty counties, and for each county the (urban) capital as well
as a rural village was chosen as a data collection site. In every location eight
speakers were interviewed, two per age group (F1: born between 1991 and 1996;
F2: born between 1974 and 1982; F3: born between 1946 and 1960; F4: born
between 1917 and 1930). All data was transcribed by a single transcriber, who
also did the fieldwork for the youngest (F1) age-group between 2008 and 2011.
The fieldwork for the other age groups was conducted by another fieldworker
between 1995 and 1996. The complete dataset contains 357 words, consisting of
16 articles, 81 clitic pronouns, 8 demonstrative pronouns, 2 neuter pronouns,
2 locative adverbs, 220 verbs (inflected forms of five verbs), 20 possessive pro-
nouns and 8 personal pronouns. The original dataset consisted of 363 words,
but six words were excluded as they did not have a pronunciation in the stan-
dard Catalan language. A more detailed description of the dataset is given by
Valls et al. (accepted).
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Andorra

Figure 7.1. Geographical distribution of the Catalan varieties. Two locations are found
in Andorra, eight in Aragon and the remaining thirty locations are found in
Catalonia.

Given the significant effect of word frequency in the previous chapter, we
also investigated if we could obtain Catalan word frequencies. While we were
able to find a dictionary with frequency information (Rafel, 1996-1998), it
did not contain contextual information which was necessary to assess the fre-
quency of clitics and articles (representing almost one third of our data). Con-
sequently, we did not include word frequency information.

7.2.2  Sociolinguistic data

Besides the information about the speakers present in the corpus (i.e. gender,
age, and education level of the speaker), we extracted additional demographic
information about each of the 40 locations from the governmental statistics in-
stitutes of Catalonia (Institut d’Estadistica de Catalunya, 2008, 2010), Aragon
(Instituto Aragonés de Estadistica, 2007, 2009, 2010) and Andorra (Departa-
ment d’Estadistica del Govern d’Andorra, 2010). The information we extracted
for each location was the number of inhabitants (i.e. community size), the aver-
age community age, the average community income, and the relative number
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of tourist beds (i.e. per inhabitant; used as a proxy to measure the influence of
tourism) in the most recent year available (ranging between 2007 and 2010).
There was no location-specific income information available for Andorra, so
for these two locations we used the average income of the country (Cambra de
Comerc - Industria i Serveis dAndorra, 2008).

As the data for the older speakers (age groups F2, F3 and F4) was collected
in 1995, the large time span between the recordings and measurement of demo-
graphic variables might be problematic. We therefore obtained information on
the community size, average community age, and average community income
for most locations in 2000 (which was the oldest data available online). Based
on the high correlations between the data from the year 2000 and the most
recent data (in all cases: r > 0.9, p < 0.001), we decided to use the most re-
cent demographic information. No less recent information about the number
of tourist beds was available for Catalonia and Aragon, but we do not have rea-
son to believe that this correlation strength should be lower than for the other
variables.

-3 Methods

7.3.1 Obtaining pronunciation distances

For every speaker, the pronunciation distance between standard Catalan and
the dialectal word pronunciations was calculated by using the PMI-based Lev-
enshtein algorithm (diagonal-exclusive version) as explained in Section 2.3.3.
In line with the previous chapter, we incorporated some additional linguistic
information in the initialization step of the PMI-based Levenshtein algorithm
by allowing the alignment of semivowels (i.e. [j] and [w]) with both vowels and
consonants. We normalized the PMI-based word pronunciation distances by
dividing them by the alignment length.

7.3.2 Generalized additive mixed-effects regression modeling

Similar to Chapter 6, we use a thin plate regression spline combining longitude
and latitude in a generalized additive model (GAM; see Section 6.3.2) to repre-
sent geography. However, in contrast to creating a separate linear mixed-effects
regression model and including the fitted values of the GAM as a predictor, we
include all other factors and covariates, as well as the random-effects structure
(see Section 6.3.3 for an explanation) in the generalized additive model. This
methodological advancement was possible due to improvements in the soft-
ware package we used (i.e. the mgcv package in R; Wood, 2006).

In this study, we identify three random-effect factors, namely word, speaker
and location. The significance of the associated random slopes and intercepts in
the model was assessed by the Wald test. Besides the smooth combining longi-
tude and latitude representing geography, we considered several other predic-
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tors. Based on our initial analysis which showed that articles, clitic pronouns
and demonstrative pronouns had a significantly larger distance from the corre-
sponding standard Catalan pronunciations than the other word categories, we
included a factor to distinguish these two groups. Other lexical variables we in-
cluded were the length of the word (i.e. the number of sounds in the standard
Catalan pronunciation), and the relative frequency of vowels in the standard
Catalan pronunciation of each word. In addition, we included several location-
specific variables: community size, the average community age, the average
community income, and the relative number of tourist beds (as a proxy for the
amount of tourism). The speaker-related variables we took into account were
the year of birth, the gender, and the education level of the speaker. Finally, we
used a factor to distinguish speakers from Catalonia and Andorra as opposed
to Aragon.

As already remarked in Section 6.3.3, collinearity of predictors is a general
problem in large-scale regression studies. In our dataset, communities with a
larger population tend to have a higher average income and lower average age
and also show a specific geographical distribution, somewhat similar to Fig-
ure 7.2 (e.g., the largest communities appear mainly in the east). To be able
to assess the pure effect of each predictor, we took out the effect of other cor-
related variables, by instead using as predictor the residuals of a linear model
regressing that predictor on the correlated variables (i.e. one way only, so we
took out the effect of community size from average income, but not the other
way around). In this context, geography was represented by the fitted values
of a GAM predicting the pronunciation distance from standard Catalan only
based on longitude and latitude. As the new predictors all correlated positively
with the original predictors, they can still be interpreted in the same way as the
original predictors.

Following Chapter 6, a few numerical predictors (i.e. community size and
the relative number of tourist beds) were log-transformed in order to reduce the
potentially harmful effect of outliers. To facilitate the interpretation of the fitted
parameters of our model, we scaled all numerical predictors by subtracting the
mean and dividing by the standard deviation. In addition, we log-transformed
and centered our dependent variable (i.e. the pronunciation distance per word
from standard Catalan, averaged by alignment length). Consequently, the value
zero represents the mean distance, negative values a smaller distance, and pos-
itive values a larger distance from the standard Catalan pronunciation. The
significance of each fixed-effect factor and covariate was evaluated by means of
the Wald test (reporting an F-value).

7.4 Results

For the purpose of another study, a multiple alignment of the sound segments
in every pronunciation was made. This multiple alignment did not reveal any
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transcription errors and therefore signifies the high quality of the dataset. For
this reason, we did not remove pronunciations with a large distance from stan-
dard Catalan, as these are genuine distances instead of noise. As not all words
are pronounced by every speaker, the total number of cases (i.e. word-speaker
combinations) is 112,608.

We fitted a generalized additive mixed-effects regression model, step by
step removing predictors that did not contribute significantly to the model. We
will discuss the specification of the model including all significant predictors
(shown in Table 7.1) and verified random effects (shown in Table 7.2). The model
explained 75% of the variation in pronunciation distances from standard Cata-
lan. This indicates that the model is highly capable of predicting the individual
distances (for specific speaker and word combinations), providing support for
our approach of integrating geographical, social and lexical variables. The main
contributor (63%) for this good fit was the variability associated with the words
(i.e. the random intercepts for word). Without the random-effects structure,
the fixed-effect factors and covariates explained 20% of the variation. To com-
pare the relative influence of each of these (fixed-effect) predictors, we included
a measure of effect size by specifying the increase or decrease of the depen-
dent variable when the predictor increased from its minimum to its maximum
value (following Chapter 6). The effect size of the geographical smooth was
calculated by subtracting the minimum from the maximum fitted value (see
Figure 7.2). Similar to the results of Chapter 6, we observe that geography and
the word-related predictors have the greatest influence on the pronunciation
distance from the standard language.

As our initial analysis (investigating the random intercepts for word, loca-
tion and speaker) revealed that the inclusion of a random intercept for location
was not warranted given its limited improvement in goodness of fit, location is
not included as a random-effect factor.

