

 University of Groningen

Process interference
Beest, Nick Robbert Thierry Philippe van

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Beest, N. R. T. P. V. (2013). Process interference: automated identification and repair Groningen:
University of Groningen, SOM research school

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

https://www.rug.nl/research/portal/en/publications/process-interference(46650755-a219-4554-88d6-f2ac343f597e).html

Process Interference:

Automated Identification and Repair

Nick van Beest

Published by: University of Groningen

Groningen, The Netherlands

Printed by: Ipskamp Drukkers B.V.

Enschede, The Netherlands

ISBN: 978-90-367-6024-9 (book)

978-90-367-6031-7 (e-book)

© 2013, Nick van Beest

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-

tem of any nature, or transmitted in any form or by any means, electronic, mechanical, now

known or hereafter invented, including photocopying or recording, without prior written per-

mission of the author.

RIJKSUNIVERSITEIT GRONINGEN

Process Interference: Automated Identification and Repair

Proefschrift

ter verkrijging van het doctoraat in de

Economie en Bedrijfskunde

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. E. Sterken,

in het openbaar te verdedigen op

donderdag 7 februari 2013

om 12:45 uur

door

Nick Robbert Thierry Philippe van Beest

geboren op 19 augustus 1984

te Dordrecht

Promotor: Prof. dr. ir. J.C. Wortmann

Copromotor: Dr. A. Lazovik

Beoordelingscommissie: Prof. dr. ir. W.M.P. van der Aalst

Prof. dr. G.B. Huitema

Prof. dr. M. Weske

Contents

1 Research context 1

1.1 Introduction . 1

1.1.1 Generic interference example 4

1.1.2 Verification . 5

1.2 Problem statement . 7

1.3 Methodology . 9

1.4 Thesis structure . 13

1.5 Publications in this thesis . 14

2 Related work 17

2.1 Business process modelling . 17

2.1.1 Process representation . 17

2.1.2 Data representation . 19

2.2 Interference . 20

viii Contents

2.3 Business process reconfiguration . 23

2.4 Automated runtime reconfiguration 25

3 Case Study Description 29

3.1 Case 1: Energy Market . 29

3.1.1 Case description . 29

3.1.2 Data collection . 30

3.1.3 Processes under investigation 31

3.2 Case 2: Telecom market . 34

3.2.1 Case description . 34

3.2.2 Data collection . 35

3.2.3 Processes under investigation 35

3.3 Case 3: Local government . 40

3.3.1 Case description . 40

3.3.2 Data collection . 40

3.3.3 Process under investigation 41

4 Process interference identification 45

4.1 Interference definition . 46

4.1.1 Graphical example . 46

4.1.2 Defining process interference using temporal logic 48

4.2 Method description . 53

Contents ix

4.3 Initial data gathering, cleaning and structuring 54

4.3.1 The case of the Energy Company 57

4.3.2 The case of the Telecom Company 59

4.4 Selection of business processes for analysis 60

4.5 Finding erroneous outcomes through data flow simulation 63

4.5.1 Execution serialization . 63

4.5.2 Data flow simulation . 64

4.5.3 Tracking data values during the simulation 64

4.6 Tool support . 66

4.6.1 Combinatorial complexity . 66

4.6.2 The analysis tool . 67

4.7 Analysis . 70

4.7.1 Energy Company erroneous combinations 70

4.7.2 Telecom Company erroneous combinations 74

4.8 Validation of results with process experts 77

4.9 Conclusion . 79

5 Dependency scopes and intervention processes 83

5.1 Introduction . 83

5.2 Dependency scopes . 85

5.3 Intervention processes . 86

x Contents

5.4 WMO dependency scope example 88

5.5 Required intervention processes . 89

5.6 Implementation . 92

5.7 Developed concepts and required patterns 95

6 Automated intervention process generation 99

6.1 Architectural overview . 100

6.2 Basic concepts . 103

6.2.1 Business process . 103

6.2.2 Dependency scope . 107

6.2.3 The planning domain . 111

6.2.4 Encoding the domain into a CSP 114

6.3 Automatic intervention process generation 115

6.3.1 Formation of the atomic actions 115

6.3.2 Generation of the planning domain 117

6.3.3 Formation of the initial planning state 122

6.3.4 Generating the intervention process 123

6.4 Automatic identification of critical sections 125

7 Implementation and evaluation 133

7.1 The prototype . 133

7.1.1 The process modeller . 133

Contents xi

7.1.2 The process executor . 134

7.1.3 The planner . 138

7.2 Evaluation . 139

7.2.1 Tests on case study . 139

7.2.2 Scalability in a simulated domain 141

8 General discussion and conclusion 145

8.1 Introduction . 145

8.2 Reflection on the research process 146

8.2.1 Design as an artifact . 147

8.2.2 Problem relevance . 147

8.2.3 Design evaluation . 148

8.2.4 Research contributions . 148

8.2.5 Research rigor . 149

8.2.6 Design as a search process 149

8.2.7 Communication of research 151

8.3 Discussion on Part I: Process interference identification 151

8.3.1 Reflection on results . 151

8.3.2 Methodological considerations 152

8.3.3 Process interference vs. software 152

8.4 Discussion on Part II: Concepts definition and automation 153

xii Contents

8.4.1 Reflection on developed artifacts 153

8.5 Discussion on Part III: Implementation and evaluation 155

8.5.1 Interference resilience . 155

8.5.2 Performance . 156

8.6 Reflection, limitations and further research 156

8.6.1 Reflection on available expertise 156

8.6.2 Reflection on the solution . 157

8.6.3 Limitations . 158

8.6.4 Directions for future research 158

8.7 Answer to the research questions . 159

8.8 Implications for organizations . 161

Bibliography 165

Appendices 177

List of abbreviations 199

Acknowledgements 203

Summary 207

Nederlandstalige samenvatting 211

List of Figures

1.1 Business process with concurrent data change. 4

1.2 Conditional branches with concurrent data change. 5

1.3 Design Science Research Methodology process model (Source: (Pef-

fers et al., 2007)) . 10

1.4 Research methodology . 12

3.1 Move out (a) and Change of metering responsible (b) 32

3.2 Change of supplier (a) and Meter change (b) 33

3.3 Buy packages and options (a) and Upgrade / Downgrade / Switch (b) 37

3.4 Close customer at end of contract terms (a) and Close customer

without freezing (b) . 38

3.5 Move customer (a) and Upgrade from ADSL to VOIP / IPTV / Broad-

band (b) . 39

3.6 WMO process model . 43

4.1 Business process with concurrent data change. 46

xvi List of Figures

4.2 Conditional branches with concurrent data change. 47

4.3 Creating a transition relation for an activity. 50

4.4 Creating a composition of Kripke structures based on two processes. 51

4.5 Analysis methodology. 55

4.6 Simplified example of a part of an EC process (BPMN). 58

4.7 Simplified example of a part of an EC process (Sequence Diagram). 59

4.8 Example of execution possibilities for two processes. 64

4.9 Sequence Diagram showing READ and WRITE services between stake-

holders. 65

4.10 Screenshot showing overlap in the EC case. 68

4.11 Screenshot showing selection of fields to incorporate in analysis. . . 68

5.1 Two business processes with concurrent data modification. 85

5.2 Business process with a dependency scope definition. 86

5.3 Specification of intervention activities. 87

5.4 Business process with dependency scope and connected interven-

tion activities. 87

5.5 Alternate solution to resolve dependencies. 88

5.6 Dependency scopes in the WMO process. 90

5.7 Required intervention processes corresponding to DS1, in case of

an address change . 91

5.8 Architectural overview of the prototype. 92

List of Figures xvii

5.9 Screenshot of dependency scope implementation within the BPMP. . 94

6.1 Main components of the framework and their basic interactions . . . 100

6.2 CS creation examples . 126

7.1 Screenshot of the Process Modeller. 134

7.2 Example of a Service Type and a Service Instance. 135

8.1 Sequence Diagram showing READ and WRITE services between stake-

holders. 178

List of Tables

1.1 Overview of used cases . 13

4.1 Overview of read and write indicators of the EC case 58

4.2 Overview of read and write indicators of the TC case 59

4.3 Overview of selected processes for Energy company 61

4.4 Overview of selected processes for Telecom company 62

4.5 Overview of the important functionality of the tool. 69

4.6 Erroneous output 1st comparison of the EC case. 71

4.7 Erroneous output 2nd comparison of the EC case. 72

4.8 Erroneous output 3rd comparison of the EC case. 74

4.9 Erroneous output 1st comparison of the TC case. 75

4.10 Erroneous output 1st comparison of the TC case. 76

4.11 Erroneous output 1st comparison of the TC case. 77

7.1 Performance results for generating the IPs of Figure 5.7 140

xx List of Tables

7.2 Re-planning times for the IP of Figure 5.7b (a) and the IP of Fig-

ure 5.7c (b) . 141

7.3 Performance results: Time for generating IPs of increasing size (do-

main size=100) . 142

8.1 Design-Science Research Guidelines (Source: (Hevner et al., 2004)) 147

8.2 Overview of used research instruments 150

8.3 Value of d at different states in the process. 178

8.4 Initial values 1st comparison EC case. 179

8.5 Desired output 1st comparison EC case. 179

8.6 Erroneous output 1st comparison EC case. 179

8.7 Initial values 2nd comparison EC case. 180

8.8 Desired output 2nd comparison EC case. 180

8.9 Erroneous output 2nd comparison EC case. 181

8.10 Initial values 3rd comparison EC case. 181

8.11 Desired output 3rd comparison EC case. 182

8.12 Erroneous output 3rd comparison EC case. 182

8.13 Initial values comparison 1 TC. 183

8.14 Desired output 1st comparison TC. 183

8.15 Erroneous output 1st comparison TC. 183

8.16 Initial values comparison 2 TC. 184

8.17 Desired output 2nd comparison TC. 184

List of Tables xxi

8.18 Erroneous output 2nd comparison TC. 184

8.19 Initial values 3rd comparison TC. 185

8.20 Desired output 3rd comparison TC. 185

8.21 Erroneous output 3rd comparison TC. 185

CHAPTER 1

Research context

1.1 Introduction
Business processes constitute the core of the operational systems in organizations.

Business processes typically comprise interrelated tasks executed by operational

functions like purchasing, manufacturing, planning, marketing and sales. As a con-

sequence of the complexity of modern business processes, support of these busi-

ness processes by enterprise information systems (EIS) is a necessity (Dewett and

Jones, 2001).These systems offer support for the work of employees. This sup-

port may consist of a wide array of functionality, including business process man-

agement, which guarantees correct sequencing of business process tasks. Due

to rapidly changing environments, new stakeholders and competitors, it is impor-

tant that a business process can be changed and flexibility is essential (Moitra and

Ganesh, 2005).

Current organizations are characterized by long-running complicated business pro-

cesses that involve many different stakeholders. If some activities or subprocesses

are executed by one or more external parties, business processes are called dis-

tributed. Increasingly, business processes have a distributed nature. Similarly, data

resources used by the business process are not necessarily proprietary to one

2 1.1. Introduction

organization and can be shared with other stakeholders. Data needed during exe-

cution of a process may also be called distributed if these data are owned by more

than one party. In the case of data, it can be observed in reality that data are

increasingly distributed as well.

Due to their distributed nature, modern business processes are required to be able

to execute independent from other processes, in order to avoid an abundance of

dependencies between different stakeholders. Consequently, business processes

and their data are designed with an inherent assumption of independence of pro-

cesses and, as a result, their data.

The representation of a single execution of a process is called a process instance

(WfMC, 1999; Russell et al., 2005). Although, multiple instances of a process may

run simultaneously, each of these is assumed to be independent (Russell et al.,

2005). Accordingly, if instances of processes are executed concurrently, it is im-

plicitly assumed by their designers that these instances cannot affect each other.

However, multiple instances may require the same data over a certain timeframe.

As a consequence, unanticipated interaction may arise between processes as a

result of shared data usage between process instances of concurrent processes.

Data, modified by an external process, may result in unexpected behaviour and

undesirable business outcomes.

Example 1.1.1 (Example of interference). A customer of an energy company may

decide to change his energy provider. During the execution of this process (which

may take up to 6 months, depending on the contract ending date), the customer

decides to move to another home. After the customers address has been changed,

the process responsible for handling the switch of the energy provider may use the

outdated address. As a result, there may be a discrepancy between the actual

address of the customer and the address that is used for his invoices.

A more subtle example is illustrated by Example 1.1.2, where disruptions are caused

by implicit data interdependencies with the data that is modified. This interdepen-

dence of data is hard to pinpoint and is not automatically captured by data-flow

analyses.

Chapter 1. Research context 3

Example 1.1.2 (Example of an implicit data interdependency). Consider a business

process for issuing a wheelchair for disabled people: in the Netherlands, it takes

up to 6 weeks from sending the initial request to receiving an actual wheelchair.

After the request, first a home visit has to take place at the patient, followed by the

acquirement of requirements. Subsequently, the order is sent to the supplier, where

the wheelchair is manufactured. Finally, the wheelchair is delivered to the patient.

If in the meantime the patient has moved to a different place, it is possible that

the requirements for wheelchair need to be changed. This is caused by an implicit

data interdependency between address and wheelchair-order: a change of address

implies that the previously executed home visit is no longer useful, as it concerned

the previous home of the patient. As the requirements are partially based on the

result of the (now outdated) home visit, a new home visit is necessary. The newly

executed home visit may, in turn, result in a change of requirements (e.g. different

dimensions due to smaller doorways). If requirements are indeed to be changed,

this has a consequence for the order itself and the supplier should be notified.

Example 1.1.2 clearly shows the effect of implicit data interdependencies. Only at

the delivery, the address is explicitly required. However, it is implicitly required for

the order, as the order is based on requirements that are partially resulting from the

home visit, which is executed at a certain address.

The process environments described in Example 1.1.1 and 1.1.2 lead to those prob-

lems that are initially not necessarily experienced inside the organization, as no

error messages like a dynamic deadlock detected are signaled. Although such

data interdependencies may in the worst case scenario cause process instances

to fail, in most cases the regular finish of the business process does not visibly af-

fect the performance parameters that are monitored (e.g. the number of rejected or

unfinished cases). The disruption has, however, a considerable effect as the final

result is undesirable from a business perspective. That is, customer satisfaction

is negatively affected in the long run. The customer is seen here as an external

resource involved in the execution of the concurrent business processes, which is

spread over more organizations.

