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a b s t r a c t

We present an extension of the recently introduced Generalized Matrix Learning Vector Quantization
algorithm. In the original scheme, adaptive square matrices of relevance factors parameterize a
discriminative distance measure. We extend the scheme to matrices of limited rank corresponding to
low-dimensional representations of the data. This allows to incorporate prior knowledge of the intrinsic
dimension and to reduce the number of adaptive parameters efficiently.

In particular, for very large dimensional data, the limitation of the rank can reduce computation
time and memory requirements significantly. Furthermore, two- or three-dimensional representations
constitute an efficient visualizationmethod for labeled data sets. The identification of a suitable projection
is not treated as a pre-processing step but as an integral part of the supervised training. Several real world
data sets serve as an illustration and demonstrate the usefulness of the suggested method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Learning Vector Quantization (LVQ) (Kohonen, 2001) and
its variants constitute a popular family of supervised, prototype-
based classifiers. These algorithms have been employed
successfully in a variety of scientific and commercial appli-
cations, including image analysis, bioinformatics, robotics, etc.
(Biehl, Ghosh, & Hammer, 2007; Bojer, Hammer, Schunk, & von
Toschanowitz, 2001; Bunte, Biehl, Petkov, & Jonkman, 2009; Bunte,
Hammer, Schneider, & Biehl, 2009; Bunte, Hammer, Wismüller,
& Biehl, 2010a; Hammer, Strickert, & Villmann, 2005a; Hammer
& Villmann, 2002; Schneider, Biehl, & Hammer, 2009; Villmann,
Merenyi, & Hammer, 2003). The method is easy to implement and
its complexity is controlled by the user in a straightforward way.
LVQ can be applied to multi-class problems without further com-
plication and the resulting classifiers can be interpreted intuitively.
This is due to the fact that the classification of data points is based
on distances to typical representatives, i.e. prototypes, which are
identified in feature space.

Numerous modifications of Kohonen’s original, heuristic for-
mulation of LVQ have been suggested in the literature, aiming

∗ Corresponding author.
E-mail address: k.bunte@rug.nl (K. Bunte).
URL: http://www.cs.rug.nl/∼kbunte/ (K. Bunte).

at better convergence properties and generalization behavior. For
instance, Sato and Yamada (1996) propose an algorithm, termed
Generalized Learning Vector Quantization (GLVQ), which updates
prototypes by means of gradient descent with respect to a heuris-
tically motivated cost function. Recently, also kernelized versions
have been proposed (Schleif, Villmann, Hammer, Schneider, &
Biehl, 2010). A key issue in all LVQ algorithms, with or without
an underlying cost function, is the choice of an appropriate simi-
larity or distance measure. Most frequently, standard Euclidean or
Minkowski metrics are employed, which are not necessarily ap-
propriate for the given problem and data set. The fact that features
can have very different meaning and magnitude in heterogeneous
data, is accounted for in so-called relevance learning schemes (Bo-
jer et al., 2001; Hammer, Strickert, & Villmann, 2005b; Hammer
& Villmann, 2002) which employ adaptive scaling factors for each
dimension in feature space.

An important extension of this concept has been introduced in
Schneider et al. (2009): in the so-called Generalized Matrix LVQ
(GMLVQ) a full matrix of relevances is used, which can account
for correlations between different features. An adaptive self-affine
transformationΩ of feature space identifies the coordinate system
which is most suitable for the given classification task. The original
formulation of GMLVQ employs symmetric squared matrices. In
the simplest case, one matrix is taken to define a global distance
measure. Extensions to class-wise or local matrices, attached to
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individual prototypes, are technically straightforward and allow
for the parameterization of more complex decision boundaries.

Here we present and discuss an important modification: the
use of rectangular transformation matrices Ω . The corresponding
relevance matrices are of bounded rank or, in other words,
distances are evaluated in a space with reduced dimension. The
motivation for considering this variation of GMLVQ is at least
twofold: (a) prior knowledge about the intrinsic dimension of the
data can be incorporated efficiently and (b) the number of free
parameters in the learning problem may be reduced significantly.

Although unrestricted GMLVQ displays a tendency to reduce
the rank of the relevance matrices in the training process, the
advantages of restricting the rank explicitly are obvious. In
particular for nominally very high-dimensional data, e.g. in image
analysis or bioinformatics, unrestricted relevancematrices become
intractable. In addition, optimization results can be poor when
the search is performed in an unnecessarily large parameter
space. Furthermore, the exact control of the rank allows for
pre-defining the dimension of the intrinsic representation and
is, for instance, suitable for the discriminative visualization of
labeled data sets. In contrast with many other schemes that
consider dimension reduction as a pre-processing step, ourmethod
performs the training of prototypes and the identification of a
suitable transformation simultaneously. Hence, both sub-tasks
are guided by the ultimate goal of implementing the desired
classification scheme.

Appropriate projections into two- or three-dimensional spaces
can furthermore be used for efficient visualization of labeled data.
Visualization enables to use the astonishing cognitive capabilities
of humans for visual perceptionwhen extracting information from
large data volumes. Structural characteristics can be captured
almost instantly by humans, independent of the number of
displayed points. Classical unsupervised dimension reduction
techniques represent data points contained in a high dimensional
data manifold by low dimensional counterparts in, for instance,
two or three dimensions, while preserving as much information
as possible. Since it is not clear in advance which parts of the
data are relevant to the user, this problem is inherently ill-posed:
depending on the specific data domain and the situation at hand,
different aspects can be in the focus of attention. Prior knowledge,
in the form of label information, can be used to formulate a well-
defined objective in terms of the classification performance.

There exist a few classical dimensionality reducing visualiza-
tion tools which take class labels into account: Classical Fisher
linear discriminant analysis (LDA), the recently introduced local
Fisher discriminant analysis (LFDA) (Sugiyama & Roweis, 2007),
Neighborhood Component Analysis (NCA) (Goldberger, Roweis,
Hinton, & Salakhutdinov, 2004), as well as partial least squares
regression (PLS) offer supervised linear visualization techniques.
Kernel techniques extend these settings to nonlinear projections
(Baudat & Anouar, 2000; Ma, Qu, &Wong, 2007). Adaptive dissim-
ilarity measures which modify the metric used for projection ac-
cording to the given auxiliary information have been introduced
in Kaski, Sinkkonen, J, and Peltonen (2001), Peltonen, Klami, and
Kaski (2004), and Bunte et al. (2010a). The resulting metric can
be integrated into various techniques such as SOM, MDS, or a re-
cent information theoreticmodel for data visualization (Kaski et al.,
2001; Peltonen et al., 2004; Venna, Peltonen, Nybo, Aidos, & Kaski,
2010). An ad hocmetric adaptation is used in Geng, Zhan, and Zhou
(2005) to extend Isomap (Tenenbaum, Silva, & Langford, 2000) to
class labels. Alternative approaches change the cost function of
dimensionality reduction, for instance by using conditional proba-
bilities, class-wise similarity matrices or introducing a covariance-
based coloringmatrix for the side information as proposed in Iwata
et al. (2007), Memisevic and Hinton (2005), and Song, Smola, Borg-
wardt, and Gretton (2008).