7.4.1  Geography

Figure 7.2 shows the resulting regression surface (represented by the final line of
Table 7.1) for the complete area under study using a contour plot. The thin plate
regression spline was highly significant as the invested 23.9 estimated degrees
of freedom were supported by an F-value of 24.9 (p < 0.001). The (solid)
contour lines represent aggregate distance isoglosses connecting areas which
have a similar distance from standard Catalan. Darker shades of gray indicate
smaller distances, lighter shades of gray represent greater distances from the
standard Catalan language. We can clearly identify the separation between the
dialects spoken in the east of Catalonia compared to the Aragonese varieties in
the west. The local cohesion in Figure 7.2 is sensible, as people living in nearby
communities tend to speak relatively similar (Nerbonne and Kleiweg, 2007).
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Estimate Std. err. p-value Effect size
Intercept -0.1018  0.0209 < 0.001
Word length 0.1302  0.0218 < 0.001 0.4411
Vowel ratio per word 0.1050 0.0137 < 0.001 0.6491
Word category is A/D/C 0.3051  0.0478 < 0.001 0.3052
Community size (log) -0.0074  0.0038 0.051 -0.0282
Speaker year of birth -0.0114 0.0031 < 0.001 -0.0342
Location in Aragon 0.0470  0.0372 0.206 0.0470
Loc. in Aragon x Sp. yr. of birth 0.0168  0.0063 0.008 0.0490
s(longitude,latitude) [23.9 edf] < 0.001 0.2716

Table 7.1. Fixed-effect factors and covariates of the final model. Effect size indicates
the increase or decrease of the dependent variable when the predictor value
increases from its minimum to its maximum value (i.e. the complete range).
Community size was included as it neared significance. The factor distin-
guishing locations in Aragon from those in Catalonia and Andorra was in-
cluded as the interaction with year of birth was significant. The geographical
smooth (see Figure 7.2; 23.9 estimated degrees of freedom) is represented by
the final row. Its effect size equals the minimum value subtracted from the

maximum value of the fitted smooth.

Factor Random effect Std. dev.  p-value
Word Intercept 0.2547 < 0.001
Relative nr. of tourist beds 0.0216 < 0.001
Average community age 0.0138 < 0.001
Community size (log) 0.0150 < 0.001
Average community income 0.0140 < 0.001
Speaker year of birth 0.0259 < 0.001
Speaker education level 0.0137 < 0.001
Location in Aragon 0.1559 < 0.001
Location in Aragon x Speaker yr. of birth 0.0245 < 0.001
Speaker  Intercept 0.0369 < 0.001
Word length 0.0291 < 0.001
Vowel ratio per word 0.0168 < 0.001
Word category is A/D/C 0.0590 < 0.001
Residual 0.1725 < 0.001

Table 7.2. Significant random-effect parameters of the final model. The standard devia-
tion indicates the amount of variation for every random intercept and slope.

118



42.5

42.0

Latitude

41.5

41.0

0.2 0.6 1.0 1.4
Longitude

Figure 7.2. Contour plot for the regression surface of pronunciation distance (from
standard Catalan) as a function of longitude and latitude obtained with a
generalized additive model using a thin plate regression spline. The (black)
contour lines represent aggregate distance isoglosses, darker shades of gray
(lower values, negative in the east) indicate smaller distances from the stan-
dard Catalan language, while lighter shades of gray (higher values) represent
greater distances.

7.4.2 Demographic predictors

Of all location-based predictors (i.e. the relative number of tourist beds, com-
munity size, average community income, and average community age), only
community size was close to significance (p = 0.051) as a main effect in our
general model (see Table 7.1). All location-based predictors, however, showed
significant word-related variation. For example, while there is no main effect
of average community income, the pronunciation of individual words might
be influenced (positively or negatively) by community income.

It might seem strange that the factor distinguishing the locations in Aragon
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from those in Catalonia and Andorra was not significant, but the smooth func-
tion representing geography (see Figure 7.2) already shows that the Aragonese
varieties have a higher distance from standard Catalan than the other varieties.
Note that the contour lines in Figure 7.2 all run roughly north-south, and the
distances increase monotonically as one looks further west. In fact, when we
exclude the smooth function the factor is highly significant (p < o0.001) and
assigns higher distances from standard Catalan to the Aragonese varieties.

With respect to the speaker-related predictors, only year of birth was a sig-
nificant predictor indicating that younger speakers use pronunciations which
are more similar to standard Catalan than older speakers. However, the signif-
icant interaction (i.e. Location in Aragon x Speaker year of birth) in Table 7.1
indicates that this pattern does not hold for speakers from Aragon. In line with
our hypothesis, there is no effect of speaker age for the Aragonese speakers.
This result suggests the existence of a border effect between Aragon on the one
hand, and Catalonia and Andorra on the other.

We did not find an effect of gender (in both the fixed-effects and the
random-effects structure), despite this being reported in the literature fre-
quently (see Cheshire, 2002 for an overview). However, in the previous chapter,
we also did not find a gender effect with respect to the pronunciation distance
from the standard language. It might be that this phenomenon is more strongly
linked to individual sounds (e.g., see Chambers and Trudgill, 1998, Section 5.3)
than to pronunciation distances between complete words.

We also did not find support for the inclusion of education level as a co-
variate in our model. The reason for this might be similar to the reason for the
absence of a gender effect, but the education measure alone (without any other
social class measures) might simply have too little power to discover social class
effects (Labov, 2001, Ch. 5; but see Gorman, 2010 for a new analysis of Labov’s
data suggesting that education does have sufficient power).

Interestingly, we do see that the effect of (some of) these speaker-related
variables varies significantly per word (see Table 7.2).

7.4.3 Lexical predictors

All lexical variables we tested were significant predictors of the pronunciation
distance from standard Catalan and also showed significant by-speaker ran-
dom slopes.

It is not surprising that the factor distinguishing articles, clitic pronouns
and demonstratives from the other words was highly significant, since we
grouped these word categories on the basis of their higher distance from the
standard language (according to our initial analysis). Articles and clitic pro-
nouns are relatively short (in many cases only having a length of one or two
sounds), and when they are different from the standard, the relative distance
will be very high. While the demonstratives are not so short, they tend to be ei-
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ther completely identical to the standard pronunciation, or almost completely
different, explaining their larger distance.

We were somewhat surprised that the number of sounds in the reference
pronunciation contributed significantly to the distance from the standard, as we
normalized dialect distances by dividing them by the alignment length (which
correlates highly, r > 0.95, with the number of sounds in the reference pronun-
ciation). This result indicates that longer words have a higher average distance
from the standard pronunciation than shorter words. While we do not have
a clear explanation for this, including this predictor in our model allows us to
more reliably assess the effect of the more interesting (sociolinguistic) predic-
tors.

Finally, the proportion of vowels in the reference pronunciation was a
highly significant predictor (having the largest effect size). This is not surpris-
ing (and similar to the result reported in Chapter 6) as vowels are much more
variable than consonants (e.g., Keating et al., 1994).

Besides playing a significant role as fixed-effect factors, all lexical predictors
showed significant variation across speakers in their effect on the pronuncia-
tion distance from standard Catalan. For example, while some speakers might
pronounce longer words more different from standard Catalan than shorter
words, other speakers might show the opposite pattern.

7.5 Discussion

In this chapter we have used a generalized additive mixed-effects regression
model to provide support for the existence of a border effect between Aragon
(where the Catalan language has no official status) and Catalonia and Andorra
(where Catalan is an official language). Our analysis clearly revealed a greater
distance from standard Catalan for speakers in Aragon, as opposed to those in
Catalonia and Andorra. Furthermore, our analysis identified a significant effect
of speaker age (with younger speakers having pronunciations closer to standard
Catalan) for Catalonia and Andorra, but not for Aragon. This provides strong
evidence for the existence of a border effect in these regions caused by different
language policies, and is in line with the results of Valls et al. (accepted). Also,
our analysis revealed the importance of several word-related factors in predict-
ing the pronunciation distance from standard Catalan, and confirms the utility
of using generalized additive mixed-effects regression modeling to analyze di-
alect distances, with respect to traditional dialectometric analyses.

In contrast to the conclusion of Valls et al. (accepted) that the older speak-
ers in urban communities use pronunciations closer to standard Catalan than
the older speakers in rural communities, we did not find a clear significant ef-
fect of community size (nor a significant interaction between speaker age and
community size). In fact, when using the binary distinction they based their
conclusion on (i.e. distinguishing urban and rural communities in twenty dif-
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ferent counties), the results do not even approach significance (p = 0.18). This
clearly illustrates the need for adequate statistical tests to prevent reaching sta-
tistically unsupported conclusions.

We did not find support for the general influence of the other demographic
variables. This contrasts with Chapter 6 where we found a significant ef-
fect of community size (larger communities use pronunciations closer to the
standard) and average community age (older communities use pronunciations
closer to the standard language). However, the number of locations studied
here was only small and might have limited our power to detect these effects
(i.e. in the previous chapter more than ten times as many locations were in-
cluded).

We see two promising extensions of this study. First, it would be interesting
to compare the dialectal pronunciations to the Spanish standard language in-
stead of the Catalan standard language. In our dataset there are clear examples
of the usage of a dialectal form closer to the standard Spanish pronunciation
than to the standard Catalan pronunciation, and it would be rewarding to in-
vestigate which word- and speaker-related factors are related to this.

As already suggested in Chapter 6, another extension involves focusing on
the individual sound correspondences between Catalan dialect pronunciations
and pronunciations in standard Catalan (or in another language, such as Vulgar
Latin for a more historically motivated reference point). These sound corre-
spondences can easily be extracted from the alignments generated by the Lev-
enshtein distance algorithm (see Section 2.3.3). When focusing on a specific set
of locations (e.g., the Aragonese varieties), it would be computationally feasi-
ble to create a generalized additive mixed-effects regression model to investi-
gate which factors determine when a sound in a certain dialectal pronunciation
is different from the corresponding sound in the standard Catalan (or Vulgar
Latin) pronunciation. Of course, this approach is also possible for all locations,
but due to the larger size of the dataset, much more patience will be required
before all parameters are successfully estimated.