4 1.1. Introduction

These problems are referred to as process interference (Xiao and Urban, 2007;

Van Beest et al., 2010a). Process interference is defined in this thesis as the situa-

tion where data modifications by one process affect one or more other concurrently

executing processes, which potentially causes an undesired process outcome for

one or more of these processes. More specifically, consider a process P where

some data element d is read by process P and a part of the subsequent execution

of P assumes that d remains unchanged. A process Q interferes with P if there is a

sequence of events where d is modified by process Q, while process P is still in the

part of execution where d is presumably unchanged. A formal definition of process

interference is provided in Section 4.1.2.

1.1.1 Generic interference example
Heretofore, process interference has been primarily illustrated by means of an ex-

ample. In this section, a more generic description of process interference will be

provided. In Figure 1.1, two independent concurrent processes are shown using a

common database. That is, a mutation of a data element by one process, affects

the value of the corresponding data element of the other process as well.

B1
read: b
write: g
delete:

B2
read: g
write: d
delete:

A1
read: d
write: c
delete:

A2
read: c
write: a
delete:

A3
read: a
write: e
delete:

t

Process 1

Process 2

Figure 1.1: Business process with concurrent data change.

Activity A1 reads d and writes to c. Subsequently, activity A2 reads the value of c

and writes to a accordingly. Finally, activity A3 reads a and writes to e. Implicitly, the

value of e is by transitivity dependent on d. If a concurrent process changes that

value of d (activity B2) after it has been read by process 1, potentially e will have

the wrong value assigned.

Chapter 1. Research context 5

A1
read: a
write: b
delete:

[d = x]

[d ≠ x]

A2
read: b
write: c
delete:

A3
read: a
write: e
delete:

A4
read: e
write: f
delete:

B1
read: g,h
write: i
delete:

B2
read: i
write: d
delete:

t

Process 1

Process 2

Figure 1.2: Conditional branches with concurrent data change.

Similarly, such an external data mutation may also affect the subprocesses that

follow after the evaluation of a condition. In Figure 1.2, for example, the decision is

based on the value of d. That specific decision determines whether A1 and A2 are

executed or A3 and A4. If d is changed by another process during execution of A2,

this may have consequences for the correctness of the activities being executed at

that time. That is, as a result of the data change, currently the wrong branch of

activities is executed.

In Chapter 4, a formal definition of process interference will be provided.

1.1.2 Verification
The control-flow of a process describes the execution order of activities through dif-

ferent constructs, e.g. sequence, choice, parallelism and join synchronization (Van

Der Aalst et al., 2003a). In order to ensure soundness of a business process, much

research has been done concerning verification of processes. This so-called work-

flow verification checks the control-flow of the process to guard for e.g. deadlocks

and livelocks. Although all organizational processes inherently use data, data is in

most cases seen as a black box in workflow verification techniques. However, the

link between data and processes requires data to be a fundamental part of work-

flow verification. In theory, verification techniques can be extended to data as long

6 1.1. Introduction

as the domain is finite. For instance, CPN Tools (Jensen and Kristensen, 2009) can

model processes with data, allowing for model checking on the resulting finite state

space. However, existing approaches do not manage huge or infinite data domains

very well. That is, there are existing approaches that work, but they only work when

data domains are manageable.

Such a data extension has been proposed by Trčka et al. (2009), by extending the

control-flow model with data elements (workflow nets with data), which allows for

capturing both control-flow and data-flow errors. Sidorova et al. (2011) present an

extension of workflow with data operations, in order to provide a precise analysis

of the soundness of a workflow. In Monakova et al. (2009), a verification algorithm

is presented to verify business constraints in the process. However, these verifi-

cation techniques analyze workflows and their data-flow in isolation. That is, data

dependencies between concurrent processes are only visible when the processes

are modelled in the same domain. More specifically, data changes by activities

from a different business process are ignored. Due to the lack of attention to data

changes by other processes during execution, process interference may still occur.

In addition, data resources are increasingly shared with other external actors and

processes, where a part of the process to be verified is defined and implemented

outside the organizational boundaries. This implies that all data changes initiated

by processes outside the scope of the process model are not checked and cannot

be verified. As a result, identification of this problem is rather complex. However,

verification techniques can be used for detection of potential problems (as shown

in Chapter 4). In Chapter 4, we will adapt this technique to provide a structured

definition of the problem described here.

Although the analysis of data dependencies and process interference itself is in-

vestigated in academic literature (see e.g. (Xiao and Urban, 2008)), the presented

methods apply only in context of failing processes and refer to highly distributed

environments or service-oriented environments. That is, the provided solution is

situation and implementation dependent. In practice, however, these interfering

processes do not necessarily fail. Rather, they may execute correctly (i.e. with-

out internal error messages) but provide the wrong business result, especially from

Chapter 1. Research context 7

a customer perspective. Furthermore, process interference is not limited to dis-

tributed or service-oriented environments. In addition to failing processes, Urban

(Urban et al., 2011) proposes an approach to define (design-time) rules to specify

the required compensation actions in case of interference, incorporating events like

exceptional conditions or unavailable activities. Nevertheless, problems occurring

at a regularly executing process due to the use of inaccurate data are not consid-

ered.

1.2 Problem statement
Process interference occurs far more often than most people realize. Processes

are developed under the assumption that case-related data are stable, and this

assumption is in general not true. As soon as case-related data are changed, pro-

cesses may yield wrong results, however, without leading to immediate software

errors. Because there is often not an immediate software error, the incorrect im-

pression exists that the process runs well. These errors in the real world lead to

customer complaints, legal cases, and many untraceable societal costs (Van Beest

et al., 2010b). However, their root cause, process interference, is overlooked in

process management software architectures.

In addition, these situations are not limited to those processes, which include choice

and parallelism, but also appear when multiple sequential processes are executed

concurrently. Furthermore, this problem is not necessarily related to a specific tech-

nology used; this problem is independent from technical implementation details.

This current lack of existing mechanisms to manage interdependencies and inter-

ference stems from the complexity of the problem itself and, more importantly, the

troublesome identification of interference. More specifically, the undesirable busi-

ness process outcomes are characterized by a rather regular end of the business

process with only small internal disruptions to the organization. As a result, these

problems are initially not necessarily experienced inside the organization, as no

error messages like a dynamic deadlock detected are signaled. However, the ex-

ternal part of the disruption has a considerable effect, as the problem induced by

8 1.2. Problem statement

interference is primarily noticed by the external stakeholders (mostly customers).

As a result, full identification of the individual troublesome cases and the severity of

interference throughout the entire process is rather complex.

The problem is, therefore, twofold. First of all, the identification is difficult, due to the

complexity of the problem and magnitude of the state space of the problem. Sec-

ond, once process interference is identified, it is difficult to prevent due to external

stakeholders, volatile data, and lack of model checking and verification possibilities

other than checking each individual interference case.

Similarly, this thesis will be divided into two parts. The first part will address the

identification of business process interference. Consequently, the following re-

search questions are addressed in the first part of this thesis:

Research Question 1

How can business process interference be identified?

Research Question 2

How can the severity of existing business process interference be as-

sessed?

The second part of this thesis will describe the design of a solution to business

process interference. Therefore, the following research questions are addressed in

the second part of this thesis:

Research Question 3

How can business process interference be prevented in enterprise infor-

mation systems and which artefacts are required to ensure process and

data consistency?

Chapter 1. Research context 9

Research Question 4

What techniques are required for automated recovery from process inter-

ference?

1.3 Methodology
This research is triggered by a business problem that is recognized by both organi-

zations and their stakeholders, such as customers. Current artifacts are insuffient

to overcome the business problems as described. This lack of suitable existing arti-

facts prevents routine design and requires the design of a new (set of) generalizable

artifact(s) to resolve this business problem.

The design science research methodology (DSRM) process model as described

by Peffers et al. (2007) provides a clear description of the design process and de-

scribes the steps from problem definition to evaluation and communication in detail.

In the problem identification and motivation step, the specific research problem is

defined and the value of a solution for that problem is justified. In the second step

the objectives are defined for a solution. The objectives are inferred from the prob-

lem definition. The third step comprises the actual design of the new artifacts,

which can be in the form of constructs, models, methods, or instantiations (March

and Smith, 1995; Hevner et al., 2004). After the design, the artifacts are demon-

strated by solving one or more instances of the problem. The fifth step concerns

the evaluation of the design, by testing the effectiveness of the artifacts to solve

the business problem under investigation. In the final step, the gathered knowledge

from the problem and the designed artifacts are communicated to the appropriate

audience and added to the knowledge base (Peffers et al., 2007).

As the research is triggered by the observation of the business problem, the re-

search presented in this thesis can be categorized as problem initiated design sci-

ence, according to the DSRM model (Peffers et al., 2007) shown in Figure 1.3.

Due to the problem-solving nature of design-science, an explicit generalization step

10 1.3. Methodology

Possible Research Entry Points

Identify Problem &
Motivate

Define Problem

Show Importance

Define Objectives
of a Solution

What would a
better artifact
accomplish?

Design &
Development

Artifact

Demonstration

Find suitable
context

Use artifact to
solve problem

Evaluation

Observe how
effective, efficient

Iterate back to
design

Communication

Scholarly
publications

Professional
publicationsIn

fe
re
nc
e

T
he
or
y

H
ow

to
K
no
w
le
dg
e

M
et
ric
s,
A
na
ly
si
s

K
no
w
le
dg
e

D
is
ci
pl
in
ar
y

K
no
w
le
dg
e

Process Iteration

Problem-
Centered
Initiation

Objective-
Centered
Solution

Design and
Development
Centered
Initiation

Client / Context
Initiated

Nominal process
sequence

Figure 1.3: Design Science Research Methodology process model (Source: (Peffers et al.,

2007))

to identify the generalized problem absent or not elaborated (including the model

of Peffers et al. (2007)). Consequently, the resulting solution is context-specific.

Although the regulative cycle (Van Strien, 1997) contains a diagnosis step to in-

vestigate the detailed underlying causes of the problem, each cycle is initiated by

a context-specific problem, which is intended to be resolved by the design. Corre-

spondingly, the frameworks lack an explicit validation step to ensure the applicability

of the solution to all organizations where the problem occurs. The model of Peffers,

for example, only evaluates the efficiency and effectiveness of the particular solu-

tion. As a result, it is inconclusive whether a designed solution would apply to all

organizations with a conceptually similar problem. However, this thesis does not in-

tend to limit the provided solution to a single instance, but rather provides a generic

solution applicable to all process interference cases.

The problem that is investigated in this thesis exists on a conceptual level, regard-

less of the technologies used, and pertains to many organizations. A specific solu-

tion for a particular situation with a particular implementation would, therefore, not

suffice. The independence from implementation suggests that the problem itself

has a more generic nature. That is, the problems as perceived by organizations

and their stakeholders are merely symptoms of an underlying, more fundamental

problem. In this thesis, the artifacts are designed in a way that they resolve the

fundamental problem rather than the mere symptoms, in order to provide a gen-

eralizable solution to the symptoms as identified by organizations. Therefore, the

Chapter 1. Research context 11

methodology used in this research comprises two additional steps over the exist-

ing design science research methodology developed by Peffers et al. (2007). The

first step that is added to the DSRM model concerns the identification of the gen-

eralized problem. The second additional step concerns the validation of the design

with a case, as the design process should be connected with the application con-

text (Hevner, 2007). A solution for this generalized problem leads to generalized

academic knowledge. This step is necessary for corroboration of the entire work,

from problem analysis via generalization to the designed solution.

In Figure 1.4, a detailed overview is provided of the research methodology used

in this thesis. This thesis consists of three parts. The first part is concerned with

the analysis of the problem in the business context. An in-depth analysis of the

problem will be performed, by conducting two case studies to identify process in-

terference based on detailed documentation about the process and experience of

users. Moreover it comprises the additional generalization step, to formulate a more

formal generic problem. In addition to the case studies, the generic problem is also

derived from existing experience and knowledge as well as the existing knowledge

and formalisms available in literature.

The second part of the thesis comprises the design process. Based on the gen-

eralized problem, a set of new modeling constructs is developed during an itera-

tive design process. Furthermore, the design is grounded in the existing literature,

in order to ensure a fit with existing business process modeling paradigms. The

newly designed artifacts are the primary addition provided by this research to the

academic knowledge base. Finally, the design constructs are implemented as an

extension to an existing business process modeling tool.

The third part of the thesis comprises the evaluation of the design and the valida-

tion. After implementation of the design, the artifacts are applied to another real-life

case. The case used for the assessment of the artifacts with the requirements is

independent from the cases used in the problem definition phase. This indepen-

dence of cases is necessary, in order to ensure that the designed artifacts are not

biased towards the symptoms as identified from the environment. A representative

business process of this case is modelled including the newly designed constructs.

12 1.3. Methodology

Next, a simulation of the process is executed with disruptions, in order to test and

evaluate the effectiveness of the designed concepts.

Part 3

Part 2

Part 1

Identify problem and define requirements for solution

Business process
selection

Combinatorial
analysis

Results
Generalized problem

Design solution

Business Process
Business Process
Business Process

Case study 1

Business process
selection

Combinatorial
analysis

Business Process
Business Process
Business Process

Case study 2

Cross
Check

Implemenation and evaluation

Business Process
Business Process
Business Process

Case study 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Discussion and conclusion Chapter 8

Automation of solution

Figure 1.4: Research methodology

Throughout this research, three case studies have been conducted, serving differ-

ent purposes. An overview of these cases is provided in Table 1.1.

Chapter 1. Research context 13

Case Purpose RQ Thesis part

1. Energy supply chain Problem identification, development of pro-

cess interference identification methodology.

1 and 2 1

2. Telecom company Problem identification, development of pro-

cess interference identification methodology.