Before we describe our method more formally in Section 3
we review GMLVQ in the following section. In Section 4, we
apply the novel LiRaM LVQ to a benchmark problem and study
the influence of the dimension reduction on the classification
performance. We also compare the limited rank version to the
naive approach of taking the first components of the full rank
GMLVQ. We show that reducing the rank after training not only
requires more memory and CPU time, but also yields inferior
classification performance compared to LiRaMLVQ. In Section 5we
present example applications of our algorithm in the visualization
of labeled data. We also compare with visualizations obtained by
LFDA and NCA. We conclude by summarizing our findings and
providing an outlook on perspective investigations.

2. Review of Generalized Matrix LVQ

In this section we briefly review the Generalized Matrix LVQ
algorithm (Schneider et al., 2009). We will assume that training
is based on n examples of the form (xi, yi) ∈ RN

× {1, . . . , C},
where N is the dimension of feature vectors and C is the number
of classes. Learning Vector Quantization (LVQ) parameterizes the
classification by means of at least C prototypes, which are chosen
as typical representatives of the respective classes. They are
characterized by their location in feature space wi ∈ RN and
the respective class label c(wi) ∈ {1, . . . , C}. Given a distance
measure dΛ(w, x) in RN parameterized by Λ, the classification
is done according to a ‘‘winner takes all’’ or ‘‘nearest prototype’’
scheme: Any data point x ∈ RN is assigned to the class label c(wi)
of the closest prototype i with dΛ(wi, x) ≤ dΛ(wj, x) for all j ≠ i.

Frequently, learning corresponds to an iterative procedure
which presents a single example at a time and which moves
prototypes closer to (away from) data points representing the
same (a different) class. In Sato and Yamada (1996) a very flexible
approach is introduced, in which the training algorithm is guided
by the minimization of a cost function

f =


i

Φ(µ) =


i

Φ


dΛ
J − dΛ

K

dΛ
J + dΛ

K


, (1)

where the quantities

dΛ
J = dΛ(wJ , xi) with c(wJ) = c(xi) (2)

dΛ
K = dΛ(wK , xi) with c(wK ) ≠ c(xi) (3)

correspond to the distances of the feature vector xi from the closest
correct (wrong) prototype wJ(wK ), respectively. In Eq. (1), Φ is
a monotonic function, e.g. the logistic function or the identity
Φ(x) = xwhich we will consider throughout the following.

In GMLVQ the distance measure is specified by an (N × N)
matrix, which can adapt to correlations of different features. It is
of the form of a Mahalanobis distance

dΛ(w, x) = (x − w)⊤Λ (x − w) (4)

with Λ ∈ RN×N . The matrix Λ is assumed to be positive
(semi-) definite. Hence, the measure corresponds to a (squared)
Euclidean distance in an appropriately transformed space and we
can substitute

Λ = Ω⊤Ω with Ω ∈ RN×N (5)

and, hence

dΛ(w, x) = [Ω (x − w)]2 (6)

with an arbitrary matrix Ω . Specific restrictions may be imposed
on Ω without loss of generality. Note that, for instance, every
positive symmetric Λ has a symmetric root Ω with Λ = Ω2.
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The original GMLVQ algorithm corresponds to a stochastic
gradient descent in the cost function, Eq. (1), with respect to the
prototype configuration and an arbitrary matrix Ω ∈ RN×N .
Gradients are evaluated with respect to the contribution of
single instances xi which are presented random sequentially. The
algorithm has been introduced and discussed in Schneider et al.
(2009) and will be modified in the following.

3. Limited Rank Matrix LVQ

In the following we extend the concept of GMLVQ to the
use of rectangular matrices in the distance measure and refer
to the corresponding algorithm as Limited Rank Matrix Learning
Vector Quantization (LiRaM LVQ). We consider Ω to define a
transformation from the original N-dimensional feature space to
RM withM ≤ N so that:

Λ = Ω⊤Ω with Ω ∈ RM×N . (7)

This section addresses the use of one global matrix for the
dimension reduction and visualization. Modifications in the sense
of extensions towards local distance measures will be discussed in
the next section.

Note that, in general, the transformation matrix Ω is not
uniquely determined. The distance measure is, for instance,
invariant under rotations in feature space.We can identify a uniqueΩ by decomposing Λ = Ω⊤Ω in a canonical way: We determine
the normalized eigenvectors v1, v2, . . . , vM corresponding to the
M ordered non-zero eigenvalues of Λ, λ1 ≥ λ2 ≥ · · · ≥ λM and
define Ω as:

Ω =


λ1v1,


λ2v2, . . . ,


λMvM

⊤

. (8)

In addition we choose the sign of vi, such that the component of
vi with largest magnitude is positive. Note, that the valueM limits
the rank of the dissimilaritymatrixΛ to amaximumofM .With the
scheme Eq. (8) also a full matrix can be restricted after training.
However, if eigenvectors with eigenvalues bigger than zero are
omitted classification accuracy might get lost. We discuss this in
Section 4.

Nominally, the matrix Ω will have more independent entries
than the symmetric Λ whenever M > (N + 1)/2. However,
we have found no evidence that this ambiguity complicates the
optimization problem. Therefore we consider throughout the
following, general, unrestrictedmatricesΩ withM ·N independent
entries.

In order to formulate stochastic gradient descent with respect
to the objective function (1) we compute the derivatives

∂dΛ
L

∂wL,r
= −2 ·

N
n

M
m

ΩmrΩmn(xn − wL,n)

= −2

Ω⊤Ω


r (x − wL) (9)

∂dΛ
L

∂wL
= −2Ω⊤Ω(x − wL) (10)

γ +
=

∂µ

∂dΛ
J

=
2dΛ

K

(dΛ
J + dΛ

K )2
(11)

and

γ −
=

∂µ

∂dΛ
K

=
−2dΛ

J

(dΛ
J + dΛ

K )2
. (12)

Here, L ∈ {J, K} and the index J (K) refers to the closest correct
(wrong) prototypewJ (wK ) as introduced in Eq. (2).

For the closest correct prototype wJ and closest wrong
prototypewK one obtains an update of the form

wnew
J = wJ + α1 · γ +

· 2Λ(x − wJ) (13)

wnew
K = wK + α1 · γ −

· 2Λ(x − wK ). (14)

The corresponding matrix update reads

∂dΛ
L

∂Ωmn
= 2

N
i

(xn − wL,n)Ωmi(xi − wL,i)

= 2 [Ω(x − wL)]m · (xn − wL,n) (15)

∂µ

∂Ωmn
=


γ +

∂dΛ
J

∂Ωmn
+ γ −

∂dΛ
K

∂Ωmn



Ωnew
mn = Ωmn − α2 ·

∂µ

∂Ωmn
. (16)

After each update step, the transformationmatrixΩ is normalized
such that

i

Λii =


mn

Ω2
mn = 1. (17)

Note that the learning rates α1 and α2 can be chosen indepen-
dently. In particular, we set α1 ≫ α2 which implies that changes
of the metric occur on a slower time scale than those of the pro-
totypes. This setting has proven advantageous in many implemen-
tations of matrix relevance learning (Bojer et al., 2001; Hammer &
Villmann, 2002; Schneider et al., 2009).