In conclusion, this chapter has improved the methodology introduced in
Chapter 6 by constructing a single generalized additive mixed-effects regres-
sion model instead of combining two separate models. We also illustrated the
wide applicability of this approach by investigating the influence of various so-
cial and linguistic factors on language variation, thereby providing support for
the existence of a border effect (caused by different language policies) in the
Catalan-speaking area investigated in this study. In the next chapter, we will
investigate the applicability of the method with respect to lexical variation.
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CHAPTER 8

DETERMINANTS OF TUSCAN
LEXICAL VARIATION

Abstract. In this chapter we use a generalized additive mixed-effects
regression model to predict lexical differences for 170 concepts in 213 Tus-
can dialects with respect to standard Italian. In our model, geographical
position was found to be an important predictor, with locations more dis-
tant from Florence having lexical forms more likely to differ from stan-
dard Italian. In addition, the geographical pattern varied significantly for
low versus high frequency concepts and old versus young speakers. Sev-
eral other factors emerged as significant. The model predicts that lexi-
cal variants used by older speakers and in smaller communities are more
likely to differ from standard Italian. The impact of community size, how-
ever, varied from concept to concept. For a majority of concepts, lexical
variants used in smaller communities are more likely to differ from the
standard Italian form. For a smaller minority of concepts, however, lex-
ical variants used in larger communities are more likely to differ from
standard Italian. Similarly, the effect of average community income and
average community age varied per concept. These results clearly iden-
tify important factors involved in dialect variation at the lexical level in
Tuscany. In addition, this chapter illustrates the potential of generalized
additive mixed-effects regression modeling applied to lexical dialect data."

8.1 Introduction

alized additive mixed-effects regression model (as introduced in Chapter 7)

in order to identify sociolinguistic and concept-related factors which play
an important role in predicting lexical differences with respect to standard Ital-
ian.

IN this chapter we investigate a Tuscan lexical dialect dataset using a gener-

8.1.1 Relationship between Tuscan and standard Italian

Standard Italian is unique among modern European standard languages. Al-
though Italian originated in the fourteenth century, it was not consolidated as
a spoken national language until the twentieth century. For centuries, Italian

!'This chapter is based on Wieling, Montemagni, Nerbonne and Baayen (submitted-a).
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was a written literary language, acquired through literacy when one learned to
read and write, and was therefore only known to a minority of (literate) people.
During this period, people spoke only their local dialect. A good account of the
rise of standard Italian is provided by Migliorini and Griffith (1984). The par-
ticular nature of Italian as a literary language, rather than a spoken language
was recognized since its origin and widely debated from different (i.e. socio-
economic, political and cultural) perspectives as the questione della lingua or
‘language question’

At the time of the Italian political unification in 1860 only a very small
percentage of the population was able to speak Italian, with estimates ranging
from 2.5% (De Mauro, 1963) to 10% (Castellani, 1982). Only during the second
half of the twentieth century real native speakers of Italian started to appear,
as Italian started to be used by Italians as a spoken language in everyday life.
Mass media (newspapers, radio and TV) and education played a central role
in the diffusion of the Italian language throughout the country. According to
the most recent statistics of ISTAT (Istituto Nazionale di Statistica) reported by
Lepschy (2002), 98% of the Italian population is able to use their national lan-
guage. However, dialects and standard Italian appear to coexist. For example,
ISTAT data show that at the end of the twentieth century (1996) 50% of the pop-
ulation used (mainly or exclusively) Italian to communicate with friends and
colleagues, while this percentage decreased to 34% when communication with
relatives was taken into account.

To see the reason for the coexistence of standard Italian and local dialects,
the origin of the standard language has to be taken into account. Italian has
its roots in one of the speech varieties that emerged from spoken Vulgar Latin
(Maiden and Parry, 1997), namely that of Tuscany, and more precisely the va-
riety of Tuscan spoken in Florence. The importance of the Florentine variety
in Italy was mainly determined by the prestige of the Florentine culture, and
in particular the establishment of Dante, Petrarch and Boccaccio, who wrote
in Florentine, as the ‘three crowns’ (tre corone) of the Italian literature. Conse-
quently, Italian dialects do not represent varieties of the Italian language, but
they are simply ‘sisters’ of the Italian language (Maiden, 1995).

In contrast to other Italian regions where a sort of ‘sisterhood’ relationship
holds between the standard language and local dialects, in Tuscany this rela-
tionship is complicated by the fact that standard Italian originated from the
Florentine dialect centuries ago. This also causes the frequent overlap between
dialectal and standard Italian forms in Tuscany, which occurs much less fre-
quently in other Italian regions (Giacomelli, 1978). However, since the Floren-
tine dialect has developed (for several centuries) along its own lines and in-
dependently of the (literary) standard Italian language, its vocabulary does not
always coincide with standard Italian. Following Giacomelli (1975), the types of
mismatch between standard Italian and the dialectal forms can be partitioned
into three groups. The first group consists of Tuscan words which are used in
literature throughout Italy, but are not part of the standard language (i.e. these
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terms usually appear in Italian dictionaries marked as “Tuscanisms’). The sec-
ond group consists of Tuscan words which were part of old Italian and are also
attested in the literature throughout Italy, but have fallen into disuse as they
are considered old-fashioned (i.e. these terms may appear in Italian dictionar-
ies marked as ‘archaisms’). The final group consists of Tuscan dialectal words
which have no literary tradition and are not understood outside of Tuscany.

This chapter investigates the relationship between standard Italian and the
Tuscan dialects from which it originated on the basis of the data collected
through fieldwork for a regional linguistic atlas, the Atlante Lessicale Toscano
(‘Lexical Atlas of Tuscany, henceforth, ALT; Giacomelli et al., 2000). The ALT
is a specially designed lexical atlas in which the dialectal data both have a di-
atopic (geographic) and diastratic (social) characterization. In particular, the
advanced regression techniques we apply make it possible to keep track of the
sociolinguistic and lexical factors at play in the complex relationship linking
the Tuscan dialects with standard Italian.

The ALT data appear to be particularly suitable to explore the questione
della lingua from the Tuscan point of view. As the compilation of the ALT
questionnaire was aimed at capturing the specificity of Tuscan dialects and
their relationships, concepts whose lexicalizations were identical to Italian (al-
most) everywhere in Tuscany were programmatically excluded (Giacomelli,
1978; Poggi Salani, 1978). This means that the ALT dataset was collected with
the main purpose of better understanding the complex relationship linking the
standard language and local dialects in the case the two did not coincide.

Previous studies have already explored the ALT dataset by investigating the
relationship between Tuscan and Italian from the lexical point of view. Gia-
comelli and Poggi Salani (1984) based their analysis on the dialect data avail-
able at that time. Montemagni (2008), more recently, applied dialectometric
techniques to the whole ALT dialectal corpus to investigate the relationship
between Tuscan and Italian. In both cases it turned out that the Tuscan dialects
overlap most closely with standard Italian in the area around Florence, expand-
ing in different directions and in particular towards the southwest. Obviously,
this observed synchronic pattern of lexical variation has the well-known di-
achronic explanation that the standard Italian language originated from the
Florentine variety of Tuscan.

Montemagni (2008) also found that the observed patterns varied depend-
ing on the speaker’s age: only 37 percent of the dialectal answers of the old
speakers overlapped with standard Italian, while this percentage increased to
44 for the young speakers. In addition, words having a larger geographical cov-
erage (i.e. not specific to a small region), were more likely to coincide with the
standard language than words attested in smaller areas. These first, basic results
illustrate the potential of the ALT dataset (which will be discussed in more de-
tail the following section) to shed light on the widely debated questione della
lingua from the point of view of Tuscan dialects.

125

8 Y4.LdVHO




8 YILdVHD

8.2 Material

8.2.1 Lexical data

The lexical data used in this chapter was taken from the Atlante Lessicale
Toscano (ALT; see also Section 3.2.1). ALT interviews were carried out between
1974 and 1986 in 224 localities of Tuscany, with 2193 informants selected with
respect to a number of parameters ranging from age and socio-economic status
to education and culture. It is interesting to note that only the younger ALT in-
formants were born in the period when standard Italian was used as a spoken
language. The interviews were conducted by a group of trained fieldworkers
who employed a questionnaire of 745 target items, designed to elicit variation
mainly in vocabulary and semantics.