1 and 2 1

3. Dutch local government Testing and validation of designed solution. 3 and 4 2 and 3

Table 1.1: Overview of used cases

Although each case concerns a different industry, the selected cases share the

following important properties:

1. Complex and long-running processes.

2. Parallel execution of processes that use implicitly related data.

3. Multiple stakeholders.

This similarity of properties of the investigated cases implies that all cases are li-

able to the problems as described. As a result, all cases are very well suitable for

both identification of the generic problem and evaluation of the designed solution.

Furthermore, the separation between Part 1, Part 2 and Part 3 (and the subsequent

use of different cases) prevents the designed artifacts from being biased towards

specific properties or symptoms of the cases used for problem identification.

1.4 Thesis structure
The remainder of this thesis is structured as follows. Chapter 2 provides the state of

the art in business process modelling, verification and business process reconfigu-

ration. In Chapter 3, a detailed overview of the case studies is provided, along with

a description of the data collection and the processes under investigation. In Chap-

ter 4, a method is presented along with an operational tool that enables to identify

the potential interference and analyze the severity of the interference resulting from

concurrently executed processes.

In the second part of the thesis, the design of the artifacts is provided in Chapter 5

14 1.5. Publications in this thesis

and Chapter 6. Chapter 5 introduces the concept of dependency scopes to repre-

sent the dependencies between processes and data sources. In addition, interven-

tion processes are developed to repair inconsistencies using dynamic reconfigura-

tion during execution of the process. In Chapter 6, an approach is presented for

automating the generation of intervention processes at runtime, by using domain-

independent AI planning techniques. Furthermore, an algorithm is presented for

automating the specification of dependency scopes.

Finally, the third part of the thesis, which is covered by Chapter 7, describes the im-

plementation and evaluation of the design by means of case study 3. A prototype of

the architecture (as presented in Chapter 6) is implemented and evaluated. The aim

of the evaluation is to demonstrate the effectiveness of the approach with respect

to the working example presented in Section 7.1 and to test the performance with

respect to the time that is required to generate the required intervention processes.

Chapter 8 provides a summary of the work and provides a detailed discussion on

each of the developed concepts.

In Appendix A, the low-level results of the analysis are provided, including the meta-

data as used by the analysis tool. In Appendix B, a complete BPEL represention

is provided of the eGovernment process. The variable interdependencies of that

process are specified in Appendix C. The AI Planning representation of the eGov-

ernment process is provided in Appendix D.

1.5 Publications in this thesis
The work has been developed in collaboration with various people (as the publica-

tions indicate), in particular with Hans Wortmann, Alexander Lazovik, Eirini Kaldeli

and Pavel Bulanov. The work presented in the thesis is primarily concerned with

the problems regarding process interference in organizations. We have developed

a method to identify the extent of process interference based on process documen-

tation [3][5] (Chapter 4). Using simulation, troublesome cases can be identified

and the severity of the interference can be determined. Furthermore, we have

developed a number of concepts to resolve process interference by runtime recon-

Chapter 1. Research context 15

figuration [4] (Chapter 5). Consistency of business processes can be restored by

runtime generation of intervention processes [1], based on automated discovery of

dependency scopes [2] (Chapter 6) and AI planning techniques, which have been

developed by Eirini Kaldeli. A prototype has been implemented (in close collabora-

tion with Pavel Bulanov) and evaluated in [1] and [2] (Chapter 7).

[1] Van Beest, N.R.T.P., Kaldeli, E., Bulanov, P. Wortmann, J.C., Lazovik, A., 2012.

Automated Runtime Repair of Business Processes. Submitted.

[2] Van Beest, N.R.T.P., Kaldeli, E., Bulanov, P. Wortmann, J.C., Lazovik, A., 2012.

Automatic Detection of Business Process Interference. International Workshop

on Knowledge-intensive Business Processes (KiBP’12), Rome, Italy. Invited

paper.

[3] Van Beest, N.R.T.P., Lazovik, A., Wortmann, J.C. Automated discovery of busi-

ness process interference. In progress.

[4] Van Beest, N.R.T.P., Bulanov, P. Wortmann, J.C., Lazovik, A., 2010. Resolving

Business Process Interference via Dynamic Reconfiguration. 8th International

Conference on Service Oriented Computing (ICSOC-2010), Lecture Notes in

Computer Science, Vol. 6470/2010, pp 47-60.

[5] Van Beest, N.R.T.P., Szirbik, N.B., Wortmann, J.C., 2010. Assessing The In-

terference In Concurrent Business Processes. Proceedings of the 12th Inter-

national Conference on Enterprise Information Systems, ICEIS 2010, Springer,

Vol. 3, pp 261-270.

[6] Van Beest, N.R.T.P., Szirbik, N.B., Wortmann, J.C., 2009. A Vision For Agile

Model-driven Enterprise Information Systems. Proceedings of the 11th Interna-

tional Conference on Enterprise Information Systems, ICEIS 2009, Springer, pp

188-193.

CHAPTER 2

Related work

2.1 Business process modelling

2.1.1 Process representation
In the early 1990s, business process (BP) modelling emerged with the purpose of

analyzing the BP. BP models are capable of specifying the activities in the BP and

the control-flow between these activities. The modeling of business processes has

become a strategic goal in many organizations (Weske et al., 2006) and the graphi-

cal representation of these models proved to be useful to determine potential areas

of improvements, forming the basis of BP redesign (Davenport and Short, 1990).

Along with the appearance of integrated information systems, BP modelling also

gained popularity for design and specification of enterprise information systems

(Johannesson and Perjons, 2001).

When BPs are graphically specified with the purpose of IS design, two categories

of BPs can be identified. One category is mainly consultancy oriented, i.e. the

models are primarily used among business analysts and system architects as a

graphical language for specifying the business process. For instance, the Unified

Modeling Language (UML) provides a set of graphical modeling notations to model

18 2.1. Business process modelling

an IS. UML is designed in the 90s and has been a widespread standard in soft-

ware engineering since 1997 (Booch et al., 2005; Fowler and Scott, 2000). In UML,

the BP is modelled by means of activity diagrams, where activities are connected

through arcs. In 2005, UML has been updated to version 2.0, to support the spec-

ification of pre and post conditions, events and actions, time triggers, time events,

and exceptions (OMG, 2005).

Similarly, the Business Process Management Initiative introduced the Business

Process Modelling Notation (BPMN) in 2004, which has the primary goal to pro-

vide a notation that is readily understandable by all business users (White, 2004).

The process flow is represented in a graph-oriented way, where the explicit control-

flow is defined by events, activities, and gateways, which are connected through

sequence flows and message flows (Kopp et al., 2008; White, 2004). In 2009,

BPMN was updated to version 2.0 (OMG, 2009). Although BPMN 2.0 includes de-

tailed execution semantics for all BPMN elements, it still only provides an informal

description of those semantics (OMG, 2009).

Although intuitively readable, neither UML or BPMN are formal, executable mod-

elling languages (Urban et al., 2011; Kopp et al., 2008). Due to the lack of formal

semantics, execution based on these models is not directly possible. However, in

many cases these models can be converted into a models based on a genuine BP

formalism in order realize such an executable model as shown by Ouyang et al.

(2006) and Dijkman et al. (2008).

The other category is focused on formal activity sequencing and coordination (i.e.

the control flow perspective), using Petri-nets (Van Der Aalst, 1998), activity-based

workflow modeling (Bi and Zhao, 2003) or block-structured modelling (e.g. Busi-

ness Process Execution Language (BPEL), (Juric, 2006)). These formal BP spec-

ifications allow for automated analysis of the model, in order to discover syntactic

errors, deadlocks, livelocks and orphan activities through modeling and analysis

(Van Der Aalst, 1997; Trčka et al., 2009). These models can be used as an exe-

cutable specification to be used by the IS.

For instance, Workflow Nets (WfNs) provide a formal basis for workflow modelling

Chapter 2. Related work 19

and offer the possibility for model-checking and verification (Van Der Aalst, 1997;

Verbeek et al., 2001). Model checking is a set of formal techniques that is used to

verify systems against its specifications (Clarke et al., 1999). Workflow modelling

has its roots in Petri Nets, which were invented in 1962 by Carl Petri (Petri, 1962).

A Petri Net is a directed bipartite graph with nodes representing either places or

transitions, which are connected through directed arcs 1.

The Business Process Execution Language for Web Services (BPEL) (Arkin et al.,

2007) is a block-structured language, where control flow is defined similar to ex-

isting programming languages by using block-structures such as if or while. It is

considered the de-facto standard for implementing BPs on top of web services

technology (Verbeek, 2005; Weske et al., 2006; Ouyang et al., 2007) and has been

designed specifically to support web services-based processes as an important

part of an SOA. Similar to WfNs, BPEL models provide the possibility for model-

checking and verification as well, e.g. using conversion to Petri Nets (Ouyang et al.,

2007) or pi calculus (Liu et al., 2007).

2.1.2 Data representation
The information used by business processes is represented by data, which is stored

in one or more databases. A database is usually structured according to a data

model (or ontology), which describes the semantics of the data. The data model

may contain rules and constraints to ensure the data to be consistent and to cor-

respond with the reality in the business environment (Nicolas, 1982; Alwan et al.,

2011).

Every activity in a business process requires data for its execution. Data can be

read, new data can be generated or existing data can be modified. A decision (e.g.

an XOR split) requires data to select the consecutive execution path (Meda et al.,

2010). As a result of these interactions between activities and data, data itself may

be continuously changing during runtime. Consequently, design-time checking and

verification alone is not enough to ensure data consistency. Therefore, runtime

1For a review of the history of Petri nets and an extensive bibliography, the reader is referred to Murata

(1989).

20 2.2. Interference

consistency checking and management of data transactions is required to maintain

data integrity (Bernstein et al., 1987).

A transaction is a set of operations on data by a database in a reliable way inde-

pendent of other transactions. Reliable execution of data transactions is ensured

by four basic properties. First of all, transactions are atomic. That is, transactions

are executed indivisibly (Haerder and Reuter, 1983). Secondly, any mutation to

the database is achieved through data transactions. This implies that every correct

transaction, committing its results, brings the database from one consistent state

into the other, thus preserving consistency (Haerder and Reuter, 1983). Thirdly,

each transaction is unaware of any other concurrently executed transactions. That

is, events within a transaction are hidden to other transactions, which is referred to

as isolation. Finally, once a transaction is committed, it cannot be withdraw and is,

therefore, final and guaranteed to survive any system failures durable.

The simultaneous enactment of various process instances implies a concurrent

execution of database transactions. Concurrent execution may result in data in-

terference as a result of interleaving transactions. Database theory has provided

several solutions in the past to manage concurrent transactions, in order to pre-

serve data consistency. Preserving consistency and achieving isolation is referred

to as concurrency control. An overview can be found in Bernstein et al. (1987).

Consistency is expected to hold not only for individual transactions but also when a

set of transactions completes. Methods for ensuring consistency during completion

of a set of transactions are presented by, for example, Garcia-Molina and Salem

(1987) and Korth and Speegle (1988). An overview of database consistency re-

quirements and transaction correctness properties is presented by Ramamritham

and Chrysanthis (1993).

2.2 Interference
For a single program without parallelism, techniques exist to ensure that consis-

tency of the data is maintained during execution. However, consistency problems

may occur if independent processes access and change the same data without

Chapter 2. Related work 21

global coordination via e.g. a database management system. (this possibility be-

came obvious when the database management systems of the past started to have

multiple, concurrent access). In the study of such systems for classic databases

of transaction-based systems, the focus has been primarily on implementing ACID

transaction semantics (for a review, see (Xiao et al., 2006)). This tradition has been

taken into account in the more recent service composition research. This research

investigates technology to avoid data consistency problems when designing com-

posite services. In Xiao et al. (2006), a global database of object history execution

(as the PHCS process history capture system) is proposed, which is appropriate in

a dynamic service composition environment, with frequent rollbacks and cascading

compensated activities. Nonetheless, from the perspective of the design-time data-

flow analysis, there have been only a few recent research approaches (Xiao and

Urban, 2007; Meda et al., 2010; Trčka et al., 2009) to provide a systematical dis-

covery of data-flow errors in business processes. As observed by Sun et al. (2006),

existing commercial workflow systems, for example, do not yet provide adequate

tools for data-flow analysis at design time.

Concurrent processes and their instances are assumed to be independent. Al-

though temporal analysis methods exist to verify resource constraints, these meth-

ods assume coordinated concurrent execution. In (Li and Yang, 2005) for instance,

a formal approach for dynamic verification of temporal constraints is proposed. In

(Trčka et al., 2009), temporal logic is used for data-flow analysis in business pro-

cesses to ensure soundness of both the control-flow and the data-flow (Trčka et al.,

2009). In Sidorova et al. (2011) an extension of workflow with data operations pro-

vided, in order to provide a precise analysis of the soundness of a workflow. In

Monakova et al. (2009), an algorithm is presented extending BPEL process verifi-

cation with a data-flow analysis. In (Sun et al., 2006), a data-flow matrix is proposed

to integrate data-flow models in the control-flow (or workflow) model, in an attempt

to detect data-flow errors, redundant data, and potential data conflicts.

In distributed environments, multiple non-synchronized processes are executed

concurrently within an organization or between organizations, especially when parts

of the information system are delegated or outsourced (as described by Balsters

22 2.2. Interference

and Huitema (2007)). As a result, data can be changed by another process hav-

ing simultaneous access to a distributed database. In addition, data can also be

changed in reality without awareness of the currently executing process. That is,

there may be a mismatch between data in reality and data as assumed the process.

In both cases, the data used by the process is different than the data outside the

system (i.e. reality or the distributed database). The situation where a data change

in reality is not taken into account during execution of a process instance is referred

to as an external data change.

Consequently, traditional verification techniques for workflow and data-flow are not

sufficient for ensuring the correctness of such BPs, as they assume that process

and data interactions are available and can be predefined in advance. However, not

all interactions are known or pre-specified, since data can be changed externally,

without providing a notification to the business process in progress. As a result,

runtime disruptions due to external data changes cannot be prevented or avoided.

Ensuring consistency between the internal data representation and the external

business reality is more complex and cannot be easily resolved by these transac-

tion correctness properties. It requires a continuous observation of reality and a

comparison with the internal data representation. As such, the data requirements

set by reality are not modeled. Accordingly, they cannot be represented or resolved

in a software implementation.