In all practical examples considered in the following, we apply
a learning rate schedule of the form

α1(t) =
αstart
1

1 + (t − 1)∆α1
(18)

and

α2(t) =

 αstart
2

1 + (t − tM)∆α2
for t ≥ tM

0 otherwise.
(19)

Here, t corresponds to the current epoch, i.e. sweep through the
data set, and αstart

1,2 denotes the initial learning rates. Non-zero
relevance updates are performed only after the first tM epochs
of prototype training. The computational costs scale linearly with
the number of prototypes l, the dimension of the data N , the
target dimension M and with the number of training examples
n in each epoch O(lMNn). Initial positions wi(t = 0) of the
prototypes are determined by randomly selecting 1/3 of the
available feature vectors in class c(wi) and taking the respective
mean. Hence, prototypes are initially close to the class-conditional
means in the training data, but with small deviations due to the
random sampling. Relevance initialization is done by generating
independent uniform random numbers Ωij ∈ [−1, 1] and
subsequent normalization according to Eq. (17).

3.1. LiRaM LVQ with localized dissimilarities

For full rankmatrices the LocalizedGeneralizedMatrix Learning
Vector Quantization (LGMLVQ) was introduced and discussed in
Schneider et al. (2009). It is based on the concept of localized
matrices Ωi individually adapted for each prototype or for each
class, flexibly increasing the complexity of the LVQ system. The
concept of LiRaM LVQ can also be expanded to the use of localized
rectangular matrices, representing several local linear projections.
The global combination of these local linear patches by means
of charting is discussed in Brand (2003), and Bunte, Hammer,
Wismüller, and Biehl (2010b).
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In this contribution, wewill investigate the use of localizedma-
trices in combination with a global linear dimension reduction.
This can be achieved by expanding the definition of the dissimi-
larity measure Eq. (4) with the combination of two matrices:

d2ML (wL, x) = (x − wL)
⊤Ω⊤Ψ ⊤

L ΨLΩ (x − wL). (20)

Here Ω ∈ RM×N performs the dimension reduction with target
dimensionM , while the ΨL ∈ RM×M attached to the prototypeswL
define a localized dissimilarity measure in the transformed space.
Consequently the visualizations correspond to nonlinear rather
than piecewise linear decision boundaries in the M-dimensional
space. In the experiments we also used class-wise dissimilarities
Ψc with c ∈ {1, . . . , C} attached to the prototypes wL with label
c(wL) = c , which may be interesting in a setting with more
than one prototype per class. In the following we will address this
algorithm as Localized LiRaM LVQ (LLiRaM LVQ).

The prototype update reads:

∂d2ML
∂wL

= −2Ω⊤Ψ ⊤

L ΨLΩ(x − wL)
⊤ (21)

∂µ

∂wL
= γ L

2 ·
∂d2ML
∂wL

(22)

wnew
L = wL + α1 ·

∂µ

∂wL
(23)

with L ∈ {J, K} and

γ
J
2 =

∂µ

∂d2MJ
=

2d2MK
(d2MJ + d2MK )2

, (24)

γ K
2 =

∂µ

∂d2MK
=

−2d2MJ
(d2MJ + d2MK )2

. (25)

Furthermore, we obtain

∂d2ML
∂Ω

= 2 · Ψ ⊤

L ΨLΩ(x − wL)(x − wL)
⊤ (26)

∂µ

∂Ω
= γ K

2 ·
∂d2MK
∂Ω

+ γ
J
2 ·

∂d2MJ
∂Ω

(27)

Ωnew
= Ω − α2 ·

∂µ

∂Ω
. (28)

The localized dissimilarities ΨL are updated according to:

∂d2ML
∂ΨL

= 2 · ΨLΩ(x − wL)(x − wL)
⊤Ω⊤ (29)

∂µ

∂ΨL
= γ L

2 ·
∂d2ML
∂ΨL

(30)

Ψ new
L = ΨL − α3 ·

∂µ

∂ΨL
. (31)

The matrix Ω can be used to transform the data points and
prototypes into a lower dimensional space. In the transformed
space the prototypes and the localmatricesΨL define the nonlinear
decision boundaries. In Section 5 we will show some example
visualizations of the LLiRaM LVQ.

4. A classification problem

As an illustrative example, we study the performance of the
LiRaM LVQ algorithm on the image segmentation data set as
provided in the UCI repository (Asuncion, Newman, Hettich, Blake,
& Merz, 1998).

There, 19-dimensional feature vectors have been constructed
from regions of 3 × 3 pixels, randomly drawn from a set of 7
manually segmented outdoor images. The features encode various
attributes of the example patches, which have to be assigned to
one of the following 7 classes: brickface, sky, foliage, cement,
window, path, and grass. The provided data set consists of 210
feature vectors for training, with 30 instances per class. The test
set comprises 300 instances per class, i.e. 2100 samples in total.
We refer the reader to Asuncion et al. (1998) for the details. In the
data as provided by the UCI repository, features 3, 4 and 5 (region-
pixel-count, short-line-density-5 and short-line-density-2) display
zero variance. Hence, we omit these features and consider only
the remaining 16 features. After a z-transformation, each feature
displays zero mean and unit variance in the data set.

We apply in the following the LiRaM LVQ algorithmwith global
matrix Λ and parameters αstart

1 = 0.01, ∆α1 = 0.0001, αstart
2 =

0.001, ∆α2 = 0.0001 in the schedule (18), matrix adaptation
begins in epoch tM = 100. Similar settings have proven successful
in previous applications of the original GMLVQ algorithm to the
data set (Schneider et al., 2009).

4.1. Performance dependence on M

We first study the simplest GMLVQ classifiers with only one
prototype per class. For several values of M , we perform LiRaM
LVQ on the given training set of 210 example data and observe
the evolution of training and test accuracies with the number of
epochs. In order to obtain reliable results and as an indication of
the robustness and convergence properties, we present averages
and standard deviations with respect to 10 different random
initializations of the prototypes and matrix Ω .

Fig. 1 shows averaged learning curves for the example cases
M = 2 and M = 16. We display the training and test accuracies
averaged over 10 random initializations of the algorithm and the
estimates of the corresponding standard errors are on the order
0.01 for M = 2 and below 0.005 for M = 16. Note that training
and test accuracies can display a weak maximum in the course
of learning. Therefore, for each M , we determine the number of
epochs that yield the best mean training accuracy and display
the corresponding test accuracy in the right panel of Fig. 1. The
non-monotonic behavior could be cured by means of a proper
regularization of GMLVQ by adding a penalty term to the cost
function, see Schneider, Bunte, Hammer, and Biehl (2010). The
additional application of this technique effects that the eigenvalues
of Λ converge to 1

M . Hence, the regularization prevents the
algorithm fromoversimplifying the classifier, and the computation
of distance values is finally based onM features. Here, we resort to
the above described early stopping technique for simplicity. We
would like to point out that it relies only on the observed training
accuracy and does not make use of test set information.