In this chapter we focus on Tuscan dialects only, spoken in 213 out of the 224
investigated locations (see Figure 8.1; Gallo-Italian dialects spoken in Lunigiana
and in small areas of the Apennines were excluded). We used the normalized
lexical answers to a subset of the ALT onomasiological questions (i.e. those
looking for the attested lexicalizations of a given concept). Out of 460 ono-
masiological questions, we selected only those which prompted s0 or fewer
normalized lexical answers (the maximum in all onomasiological questions
was 421 unique lexical answers). We used this threshold to exclude questions
having many hapaxes as answers which did not appear to be lexical (a similar
approach was taken by Montemagni, 2007). For instance, the question look-
ing for denominations of ‘stupid’ included 372 different normalized answers,
122 of which are hapaxes. These either represent productive figurative usages
(e.g., metaphors such as cetriolo ‘cucumber’ and carciofo ‘artichoke’), produc-
tive derivational processes (e.g., scemaccio and scemalone from the lexical root
scemo ‘stupid’), or multi-word expressions (e.g., mezzo scemo ‘half stupid, puro
locco ‘pure stupid’ and similar). From the resulting 195-item subset, we excluded
a single adjective and twelve verbs (as the remaining concepts were nouns) and
all twelve multi-word concepts. Our final subset, therefore, consisted of 170
concepts (the complete list can be found in Wieling et al., submitted-a).

The normalized lexical forms in the ALT dataset still contained some mor-
phological variation. In order to assess the pure lexical variation we abstracted
away from variation originating in, e.g., assimilation, dissimilation, or other
phonological differences (e.g., the dialectal variants camomilla and capomilla,
meaning ‘chamomile, have been treated as instantiations of the same normal-
ized form), as well as from both inflectional and derivational morphological
variation (e.g., inflectional variants such as singular and plural are grouped to-
gether). We compare these more abstract forms to the Italian standard.

*The effect of the morphological variation was relatively limited, as the results using the unaltered
ALT normalized lexical forms were highly similar to the results based on the lexical forms where
morphological variation was filtered out.
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Figure 8.1. Geographical distribution of the 213 Tuscan locations investigated in this
chapter. The F, P and S mark the approximate locations of Florence, Pisa
and Sienna, respectively.

The list of standard Italian forms for the 170 concepts was extracted from the
online ALT corpus (ALT-Web; available at http://serverdbt.ilc.cnr.it/altweb),
where it had been created for query purposes. This list, originally compiled
on the basis of lexicographic evidence, was carefully reviewed by members of
the Accademia della Crusca, the leading institution in the field of research on
the Italian language in both Italy and the world, in order to make sure that it
contained real Italian, and not old-fashioned or literary words originating in
Tuscan dialects.

In every location multiple speakers were interviewed (between 4 and 29)
and therefore each normalized answer is anchored to a given location, but also
to a specific speaker. While we could have included all speakers separately (a to-
tal of 2081), we decided against this, as this would be computationally infeasible
(logistic regression is computationally quite slow). Consequently, we grouped
the speakers in an older age group (born in 1930 or earlier; 1930 was the median
year of birth) and a younger age group (born after 1930). For both age groups,
we used the lexical form pronounced by the majority of the speakers in the re-
spective group. As not all concepts were attested in every location, the total
number of cases (i.e. concept-speaker group combinations) was 69,259. Given
the significant effect of word frequency on Dutch dialect distances reported in
Chapter 6, we obtained the concept frequencies (of the standard Italian lexical
form) by extracting the corresponding frequencies from a large corpus of 8.4
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million Italian unigrams (Brants and Franz, 2009). While the frequencies of
other lexical forms are likely somewhat different, these frequencies should give
a good idea about the relative frequencies of different concepts.

As concrete concepts may be easier to remember (Wattenmaker and
Shoben, 1987) and stored differently in the brain than abstract concepts (Crutch
and Warrington, 2005), we also investigated if the concreteness of a concept
played a role in lexical differences with respect to standard Italian. We obtained
concreteness scores (for the English translations of the Italian concepts) from
the MRC Psycholinguistic Database (Coltheart, 1981). The concreteness scores
in this database ranged from 100 (abstract) to 700 (concrete). Our most ab-
stract concept (‘cheat’) had a score of 329, while our most concrete concepts
(e.g., ‘cucumber’ and ‘grasshopper’) had a score of about 660.

8.2.2 Sociolinguistic data

Besides the classification of the speaker group (old or young) and the year of
recording for every location, we extracted additional demographic information
about each of the 213 locations from a website with statistical information about
Italian municipalities (Comuni Italiani, 2011). We extracted the number of in-
habitants (in 1971 or 1981, whichever year was closer to the year when the inter-
views for that location were conducted), the average income (in 2005; which
was the oldest information available), and the average age (in 2007; again the
oldest information available) in every location. While the information about
the average income and average age was relatively recent and may not pre-
cisely reflect the situation at the time when the dataset was constructed (be-
tween 1974 and 1986), the global pattern will probably be similar (i.e. in line
with Section 7.2.2).

8.3 Methods

The method we employ is relatively similar to that of the previous chapter (ex-
plained in Section 7.3.2). Instead of predicting pronunciation distances, how-
ever, we will predict lexical differences (for 170 concepts in 213 Tuscan varieties,
for both old and young speakers) with respect to standard Italian. In addition,
there are some other methodological changes which are discussed in the fol-
lowing paragraphs.

8.3.1 Frequency-dependent geographical modeling

In this chapter we will take a more sophisticated approach to modeling geogra-
phy. Given that the effect of word frequency varied geographically in Chapter 6,
we allow the effect of geography to vary depending on concept frequency. Since
the generalized additive model can combine an arbitrary number of predic-
tors to represent a smoothing (hyper)surface, we created a three-dimensional

128



smooth (longitude x latitude x concept frequency), allowing us to assess the
concept frequency-specific geographical pattern of lexical variation with re-
spect to standard Italian. For example, similar to the Dutch results (shown in
Figure 6.5), the geographical pattern may differ for low as opposed to high fre-
quency concepts. Furthermore, we will investigate whether these patterns also
vary for old speakers as opposed to young speakers (i.e. we create two three-
dimensional smooths, one for old speakers and one for young speakers). We
represent these three-dimensional smooths by a tensor product which allows
combinations of non-isotropic predictors (i.e. measurements of the predictors
are not on the same scale: e.g., longitudinal degrees versus frequency; Wood,
2006, p. 162). In the tensor product, we model both longitude and latitude with
a thin plate regression spline as this is suitable for combining isotropic predic-
tors and also in line with the approach of Chapters 6 and 7, while the concept
frequency effect is modeled by a cubic regression spline, which is computa-
tionally more efficient than the thin plate regression spline. More information
about these tensor product bases (which are implemented in the mgcv package
for R) is provided by Wood (2006, Ch. 4).

8.3.2 Logistic regression modeling

In contrast to the previous two chapters, our dependent variable is binary (o:
the lexical form is identical to standard Italian; 1: the lexical form is different
from standard Italian) and this requires logistic regression.> Logistic regres-
sion does not model the dependent variable directly, but it attempts to model
the probability (in terms of logits) associated with the values of the dependent
variable. A logit is the natural logarithm of the odds of observing a certain value
(in our case, a lexical form different from standard Italian). When interpreting
the parameter estimates of our regression model, we should realize these need
to be interpreted with respect to the logit scale. More detailed information
about logistic regression is provided by Agresti (2007).

In our analysis, we include two random-effect factors, namely location and
concept. In line with the previous chapter, the significance of the associated
random slopes and intercepts in the model was assessed using the Wald test. In
addition to the (concept frequency and speaker age group-specific) geographi-
cal variation we considered several other predictors. The only lexical variables
we included were concept frequency (based on the frequency of the standard
Italian lexical form) and the concreteness rating of each concept. The demo-
graphic variables we investigated were community size, average community
age, average community income, and the year of recording. The only speaker-
related variable we took into account was the age group (old: born in 1930 or
earlier; young: born after 1930).

3In sociolinguistics, logistic regression is widely used and known as the VARBRUL analysis (Pao-
lillo, 2002).
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Similar to Chapters 6 and 7, our dataset contains some predictor collinear-
ity. In our dataset, communities with a higher average age tend to have a lower
average income. To be able to assess the pure effect of each predictor, we decor-
related average age from average income by using as predictor the residuals of a
linear model regressing average age on average income. Since the new predic-
tor correlated highly (r = 0.9) with the original average age values, we can still
interpret the new predictor as representative of average age (but now excluding
the effect of average income).

Following the previous two chapters, several numerical predictors were log-
transformed (i.e. community size, average age, average income, and concept
frequency) in order to reduce the potentially harmful effect of outliers. We
scaled all numerical predictors by subtracting the mean and dividing by the
standard deviation in order to facilitate the interpretation of the fitted param-
eters of the statistical model. The significance of fixed-effect factors and co-
variates was evaluated by means of the Wald test (reporting a z-value) for the
coeflicients in a logistic regression model.

8.4 Results

We fitted a generalized additive mixed-effects logistic regression model, step
by step removing predictors that did not contribute significantly to the model.
In the following we will discuss the specification of the final model including
all significant predictors and verified random-effect factors.