Example 2.2.1 (Erroneous path situation). The creditworthiness of a customer is

checked prior to approving his order. Consequently, this order is accepted and

delivered. If that customer goes bankrupt, it is apparent that the order should not

have been delivered (in reality). However, no errors are shown in the system. More

specifically, the respective process is not required to be modelled in the system.

As shown in Example 2.2.1, a decision made on certain data may eventually be

wrong if that data changes during execution. Such a situation does not lead to data

inconsistencies or software errors. It does, however, lead to an erroneous path

executed by the system. This is referred to as an erroneous path situation.

Accordingly, erroneous path situations may occur during process execution, which

Chapter 2. Related work 23

may result in unexpected behaviour and undesirable business outcomes. The con-

sequences are often noticed only by end customers (Van Beest et al., 2010b),

by erroneous orders or invoices, customer requests that are never handled, etc.

The situation where undesirable business outcomes are caused by external data

changes is known as process interference (Xiao and Urban, 2007; Van Beest et al.,

2010a).

The problem of process interference is not centered around the value that is stored,

but the value that is used by the BP and the value that is correct in reality. More

specifically, the implicit dependency on a value might require a process variable not

to change. In many organizations, such a strong semantic overlap exists between

the various data repositories of their processes. These process environments lead

to those problems that are initially not necessarily experienced inside the organiza-

tion, as no error messages like a dynamic deadlock detected are signaled. The

external part of the disruption, however, has a considerable effect as the data inter-

ference induced problem is primarily noticed by the external stakeholders (mostly

customers). From a practical point of view, no methods or tools exist that enable

the identification of the severity of these problems.

2.3 Business process reconfiguration
Considering the difficulty of design-time verification of business processes, runtime

capabilities for adapting to such unforeseen events may provide a more feasible

approach. This implies that a currently running instance should be changed on the

fly, as the design specifications in the process model are not sufficient to resolve

the erroneous situation.

Changeability of business processes is a large research area focusing on providing

the capabilities to adapt business processes at designtime or runtime. As a result,

flexibility has become very important in information systems and is nowadays an

important requirement (Weske et al., 2006). As such, a number of well-known

adaptability frameworks have been proposed. The most notable examples are the

ADEPT project (Dadam and Reichert, 2009; Göser et al., 2007), and the DECLARE

24 2.3. Business process reconfiguration

framework (Van Der Aalst et al., 2009).

The ADEPT project is designed to support the synchronization between several

running instances of the same process. Any changes made by the user are incor-

porated into all of the running instances without interrupting their execution (Dadam

and Reichert, 2009). An improved version of the framework has been proposed by

Göser et al. (2007).

The DECLARE framework utilizes the idea of a declarative process specification

(Van Der Aalst et al., 2009) in order to attain flexible process execution. The process

defined inside this framework is not a strictly written sequence of actions, but is

defined with constraint templates based on temporal logic, which interactively guide

the user through the execution of the process.

Weske (2001) provides an approach for enhancing flexibility by dynamic adapta-

tion of running workflow instances. A more detailed overview of various dynamic

business process reconfiguration techniques can be found in Rinderle et al. (2004).

Although adaptation of processes to resolve process interference can be consid-

ered a very specific form of changeability, existing changeability frameworks are

primarily requirements-driven. That is, their adaptation capabilities are specially tai-

lored to facilitate and support new business requirements (and, therefore, improve

flexibility), whereas they do not incorporate the mechanisms to adapt the process in

order to prevent erroneous business outcomes. Consequently, requirements-driven

changeability and adaptability does not solve our research problem, although the

ideas may provide valuable contributions to the problem studied in this thesis.

In order to deal with process execution inconsistencies, a number of techniques

have been proposed. AGENTWORK is a workflow management system, which

supports automated business process adaptations in a comprehensive way. Ex-

ceptions and necessary workflow adaptations are specified through a rule-based

approach. Using this approach, the system is able to react to process-failures like

unavailable resources or data (Müller et al., 2004). Similarly, existing runtime solu-

tions for process interference are based on failing processes as well, e.g. (Garcia-

Chapter 2. Related work 25

Molina and Salem, 1987; Xiao and Urban, 2008; Gajewski et al., 2005). That is,

only those processes that fail during execution and terminate in an improper way

are recovered. In Xiao and Urban (2008), an approach is proposed that deals

with recovery of failing processes using dependency tracking based on incremen-

tal data changes. A global schedule of these data changes is used to detect data

dependencies, in order to determine the impact of process failure and recovery

procedures. In practice, however, process interference does not necessarily cause

processes to fail. More often, the processes finish regularly without any system

errors from an internal perspective, leading however to inconsistent results.

A more elaborate solution for process interference in Service-Oriented Computing

is provided by Urban et al. (2011). Predefined (design-time) rules are used to spec-

ify the required compensation actions in case of interference. In addition to failing

processes, this approach incorporates events like exceptional conditions or unavail-

able activities. Nevertheless, problems occurring at a regularly executing process

due to the use of inaccurate data are not considered.

2.4 Automated runtime reconfiguration
External data changes during execution of a process instance are inevitable and

the resulting erroneous path situations are difficult to prevent. Consequently, a

runtime solution is required to recognize these situations and act accordingly by

reconfiguring the respective process instance in such a way that it provides a desir-

able process outcome. In the field of Artificial Intelligence (AI), planning techniques

have been developed to compose a business process given a set of predefined ac-

tivities. These AI planning techniques may also be used to facilitate reconfiguration

of business process.

The advantages of integrating AI planning techniques for several applications in

the field of Business Process Management have long been acknowledged. For

instance, different planning approaches can assist at the business process defini-

tion phase (Rodrı́guez-Moreno and Kearney, 2002; Rodrı́guez-Moreno et al., 2007;

Madhusudan et al., 2004), while Jarvis et al. (1999) investigate the use of planning

26 2.4. Automated runtime reconfiguration

in case of domain state changes. In order to facilitate (semi-)automatic adapta-

tion at runtime, AI planning techniques have been used from different viewpoints

in the literature. Beckstein and Klausner (1999) discuss the use of an intelligent

assistant based on AI planning techniques, which can suggest compensation work-

flows or the re-execution of activities as a response to execution failures, with the

help of meta-level knowledge incorporated in the workflow semantics. The bene-

fits of adding such semantics to BPs have long been acknowledged by the work

in the field of Semantic Business Process Modelling, and exploited for a number

of different purposes, such as automating process verification (Henneberger et al.,

2008), which rely on a description in terms of preconditions and effects, or process

model generation (Weber et al., 2010). Preconditions capture the prerequisites of

an activity, whereas effects (or postconditions) capture how the activity affects the

data.

Ferreira and Ferreira (2006) propose the use of machine learning in order to infer

the preconditions and effects of activities, and generate a partially ordered execu-

tion plan that complies to these rules. The framework aims at providing a candidate

process that is able of achieving some business goals. At execution time, if an activ-

ity fails, an alternative candidate plan is provided. Although the objective is different

than strictly resolving process interference, a common concern with this frame-

work’s approach is the decoupling of the BP-specific constraints from the generic

service repository, thus allowing the planner to generate partially ordered plans with

a high degree of flexibility.

BP adaptation through planning provides the ability to adapt a running process in

case mismatches between the environment and the internal system representation

are detected (De Leoni et al., 2007, 2009; Marrella and Mecella, 2011). This work

uses several versions of Golog (Levesque et al., 1997), which is based on planning

by means of the situation calculus (McCarthy and Hayes, 1969). In Golog the goal

to be achieved has to be specified in a procedural way, as a non-deterministic pro-

gram. This implies that the adaptation process has to be pre-specified in an action-

centric way, which requires domain-specific knowledge of the available services

and arduous hand-coding by a human expert. One advantage of the approach pro-

Chapter 2. Related work 27

posed by Marrella and Mecella (2011) is that it can manage any unforeseen event,

by continuously comparing the environment with the expected outcomes according

to the BP specification at each step of execution. The approach, however, only pro-

vides recovery policies that lead to the expected state as specified in the original

process. As a result, it is not able to cover situations as described in Section 1.1,

which necessitate the fulfillment of extra requirements or the use of compensation

activities.

In order to be able to combine actions in a dynamic way, AI planning methodolo-

gies can be adopted for semantic service composition (Sohrabi and McIlraith, 2010;

Kaldeli et al., 2011; Au et al., 2005). Many of the approaches proposed for service

composition via automated planning, however, require that the set of supported so-

lutions is pre-defined in some form of procedural templates (e.g. (Sohrabi and McIl-

raith, 2010; Au et al., 2005)). Nonetheless, the domain-independent planner that

is presented by Kaldeli et al. (2011) allows the domain designer to use high-level

declarative goals by stating what properties have to be satisfied, without having to

anticipate how these can be fulfilled. The planner presented by Kaldeli et al. (2011)

can be mapped into a Constraint Satisfaction Problem (CSP), which can in turn

be passed to a constraint solver, together with some goal that is expressed in the

form of constraints. The computed solution to the CSP (assignment to variables)

amounts to an optimal plan (Aiello and Lazovik, 2006) (partially ordered sequence

of actions) that satisfies all the constraints imposed by the domain and goal.

CHAPTER 3

Case Study Description

3.1 Case 1: Energy Market

3.1.1 Case description
The energy market (electricity) in the Netherlands is characterized by many com-

plex processes, where often concurrency is involved. Many different stakeholders

are involved, including consumers, suppliers, transmission system operators, pro-

gram managers and measuring companies.

Consumers of electricity conclude a contract for the supply of energy with a supplier.

The supplier ensures that during the contract sufficient energy is available to meet

the expected demand of the customer. A Transmission System Operator (TSO) is

responsible for the electricity network in a certain region. The tasks of a TSO in-

clude the construction and maintenance of the energy networks and providing free

access to the network for all energy suppliers. A program manager tries to accom-

modate supply and demand of electricity as well as possible, in order to match the

expected consumption of the customers of a particular supplier. The main task of

the program manager is to ensure that the electricity supply and demand is bal-

anced at any time of day, in order to avoid underload or overload of the grid. A

30 3.1. Case 1: Energy Market

Measuring (or Metering) Company (MC) is responsible for reading the electricity

meters and sending the readings to the TSOs. Furthermore, the MC is responsible

for emplacement and maintenance of the meters. For small consumers, the meter

reading is usually recorded once a year by a representative of the MC or by the

consumer himself. For large consumers, the readings are supplied monthly.

After liberalization of the energy market, a large number of customers was expected

to switch to another supplier. In order to standardize and simplify the informa-

tion transfer between the various stakeholders, Energy Data Services Netherlands

(EDSN) was founded to handle the message exchange of switch requests. Initially

established under the name of Energy Clearinghouse (ECH) by Essent and Eneco

in 2001, the name was changed to EDSN in 2007. The stakeholders communicate

via electronic messages to the system of EDSN, which will forward the messages

to the appropriate parties.

EDSN operates as an independent foundation. The participants have no direct con-

trol over the foundation and the databases are not accessible other than through

electronic messages, in order to ensure protection of sensitive competitive infor-

mation in the databases. The message exchange never occurs directly between

stakeholders, but always via EDSN. Consequently, in case of possible conflicts, it

can be retrieved which message is sent by which stakeholder at any time.

Currently, 98% of the electronic messages is sent via EDSN. Through the system

of EDSN the entire information transfer needed for the switch-requests and move-

requests can be handled. Around 65 000 switch-requests and nearly 60 000 move-

requests are handled per month. Furthermore, measuring data (e.g. periodic meter

readings) and master data are communicated to the stakeholders. In total, over 100

million messages are processed per year.

3.1.2 Data collection
In order to obtain detailed descriptions of the business processes that are executed

in the energy market by the different market parties, documentation of provided by

EDSN was used. As all communication between the market parties proceeds via

Chapter 3. Case Study Description 31

EDSN, the business processes can be obtained using the message exchange and

required data that was available in the documentation. This documentation included

sequence diagrams, use case diagrams and class diagrams.

3.1.3 Processes under investigation
In this subsection, the processes used for the energy case will be described sub-

sequently. However, due to a non-disclosure agreement, we will only provide a

high-level overview of the processes, in order not to reveal in-depth system details.

Move out

A move out is a rehousing of a customer, where the responsibility and decision-

making power of the customer for the connection is ended and transferred. This

process is initiated by the customer sending a move out request to his current sup-

plier. The supplier sends the move out request to the TSO. The TSO evaluates the

request and changes the connection registry. The supplier then obtains the current

meter reading at the customer or through the smart meter. If it concerns a smart

meter, the smart meter will be switched off. The supplier validates the raw metering

data based on historical metering data. The supplier determines the meter read-

ing and sends it to the TSO. The supplier makes the meter reading available to

the measurement registry. Based on this meter reading, the consumption is deter-

mined and an invoice is sent to the customer accordingly. A graphical overview of

the move out process is shown in Figure 3.1a.

Change of metering responsible

A change of metering responsible concerns the request of a customer to switch the

party that is responsible for his connection. This process is initiated by the cus-

tomer. The metering responsible parties make, prior to the execution of the switch

from metering responsibility, agreements on the date of change of control and me-

tering device. The details of a meter change is described below and shown in Fig-

ure 3.2. The meter data is exchanged between the responsible parties. The TSO

informs the metering responsibles about the switch. The supplier and program re-

sponsible are informed through the change in the connections registry. A graphical

overview of the change of metering responsible process is shown in Figure 3.1b.