Fig. 1 also displays the relevance matrices and their eigenvalue
spectra corresponding to the early stopping performances. In the
caseM = 16 we observe that only about 9–10 eigenvalues remain
significantly different from zero. Even GMLVQ with unrestricted
rank results in an effective low-dimensional representation of the
data. One would expect that LiRaM LVQ with large enough M
already yields the same performance as the unrestricted variant.
Fig. 2 shows that this is indeed the case. Only for small M we
observe a clear dependence of the test accuracy on the rank of
Ω , while all M ≥ 5 display essentially the same performance.
In the extreme case M = 2 we observe a significant drop of
the generalization ability due to the serious restriction to only
two non-zero eigenvalues of Λ. At the same time, the outcome
of training displays a large variability: random initializations of Ω

can lead to the selection of very different transformation matrices
as reflected in the increased standard deviation. Many nonlinear
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Fig. 1. Left panels: learning curves of LiRaM LVQ with one prototype per class forM = 2 (top) andM = 16 (bottom) when applied to the UCI image segmentation data set.
Right panels: diagonal elements, eigenvalues and off-diagonal elements of the matrix Λ as obtained in a single run. The diagonal elements are set to zero for the plots.

Fig. 2. Performance of the LiRaM LVQ (upper panel) and GMLVQwith successive matrix reduction following Eq. (8) (lower panel) using one prototype per class as a function
of M for the UCI image segmentation data set. We display the test accuracy on average over 10 random initializations, also given as a numerical value. The light shading
corresponds to the interval from worst to best accuracy, the darker area marks the standard deviations.
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Fig. 3. UCI image segmentation data set. Left panel: test accuracy obtained by LDA as described in the text. Right panel: test accuracies for the Nearest-Neighbor classifier
using the PCA-based transformation to M dimensions (solid lines). In addition, the results after transforming the data with Ω as obtained in LiRaM LVQ, the dotted lines
mark the average over 10 random initializations as in Fig. 2.

dimension reduction methods such as t-distributed Stochastic
Neighbor Embedding (t-SNE) do not lead to a unique solution, a
data set may be visualized differently by the same technique in
different runs. It can be argued (see e.g. van der Maaten & Hinton,
2008) that this effect is desirable since it mirrors different possible
views of the given data and the ill-posedness of the problem of
dimension reduction. Auxiliary information in the form of class
labels can be useful to shape the problem in such settings and
to resolve (parts of) the ambiguities inherent in the problem.
However, if the intrinsic dimension of the data is larger than the
target dimension some ambiguities may not be resolved.

Additionally, we investigate the performance of the full matrix
system reducing the rank after training with Eq. (8) using only the
first M eigenvalues and eigenvectors. The lower panel of Fig. 2
shows the test accuracies using the M = 16 matrices and the
canonical representation with M eigenvectors for different values
of M . As observed before, keeping less than the 5 eigenvalues in
the successive restricted GMLVQ (lower panel of Fig. 2) results
in a decrease of the classification accuracy. The drop in accuracy
is especially significant when eigenvectors with relatively large
eigenvalues are omitted. Just using the eigenvectors of the two
largest eigenvalues for example shows amean test accuracy which
is 11% smaller than the corresponding LiRaM LVQ result for M =

2. Despite the computation time and memory efficiency, the
limited rank version yields better preservation of the classification
performance in the restricted setting than the heuristic dimension
reduction after training omitting eigenvectors with eigenvalues
significantly different from zero.

4.2. Comparison with other methods

Here we compare the LiRaM LVQ scheme with frequently used
standard procedures of comparable complexity. Note that the
complexity of LiRaM LVQ can be easily adapted by the number
of prototypes. GMLVQ with only one prototype per class appears
to be similar in spirit to the well known Linear Discriminant
Analysis (LDA) (Bensmail & Celeux, 1996; Duda, Hart, & Stork,
2000; Friedman, 1989). In this method, a Multivariate Normal
density (MVN) is fitted to the observed data in each class and
here we consider a pooled estimate of the covariance matrix.
Given the density estimates, the best linear decision boundaries are
constructed in order to approximate Bayes optimal classification
(Duda et al., 2000). The well known Nearest-Neighbor (1-NN)
classifier serves as a second reference: Based on the standard
Euclidean distance measure, any feature vector is simply assigned
to the class of the closest labeled example (Duda et al., 2000). For
the given data set, the extension to K-Nearest-Neighbor schemes

displays only a weak dependence on K and results will not be
presented here.

Themost common strategy for dimension reduction is Principal
Component Analysis (PCA). In order to compare with LiRaM LVQ,
we apply PCA to the entire data set and obtain a low-dimensional
representation in terms of the first M principal components. The
projected training data is then used in LDA or serves as the
reference set of the 1-NN classifier. In the case M = 16, the full
data set is employed without performing a PCA.

In Fig. 3, the achieved test accuracies are displayed for
several values of M . For large enough dimension M , the principal
components capture all relevant information and the performance
of both LDA and 1-NN is comparable to that of the LiRaM LVQ
prescription. This finding is consistent with the M-dependence
discussed in the previous section.

Significant differences can be observed for small M: The
dimension reductionbyPCA (or anyother unsupervised technique)
does not take into account label information and may focus
on features with large variation but little relevance for the
classification. Therefore, the subsequent supervised training does
not reach the quality of the LiRaM LVQ scheme even with only one
prototype per class. Here, the complexity of the system is similar
but the identification of a suitable low-dimensional representation
is directly guided by the classification, which facilitates superior
performance. This is easily demonstrated by replacing the PCA
based transformation by the matrix Ω obtained in LiRaM LVQ,
(see Eq. (6)). Now the simple 1-NN system performs significantly
better, as displayed in the left panel of Fig. 3. The idea of
determining a discriminative transformation directly within the
KNN classification scheme has been put forward in Weinberger,
Blitzer, and Saul (2006), there without considering dimension
reduction. A more detailed comparison of Large Margin Nearest
Neighbor (LMNN) with LiRaM LVQ is given in Bunte, Biehl,
Jonkman, and Petkov (2011).

LiRaM LVQ with several prototypes per class and a global rele-
vancematrix can implement piecewise linear decision boundaries,
the complexity of which can exceed that of LDA or similar meth-
ods significantly. In previous applications of unrestricted GMLVQ
to the UCI image segmentation data it has proven advantageous
to assign 3 prototypes to class 5 (window) and 2 prototypes to all
other classes. Fig. 4 shows that this setting improves the classifi-
cation accuracies in comparison to the above studied case of a sin-
gle prototype per class, cf. Fig. 2. As expected, the improvement
is particularly pronounced for small M . In Fig. 5 we visualize typ-
ical properties of the relevance matrices obtained in the extreme
cases M = 2 and M = 16. Note that even the unrestricted matrix
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Fig. 4. UCI segmentation. Left panel: test accuracies achieved by LiRaM LVQwith 2 prototypes per class (3 in class 5) for different values ofM; other details as in Fig. 2. Right
panel: the corresponding learning curves forM = 2, i.e. mean training and test accuracy vs. the number training epochs.