Our dependent value was binary with a value of one indicating that the
lexical form was different from the standard Italian form and a value of zero
indicating that the lexical form was identical to standard Italian. Intuitively it
is therefore easiest to view these values as a distance measure from standard
Italian. The coefficients and the associated statistics of the significant fixed-
effect factors and linear covariates are presented in Table 8.1. To allow a fair
comparison of the effect of both predictors, we included a measure of effect
size by specifying the increase or decrease of the likelihood of having a non-
standard Italian lexical form (in terms of logits) when the predictor increased
from its minimum to its maximum value (in line with Chapters 6 and 7).

Table 8.2 presents the significance of the three-dimensional smooth terms
(modeling the concept frequency-dependent geographical pattern for both the
old and young speaker group)* and Table 8.3 lists the significant random-effects
structure of our model.

To evaluate the goodness of fit of the final model (see Tables 8.1 to 8.3), we
used the index of concordance C. This index is also known as the receiver oper-
ating characteristic curve area ‘C’ (see, e.g., Harrell, 2001). Values of C exceed-

4We verified the necessity of including concept frequency and the contrast between old and young
speakers in the geographical smooth (all p’s < 0.001).
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Estimate Std. err. z-value p-value Eff. size

Intercept -0.4129 0.1395 -2.960  0.003
Old instead of yng. speakers  0.4407 0.0193 22.896 < 0.001 0.4407
Community size (log) -0.1154 0.0266 -4.343 < 0.001 -0.7152

Table 8.1. Significant parametric terms of the final model. A positive estimate indicates
that a higher value for this predictor increases the likelihood of having a non-
standard Italian lexical form, while a negative estimate indicates the opposite
effect. Effect size indicates the increase or decrease of the likelihood of having
a non-standard Italian lexical form when the predictor value increases from
its minimum to its maximum value (i.e. the complete range).

Est.d.of. Chi.sq. p-value

Geography x concept frequency (old) 53.88 221.5 < 0.001
Geography x concept frequency (young) 59.48 326.6 < o0.001

Table 8.2. Significant smooth terms of the final model. For every smooth the estimated
degrees of freedom is indicated, as well as its significance in the model. See
Figure 8.2 for a visualization of these smooths.

Factor Random effect Std. dev.  p-value
Location Intercept 0.2410 < 0.001
Concept Intercept 1.7748 < 0.001
Average community income (log) 0.3127 < 0.001
Average community age (log) 0.2482 < 0.001
Community size (log) 0.1166 0.006

Table 8.3. Significant random-effect parameters of the final model. The standard devia-
tion indicates the amount of variation for every random intercept and slope.

ing 0.8 are generally regarded as indicative of a successful classifier. According
to this measure, the model performed well with C = 0.8s5.

8.4.1 Geographical variation and lexical predictors

Inspecting Table 8.2, it is clear that the geographical pattern is a very strong
predictor, and it varied significantly with concept frequency (which was not
significant by itself in our general model) and speaker age group. Figure 8.2
visualizes the geographical variation related to concept frequency (for low fre-

131

8 Y4.LdVHO




8 YILdVHD

quency: two standard deviations below the mean, mean frequency, and high
frequency: two standard deviations above the mean) and speaker age group.
Lighter shades of gray indicate a greater likelihood of having a lexical form dif-
ferent from standard Italian.

The three graphs to the left present the geographical patterns for old speak-
ers, while those to the right present the geographical patterns for young speak-
ers. In general, the graphs for the younger speakers are somewhat darker than
those for the older speakers, supporting the finding (discussed in Section 8.4.2,
below) that older speakers have a greater likelihood of using a lexical form dif-
ferent from standard Italian than younger speakers.

The first thing to note is that in the top graphs Florence (indicated by the
star) is located in (approximately) the area with the smallest likelihood of hav-
ing a non-standard Italian lexical form. This clearly makes sense as standard
Italian originates from the Florentine variety.

The second observation is that, going from the top to the bottom graphs,
we see a strong effect of concept frequency, both for older speakers and (to a
slightly reduced extent) for younger speakers.” More frequent concepts in the
central Tuscan area, including Florence, are more likely to differ from standard
Italian than lower frequent concepts (i.e. the values in the bottom maps in the
central area are higher than the values in the central and top maps).

Third, we observe a reverse pattern in the more peripheral areas (in the
Tuscan archipelago in the west, but also in the north and east), with a greater
likelihood of having a non-standard Italian lexical form for low frequency con-
cepts than for high frequency concepts.

When looking in more detail at the data, high frequency concepts typi-
cally include cases for which standard Italian and Tuscan dialects diverge (e.g.,
standard Italian angolo ‘angle, in Tuscany canto, cantonata or cantone; or stan-
dard Italian pomeriggio ‘afternoon, in Tuscany sera ‘evening’ or multi-word ex-
pressions such as dopo mangiato/pranzo/desinare meaning ‘after lunch but also
dopo mezzogiorno ‘after noon’). For mean frequency concepts, the standard
Italian and dialectal words share the same etymology, with the latter frequently
(but not always) representing analogical variants of the former (e.g., for ‘ivy,
the standard Italian form is edera, whereas the set of dialectal forms includes
ellera, ellora, lellera, lallera, etc.).’ Finally, the low frequency concepts belong to
an obsolete, progressively disappearing rural world and include (for example)
bigoncia ‘vat), seccatoio ‘squeegee, and stollo ‘haystack pole’

To understand the pattern of results, we need to distinguish between three
dimensions of change. First, as one moves out from the heartland of Tuscany,
it is more likely that different words are used for a certain concept. This is the

SWhile the general effect of concept frequency appeared to be stronger for old speakers as op-
posed to young speakers, this interaction was not significant.

®Note that the normalization process we have employed in this chapter still distinguishes these
forms, which represent lexical variants in their own right, in spite of their origin from the same
etymon.
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Figure 8.2. Contour plots for the regression surface of predicting lexical differences
from standard Italian as a function of longitude, latitude, concept frequency,
and speaker age group obtained with a generalized additive model. The
(black) contour lines represent aggregate isoglosses, darker shades of gray
(lower values) indicate a smaller lexical ‘distance’ from standard Italian,
while lighter shades of gray (higher values) represent locations with a larger
lexical ‘distance’ from standard Italian. The black star marks the approxi-
mate location of Florence.
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well-known effect of (increasing) geographical distance (e.g., see Nerbonne and
Kleiweg, 2007). We see this effect most clearly for the low frequency concepts,
and reversed for the high frequency concepts.

Second, the standard literary Italian language was ill-equipped for use in
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everyday discourse (very likely involving high frequency concrete concepts),
and consequently the lexical gaps of the standard Italian (literary) language
were filled with dialectal forms whose origin was not necessarily from Tuscany.
Furthermore, during the evolution of the standard Italian language in the past
centuries, alternative cognitively well-entrenched forms of high frequency con-
cepts might have been preferred over the Florentine forms, and thus became
part of the standard language instead.

Third, with the relatively recent emergence of the standard spoken lan-
guage, a new wave of change is affecting Tuscany, causing Tuscan speakers to
adopt the new standard Italian norm. This process is clearly documented in
Figure 8.2, which shows that younger speakers (right panels) have moved closer
to standard Italian than the older speakers (left panels).

Considering these three dimensions, the high frequency concepts in cen-
tral Tuscany are more different (than low frequency concepts) from standard
Italian for two reasons. First, the high frequency Florentine forms likely did not
contribute as prominently to the standard Italian language because of the com-
petition of alternative non-Florentine (well-entrenched) high frequency forms.
Second, high frequency lexical forms are most resistant to replacement by the
current equivalents in standard Italian because they are cognitively well en-
trenched in the central Tuscan (high prestige) speakers’ mental lexicons. This
explanation is in line with the finding reported in Chapter 6, where we ob-
served that high frequency words were more resistant to standardization than
low frequency words (see also Pagel et al., 2007).

With respect to the peripheral areas, the low frequency concepts (mainly
belonging to an obsolete, progressively disappearing rural world) differ most
from standard Italian as these are either represented by non-Tuscan dialectal
forms (especially in the north and east, which border to other dialect areas),
or by original Tuscan forms that were different from the Florentine norm due
to geographical distance (or separation from the mainland). For medium and
high frequency concepts in these peripheral areas, the pattern reverses, and the
lexical forms are more likely to match the standard Italian form. With no close
cultural ties to central Tuscany, and no prestige of its own, these dialects have
been more open to accepting the standard Italian forms (spread via education
and mass media).

We also investigated the effect of concept concreteness, but we did not find
support for the significance of this predictor (both in the fixed- and random-
effects structure). As the majority of our most abstract concepts were only
mildly abstract (according to the categorization of Crutch and Warrington,
2005), this might have limited our ability to investigate the effect of abstract
versus concrete concepts on lexical differences with respect to standard Italian.
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8.4.2 Demographic predictors

When inspecting Table 8.1, it is clear that the contrast between the age groups
was highly important, judging by its high z-value. Old speakers were much
more likely to have a lexical form different from standard Italian. This result is
not surprising as younger speakers tend to converge to standard Italian. There
was no support for the inclusion of this predictor as a by-concept random slope,
indicating that the effect of age was similar across concepts.