32 3.1. Case 1: Energy Market

Customer contact

Report and
assess move out

request

Process move out in
connections registry

Determine
meter-reading

Determine
standard annual
consumption

Calculate
consumption

Check meter-
reading

Send invoice

Turn off meter

[Smart meter] [No smart meter]

+

+

Request change
metering
responsible

Negotiate change
of metering

responsibilities

Check switch
data

Exchange
meter data

Change
connection
registry

Meter change

[Meter change
required]

[No meter change
required]

a)

b)

Figure 3.1: Move out (a) and Change of metering responsible (b)

Change of supplier

This process is initiated by the customer, by sending a switch request to the new

supplier. The new supplier requests information from the EAN codebook, to ob-

tain address information and connection details. Next, the new supplier checks the

contract control protocol to verify whether the customer still has a contract at an-

other supplier. Furthermore, the supplier contacts the measuring registry to obtain

metering and consumption information about the customer. The supplier sends a

request for change of supplier to the TSO. The TSO evaluates the request and com-

municates the results to all parties involved. Subsequently, the TSO changes the

connection registry and distributes the customer data to the supplier and shipper

that are now responsible for the connection. The supplier then obtains the current

meter reading at the customer or through the smart meter. If it concerns a smart

meter, the smart meter will be switched off. The supplier validates the raw metering

Chapter 3. Case Study Description 33

data based on historical metering data. The supplier determines the meter read-

ing and sends it to the TSO. The supplier makes the meter reading available to

the measurement registry. Based on this meter reading, the consumption is deter-

mined and an invoice is sent to the customer accordingly. A graphical overview of

the change of supplier process is shown in Figure 3.2a.

Customer contact

Report and
assess supplier
change request

Process supplier
change in

connections tegistry

Determine
meter-reading

Calculate
consumption

Send invoice

Turn off
meter

[Smart meter] [No smart meter]

+

+

Consult EAN
code book

Consult control
contract protocol

Consult
accessible
meter registry

Check meter-
reading

Determine
standard annual
consumption

Create
appointment for
meter change

Record
meter-reading

Consult
accessible

meter registry

Negotiate
meter reading
with supplier

Assess meter-
reading

Change meter

Register meter
change

Determine
meter-reading

a)

b)

Figure 3.2: Change of supplier (a) and Meter change (b)

Meter change

A meter change concerns the placement, removal, change, failure or calibration of a

meter or the replacement of the old meter by a smart meter. This process is initiated

by the TSO. The TSO first plans an appointment with the customer and determines

34 3.2. Case 2: Telecom market

the time and date for the meter change. The TSO changes the physical meter and

determines the meter reading. The supplier is informed about the meter change

and meter reading. The supplier evaluates whether the recorded meter reading

is acceptable according to their internal rules. The supplier and TSO negotiate

to reach an agreement about the meter reading. Finally, the supplier records the

meter reading as negotiated. A graphical overview of the meter change process is

shown in Figure 3.2b.

3.2 Case 2: Telecom market

3.2.1 Case description
The telecommunications industry is characterized by many complex processes,

involving many different stakeholders, comprising providers, network owners and

consumers. A provider of communications provides users of its service the ability

to communicate using a computerized device. A provider is responsible for data

processing or storing for such a service or for users (consumers) of that service.

Consumers conclude a contract with a communication service provider regarding

the use of that service. A network owner is responsible for the emplacement and

maintenance of the telecommunications network. It can be the same company that

also provides the services to the consumers, but in many cases providers use the

network owned by a certain network owner.

This case study concerns a company in the telecommunications industry. For confi-

dentiality reasons, the name of the company cannot be revealed and will be referred

to as TC. TC is the leading provider of telecommunications and ICT services in the

Netherlands, serving customers with both fixed-line and mobile telephony, internet

and television. For business customers, TC delivers complete end-to-end telecom-

munications and ICT solutions. In the Netherlands, TC has well over 6 million

fixed-line phone customers. Outside the Netherlands, TC operates under different

brandnames. TC has more than 33 million users of their mobile services in the

Netherlands, Germany, Belgium, France, and Spain. Worldwide, TC serves more

than 40 million customers. In addition to their mobile services, TC provides Internet

access to more than 2 million customers. Furthermore, TC offers business network

Chapter 3. Case Study Description 35

services and data transport in Europe.

Several systems are used to facilitate the customer management business process.

The BPM system manages the business flows and operational support for the busi-

ness processes, and interacts with a number of other systems. The most important

systems (i.e. the systems that are relevant for the analysis) will be discussed here.

The Front End allows customers, agents and dealers to manage the customer de-

tails, the financial details and the portfolio of the customer. Infranet is a back end

system, which stores the customers, portfolio definition, and rating and billing. Fi-

nally. the Provisioning Interface is an application that manages the access rights

for all services and customers and is the interface to get and update provisioning

information.

3.2.2 Data collection
The process models are obtained from the documentation of the BPM system and

from the documentation of the systems it interacts with. This information is inter-

preted to create a structured overview comprising the different processes, interface

data and process interactions. The processes are defined as Sequence Diagrams,

including control-flow constraints such as loops and different conditions.

The data used by the different activities are scattered across system specific doc-

umentation. Some documents have clear input and output tables for activities,

while other documents required specific domain knowledge to extract this informa-

tion. System specific documents are necessary to extract the information regarding

which attributes are used by these different activities.

3.2.3 Processes under investigation
In this subsection, the processes used for the telecom case will be described sub-

sequently. However, due to a non-disclosure agreement, we will only provide a

high-level overview of the processes, in order not to reveal in-depth system details.

Buy packages and options

This process is used to buy additional products and services like ADSL, VoIP and

36 3.2. Case 2: Telecom market

mail and to buy additional options on those services. This process can be triggered

manually by a customer agent (through the front-end system), as well as by the

customer itself using the webpage where products can be ordered.

After the request for additional packages, first all necessary checks for usernames

and availability for e.g. broadband are performed. The order can contain one or

more packages, with one or more options that need to be activated. If a mailbox

already exists, but is inactive, the order must be removed as activation of the exist-

ing mailbox is sufficient. For accounts that are activated, the account status must

be changed. The customer is informed about the activation of all selected products

and services. Next, the billing process is started (outside the scope of the analysis).

A graphical overview of the buy packages process is shown in Figure 3.3a.

Upgrade / Downgrade / Switch

Used for the transition of a customer to another package at some specific future

date. This process is triggered in the front-end of the system. The new package

will be set to active and the old package will be closed at the end of the upgrade,

downgrade or switch. First, the customer details will be obtained. Next, all services

of the new and old package will be reviewed. All new services are activated. All

changed services are modified and all services to be removed from the customer

are deleted. The account details are updated and the customer is notified of the

successfull transition of the package. Finally, the invoice will be sent. A graphical

overview of the upgrade packages process is shown in Figure 3.3b.

Close customer at end of contract terms

Creates the order for the closure of the customers package at the end of the contract

term. The process is triggered manually by an agent in the front-end of the system.

First, the customer details will be obtained. Next, it will be checked that there is

no pending order on the account, as closure is not allowed when there are pending

orders. If there are no pending orders, then for all packages the status is changed to

’frozen’ and the package itself is closed. After all packages are frozen, the account

is set to frozen. The account will be closed and the customer will be notified. Finally,

the billing process is started. A graphical overview of the close customer at end of

contract process is shown in Figure 3.4a.

Chapter 3. Case Study Description 37

Review all
services

Customer
contact

[New services] [No new services]

b)

Notify
customer

Activate all
new services

[Modified services] [No modified services]

Modify
services

[Deleted services] [No deleted services]

Delete
services

Get customer
details

Update account
details

Customer
contact

Get customer
details

Check for availability
of requested
packages

[Not available]

a)

Notify
customer

Notify
customer

Billing
process

[Available]

[New package]
[Existing inactive

package]

Create
package

Activate
package

Change
account
status

Billing
process

Update account
details

Figure 3.3: Buy packages and options (a) and Upgrade / Downgrade / Switch (b)

Close customer without freezing

This process will close an account of a customer immediately at this point in time.

A customer account can be closed with or without freezing. In this thesis, the latter

will be analyzed, which implies that the username and mailbox alias corresponding

to that customer cannot be recovered. This process is triggered manually by an

agent in the front-end of the system, with a request to close the customer. First,

the customer details will be obtained. For all packages, the status is changed to

’frozen’ and the package itself is closed. Subsequently, all existing sub-accounts

are closed. After all packages and sub-accounts are closed, the main account

38 3.2. Case 2: Telecom market

is closed and the customer will be notified. Finally, the billing process is started.

A graphical overview of the close customer without freezing process is shown in

Figure 3.4b.

b)

Get customer
details

a)

Notify
customer

Billing
process

Update account
status

Check for
pending orders

Update
package
status

Close
package

Close
account

[m
ore

packages
on
account]

[Pending orders][No pending orders]

Cancel close
customer
request

Request to
close

customer

Get customer
details

Update
package
status

Close
package

[m
ore

packages
on
account]

Update account
status

Notify
customer

Billing
process

Update sub-
account
status

Close sub-
account

[sub-accounts
active]

Close
account

Figure 3.4: Close customer at end of contract terms (a) and Close customer without

freezing (b)

Customer move

This process is used to facilitate a move of a customer. The physical provision of

the telecom package should be switched to the new location as well. This process

is triggered by the customer notifying that he will move at a certain date. The

customer details will be updated in the system and a move order is created, as all

Chapter 3. Case Study Description 39

services and provisions of that customer need to be transferred as well. All services

are transferred to the new address and the packages will be updated. A graphical

overview of the customer move process is shown in Figure 3.5a.

Get customer
details

a)

Update customer
details

Move order

Transfer services

Update packages

Customer
contact

[New services] [No new services]

b)

Activate all
new services

[Modified services] [No modified services]

Modify
services

[Deleted services] [No deleted services]

Delete
services

Get customer
details

Change account
status

[No hierarchy
allowed]

[Hierarchy
allowed]

Cancel
upgrade
process

[sub-accounts
active]

Remove ADSL
service

Customer contact

Figure 3.5: Move customer (a) and Upgrade from ADSL to VOIP / IPTV / Broadband (b)

Upgrade from ADSL to VOIP / IPTV / Broadband

This process is used for an upgrade from ADSL to one of the other (broadband)

packages. This process can be triggered by a customer agent, or by the customer

40 3.3. Case 3: Local government

itself. First, the customer details will be obtained. If the new package does not allow

to have subaccounts, it will be checked whether there are non closed subaccounts.

If that is the case, the task is set to error and the process stops. Next, all new

services are activated. All changed services are modified and all services to be

removed from the customer are deleted. Finally, the account status will be changed,

setting the new package to active. The ADSL package will be closed. A graphical

overview of the upgrade from ADSL process is shown in Figure 3.5b.

3.3 Case 3: Local government

3.3.1 Case description
This case-study concerns a BP with respect to the Dutch Law for Societal Support

(known as the WMO law), which was introduced in January 2007. The WMO law

replaced the Welfare Law, the Law for Provisions for Disabled (WVG) and parts

of the General Law for special diseases (AWBZ). The Welfare Law and the AWBZ

were executed by the central Dutch government and the WVG was performed by

local municipalities. Currently, the entire WMO law is executed locally at municipal-

ities (Ministry of Health and Sport, 2008).

The WMO law is intended to enable people with a chronic disease or a disability

to take part in society and live in their own homes for as long as possible. In

order to offer support for such citizens, facilities are provided including domestic

care, transportation, a wheelchair or a home modification. The WMO law applies to

every municipality in the Netherlands and offers the same service to their citizens.

However, the service-level and priorities may differ for each municipality and some

differences may exist in the execution of their processes as the responsibility for

the execution is defined locally at the municipalities (Ministry of Health and Sport,

2008).

3.3.2 Data collection
The process descriptions available of the WMO processes are very generic, as the

details are determined by the municipalities. In addition, documentation at the local

Chapter 3. Case Study Description 41

municipalities is often incomplete or non-existing. As a result, available process

models can only be used as a starting point and details have to be obtained through

interviews with process experts at the municipalities. Interviews were conducted

at seven different municipalities in the Netherlands, including Delfzijl, Groningen,

Haren, Leek, Marum, Winschoten and Winsum.

The employees that were interviewed at the municipalities were either the coor-

dinators of the WMO department or the WMO consultants. With the information

gathered from the interviews and the documentation, process models were con-

structed for the seven municipalities. The processes as executed by the different

municipalities differed on some details (i.e. variety of services provided, eligibility

criteria, etc.). From these models, a generic process model is constructed that will

be used throughout this thesis. The steps taken to generalize the process models

are as follows:

1. The original processes are compared to find the common activities that are

used to form the basis of the generic model.

2. Activities that are specific to some of the municipalities are modelled as alter-

nate options or left out in case it concerned a situation applicable to a certain

municipality only.

Consequently, the obtained process model is not the prescribed model, as it is

obtained by talking to the employees that are actually executing that process. For

an extensive overview of the methodology for obtaining the generalized process,

the reader is referred to Bouma (2010).

3.3.3 Process under investigation
The BP under investigation, referred to as the WMO process, concerns the handling

of the requests from citizens at one of the 418 municipalities in the Netherlands. In

this section, the WMO process is described as used by one of the municipalities

and annotated with the required dependency scopes.

Municipalities are obliged to have a WMO service desk, where the citizens can ac-

42 3.3. Case 3: Local government

cess all WMO provisions. In some cases, the Intermunicipal Social Service pro-

vides the service desk for multiple adjacent municipalities. The WMO process

(shown in Figure 3.6) starts with the submission of an application for a provision

by a citizen at the local service desk or online. After receiving the application at

the municipality office, a home visit is executed by an officer, in order to gather a

detailed understanding of the situation and the current living conditions of the citi-

zen. If the home visit is not sufficient to obtain all required information (concerning

the citizen’s health), a medical advice can be requested from a medical special-

ist. Based on this information, a decision is made by the municipality to determine

whether the citizen is eligible to receive the requested provision or not.

In case of a negative decision (i.e. the application is rejected or the granted pro-

vision is less than the citizen requested), the citizen has the possibility for appeal.

In case of a legitimate appeal, the provision is either granted, or the process is

restarted. In case of a positive decision, the appropriate activities are executed, de-

pending on the requested provision. For domestic help, the citizen has the choice

between “Personal Budget” and “Care in Kind”. In case of a “Personal Budget”, the

citizen periodically receives a certain amount of money for the granted provision to

pay for workers or supervisors, and decide where the money is spent. In case of

“Care In Kind” suppliers who can take care of the provision are contacted. A home

modification involves a tender procedure to select a supplier, prior to execution of

the actual home modification. A wheelchair is usually provided using a contracted

supplier. After acquiring the detailed requirements, the order is sent to the selected

supplier, who delivers the provision. After that point, the process is identical for all

provisions. The order is sent to the selected supplier, who delivers the provision

and sends an invoice to the municipality. Finally, the invoice is checked and paid.