(a)M = 2. (b) M = 16.

Fig. 5. Diagonal elements, eigenvalues, and off-diagonal elements of an example relevance matrix in LiRaM LVQ with two prototypes per class and three in class 5. Other
details as in Fig. 1, right panels. The diagonal elements are set to zero for the plots.

displays only three non-zero eigenvalues. The increased complex-
ity due to the larger number of prototypes facilitates good perfor-
mance in spite of a very simple implicit representation of the data.
The use of more eigendirections could be enforced by means of a
matrix regularization scheme suggested in Schneider et al. (2010).
We will address this issue in forthcoming studies.

5. Visualization of classification schemes

The LiRaM LVQ prescription with M = 2 or M = 3 can be
readily employed as a tool for the visualization of labeled data sets.
In contrast to many standard methods, the tasks of identifying an
appropriate subspace and implementing the actual classification
is addressed in a single training phase. Supervised dimension
reduction has drawn some attention recently and some of the
methods have been mentioned in the introduction. We explain
two of these methods in the next section in more detail and will
compare example visualizations of different data sets thereafter.

5.1. Local Fisher Discriminant Analysis

A supervised linear dimension reduction technique named
Local Fisher Discriminant Analysis (LFDA) (Sugiyama & Roweis,
2007) was recently introduced as a combination of the well
known Fisher Discriminant Analysis (FDA) (Fisher, 1936) and the
unsupervised Locality-Preserving Projection (LPP) (He & Niyogi,
2003). FDA works particularly well, when each class can be

modeled as a unimodal Gaussian. It is based on the within-
class and between-class scatter matrix and finds a transformation
matrix T , such that the between-class scatter is maximized, while
the within-class scatter is minimized. This optimization problem
can be solved by means of a generalized eigenvalue problem
(Fukunaga, 1990). Furthermore the between-class scatter matrix
has a rank limited to the number of classes minus one (c − 1). This
implies that FDA can find at most c−1meaningful features, which
constitutes a serious restriction in practice. LPP on the other hand is
an unsupervised dimension reduction technique based on pairwise
affinities Ai,j ∈ [0, 1] between data points xi and xj. The aim is to
find a transformation matrix T such that local neighborhoods are
preserved in the embedding space.

The LFDA efficiently combines the ideas of both methods and
facilitates the dimension reduction of multi-modal labeled data
by maximizing the between-class separability, while preserving
the local structure within classes. The local within-class and local
between-class scatter matrices S(w) and S(b) are defined using
pairwise affinities of the data:

S(w)
=

1
2

n
i,j=1

W (w)
i,j (xi − xj)(xi − xj)⊤ (32)

S(b)
=

1
2

n
i,j=1

W (b)
i,j (xi − xj)(xi − xj)⊤, (33)

where n denotes the number of samples and

W (w)
i,j =


Ai,j/nl if yi = yj = l
0 if yi ≠ yj

(34)
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W (b)
i,j =

Ai,j


1
n

−
1
nl


if yi = yj = l

1/n if yi ≠ yj.
(35)

The value nl denotes the number of samples from class l. Therefore,
LFDA aims at finding a transformation matrix T , such that nearby
data pairs of the same class are also close in the embedding and
data points of different classes are separated from each other.
Similar to FDA and LFDA, a projection can be computed analytically
by solving a generalized eigenvalue problem:

T = argmax
T∈RN×M


tr

(T⊤S(w)T )−1T⊤S(b)T


. (36)

In contrast to FDA the LFDAdoes not have the same rank limitation.
Therefore a dimension reduction to arbitrary dimensions is
possible. However, the embedding crucially depends on the
computation of the pairwise affinities. In Sugiyama and Roweis
(2007) four definitions of the affinity matrix are given. In the
following experiments we use the ‘‘local scaling’’ method, which
is also used in the provided implementation.1 Here the density of
the data is taken into account in a heuristic manner: a local scaling
based on the k-th nearest neighbor is included. In the experiments
we tried different values of k to find good visualizations.

5.2. Neighborhood Component Analysis

Recently, a supervised dimension reduction method called
NCA has been introduced (Goldberger et al., 2004). It aims in
the maximization of the expected number of correctly classified
samples by a stochastic variant of the nearest neighbor classifier.
Therefore, NCA seeks a transformation matrix TNCA such that the
between-class separability is maximized:

TNCA = argmax
T∈RN×M


n

i=1


yj=yi

pi,j

TT⊤


, (37)

where

pi,j(U) =


exp{−(xi − xj)⊤U(xi − xj)}

k≠i
exp{−(xi − xk)⊤U(xi − xk)}

if i ≠ j

0 if i = j.

Thus, similar to LFDA, nearby data pairs from the same class
should be close in the embedding space. This ensures that also
multi-modal structure of the data can be preserved. However, the
optimization problem is non-convex and there is no guarantee
that the global optimum can be obtained. The optimization was
proposed as a gradient ascent method and we use the provided
implementation2 for the experiments. Note, that NCA needs to
compute the pairwise dissimilarities between samples of the same
class in every step. Although LiRaM LVQ also follows a gradient
procedure it computes only the dissimilarities with respect to
the prototypes in every step. Since the number of prototypes
per class is usually much smaller than the number of samples,
the computational costs per gradient step are significantly lower
than for NCA. In the implementation a Polack–Ribiere flavor of
conjugate gradients is used to compute search directions, and a
line search using quadratic and cubic polynomial approximations.
There is mainly one parameter to change: l the length of the run. It
corresponds to the maximum number of line searches.

1 MATLAB implementation LFDA: http://sugiyama-www.cs.titech.ac.jp/∼sugi/
software/LFDA/
2 MATLAB implementation for NCA: http://www.ics.uci.edu/∼fowlkes/software/

nca/

Fig. 6. Runningtimes of NCA and the LiRaM LVQ variants in dependence of the
number of training samples. Details can be found in the text.

Fig. 6 displays the running times of NCA and the proposed
LVQ variants in dependence on the number of training samples.
We run the experiments on the same machine3 using Matlab
implementations. We used differently sized subsets of the seven
class segmentation data set, which is investigated in the following
section and reduce the dimension to M = 2. Furthermore we
compare different parametrizations of the models. For NCA we
show the running times for different numbers of line searches l
and for the LVQ variants we vary the number of prototypes per
class abbreviated by ‘‘ppc’’. It can be seen that the computation
time grows linearly with the number of training samples using the
LVQ approaches, while the complexity of NCA grows quadratically.

5.3. The segmentation data set
The above discussed UCI segmentation data may serve as a first

illustrative example. From the 10 independent runs performed
with M = 2 to obtain the results displayed in Fig. 2 (single
prototype per class) and Fig. 4 (several prototypes per class), we
have selected the runs that achieved the best training accuracy
in order to achieve the most discriminative visualization. As
mentioned above, the actual outcome can depend on the random
initialization of theGMLVQ system, see Figs. 2 and 4 for the range of
observed accuracies.With a single prototype per class, amaximum
classification accuracy of 88.4% on the entire data set is achieved.
The use of 2 prototypes per class (3 in class 5) yields a best accuracy
of 90.4% on the entire set. The use of several prototypes with
LLiRaM LVQ enhances the accuracy by realizing more complex
piecewise linear decision boundaries.