Of all demographic predictors (i.e. the community size, the average com-
munity income and the average community age) only the first was a significant
predictor in the general model. Larger communities were more likely to have
a lexical variant identical to standard Italian (i.e. the estimate in Table 8.1 is
negative). A possible explanation for this finding is that people tend to have
weaker social ties in urban communities, which causes dialect leveling (Mil-
roy, 2002). As the standard Italian language is more prestigious than dialectal
forms (Danesi, 1974), conversations will be normally held in standard Italian
and leveling will proceed in the direction of standard Italian.

The other demographic predictors, average age and average income, were
not significant in the general model. In Chapter 6, average age was identified as
a significant predictor of pronunciation distance from standard Dutch, while
average income was not. The effect of average community age may be less pow-
erful here, as we have two age groups per location (which are much more suit-
able to detect the influence of age). In line with Chapter 6, the effect of average
income pointed to a negative influence (with richer communities having lex-
ical variants closer to the standard), but not significantly so (p = 0.3). Also
note that year of recording was not significant in the general model, which is
likely caused by the relatively short time span (with respect to lexical change)
in which the data was gathered.”

All demographic variables showed significant by-concept variation. Fig-
ure 8.3, illustrating the effect of community size, shows some concepts (i.e. ovile
‘sheepfold; scoiattolo ‘squirrel, orecchio ‘ear, and mirtillo ‘blueberry’) which are
more likely to be identical to standard Italian in larger communities (i.e. con-
sistent with the general pattern; the model estimate is indicated by the dashed
line), while others behave in completely opposite fashion (i.e. castagnaccio
‘chestnut cake, melone ‘melon, neve ‘snow, and ditale ‘thimble’) and are more
likely to be different from standard Italian in larger communities. Many of these
latter concepts (e.g., castagnaccio, but also verro ‘boar, male swine, and stollo
‘haystack pole, which are not marked in the graph) involve very old-fashioned
rural concepts which may have fallen into disuse in larger cities, but not in
smaller, more traditional, villages. As a consequence, people in larger cities
may have forgotten the (old-fashioned) standard Italian lexical form, and use
multi-word phrases or more general terms instead (e.g., ‘pig’ instead of ‘boar’).

7Year of recording was significant as a by-concept random slope, but as the other results were not
altered significantly by its inclusion, we report the results of the simpler model.
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Figure 8.3. By-concept random slopes of community size. The concepts are sorted by
the value of their community size coeflicient (i.e. the effect of community
size). The strongly negative coeflicients (bottom-left) are associated with
concepts that are more likely to be identical to standard Italian in larger
communities, while the positive coeflicients (top-right) are associated with
concepts that are more likely to be different from standard Italian in larger
communities. The model estimate (see Table 8.1) is indicated by the dashed
line.

It is interesting to note that the set of latter concepts also includes melone and
ditale, which represent two of the few well-known cases in which all Tuscan
dialects diverge from standard Italian.

Figure 8.4 illustrates the by-concept random slopes for average age and av-
erage income (both were not significant as a fixed-effect factor). In the left part
of the graph we see concepts which are more likely to have a standard Italian
lexical form in richer communities (with concepts caprone ‘goat, cocca ‘corner,
e.g., of a handkerchief, and grattugia ‘grater’ being close to the extreme), while
the concepts in the bottom-right quadrant (e.g., pimpinella ‘pimpernel; stollo
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Figure 8.4. By-concept random slopes of average community age and income. The cor-
relation between the by-concept random slopes is ¥ = —0.623 (p < 0.001).

‘haystack pole; and ditale ‘thimble’) demonstrate the opposite pattern and are
more likely to have a lexical form different from standard Italian in richer com-
munities.

The by-concept random slopes of average age and average income are
closely linked (their correlation is r = —0.623, p < 0.001), which is reflected by
the general negative trend in the scatter plot (see Figure 8.4). Concepts that are
more likely to differ from the standard Italian form in poorer communities are
also more likely to differ from the standard Italian form in communities with a
higher average age (e.g., cocca and grattugia in the top-left). Similarly, concepts
which follow the opposite pattern and are more likely to differ from standard
Italian in richer communities, are also more likely to differ from the standard
Italian lexical form in younger communities (e.g., pimpinella and stollo in the
bottom-right). We observed a comparable result in Chapter 6, where by-word
random slopes of average age, average income, as well as community size were
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closely linked. In this case, however, there was no support for a link between the
by-concept random slopes for community size and the other by-concept ran-
dom slopes. Despite this, we again observe some old-fashioned rural concepts
(e.g., castagnaccio and stollo) in the bottom-right quadrant, suggesting that also
in younger and richer communities, people are less likely to remember these
forms.

8.5 Discussion

In this chapter we have shown that the lexical variation in Tuscan dialects with
respect to standard Italian can be adequately modeled by a generalized addi-
tive mixed-effects logistic regression model. We found clear support for the
importance of speaker age, community size, as well as geography, which varied
significantly depending on concept frequency and speaker age.

The results which have emerged from our analysis of the ALT corpus also
shed new light on the widely debated questione della lingua from the point of
view of Tuscan dialects. Previous studies, based both on individual words (Gia-
comelli and Poggi Salani, 1984) and on aggregated data (Montemagni, 2008),
provided a flat view according to which Tuscan dialects overlap most closely
with standard Italian in the area around Florence, with expansions in different
directions and in particular towards the southwest. Montemagni’s (2008) ag-
gregate analysis also showed that a higher likelihood of using standard Italian
was connected with speaker age and geographical coverage of words. The re-
sults of the analysis introduced in this chapter, however, provide a much more
finely articulated picture in which new factors (such as concept frequency) are
shown to play a significant role. In addition, these results allowed us to specu-
late about the spread of standard Italian with a particular emphasis on its rela-
tionship to the Florentine variety from which it originated.

For example, we observed that in the central Tuscan area, including Flo-
rence, high frequency concepts are more likely to differ from standard Italian
than low frequency concepts, whereas in the marginal areas in the north, east
and southwest a reverse pattern was observed. There, infrequent concepts are
more likely to differ from standard Italian and frequent concepts are more likely
to be identical to the standard. Frequency of concepts thus shows markedly dif-
ferent effects based on the history of the Italian language (originating from Flo-
rence) and the status attributed to the dialects in the specific area: the standard
Italian language diverged more from the Florentine variety it originated from
for high frequency concepts than for low frequency concepts, and also dialects
from the central Tuscan area, including Florence, are accorded higher prestige
than the dialects spoken in marginal areas of Tuscany, and are therefore able to
counterbalance the rising of standard Italian.

On the demographic side, besides finding a significant effect of speaker age
(with younger speakers using lexical forms more likely to be identical to stan-

138



dard Italian), we observed that larger communities are more likely to use stan-
dard Italian vocabulary than smaller communities. In addition, the effect of
community size, but also average community age and income (even though
these two were not significant as main effects), shows significant by-concept
variation: concepts belonging to an obsolete disappearing rural world, such as
‘haystack pole’ and ‘boar, are more likely to differ from the standard in larger,
richer and younger communities, due to the fact that they are no longer part of
everyday life.

Given the general features of the ALT dataset, it would be feasible to investi-
gate other speaker-related characteristics by creating a different grouping (than
the present age-based split). For example, it would be interesting to investigate
the importance of speaker education or profession in this way.

In this chapter we used a binary lexical difference measure with respect to
standard Italian. It would also be possible to use a more sensitive distance mea-
sure such as the Levenshtein distance introduced in Chapter 2. In that case, lex-
ical differences which are closely related (i.e. in the case of lexicalized analogi-
cal formations) can be distinguished from more rigorous lexical differences. As
this would not require the time-consuming logistic regression analysis, it would
be possible to analyze all individual speakers (and incorporate their speaker-
specific characteristics in the model specification) instead of simply grouping
them.

In conclusion, this chapter has shown that the methodology developed in
the previous two chapters can be usefully applied to lexical data. The next and
final chapter of this thesis will provide some general conclusions about the work
presented in this dissertation.

139

8 Y4.LdVHO







b ( oy Lpuly ugpuly
IEIP & 9P UIUIIP €UXIp
€Y1~ UEYEI3 UdJIoM
WQQ  >AR] UJDAJ[ €AEQ[
IA € A UJSRIA UCAQH]
lod  n1ednor uddaol
€Y3J  UdAIdS eYIaIds

CP.IC PICOM UIPJOOM

PartV






CHAPTER 9

A MORE COMPREHENSIVE
DIALECTOMETRY

dialectologists. In Part I of this dissertation, we have argued that dialec-

tometry has lacked a focus on individual linguistic features, as well as on
the social domain. We therefore proposed new dialectometric methods taking
into account social factors, and we have introduced techniques allowing us to
investigate individual linguistic features.