Chapter 3. Case Study Description 43

Home visit

Decision

Medical
advice

[Medical
advice]

[No medical
advice]

Intake and
application

[Appeal]

[Affirm
decision]

[Revise
decision]

[No appeal]

[Rejected]

Payment

[Domestic help]

[Approved]

[Else]

[Wheelchair]
[Home

Modification]

Tender
procedure

Check tender
with decision

[Tender not ok]

[Tender ok]

Acquire
requirements

T
erm

inate

T
erm

inate

Handle invoice

+

Send order to
supplier

Send order
confirmation to
selected supplier

[Personal
budget]

[Care
in kind]

Handle invoice

+

Send request
to supplier

Receive
delivery

confirmation

Receive
delivery

confirmation

Handle invoice

[Invoice correct]

Check invoice
with decision

Receive
invoice

Return invoice
to the supplier

[Invoice
not correct]

Figure 3.6: WMO process model

CHAPTER 4

Process interference

identification

In the previous chapters, it was shown that concurrently executed processes are

often assumed to run independently. However, arguably this is often not the case

in practice. Existing approaches for interference discovery are not suited for identi-

fying such erroneous situations. That is, the process may be sound when executed

in isolation, but may yield in practice undesirable results. This is caused by the

semantic overlap between the various data repositories of these processes. To the

best of our knowledge, no methods or tools exist that enable the identification of the

severity of these problems. Therefore, a methodology is necessary to explicitly de-

fine the necessary steps to be performed in order to identify and pinpoint potentially

interfering processes.

In this chapter, an investigative method is presented to automatically discover data

/ process interdependencies between two business processes in order to identify

all potential interference situations. The method was applied to two distinct cases,

involving the Energy Company (EC) and the Telecom Company (TC) (see Chap-

ter 3). The case studies serve the following purposes: the appropriateness of the

46 4.1. Interference definition

method is verified, the utility of the tool is validated and the relevance of the problem

is confirmed.

4.1 Interference definition
In this section, process interference will be explained in more detail. In conjunc-

tion with a graphical description, process interference will be defined formally. The

formal definition is required to specify the exact criteria and properties of process

interference for the analysis. The selection of processes for analysis requires the

data characteristics and data overlap between two processes. Furthermore, the

interference characteristics for erroneous cases (i.e. the order of data changes)

are essential to ensure that the identified problems are exclusively on account of

process interference.

4.1.1 Graphical example
Let us first recall the graphical description of process interference, as provided in

Section 1.1.1. In Figure 4.1, two independent concurrent processes are shown

using a common data store. A mutation of a data element by one process, affects

the value of the corresponding data element of the other process as well.

B1
read: b
write: g
delete:

B2
read: g
write: d
delete:

A1
read: d
write: c
delete:

A2
read: c
write: a
delete:

A3
read: a
write: e
delete:

t

Process 1

Process 2

Figure 4.1: Business process with concurrent data change.

Activity A1 reads d and writes the result of a computation based on d to c. Subse-

quently, activity A2 reads the value of c and writes to a accordingly. Finally, activity

A3 reads a and writes to e. Implicitly, the value of e is by transitivity dependent on d.

Chapter 4. Process interference identification 47

If a concurrent process changes that value of d (activity B2) after it has been read

by process 1, potentially e will have the wrong value assigned.

An external data change may also affect the consecutive subprocesses after an

evaluation of a condition. In Figure 4.2, for example, the decision made is based

on the value of d. That is, the decision activity uses d. That specific decision deter-

mines whether A1 and A2 are executed or A3 and A4. If d is changed by another

process (e.g. process 2) during execution of A2, this may have consequences for

the correctness of the activities being executed at that time. That is, as a result of

the data change, currently the wrong branch of activities is executed.

A1
read: a
write: b
delete:

[d = x]

[d ≠ x]

A2
read: b
write: c
delete:

A3
read: a
write: e
delete:

A4
read: e
write: f
delete:

B1
read: g,h
write: i
delete:

B2
read: i
write: d
delete:

t

Process 1

Process 2

Figure 4.2: Conditional branches with concurrent data change.

In the context of data storage, CREATE, READ, UPDATE and DELETE (CRUD) are the

four basic functions (Martin, 1983). A CREATE operation is used for inserting new

data. A READ operation is used for retrieving data. An UPDATE operation is used

to change data, whereas a DELETE operation is used for removing data. In this

context, we will consider the READ operations of an activity to be used for retrieving

data, wheras the WRITE operations of an activity include the CREATE, UPDATE and

DELETE operations. Furthermore, those operations that use the data for writing to

another data element will also be considered WRITE operations.

48 4.1. Interference definition

4.1.2 Defining process interference using temporal logic
After providing an informal description of process interference, now a formal def-

inition will be provided in order to be able to pinpoint the exact characteristics of

interfering concurrent business processes.

Temporal logic is a formalism that is used for representing propositions qualified in

terms of time. Sequences of transitions between states are described, where the

future is not yet determined. That is, there is a number of possible paths where

one of those paths may be realized. CTL* is a powerful temporal logic that com-

bines branching-time and linear-time operators (Clarke et al., 1986; Emerson and

Halpern, 1986).

For the formal definition of process interference, CTL* will be used to specify its

temporal characteristics. CTL* is typically defined on a Kripke structure (Clarke

et al., 1999):

Definition 4.1.1 (Kripke structure). Let AP be a set of atomic propositions. A Kripke

structure M over AP is a triple M = (S,R,L), where:

• S is a finite set of states.

• R ⊆ S × S is a transition relation. For each s ∈ S there exists a state s′ ∈ S

such that (s, s′) ∈ R.

• L : S → 2AP is a labelling function with the set of atomic propositions that are

true in that state.

Definition 4.1.2 (CTL* syntax). The language of well-formed CTL* formulas is gen-

erated by the following grammar:

φ ::= � | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | Aφ | Eφ

ψ ::= φ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | Xφ | Fφ | Gφ | φUφ

where:

• p ∈ AP .

• φ is a state formula.

• ψ is a path formula.

Chapter 4. Process interference identification 49

A path in M is a sequence of states π = s0, s1, . . ., such that (si, si+1) ∈ R for every

i � 0. The suffix of π starting at si is denoted by πi.

Definition 4.1.3 (CTL* validity). Given a state formula φ and a path formula ψ, φ

holds at state s (s |= φ) and ψ holds at path π (π |= ψ), as can be inductively

defined:

s |= p ⇔ p ∈ L(s)

s |= ¬φ ⇔ s
|= φ

s |= φ1 ∨ φ2 ⇔ s |= φ1 or s |= φ2

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= E ψ ⇔ there is a path π from s such that π |= ψ

s |= A ψ ⇔ for every path π from s, π |= ψ

π |= φ ⇔ s is the first state of π and s |= φ

π |= ¬ψ ⇔ π
|= ψ

π |= ψ1 ∨ ψ2 ⇔ π |= ψ1 or π |= ψ2

π |= ψ1 ∧ ψ2 ⇔ π |= ψ1 and π |= ψ2

π |= X ψ ⇔ π1 |= ψ

π |= F ψ ⇔ there exists a k � 0 such that πk |= ψ

π |= G ψ ⇔ for all k � 0, πk |= ψ

π |= ψ1 U ψ2 ⇔ there exists a k � 0 such that πk |= ψ2 and

for all 0 � j < k, πj |= ψ1

CTL* formulas consist of path quantifiers and temporal operators. Path quantifiers

specify whether some or all paths should have a certain property starting at the

currens state. The following path quantifiers can be distinguished:

– Aφ All: φ has to hold on all paths starting from the current state.

– Eφ Exists: there exists at least one path starting from the current

state where φ holds.

Temporal operators describe properties of a path through the computation tree.

Five temporal operators can be distinguished:

50 4.1. Interference definition

– Xφ Next: φ has to hold at the next state.

– Gφ Globally: φ has to hold on the entire subsequent path.

– Fφ Finally: φ eventually has to hold.

– φUψ Until: φ has to hold at least until ψ holds.

After introducing CTL*, a translation of a process to Kripke structures is necessary

to facilitate the definition of the temporal properties of process interference. Let us

first define a Kripke structure M for a process P . The variables used by the process

P are defined by the finite set of data elements D. In process 1 in Figure 4.1,

D = {a, c, d, e}. The set of states S of a Kripke must include information about the

operation that is performed on the data when a transition is executed, as that is

required to capture the process execution trace in case of process interference. As

such, a state s ∈ S is defined as {r(d) | d ∈ D} ∪ {w(d) | d ∈ D}, where r(d) is a

READ operation and w(d) is a WRITE operation. Atomic propositions are all READ

and WRITE operations. An activity a ∈ P maps to a transition relation as follows: a

transition concerns the move from one state to another by capturing all operations

of a, which are stored in L. There exists one transition relation for each activity

a ∈ P . Consequently, (si, sj) ∈ R ⇔ ∃a ∈ P : si → sj . Each activity can comprise

both READ and WRITE operations. Correspondingly, L is defined for each state by

operations of an activity that brings the process to that state. In Figure 4.1, activity

A1 performs a READ operation on d and a WRITE operation on c. Subsequently,

the transition that maps to A1 comprises the READ and WRITE operations, which

result in the atomic propositions represented by s1. This is represented graphically

in Figure 4.3.

A1
read: d
write: c
delete:

s0

Process activity:

Kripke transition: s1

L(s0) = {} L(s1) = {r(d), w(c)}

Transition t1

Figure 4.3: Creating a transition relation for an activity.

Chapter 4. Process interference identification 51

However, the modeling of a process interference situation (such as shown in e.g.

Figure 4.2) requires two processes to be represented in one Kripke structure. In

order to represent these two processes in a Kripke structure, an asynchronous

composition of Kripke structures is required, to formulate a joint Kripke structure

that incorporates both processes. This is shown graphically in Figure 4.4.

Process 1 Process 2

Kripke structure M1 Kripke structure M2

Kripke structure M

Figure 4.4: Creating a composition of Kripke structures based on two processes.

Note that this translation process follows ”classical” translation algorithms, such

as Clarke et al. (1999). However, we focus primarily on the Kripke representation.

Although there are many ways in literature to represent a process as a Kripke struc-

ture (see e.g. Clarke et al. (1999), Trčka et al. (2009) and Bucur and Kwiatkowska

(2011)), being thorough on this topic is beyond our purpose. Consequently, we are

rather agnostic, and therefore informal, in the conversion presented here.

Definition 4.1.4. (Interleaved asynchronous composition of Kripke structures).

Given a Kripke structure M1 = (S1, R1, L1) over AP1 and a Kripke structure

M2 = (S2, R2, L2) over AP2, the interleaved asynchronous composition

M = (S, R, L) over AP can be defined as:

– D = D1 ∪D2

– AP = AP1 ∪AP2

– S = S1 × S2

– s(0) = (s1(0), s2(0))

– ((s
′
1, s

′
2), (s

′′
1 , s

′′
2)) ∈ R ⇔

((s
′
1, s

′′
1) ∈ R1 ∧ s

′
2 = s

′′
2) ∨ ((s

′
2, s

′′
2) ∈ R2 ∧ s

′
1 = s

′′
1)

– L((s1, s2)) = L1(s1) ∪ L2(s2)

52 4.1. Interference definition

The composition set of data elements D is the union of D1 and D2. The composition

set of atomic propositions AP is the union of AP1 and AP2. The domain of a data

element dom(d ∈ D) = {r, w}. As a result, S = dom|D|. Therefore, the composition

set of states S is the cartesian product of S1 and S2. Consequently, the initial state

s0 is the set of initial states of both processes (s1(0), s2(0)). A transition from a state

(s
′
1 ∈ S1, s

′
2 ∈ S2) to a state (s

′′
1 ∈ S1, s

′′
2 ∈ S2) exists if and only if the transition

concerns an advance of one process. That is, the two processes cannot advance

their states at the same time1. Finally, the labeling function L is the union of the

labeling functions L1 and L2 of both processes.

Using CTL* and the interleaved asynchronous Kripke representation, the tempo-

ral characteristics of process interference between two concurrently executed pro-

cesses can now be defined formally. The READ and WRITE operations of processi

on data element d ∈ D will be denoted by ri(d) and wi(d) respectively.

Definition 4.1.5 (Process Interference). If process1 and process2 are executed con-

currently, process interference concerns the situation where:

EF [r1(d) ∧ EF [w2(d) ∧ (¬r1(d) U w1(d))], with:

– r1 : READ operation of process1

– w1 : WRITE operation of process1

– r2 : READ operation of process2

– w2 : WRITE operation of process2

– d : data element used in process1 and process2

– process1
= process2

Two processes interfere if there is a path where d is read by process 1 and d is

written by process 2 on some continuing path (i.e. EF [r1(d) ∧EF [w2(d) . . .]) such

that on some following path d is not read again by process 1 until process 1 performs

a WRITE operation on d (i.e. . . . ∧ (¬r1(d) U w1(d))]).

The different data anti-patterns defined by Trčka et al. (2009) include a distinction

1Please note that it is assumed that two transitions from two processes cannot be executed at the

same time. A further explanation about this assumption will be provided in Section 4.5.1.

Chapter 4. Process interference identification 53

between weak and strong variants of interference. In our case, this distinction is not

applicable, as we anyway only identify potential problems: a “strongly interferable”

process implies interference in all possible executions. That is, any (partially) con-

current execution of some other process would definitely cause interference, which

should be considered a design error. For instance, such a situation does not occur

in a serialized execution of the processes. Weak interference is, therefore, the only

one. The interference definition provided in this thesis covers the situation where a

situation may happen (i.e. weak interference), which is a sufficient incentive to take

action accordingly (as shown in detail in Chapter 5 and 6).

Note that the temporal characteristics referred to in the definition do not necessar-

ily imply erroneous path situations, or erroneous outcomes in general. Process

interference does not necessarily result in erroneous outcomes. That is, if a situ-

ation complies with the temporal characteristics of process interference, this does

not necessarily result in erroneous outcomes. However, if such erroneous path

situations occur due to process interference, the situation does comply to these

characteristics.