Furthermore we trained the LLiRaM LVQ under the same
conditions ten times on the training set of the segmentation data
and used the resulting transformations and prototypes to visualize
the data. The run showing the best performances is shown in Fig. 7
with the quality given in Table 1. The mean accuracy over all runs
on the training data is 85% with a standard deviation (STD) of
0.04 with one prototype per class and class-wise dissimilarities
Ψc . LLiRaM LVQ implements nonlinear decision boundaries, which
show already good accuracies using one prototype per class. With
this particular data set, using more prototypes does not improve
the classification significantly.

3 Quadcore: Intel(R) Core(TM) i5 CPU 750 @ 2.67 GHz.

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
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http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/
http://www.ics.uci.edu/~fowlkes/software/nca/


K. Bunte et al. / Neural Networks 26 (2012) 159–173 167

Fig. 7. Visualizations of the UCI segmentation data set acquired by the differentmethods. For the sake of claritywe display only 50 examples per class. A detailed explanation
can be found in the text.

Next, we employ the implementation of LFDA and NCA from
the original authors with default parameters and tried a range of
k and l ∈ [1, 30]. We observed that bothmethods crucially depend
on the parameter used. The accuracy of the training set measured
by an 1-NN classification on the embedding acquired by LFDA, for
example, ranges from thebest accuracy of 83.7%with k = 2 and the
worst accuracy of 66.6%with k = 25. ForNCA theworst accuracy of
56.2% is observed with l = 1 and with l ≥ 16 the training accuracy
reaches 90%. The number of protoytpes and the initialization in the
LiRaM LVQ setting is less crucial with respect to the classification
accuracy.

Fig. 7 displays the visualizations with best classification
performance on the segmentation data set acquired by the
different techniques explained above. This multi-class problem

allows for very good classification performance already in two
dimensions. The localized variant of LiRaM LVQ can realize
more complicated non-linear decision boundaries than the global
version. However, overfitting effects become possible: For one
prototype per class we observe an improvement although empty
cells appear in the tessellation. With two prototypes per class no
further improvement is observed. In all visualizations the classes
‘‘sky’’ and ‘‘grass’’ can be separated quite well. For the other classes
the visualizations differ in arrangement and shape of the clusters.
The LiRaM LVQ visualizations show equal or superior quality
compared to the other methods. An overview of the visualization
quality of the different methods on the data sets can be found
in Table 1. The classification accuracy in the original space is
usually larger, than the accuracy in the low-dimension space after
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Table 1
Classification and 1-NN accuracies (in %) on the visualizations of the data sets.

Method/data set acc. training acc. test

Segmentation data
LiRaM LVQ 7P (classification accuracy) 92.9 88.0
LiRaM LVQ 7P (1-NN acc. on embedding) 85.7 87.0
LiRaM LVQ 14P (classification accuracy) 91.9 90.3
LiRaM LVQ 14P (1-NN acc. on embedding) 88.6 87.5
LLiRaM LVQ (classification accuracy) 89.0 85.7
LLiRaM LVQ (1-NN acc. on embedding) 88.6 87.4
LFDA (1-NN acc. on embedding) 83.7 85.8
NCA (1-NN acc. on embedding) 90.0 87.1
Colorado data 2D
LiRaM LVQ (classification accuracy) 83.0 80.0
LiRaM LVQ (1-NN acc. on embedding) 79.6 84.6
LLiRaM LVQ (classification accuracy) 78.7 73.8
LLiRaM LVQ (1-NN acc. on embedding) 79.9 83.7
LFDA (1-NN acc. on embedding) 50.4 61.1
NCA (1-NN acc. on embedding) 81.5 89.7
Colorado data 3D
LiRaM LVQ (classification accuracy) 88.9 86.3
LiRaM LVQ (1-NN acc. on embedding) 93.3 96.4
LLiRaM LVQ (classification accuracy) 87.7 85.8
LLiRaM LVQ (1-NN acc. on embedding) 92.8 96.1
LFDA (1-NN acc. on embedding) 89.6 93.8
NCA (1-NN acc. on embedding) 92.6 95.5

transformation. However, the numbers show that in most cases
the supervised dimension reduction was able to preserve high
accuracies even in the reduced spaces. We would like to point
out once more, that the computational effort for NCA is much
larger than for the LiRaM LVQ variants. NCA computes all pairwise
distances, while the LVQ approaches are based on a small number
of prototypes. In particular, for large data sets the computational
effort may be reduced significantly compared to NCA.

5.4. High dimensional gene expression data
Discriminative visualization can be particularly useful in the

context of medical data. Here we apply the LiRaM LVQ algorithm
to two gene expression data sets which were recently analyzed by
Faith, Mintram, and Angelova (2006).

The first set concerns small round blue cell childhood tumors,
and we refer to it as SRBCT (Faith et al., 2006). It comprises
cDNA microarray expression levels of 50 pre-selected genes in
83 different samples (Khan et al., 2001). The target classification
assigns every sample to one of 4 tumor types.

We will refer to the second data set as NCI. It contains gene
expression data from 60 cell lines from the National Cancer
Institute anticancer drug screen (Scherf, Ross, & Waltham, 2000).
Again 50 genes have been pre-selected and samples are to be
assigned to one of 8 different types of tissue.

For details of the data sets we refer to Faith et al. (2006) and
references therein. The authors present a method termed Targeted
Projection Pursuit (TPP) and compare it with several existing
techniques, including Multi-dimensional Scaling (MDS) (Ewing &
Cherry, 2001), VizStruct (Zhang, Zhang, & Ramanathan, 2004), a
dendrogram based method (Eisen, Spellman, Brown, & Botstein,
1998), and Projection Pursuit (Lee, Cook, Klinke, & Lumley, 2005).
TPP is demonstrated to outperform most of these methods or
to achieve at least comparable performance on the above data
sets. The employed data sets as well as source codes of TPP
implementations are publicly available (Faith et al., 2006).

First, we apply LiRaM LVQ with one prototype per class to the
SRBCT data set. Results presented here are obtained after 1000
epochs with respect to the entire data set of 83 samples. We
observe almost no variabilitywith respect to random initializations
of the system. A typical outcome is displayed in Fig. 8 (top row left
panel) where the obtained 2D visualization perfectly separates the

four classes. Error free visualizations were also obtained by Faith
et al., see Faith et al. (2006) for comparison.

The analogous application of LiRaM LVQ to the NCI 8-class-
problem shows a slightly larger variability of results. In 10 runs
with different random initialization we obtain after 1000 epochs
accuracies in the range from 95.1%–100%, with an average of 97.7%.
Fig. 8 (upper row, right panel) displays a perfectly separating
visualization.