Given the emphasis in this thesis on individual linguistic items (i.e. words
and sound correspondences), a more sensitive discrimination between these
items was needed than required for an aggregate analysis. Consequently, Part IT
of this dissertation focused on this aspect. Chapter 2 evaluated various string
alignment algorithms with respect to their alignment quality. Due to its good
performance, efficiency and intuitive interpretation, the Levenshtein distance
algorithm incorporating automatically determined sound segment distances
(on the basis of the information-theoretic pointwise mutual information mea-
sure) was selected to provide the dependent measures used in most of the sub-
sequent chapters.

To demonstrate the linguistic sensitivity of the automatically determined
segment distances used in the Levenshtein distance algorithm, Chapter 3 eval-
uated their quality by comparing them to acoustic vowel distances. The rela-
tively strong significant correlations between the two (for several independent
dialect datasets) confirmed that the algorithm also makes sense from a pho-
netic perspective.

Part IIT aimed at alleviating the lack of linguistic detail in most dialectomet-
ric work. We introduced hierarchical bipartite spectral graph partitioning to
dialectometry in order to simultaneously identify geographical clusters of sim-
ilar dialects together with their linguistic basis (in terms of sound correspon-
dences). Chapter 4 evaluated the approach on a Dutch dialect dataset and also
proposed a method to find the most characteristic sound correspondences in
each cluster. Further support for the method was provided in Chapter 5, where
it was applied to an English dataset and shown to complement traditional clus-
tering approaches and principal component analysis.

Part IV was the most ambitious, in that it aimed at incorporating not only
the influence of geography and individual linguistic features (i.e. words), but

IN this thesis we have aimed at making dialectometry more appealing to
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also various sociolinguistic factors which are generally disregarded in dialec-
tometric work. Chapter 6 used generalized additive modeling in combination
with a mixed-effects regression analysis to predict dialect distances from stan-
dard Dutch for hundreds of words in more than 400 dialects. In addition to
the importance of geography, we found support for the importance of several
sociolinguistic factors. Communities with a small number of inhabitants or a
high average age had pronunciations more distant from standard Dutch than
those with a large number of inhabitants or a low average age. However, the
precise effect of the community-related variables varied from word to word.
Whereas most words followed the general pattern, some words even showed
the opposite pattern with a higher distance from standard Dutch for larger and
younger communities. In addition, we found support for the importance of
word frequency and word category. The model predicted a greater distance
from standard Dutch for more frequent words as well as for nouns (as opposed
to verbs and adjectives), but the precise effect of these variables varied geo-
graphically. Besides providing some insight into lexical diffusion (Wang, 1969),
these results also highlight the importance of examining a large set of items (fol-
lowing the dialectometric approach) in order to obtain a more comprehensive
view of dialectal variation.

Chapter 7 improved on the methodology of Chapter 6 and showed that
Catalan dialects are converging towards the standard language, but only in re-
gions where Catalan is recognized as an official language. Chapter 8 illustrated
the final application of the generalized additive mixed-effects regression ap-
proach, by predicting (binary) lexical differences between Tuscan dialects and
standard Italian. The results of that chapter again revealed (in line with Chap-
ter 6) that the geographical pattern of variation varied depending on concept
frequency, and that more frequent concepts show more resistance to change
(in the heartland of Tuscany). Besides identifying several significant concept-
related characteristics, we also found a significant general effect of speaker age
and population size (with younger speakers and speakers in larger communi-
ties using lexical forms more likely to match the standard language). Similar
to the Dutch results, the effect of the community-related variables varied from
concept to concept.

The approaches introduced in Part IIT and IV of this dissertation both al-
low a focus on individual linguistic features as well as geography. Despite this,
they should be considered complementary. The bipartite spectral graph parti-
tioning approach excludes social factors and always results in a (geographical)
clustering on the basis of individual features, but does not require the use of a
reference point. The regression approach, which does require a reference point,
provides a more gradual view of the influence of geography on the basis of pro-
nunciation distances or lexical differences, and allows the inclusion of social
(and other) factors. Of course, the geographical results of both methods can be
usefully compared. For example, Figure 4.3 shows that the peripheral areas of
the Netherlands are clustered separately from the central area. In line with this,
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Figure 6.1 shows that the peripheral areas have a greater distance from standard
Dutch than the central area.

As we observed in Sections 4.4.1 and 5.4.1, the (geographical) results of our
new methods generally corroborated those of the older aggregate-only meth-
ods (despite small differences) and identified the same main dialect areas. The
advantage of the new methods, however, is that they provide additional (social
or linguistic) information besides the general geographical pattern of dialect
variation.

Of course, there are also other methods which tap into the linguistic basis
of aggregate variation (see Chapter 5), such as principal component analysis
(Shackleton, 2007), factor analysis (Grieve et al., 2011), or three-way multidi-
mensional scaling (Ruette and Speelman, submitted), and these can adequately
compete with the bipartite spectral graph partitioning method. Furthermore,
Section 1.3 reports several dialectometric studies taking social variation into
account (albeit to a limited extent). However, we do not know of any studies,
other than those reported in Part IV of this dissertation, allowing a focus on in-
dividual linguistic items, while simultaneously taking into account geography,
lexical factors, as well as various sociolinguistic variables.

The results of this thesis also give rise to further research questions. Our
generalized additive mixed-effects regression approach focused on individual
pronunciation distances (or lexical differences) per word. However, as dialec-
tologists have frequently studied variation at the sound segment level, it would
be very informative to create a model focusing on individual sound segment
differences instead. Especially for datasets consisting of a limited set of words
or locations, this would be computationally feasible.

A drawback of the analyses presented in this thesis is that they have focused
exclusively on analyzing dialect atlas data. Consequently, the individual varia-
tion has effectively been eliminated as only a single pronunciation per speaker
was present. It would be very interesting to apply the methods introduced in
Part IV of this thesis to data containing within-speaker variation. In this way,
we might investigate the effect of the specific social environment (Labov, 1972),
while not restricting the analysis to only a few preselected linguistic variables.

Finally, with this dissertation we hope that we have taken adequate first
steps in making dialectometry more comprehensive and interesting to dialec-
tologists, by introducing methods which allow a focus on individual linguistic
features and enable the integration of sociolinguistic factors.
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Summary

researchers study the influence of various factors on variation in dialec-

tal speech. Initially, dialectologists were interested in identifying geo-
graphical dialect regions. Later, however, they became more interested in the
influence of social characteristics (such as age and status). In general, (social)
dialectologists have restricted their studies to a small set of linguistic variables
(e.g., word pronunciations) which they selected themselves.

Dialectometry, a subfield of dialectology, is characterized by a less subjec-
tive approach, in which a large set of linguistic variables is analyzed simultane-
ously. By counting how many linguistic variables differ between one speaker
and another, a measure of linguistic distance between the two speakers is ob-
tained. This measure can be made more precise by taking into account how
much individual pronunciations differ (e.g., the pronunciation of ‘can’ is closer
to ‘cat’ than to ‘bat’).

In contrast to dialectology, dialectometric studies have lacked a focus on
the social dimension and have almost exclusively investigated the connection
between dialect variation and geography. By calculating a single distance be-
tween two speakers on the basis of a large set of linguistic variables, researchers
in dialectometry have also been criticized for their lack of attention to the con-
tribution of individual linguistic variables. Consequently, in this thesis we pro-
pose new dialectometric methods integrating social factors as well as allowing
a focus on individual linguistic variables.

Given the importance of individual linguistic variables (in our case word
pronunciations), our distance measure needs to be as precise as possible. Be-
sides considering the number of different sounds in two pronunciations, it also
makes sense to look at which sounds are involved. For example when only a
single sound differs between two pronunciations, it should matter if the cor-
responding sounds are relatively similar (e.g., [o] versus [u]) or very different
(e.g., [o] versus [i]). In Chapter 2 we introduce a novel method to automatically
obtain sensitive sound distances. Chapter 3 shows that these sound distances
make sense acoustically (e.g., the obtained distance between [o] and [u] is lower
than the obtained distance between [0] and [i]), and this suggests that our pro-
nunciation distances will also be more precise. In addition, by using these sen-
sitive sound distances we improve our ability to identify which sounds corre-
spond in different pronunciations (such as [w] and [v] in two pronunciations

THIS dissertation focuses on dialect variation. In the field of dialectology,
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of ‘vinegar’, [winigo] and [vinigs]). This is demonstrated in Chapter 2.

In Chapter 4 we propose a novel method to identify groups of linguistically
similar dialects while simultaneously identifying their underlying linguistic ba-
sis (in terms of sound correspondences). Besides applying the method to a
Dutch dialect dataset in Chapter 4, we also apply it to an English dialect dataset
in Chapter 5. In both cases, we find sensible geographical clusters together with
their most characteristic sound correspondences.

In Chapters 6,7 and 8 we propose an integrative approach to simultaneously
investigate the effect of geography, several word-related factors (such as word
frequency), and various social factors (such as speaker age) on dialect variation
at the word level. The wide applicability of this approach (combining mixed-
effects regression and generalized additive modeling) is illustrated by applying
the method to three different dialect datasets.