4.2 Method description
Process interference is defined as a model-checking problem. Using this tempo-

ral definition of process interference, the EC and TC processes can be analyzed.

However, the process interference definition only refers to a data change, but not

whether that particular change is actually disruptive for that process. Therefore,

the formal description in Definition 4.1.5 cannot be used to predict erroneous path

situations, as it does also capture false positives (situations where two processes

interfere, but they do not result in erroneous outcomes).

In order to identify the situations that provide erroneous outcomes, an overview

is required of all possible outcomes for selected pairs of processes. Therefore,

a methodology will be presented using an exhaustive search to obtain such an

overview. That is, instead of executing the model-checking algorithm, a simula-

tion will be executed. In Figure 4.5, a schematic overview of the methodology is

54 4.3. Initial data gathering, cleaning and structuring

provided. The following steps should be subsequently executed:

• Gather initial process documentation.

First of all, information about the available business processes needs to be

obtained, including all activities along with their input and output fields.

• Select business processes.

Interference is expected for two processes where at least 1 process has a

READ operation on datafield d and the other process has a WRITE or DELETE

operation on d. Consequently, a selection should be made of business pro-

cesses that have data-overlap and are, therefore, potentially vulnerable for

process interference.

• Perform combinatorial analysis.

For each pair of selected processes, a combinatorial analysis will be per-

formed of each potential execution path to identify the difference between the

desired outcome (i.e. when both processes are executed in isolation or in se-

quence) and the outcome with parallel execution. All possible combinations

of parallel execution are simulated step by step, where every READ operation

is proprietary to the process and every WRITE operation affects all following

reads of both processes. The amount of candidate solutions can be reduced

to a manageable size using a set of problem-specific heuristics.

• Analyze erroneous outcomes.

Finally, the identified erroneous execution orders are verified against the busi-

ness process specifications.

In the next sections, these steps will be explained in detail.

4.3 Initial data gathering, cleaning and structuring
The information about the business process used for the analysis can originate

from documentation or can be gathered by process mining on existing systems

(Van Der Aalst et al., 2003c). The latter requires a number of additional steps

prior to the actual data gathering (as described in e.g. (Mǎruşter and Van Beest,

Chapter 4. Process interference identification 55

Initial data gathering:
Retrieve from business
process documentation

Business process selection:
Filter for data overlap

Combinatorial analysis

Analysis of erroneous
outcomes

Overlapping processes

1.

2.

3.

4.

Figure 4.5: Analysis methodology.

2009)). In the case studies described in this chapter, documentation was used

comprising detailed system information, where all services and interface details

are described in detail. The processes described in Chapter 3 show the high-level

business process, whereas the documentation provides an indepth description of

the underlying system. The majority of the activities as specified in the system

are executable. Although systems may be used in different ways than envisioned,

the results obtained by this analysis are still usable. That is, if interference related

problems can be identified in the processes specified, they will very likely exist in

reality as well.

Apart from the initial data gathering, a number of additional data cleaning and struc-

turing steps are required, in order to make the process information suitable for anal-

ysis. First of all, existing process documentation may contain inconsistencies con-

cerning naming policies of activities and data. For example, a telephone number

represented by telephonenr, may also be referred to as telnr or tel no. Although

56 4.3. Initial data gathering, cleaning and structuring

these refer semantically to the same concept in reality (i.e. telephone number), they

may be represented differently in the documentation. Such inconsistencies in nam-

ing policies either concern mistakes in naming conventions (and occur, therefore, in

the documentation only), or concern the representation of a field in multiple seman-

tically overlapping data repositories (and are, therefore, a correct representation of

reality).

In both cases, however, these fields should be marked as being a representation

of the same field in reality (and as a result, being treated as such in the analysis),

in order to be able to identify the consequences of a change in one of these fields.

Therefore, these synonyms need to be found and provided with a univocal name.

Next, for each process, the activities need to be distinguished in order to identify

potential data overlap between the processes. As explained in Chapter 2, every

activity in a business process requires data for its execution and some activities

may affect the data.

As the formal definition of process interference indicates, it is necessary to distin-

guish for each datafield used by an activity whether it is read or written. That is,

the READ/WRITE distinction is to be made at the datafield level, because an activity

may contain both readfields and writefields. A readfield is a field that is read (i.e.

not changed) by the activity. A writefield is a field that is changed by the activity.

For example, a WRITE activity contains both readfields and writefields. That is, a

WRITE activity updates a certain data object using the input of the activity. However,

a WRITE activity may in addition return a result (the output, which is a confirmation

or an error message) to be read by the service or stakeholder that requested the

WRITE activity. Consequently, there exist returned results in the form of a datafield

which is used by the WRITE activity, but which is not changed. Accordingly, not all

datafields that are linked to a WRITE activity as described in the documentation are

necessarily writefields.

Input- and outputfields are used differently by an activity depending on the nature

of the activity itself (READ or WRITE). For example, a READ activity may require a

Chapter 4. Process interference identification 57

key as input. This key may be used to compute or obtain the values to be read by

that activity (which is de resulting output). A WRITE activity makes a change to the

data, by means of a CREATE, UPDATE or DELETE operation. The datafields to be

changed are used as input for the WRITE activity, whereas the returned result will

contain a message confirming a successful execution of that WRITE activity.

Consequently, each activity needs to be categorized as either a READ activity or a

WRITE activity. Although a data object does (obviously) not exist before the CREATE

operation, it might lead to redundant data if another process already has created

that data. In contrast with an UPDATE operation, a DELETE operation applies to an

entire object, rather than a single field. Deletion of a record will be based on a

key, deleting the associated object. However, regardless whether it concerns an

UPDATE or DELETE, some data is changed. Therefore, all these changes to data

(i.e. CREATE, UPDATE and DELETE) will be referred to as a WRITE activity for the

remainder of this paper. Once all activities have been categorized, the data used in

each of these activities should be marked as either a readfield or a writefield.

4.3.1 The case of the Energy Company
For the EC case, each activity consists of both a request and a response service.

For instance, the Call for Move Out activity has a Call for Move Out Request service

and a Call for Move Out Response service. In order to execute the Call for Move

Out activity, the energy provider sends a Call for Move Out Request to the Con-

nections Registry. The Connections Registry sends a Call for Move Out Response

back to the energy provider. Consequently, a WRITE activity has both a write re-

quest service and a write response service. Similarly, a READ activity has both a

read request service and a read response service. The fields used for each service

can be extracted from the data model that is part of the documentation. Table 4.1

shows how the fields for each service type are to be used in the analysis. The EC

documentation marks whether the activities are READ or WRITE activities.

The EC documentation distinguishes READ services from WRITE services. How-

ever, the EC documentation does not distinguish input and output fields, but distin-

58 4.3. Initial data gathering, cleaning and structuring

Activity type: Service type: Fields used as: Example:

Read
Read request Readfields Identifier (PK) etc.

Read response Readfields Data read

Write
Write request Writefields Data to be written

Write response Readfields Return message (ok, or error)

Table 4.1: Overview of read and write indicators of the EC case

guishes input and output services instead. That is, the fields associated with the

request service correspond to the inputs to an activity, whereas the fields asso-

ciated with the response service correspond to the outputs of the activity. Every

service request is initiated by an actor (e.g. customer, supplier, grid operator etc.)

and handled by another actor in the process, who returns the service response.

S
up
pl
ie
r

C
on
ne
ct
io
n

R
eg
is
tr
y

Call for Move Out ...

Commit
connection and
address changes

Move Out request
(customer, address)

Move Out response
(confirmation)

Call for Update
Metering Point

G
rid

O
pe
ra
to
r

Commit metering
point changes

Update Metering
Point request
(address)

Update Metering
Point response
(confirmation)

Figure 4.6: Simplified example of a part of an EC process (BPMN).

In order to illustrate this distinction between readfields and writefields, a simplified

example of a part of an EC process is provided in BPMN notation in Figure 4.6.

Both Call for Move Out and Call for Update Metering Point are WRITE activities. The

write request fields customer and address are writefields, wheras the confirmation

of both services is a readfield. The corresponding representation in a sequence

diagram is provided in Figure 4.7.

Chapter 4. Process interference identification 59

Supplier
Connection
Registry

Move Out request
Move Out response

Grid
Operator

Update MP request
Update MP response

Figure 4.7: Simplified example of a part of an EC process (Sequence Diagram).

4.3.2 The case of the Telecom Company
The business processes of TC are described by a set of sequence diagrams, dis-

tributed over several documents. The interface information of all activities are avail-

able in separate documents. For each READ and WRITE activity, the input and output

fields can be identified. In Table 4.2, an overview is provided of the read and write

fields in the TC case.

Activity type: Fields: Fields used as: Example:

Read
Input Readfields Identifier (PK) etc.

Output Readfields Data read

Write
Input Writefields Data to be written

Output Readfields Return message (ok, or error)

Table 4.2: Overview of read and write indicators of the TC case

In the TC documentation, for each activity, the input- and outputfields can be dis-

tinguished. Outputfields of a WRITE activity are the returned result after writing the

inputfields (i.e. a message with a confirmation of a successful WRITE operation).

Therefore, inputfields of a WRITE activity are treated as writefields, as the value of

these fields is changed. Similarly, outputfields of a WRITE activity concern a return

message and do not concern changes in the database. That is, the return message

is not written to the database. The return messages can, therefore, be regarded

as readfields. The inputfields of a READ activity are used to determine which data

to retrieve (i.e. an input parameter, primary key etc.). The outputfields of a READ

60 4.4. Selection of business processes for analysis

activity, however, are a result as well. As no data is changed in either the inputfields

or the outputfields, all fields are regarded as readfields. Similar to the EC case,

every service is initiated by an actor and received by another actor in the process.

4.4 Selection of business processes for analysis
The fields used by the activities of both processes are compared, to identify all

potential data overlap between two processes. If data is read only by both pro-

cesses, no problems can occur as the data is not changed (note that Definition 4.1.5

requires d to be written by at least one of the two concurrent processes). Conse-

quently, overlap in data use is considered potentially harmful if one of the processes

(or both) is changing certain data that is also required by the other process. That

is, overlap is potentially harmful if the following condition holds:

∃d : (r1(d) ∈ process1 ∧ w2(d) ∈ process2) ∨
(w1(d) ∈ process1 ∧ r2(d) ∈ process2) ∨
(w1(d) ∈ process1 ∧ w2(d) ∈ process2)

where:

– r1 : some READ operation of process1

– w1: some WRITE operation of process1

– r2 : some READ operation of process2

– w2: some WRITE operation of process2

– d : data element used in process1 and process2

Please note that the cases covered by Definition 4.1.5 is a subset of this set of

criteria. Instead of checking the formula provided by Definition 4.1.5, we use the

set of more relaxed criteria defined above, as it is unfeasible to check for the con-

dition of Definition 4.1.5 for all processes. Therefore, these criteria may potentially

result in more process combinations, but these will be eliminated in the analysis

(Section 4.7).

Subsequently, overlapping fields need to be filtered on importance for the analysis.

That is, each field is filtered based on the severity of the business implications in

Chapter 4. Process interference identification 61

case these fields are inconsistent. This rating will allow to create a layered repre-

sentation of the analysis, including only those fields that are important for the anal-

ysis, like for example address information and connection information. On the other

hand, academic title and salutation are not considered to be important datafields.

This filtering for importance is a manual operation and is a context-dependent de-

cision, which is the responsibility of the process analyst.

For the selection of business processes for analysis, pairs of processes were veri-

fied on the existence of a datafield d according to the condition stated above. For

the EC case, the following processes were selected:

– Move Out

This process concerns the rehousing of a customer, where the respon-

sibility and decision-making power of the customer for the connection is

ended and transferred.

– Meter Change

This process concerns the placement, removal, change, failure or cali-

bration of a meter or the replacement of the old meter by a smart meter.

– Change of Supplier

This process concerns the move from one customer to another energy

supplier.

– Change of Metering Responsible

This process concerns the request of a customer to switch the Metering

Company that is responsible for his connection.

The process pairs formed for analysis of the EC case are shown in Table 4.3 below.

Process 1 vs. Process 2

Change of Supplier Move Out

Change of Supplier Meter Change

Change of Metering Responsible Move Out

Table 4.3: Overview of selected processes for Energy company

62 4.4. Selection of business processes for analysis

For the TC case, six distinct processes were selected:

– Buy Packages and Options

This process is used for handling customer purchases of additional

packages like ADSL, VoIP and mail and for additional options on pack-

ages.

– Close Customer Without Freezing

This process will close an account of a customer immediately at this

point in time, where the username and mailbox alias corresponding to

that customer cannot be recovered.

– Customer Move

This process is used to facilitate a move of a customer. The physical

provision of the telecom package should be switched to the new location

as well.

– Close Customer at End of Contract Terms

This process concerns the closure of the customer at some future date.

– Upgrade/Downgrade/Switch

This process concerns the transition of a customer to another package

at some specific future date.

– Upgrade from ADSL to VOIP/IPTV/Broadband

This process is used for an upgrade from ADSL to one of the other

(broadband) packages.

The process pairs formed for analysis of the TC case are shown in Table 4.4 below.

Process 1 vs. Process 2

Buy Packages and Options Close Customer Without Freezing

Customer Move Close Customer at End of Contract Terms

Upgrade/Downgrade/Switch Upgrade from ADSL to VOIP/IPTV/Broadband

Table 4.4: Overview of selected processes for Telecom company

Chapter 4. Process interference identification 63

4.5 Finding erroneous outcomes through data flow

simulation
When two or more independent processes execute concurrently, their activities ex-

ecute in an interleaved fashion. That is, activities from one process may execute

in between two activities from another process (Bernstein et al., 1987). If the in-

terleaved execution of two processes produces the same business outcome as the

sequential execution of the same processes, these processes are called serializ-

able (Bernstein et al., 1987). However, interleaved execution of activities that use

the same data potentially results in process interference (Definition 4.1.5), as the

interleaved execution may provide different business outcomes than the sequential

execution. Consequently, such interfering processes are not serializable. In this

section, we will test the serializability of the selected process pairs and identify the

potential erroneous results accordingly.