For the sake of completeness we show the error-free example
results of the LLiRaM LVQ with one prototype per class in
Fig. 8 (bottom row). The algorithm was trained with the same
parameters as the global version on both, thewhole SRBCT andNCI,
data set. Again the four-class problem SRBCT can be separated in
every run with random initialization, whereas the training on the
NCI data set shows some variation in classification accuracy. We
achieved on the NCI data a mean average accuracy of 94.6% with a
standard deviation of 0.02 over the 10 random initializations.

The visualizations of these data sets achieved by LFDA and NCA
are shown in Fig. 9. LFDA was performed on the SRBCT data set
with k ∈ [1, 10], all yielding error free visualizations. On the NCI
data set the accuracy varied from 91.8% achieved with k = 4 to the
best accuracy of 96.7% using k = 1. For the training of NCA on the
SRBCT data set with l varying from one to 10, we observed error
free visualizations for l ≥ 3 and the worst accuracy of 80.7% for
l = 1. On the NCI data set an error free visualization is found for
l ≥ 10 and the worst performance was 59% observed with l = 1.

In Faith et al. (2006), error free visualizations of the NCI data
are obtained by means of TPP in combination with PCA, Projection
Pursuit and subsequent LDA or KNN classification. For a visual
inspection of the achieved separation we refer to Figs. 9 and 11
in Faith et al. (2006), which display either slightly overlapping
classes or only very small gaps between some of them. Other
methods considered in Faith et al. (2006) yield less favorable
results on this data set. Most of all, we would like to point out
that our method appears very simple and intuitive compared to
many other suggested approaches. However, it yields comparable
or even superior results at comparably low computational costs.

5.5. Satellite remote sensing data

Here we apply the algorithm to a large real world data set:
a multi-spectral satellite image of the Colorado area, focusing on
visualizing the class structure. Remote sensing spectral images
consist of an array of multi-dimensional vectors (spectra) assigned
to particular spatial regions (pixels) reflecting the response
of a spectral sensor at various wavelengths. A spectrum is a
characteristic pattern that provides a clue to the surface material
within the respective area. The use of these data includes areas
such as mineral exploration, land use, forestry; and many other
activities of economic significance.

We consider a data set that corresponds to an image taken close
to Colorado Springs using satellites of the LANDSAT-TM type. The
size of the image is 1907 × 1784 pixels, each of which correspond
to an area of 900 m2 on the ground. The spectrum is represented
by a 6-dimensional feature vector. The aim of the classification is
to assign each pixel to one of 14 classes, corresponding to specific
surface covers such as different types of forests, alpine vegetation,
water, etc., (see Hammer and Villmann (2002) and Villmann
et al. (2003) for a detailed description and Table 2 for the list of
classes).

A labeling of the entire image was provided by experts and
serves as the target classification. For further details of the data set
we refer the reader to Hammer and Villmann (2002), and Villmann
et al. (2003) where the authors apply scaled Euclidean distance
in combination with a Growing Self-Organized Map (GSOM). Test
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Fig. 8. Two-dimensional visualizations of the SRBCT data set (left column) and the NCI data (right column) obtained by the different variants of LiRaM LVQ explained in the
text.

Table 2
Short description of the different classes of the satellite image and the number of
pixels in each class.

Class Ground cover type # pixels

1 Scotch pine 581424
2 Douglas fir 355145
3 Pine/fir 181036
4 Mixed pine forest 272282
5 Supple/prickle pine 144334
6 Aspen/mixed pine forest 208152
7 Without vegetation 170196
8 Aspen 277778
9 Water 16667

10 Moist meadow 97502
11 Bush land 127464
12 Grass/pastureland 267495
13 Dry meadow 675048
14 Alpine vegetation 27556
0 Not classified 9

accuracies in the range of 90% have been achieved depending on
the specific method in use.

For the following, we selected 2000 examples per class
randomly, used as a training set. We also give the accuracies
evaluated with respect to the whole data set of 3 402 088 data
points. We have performed 10 runs of LiRaM LVQ with M = 2, 3
and three prototypes per class. After 1500 training epochs we
observe only very little variation due to the random initialization
of the system. The range of training accuracies is 79.8%–83% for
M = 2 and 87.5%–88.9% for M = 3, respectively. The classifiers
with the best training set performance achieve accuracies on the
whole set of 80.1% (M = 2) and 86.3% (M = 3), see Table 1.

In spite of the low-dimensional representation and the relatively
small numbers of prototypes we achieve very good accuracies.
This is consistent with the analysis in Villmann et al. (2003) which
suggests that good classification performance requires at least a
two- or three-dimensional representations of the data.

Here, we are mainly interested in the discriminative visualiza-
tion of the data set. Fig. 10 shows the data globally projected into
two and three dimensions, respectively. We also trained the lo-
calized LiRaM LVQ on 2000 random samples from each class with
slightly different parameters: 300 epochs, learning rates beginning
with αstart

= 0.001 and ∆α = 0.0001 for the prototypes, the
matrix Ω and the class-wise matrices Ψc respectively. We trained
the system with two and three prototypes per class. The average
accuracy on the training data is 75% with STD 0.03 in the two-
dimensional case with 28 prototypes. In three dimensions with
three prototypes per class we obtain a mean accuracy of 85.2%
and STD 0.02. These results correspond to the findings in Hammer
and Villmann (2002) where Generalized Relevance Learning Vec-
tor Quantization (GRLVQ) was applied to the data set: When prun-
ing to three dimensions a classification performance of ca. 84% can
be achieved, while dropping further dimensions decreases the ac-
curacy significantly. The visualizations resulting from the best run
in two and three dimensions are shown in Fig. 10 (bottom row).
Furthermore, the confusion matrix for the three-dimensional case
containing information about the class-wise accuracies and mis-
classification can be found in Table 3. We also provide the original
labeling of the satellite image and the estimated Labels with mis-
classification. The corresponding graphics can be found in Fig. 11.
The projections facilitate a detailed interpretation and analysis of
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Fig. 9. Two-dimensional visualizations of the SRBCT data set (left column) and the NCI data (right column) obtained by LFDA and NCA. A detailed explanation can be found
in the text.

the data set. We will present and exploit the obtained insights in a
forthcoming study.

We demonstrate the advantages of LiRaM LVQ and its localized
variant over LFDA and NCA: Fig. 12 shows the best visualizations
we could achieve with this method. We varied the value k and l in
the interval [1, 10] and for LFDA we achieved the best 1-NN error
measures on the visualizations with k = 6 and k = 9 for 2D and
3D respectively. While certain classes (e.g. 14, alpine vegetation)
seem to separate well, the overall discriminativity is limited. Only
50.4% accuracy can be achieved using a 1-NN classifier on the
training data in the two-dimensional case and 89.6% in the three-
dimensional case. For this particular data set the value of the
parameter k has no significant influence on the quality of the LFDA-
embedding of the training data. The computation of the 1-NN error
on over threemillion data points of the test setwas not practicable.
Therefore we draw 100,000 points randomly from the test set and
this reduced set serves as an approximation of the test-error. With
the best LFDA we observed 61.3% and 93.75% 1-NN classification
accuracy on the reduced test set for two and three dimensions,
respectively. Table 1 shows the detailed comparison. The use of
NCA turned out to be impractical due to excessive memory use.
Therefore,we reduced the training set to 900 samples per class.We
tried different values for the parameter l ranging from one to ten.
The best results are shown in Fig. 12 (bottom row) for k = 3 and
k = 2 in the 2D and 3D visualization respectively. On this data set
the best NCA parametrization showed comparable or even better
results than the LVQ approach. Nevertheless, some patience was
necessary to get these results due to the computational complexity
and the variation with respect to the parameter being huge. In the
two-dimensional case the 1-NN accuracy ranged between 56.43%

and 81.49% on the training set and in the 3-dim. case accuracies
between 67.29% and 92.56% were observed. The other methods
were shown to be faster and more robust with respect to the
parametrization.