Chapter 6 investigates a Dutch dialect dataset. In addition to the impor-
tance of geography, we find clear support for the importance of several demo-
graphic factors. Communities with a small number of inhabitants or a high
average age have dialectal pronunciations more distant from standard Dutch
than those with a large number of inhabitants or a low average age. In addition,
we observe that nouns (as opposed to verbs and adjectives) and more frequent
words are more resistant to standardization.

In Chapter 7 we investigate a Catalan dialect dataset containing dialectal
pronunciations of speakers from Catalonia, Andorra and Aragon. As Cata-
lan is not recognized as an official language in Aragon (in contrast to Catalonia
and Andorra), this dataset allows us to study the effect of the standard language
on dialectal pronunciations. The results clearly show that Catalan dialects are
converging towards the standard language (i.e. younger speakers use pronun-
ciations more similar to standard Catalan than older speakers), but only in re-
gions where Catalan is recognized as an official language and taught in school.
Consequently, the presence of an official standard language influences dialectal
variation.

While Chapters 6 and 7 focus on pronunciation distances, our method also
allows us to study lexical differences (e.g., using ‘car’ as opposed to ‘automo-
bile’). Chapter 8 investigates lexical differences between Tuscan dialects and
standard Italian. In line with Chapter 6, we observe that more frequent words
(in the heartland of Tuscany) are more resistant to standardization. In addi-
tion, younger speakers and speakers in larger communities are more likely to
use standard Italian lexical forms.

In conclusion, the novel dialectometric methods proposed in this disser-
tation should be more appealing to dialectologists, as they incorporate social
factors and allow a focus on individual linguistic variables. Furthermore, ex-
amining a large set of linguistic variables allows us to obtain a more compre-
hensive view of dialectal variation than by using only a small set of linguistic
variables.
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Samenvatting

binnen de dialectologie bestuderen de invloed van verschillende fac-

toren op deze variatie. In eerste instantie waren dialectologen enkel
geinteresseerd in het bepalen van geografische dialectgebieden, maar later ver-
legden ze hun interesse steeds meer naar de invloed van sociale kenmerken (zo-
als leeftijd en status). Dialectologen hebben eigenlijk altijd hun onderzoeken
beperkt tot een kleine set van zelfgekozen taalkundige variabelen (bijvoorbeeld
de uitspraak van enkele woorden).

Dialectometrie is een deelgebied van de dialectologie waarbij een grote en
dus minder subjectieve set van taalkundige variabelen tegelijkertijd wordt ge-
analyseerd. Door te tellen hoeveel taalkundige variabelen verschillen wanneer
de ene spreker met de ander wordt vergeleken, wordt een maat verkregen van
de dialectafstand tussen de twee sprekers. Kijken we naar verschillen in uit-
spraak, dan kan deze maat preciezer worden gemaakt door te bepalen hoeveel
klanken verschillend zijn (de afstand tussen de woorden ‘lat’ en ‘lot’ is dan bij-
voorbeeld kleiner dan de afstand tussen ‘lat’ en ‘lof”).

In tegenstelling tot dialectologen besteden onderzoekers in de dialectome-
trie weinig aandacht aan sociale factoren, maar richten ze zich voornamelijk op
de verbinding tussen dialectvariatie en geografie. Daarnaast ontbreekt er in de
dialectometrie vaak aandacht voor de rol van de individuele taalkundige vari-
abelen (waarin dialectologen juist wel geinteresseerd zijn), omdat deze samen-
genomen worden bij het bepalen van de dialectafstanden. Vanuit die kritiek
ontwikkelen we in dit proefschrift nieuwe dialectometrische methodes, met
aandacht voor zowel de rol van individuele taalkundige variabelen als die van
sociale factoren.

Vanwege de nadruk op de rol van individuele taalkundige variabelen (in
ons geval woorduitspraken) is het belangrijk dat onze maat voor het bepalen
van de uitspraakverschillen zo precies mogelijk is. Naast het meenemen van
het aantal verschillende klanken in twee uitspraken, is het goed om naar de
specifieke klanken te kijken. Het zou bijvoorbeeld uit moeten maken voor de
afstandsmaat of de klanken op elkaar lijken (bijvoorbeeld [o] en [u]), of juist
sterk van elkaar verschillen (bijvoorbeeld [o] en [i]). We introduceren daarom
in hoofdstuk 2 een nieuwe methode om automatisch gevoelige klankafstanden
te bepalen. In hoofdstuk 3 laten we zien dat deze klankafstanden akoestisch
zinvol zijn (de gevonden afstand tussen [o] en [u] is bijvoorbeeld kleiner dan
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de gevonden afstand tussen [0] en [i]) en dit suggereert dat onze uitspraakat-
standen hierdoor ook preciezer worden. Tevens zien we in hoofdstuk 2 dat we
door het gebruiken van deze gevoelige klankafstanden beter kunnen bepalen
welke klanken corresponderen in verschillende uitspraken (zoals [s] en [z] in
twee uitspraken van het woord ‘zon, [son] en [zon]) .

In hoofdstuk 4 introduceren we een nieuwe methode om groepen van ver-
gelijkbare dialecten te vinden, waarbij we tegelijkertijd de onderliggende taal-
kundige basis (gebaseerd op klankcorrespondenties) bepalen. In hoofdstuk 4
passen we de methode toe op Nederlandse en in hoofdstuk 5 op Engelse dia-
lecten. In beide gevallen vinden we aannemelijke geografische dialectgebieden
en identificeren we hun meest karakteristieke klankcorrespondenties.

In hoofdstuk 6, 7 en 8 introduceren en evalueren we een integrale aanpak
waarbij we de effecten onderzoeken van diverse factoren op dialectvariatie per
woord. Niet alleen nemen we geografie mee, maar ook onderzoeken we de
rol van verschillende sociale en woord-gerelateerde factoren (zoals leeftijd van
de spreker en woordfrequentie). De brede toepasbaarheid van deze (regres-
sie) aanpak wordt geillustreerd door de methode op drie verschillende dialect
dataverzamelingen toe te passen.

In hoofdstuk 6 onderzoeken we een dataverzameling van Nederlandse dia-
lecten. Naast het belang van geografie vinden we duidelijke steun voor diverse
demografische factoren. De dialectuitspraken van een gemeenschap met een
klein aantal inwoners of een hoge gemiddelde leeftijd wijken meer af van de
Nederlandse standaardtaal dan die van een gemeenschap met een groot aantal
inwoners of een lage gemiddelde leeftijd. Ook zien we dat zelfstandige naam-
woorden (in vergelijking met werkwoorden en bijvoeglijke naamwoorden) en
meer frequente woorden meer resistent zijn tegen standaardisatie.

In hoofdstuk 7 onderzoeken we een dataverzameling van Catalaanse dialec-
ten waarin de uitspraken van sprekers uit Catalonié, Andorra en Aragon zijn
opgenomen. Doordat Catalaans niet als officiéle taal in Aragon erkend wordt
en ook op school niet onderwezen wordt (in tegenstelling tot Catalonié¢ en An-
dorra), kunnen we deze dataverzameling gebruiken om het effect van het wel
of niet hebben van een standaardtaal te onderzoeken. De resultaten laten dui-
delijk zien dat Catalaanse dialecten standaardiseren (jongere sprekers hebben
uitspraken die meer lijken op standaard Catalaans dan oudere sprekers), maar
alleen in die regio’s waar Catalaans erkend wordt als officiéle taal (en op school
onderwezen wordt). Hieruit blijkt duidelijk dat het hebben van een standaard-
taal dialectvariatie beinvloedt.

Terwijl hoofdstukken 6 en 7 zich richten op uitspraakverschillen, is onze
methode ook geschikt voor het analyseren van lexicale verschillen (zoals het
gebruik van ‘bolide’ in plaats van ‘auto’). In hoofdstuk 8 onderzoeken we lexi-
cale verschillen tussen Toscaanse dialecten en standaard Italiaans. Vergelijk-
baar met de resultaten van hoofdstuk 6 vinden we ook hier dat meer frequente
woorden (in het centrale gebied van Toscane) resistenter zijn tegen standaardi-
satie. Daarnaast zien we dat jongere sprekers, maar ook sprekers die in grotere
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gemeenschappen wonen een grotere kans hebben om een lexicale vorm te ge-
bruiken die overeenkomt met die van de standaardtaal.

Samenvattend hebben we in dit proefschrift dialectometrische methodes
ontwikkeld die aantrekkelijker zouden moeten zijn voor dialectologen, aange-
zien deze methodes niet alleen aandacht hebben voor de invloed van geogra-
fie, maar juist ook voor de rol van individuele taalkundige variabelen en sociale
factoren. Daarnaast geeft het onderzoeken van een groot aantal taalkundige va-
riabelen een vollediger beeld van dialectvariatie dan wanneer alleen een klein
aantal taalkundige variabelen wordt onderzocht.
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