6. Summary and outlook

In this paper we present the LiRaM LVQ algorithm together
with a localized variant, as a modification of Generalized Matrix
LVQ (Schneider et al., 2009). It employs rectangular projection
matrices to represent N-dim. feature vectors in an M-dim. space
internally. This makes it possible to limit the rank of the relevance
matrices used in GMLVQwhich parameterize an adaptive distance
measure. Obvious aims are to incorporate prior knowledge
of the intrinsic dimension or to reduce the number of free
parameters while maintaining good classification performance.
In particular for high-dimensional data sets this can reduce the
computational effort significantly. First we illustrate the approach
in terms of a multi-class benchmark data set and compare
with other methods of similar complexity. We demonstrate that
LiRaM LVQ is an efficient method for determining discriminative,
low-dimensional representations of labeled data and facilitates
good generalization behavior. In LiRaM LVQ, the search for the
appropriate subspace is guided directly by the classification
performance in a single supervised training phase. This is in
contrast to classical combinations of unsupervised dimension
reduction and subsequent supervised learning.

A particular attractive application of the concept concerns the
visualization of labeled data sets. SettingM = 2 or 3 in LiRaM LVQ
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Fig. 10. Visualizations of a small subset of the Colorado data set acquired by the different methods.

Fig. 11. The labels of a section of the Colorado satellite image (left panel) and the classification result obtained by the best run of LLiRaM LVQ in the 3D case (right panel).
Detailed information about the class-wise accuracies can be found in the confusion matrix Table 3.

provides us with a discriminative visualization of the original data
set. The algorithm results in linear or piece-wise linear decision
boundaries dependent on the number of prototypes and classes.
With the localized variant LLiRaM LVQ it is possible to visualize
even more complicated non-linear decision boundaries. The key
advantage over many other methods is that the search for the
suitable representation is directly integrated into the supervised
training procedure. We demonstrate the usefulness of this
concept in the context of several real world multi-class problems.

Furthermore we compare the visualizations to some recent state-
of-the-art supervised dimension reduction techniques, namely
LFDA and NCA. The LFDA approach provides an analytical solution,
but also depends on the computation of pairwise dissimilarities
within samples of the same class. The results may differ a lot
depending on the number k of neighbors used. For less complex
data sets, like the four class SRCBT cancer data set, error free
visualizations are possible. On other data sets LFDA showed worse
results compared to the other methods. NCA showed good results
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Fig. 12. Visualizations of a small subset of the Colorado data set acquired by the different methods.

Table 3
Confusion matrix of the 3D LLiRaM LVQ (Fig. 10 bottom right) on the Colorado data set.

C Actual class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0


1 460594 612 104 5 2376 458 49 883 4 0 0 1498 0 139 0 466722
2 13642 331530 590 11146 0 841 9 79 8 0 0 0 0 0 0 357845
3 0 9379 155775 17306 0 0 1 0 757 0 0 0 0 0 0 183218
4 0 3742 704 231063 0 596 1 7 90 0 0 0 0 0 0 236203
5 14776 0 11 0 122956 0 7793 0 1 0 0 2989 25239 70 0 173835
6 22880 8618 102 12235 5 203917 7 7980 28 0 0 0 0 0 0 255772
7 521 0 3 3 7337 0 111692 360 3 66 554 23873 31728 0 0 176140
8 18380 0 60 14 41 2340 11 256243 8 1 1597 10277 0 0 1 288973
9 14 1210 23613 479 143 0 46 0 15761 0 0 0 0 116 0 41382

10 3 0 5 7 38 0 12842 0 1 86795 7970 7894 7352 0 0 122907
11 0 0 18 11 0 0 285 11660 0 6508 117212 4352 0 0 0 140046
12 48564 54 38 5 8716 0 24687 566 3 2279 130 216576 10522 0 0 312140
13 2045 0 13 8 2611 0 4063 0 3 1853 0 36 582457 148 1 593238
14 5 0 0 0 111 0 8710 0 0 0 1 0 17750 27083 7 53667
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

581424 355145 181036 272282 144334 208152 170196 277778 16667 97502 127464 267495 675048 27556 9 3402088

Class-wise accuracy of the estimation in %
79.22 93.35 86.05 84.86 85.19 97.97 65.63 92.25 94.56 89.02 91.96 80.96 86.28 98.28 0

in most cases. Its performance is also dependent on random
initialization and the number of line searches l. NCA is based on
the computation of pairwise dissimilarities which is expensive
for large data sets. The LiRaM LVQ approach displays in all cases
comparable or superior results on the investigated data sets. The
computational effort depends on the target dimension, the number
of prototypes and the number of samples for training. Unlike
other methods, which require all pairwise dissimilarities, LiRaM
LVQ computes distances of samples with respect to only a few
prototypes. The observed influence of the number of protoytpes on

theperformance is relativelyweak compared to thedependence on
the neighborhood parameter in other methods.

The use of local or class-wise transformation matrices in
LLiRaM LVQ allows for more complex decision boundaries. The
decision boundary in the low-dimensional space is based on local
matrices attached to the prototypes. Note that the dimension
reduction itself is done in terms of a global linear projection.
The concept of using local dissimilarities in combination with
non-linear dimension reduction and visualization was recently
discussed in Bunte et al. (2010b).
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In this paper we have not emphasized one particularly attrac-
tive feature of relevance learning: The resulting transformation
and relevance matrices can be readily interpreted and carry im-
portant information about the structure of the data. For instance,
in the visualization of gene expression data, Section 5.4, we note
that several features (intensities) essentially do not contribute to
the highly discriminative linear combinations defined by Ω . This
type of information provides valid insights to the application ex-
pert and should be exploited systematically.

In forthcoming projects we will also investigate several
extensions of the method. So far, we only limit the maximum rank
of relevance matrices by choice of the parameter M , the effective
dimension of the transformation can become even smaller. In
applications, including visualization, it can be desirable to fix the
rank and tomake the systemexhaust the bound. This could be done
in terms of an efficient regularizationmethodwhichwe developed
recently (Schneider et al., 2010). Most importantly, we plan to
apply the LiRaM LVQ approach in various application domains,
including the ones discussed above. An example application in the
context of content based image retrieval is discussed in Bunte et al.
(2011).
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