4.5.1 Execution serialization
Due to the request-response character of the activities (as they are supported by

web services), the activities (or services) of the processes under investigation are

atomic. That is, a service request is either sent or not sent and a service response

is received or not received. The execution time of activities (i.e. the time between

the service request and service response) is much larger than the execution times

of the individual service request and response, which equal a few microseconds.

As a result of this negligible small execution time, two services as part of two dif-

ferent processes are assumed not to occur at exactly the same (discrete) time and,

therefore, do not overlap during execution. Consequently, the activity order of two

processes under investigation can be considered sequential. For example, in a sit-

uation with two processes with two activities each (A and B for process 1, P and Q

for process 2), this would lead to 6 possible activity execution orders, as shown in

Figure 4.8.

64 4.5. Finding erroneous outcomes through data flow simulation

P Q

A B

P Q

A B

P Q

A B

P Q

A B

P Q

A B

P Q

A B

1

2

3

4

5

6

Figure 4.8: Example of execution possibilities for two processes.

4.5.2 Data flow simulation
Process interference can be identified by simulating different execution combina-

tions (such as shown in Figure 4.8) and analyzing the data values (such as shown

in Table 8.3) of important fields afterwards. For each combination, the data-flow

through the process will be simulated. For all stakeholders / actors in the process

the value of all (important) overlapping fields will be stored and monitored during

the simulation. Prior to simulation, the desired output of both processes will be

determined by executing both processes sequentially. That is, first finish executing

process1 prior to executing process2 to eliminate interference.

Next, possible execution orders of both processes are simulated. That is, the output

of all possible combinations will be compared with the desired output. If the output

for some combination differs from the desired output, this process is potentially

vulnerable to process interference for that particular execution order.

4.5.3 Tracking data values during the simulation
In order to illustrate the interactions between stakeholders through activities, an

example of service requests between stakeholders is depicted in Figure 4.9. S1,

S2 and S3 are stakeholders in the process and activities A, B and C are each

supported by two services: a request and a response service. A is a READ activity,

where S1 reads the value of d from S2. B is a WRITE activity, where S1 submits a

new value of d to S3. C is a WRITE activity, where S2 submits a new value of d to

Chapter 4. Process interference identification 65

S3. Each activity has two stakeholders, a source (i.e. the one that sends a request)

and a target (i.e. the one that receives the request).

S1 S2

A: READ REQUEST

A: READ RESPONSE

S3

B: WRITE REQUEST

B: WRITE RESPONSE

C: WRITE REQUEST

C: WRITE RESPONSE

Figure 4.9: Sequence Diagram showing READ and WRITE services

between stakeholders.

During the simulation, for each (important) overlapping field the value is stored as

known by every stakeholder in the process. That is, for each stakeholder a sepa-

rate list is kept of the field values as known to that stakeholder. The initial values

are marked, so that the origin of the values can be traced during the simulation. As

a result, for each field it can be traced which stakeholder received the update of a

field and which stakeholders hold the incorrect value. For example, if stakholder A

receives an address change, at the end of the simulation the value of the address

known to stakeholder B should originate from stakeholder A (who received the ac-

tual change to the address) and hold the last value assigned to stakeholder A. If the

value of stakeholder B does not originate from stakeholder A or does not contain

the last value assigned to stakeholder A, apparently the change to the address as

intended was not effectuated to stakeholder B. Consequently, stakeholder B holds

the wrong value of the address.

In addition, all WRITE operations are recorded, so that for each field it can be deter-

mined whether the values originate from the same WRITE operation or not. For each

WRITE operation the responsible process is stored, in order to be able to obtain a

WRITE sequence representing the order of write operations to a datafield.

66 4.6. Tool support

4.6 Tool support

4.6.1 Combinatorial complexity
Using two processes with 4 activities in total yields 6 distinct execution orders (see

Figure 4.8). For larger processes, however, the amount of execution orders to be

simulated increases rapidly. If p represents the number of activities in process1

and q represents the number of activities in process2, then the amount of dis-

tinct execution orders (permutations) is denoted by the following multinomial co-

efficient (Skiena, 1990, p. 12):

#Distinct execution orders =
(p+ q)!

p! q!

As a result of the combinatorial complexity, the analysis of larger processes will

quickly result in an unfeasible amount of combinations. For example, an analysis

of two regular processes with 30 activities each would result in more than 1 · 1017
combinations.

In order to reduce the amount of possible combinations, only those activities should

be included in the analysis, whose execution is essential for the final value of a par-

ticular datafield and can, therefore, potentially be responsible for a bad outcome.

Furthermore, the set of overlapping datafields can be reduced to a smaller subset,

by only considering those datafields that are essential. Datafields are considered

essential depending on the severity of the business implications in case these fields

are inconsistent. For the EC case, these fields concern for example customer data

(Address, Financial data), meter data, and connection data. In addition, the anal-

ysis can be started from the first essential WRITE activity. That is, the first activity

that effectively assigns a new value to d is not necessarily the first activity. However,

it can be considered the first activity in the analysis, as the preceding activities do

not have an effect on d and have no influence on the result. Consequently, the

additional measures to reduce the amount of activities in the analysis can be sum-

marized as follows:

Chapter 4. Process interference identification 67

1. Reduce the set of overlapping datafields to a smaller subset datafields that

are considered essential.

2. Incorporate only those activities which use overlapping data.

3. Start from the first essential WRITE activity. I.e. exclude all activities before

that WRITE activity.

However, an analysis of two processes with 15 relevant activities each, would still

result in 155 117 520 combinations. It is evident that it is unfeasible to perform such

an analysis manually.

4.6.2 The analysis tool
Due to the complexity of the comparisons done in the analysis, a software tool

has been developed to automate the simulation of all execution orders. This tool

is capable of determining overlap between datafields used by two processes and

execute a combinatorial analysis to identify potentialy erroneous outcomes. As a

main result, this software tool enables to assess the severity of the interference

between two processes.

The analysis tool shows a graphical representation of two selected processes, in-

cluding individual activities. Potential overlap is indicated by activities marked in red

and connection lines between all interfering activities.

For each process an activity can be selected, to show the inputs and outputs of

these activities and their specific overlap. In Figure 4.10, an example is provided of

the data overlap of the Change of Supplier process and the Move Out process in

the EC case.

After this first analysis, the overlapping datafields are identified for all activities.The

severity of the overlap between a supplier change and an address change is imme-

diately suggested by the haywire of lines between the two processes and the large

amount of interfering activities.

Prior to starting the simulation, a number of options can be selected to reduce the

68 4.6. Tool support

Figure 4.10: Screenshot showing overlap in the EC case.

Figure 4.11: Screenshot showing selection of fields to incorporate in analysis.

amount of activities according to the criteria outlined above. By default, only those

activities are incorporated that use overlapping data. The datafields to be taken into

account in the analysis can be specifically selected (Figure 4.11). A datafield can

Chapter 4. Process interference identification 69

Function Description

Main form

Show Shows selected processes with activities. When selecting activities,

the corresponding datafields of that activity are shown.

Analyze Analyzes the selected processes for data overlap. All activities with

data overlap are marked red. Upon selection of a red activity, con-

necting lines with other activities indicate the overlap. If option ’Show

All Lines’ is selected, all overlap between the processes is shown.

Data Trail For a selected activity datafields can be selected to identify which

activities use those datafields as well. The option Most Important

Fields Only allows to filter the list to represent important fields only.

Simulation Opens the simulation form (see Figure 4.11 to select the fields to

incorporate in the simulation). Option Exclude Predefined Activities

allows to exclude certain activities from the analysis. These activities

can be marked in the analysis database. Bad Outputs shows the

amount of unique bad outputs identified so far.

Copy to clipboard Copies graphical image of the processes to the memory.

Copy process Copies the list of activities for the selected process to the memory.

Retrieve act. names The activity names are retrieved based on a list of activity numbers.

Field selection form

Trail Combinatorial simulation is started.

Add to trail Adds the selected fields to the analysis.

Process specific write If a datafield is added to the analysis, it can only be changed by the

selected process. That is, WRITE activities from the other process

will not affect the value of this datafield.

Custom flow Opens an inputbox to enter a specific combination. The combinato-

rial analysis starts the simulation at the predefined combination.

Single flow Opens an inputbox to enter a specific combination. Executes the

predefined combination only.

Only include after Only includes activities in the analysis that occur after the selected

activity in the process (including the selected activity).

Table 4.5: Overview of the important functionality of the tool.

be added to the entire analysis, or be limited to a single process. In the latter case,

it can only be changed by the selected process. As a result, WRITE activities from

the other process will not affect the value of this datafield.

70 4.7. Analysis

If necessary, the analysis can be started from the first essential WRITE activity in

one or both processes. Using this option, all activities before the selected WRITE

activity will not be incorporated in the analysis. Although this is not a mandatory

step, it may be required to reduce the amount of execution combinations to achieve

a feasible execution time of the simulation. An overview of the functionality of the

tool is shown in Table 4.5.

4.7 Analysis
In this section, each pair of processes selected in Section 4.4 will be discussed.

For each pair, the initial values and desired result will be provided. The desired

result is obtained by executing the pair sequentially. In a well-designed process

the outcome of either sequence (Process1 prior to Process2 or Process2 prior to

Process1) is the same. Furthermore, the analysis tool provides the same results for

both sequences.

In addition, an example of an erroneous result will be provided, along with an infor-

mal description of the actual events corresponding with that result. The low-level

results of the analysis, including the metadata as used by the analysis tool, can be

found in Appendix A.

4.7.1 Energy Company erroneous combinations
Change of Supplier – Move Out

In this comparison, the situation is analyzed where a person changes his energy

provider and decides to move to a new address at about the same time. Three

datafields are traced: Supplier, New Supplier, and Address. These datafields are

common for both processes and hold the current energy supplier of the customer,

the new energy supplier of the customer, and the address respectively. These

datafields are used by all stakeholders shown in Table 4.6.

The desired outcome is obtained by executing Change of Supplier and Move Out

sequentially. The Change of Supplier process contains 16 relevant activities that

use one of the datafields under investigation. The Move Out process contains 10

Chapter 4. Process interference identification 71

relevant activities. All 5 311 734 relevant different combinations in the analysis pro-

vide a different output than the desired output. In total, 11 239 distinct outputs were

identified, different than the desired output. The different outputs were analyzed, to

identify erroneous outputs, i.e. outputs that have a different origin (as explained in

Section 4.5.3). In Table 4.6, an example is provided of such an erroneous output.

Stakeholder Supplier New Supplier Address

CCP Correct Correct Correct

EMP Different value Different value Different value

GridOperator Different value Correct Different value

MRParty Different value Different value Different value

NewPVShipper Different value Different value Different origin

NewSupplier Different value Different value Different origin

OldPVShipper Correct Different value Correct

OldSupplier Different origin Different value Different value

TM2010 Different origin Correct Correct

Table 4.6: Erroneous output 1st comparison of the EC case.

In 7 389 cases, the address known to the stakeholder New Supplier has a different

origin, which implies that the incorrect address is known to the new supplier (as

also shown in Table 4.6). When a switch is proposed, the delivery of energy by the

desired new energy provider is linked to a certain address (that is, the address of

the customer is retrieved and coupled to the connection data). If the address of the

customer changes after this part of the process, the address change is updated to

the customer data. Consequently, the new address will be correctly updated, but

the change of the energy supplier will not be actualized for this customer. Instead,

the desired energy supplier change will apply for the old address. As a result, the

new inhabitant of the old house of the customer, will have the new energy supplier

as requested by the customer (i.e. the previous inhabitant).

It is possible that the wrong address is attached to a certain energy con-

tract. As a result, the inhabitants of both the old and new address will

receive the wrong invoice.

72 4.7. Analysis

Change of Supplier – Meter Change

In this comparison, the situation is analyzed where a person changes his energy

provider and his meter is to be changed at about the same time. Three datafields

are traced: Supplier, Meter Reading, and Address. These datafields are common

for both processes and hold the current energy supplier of the customer, the me-

ter reading used for the final invoice at the end of the contract, and the address

respectively. These datafields are used by all stakeholders shown in Table 4.7.

The desired outcome is obtained by executing Change of Supplier and Meter

Change sequentially. The Change of Supplier process contains 19 relevant activi-

ties that use one of the datafields under investigation. The Meter Change process

contains 7 relevant activities. Out of 657 799 relevant different combinations in the

analysis, 657 780 relevant different combinations in the analysis, provide a differ-

ent output than the desired output. In total, 3 522 distinct outputs were identified,

different than the desired output. The different outputs were analyzed, to identify

erroneous outputs, i.e. outputs that have a different origin. In Table 4.7, an example

is provided of such an erroneous output.

Stakeholder Supplier Meter Reading Address

EMP Correct Different value Different value

GridOperator Correct Correct Different value

MRParty Different value Correct Different value

NewPVShipper Different value Correct Different value

NewSupplier Different value Different origin Different value

OldPVShipper Different value Correct Correct

OldSupplier Different value Correct Different value

PVShipper Different value Correct Different value

Supplier Different value Correct Different origin

TM2010 Correct Correct Correct

Table 4.7: Erroneous output 2nd comparison of the EC case.

In 491 cases, the address known to the old supplier has a different origin, which im-

plies that the incorrect address is assigned to the current supplier (as also shown in

Table 4.7). In addition, the meter reading known to the new supplier has a different

origin in 1 420 cases, which implies that the new supplier has received the wrong

meter reading. As a result, the energy consumption calculated for the final invoice

Chapter 4. Process interference identification 73

may potentially be incorrect, as it is based on the wrong meter reading. Moreover,

the invoice may potentially be sent to the wrong address.

The possibility exists that the final invoice sent to the customer consti-

tutes the wrong energy consumption and may be sent to the wrong ad-

dress

Change Of Metering Responsible – Move Out

In this comparison, the situation is analyzed where the metering responsible is

changed for a certain contract and the owner of that contract decides to move to

a new address at about the same time. Three datafields are traced: Current MR,

New MR, and Address. These datafields are common for both processes and hold

the current metering responsible party, the new metering responsible party, and

the address respectively. These datafields are used by all stakeholders shown in

Table 4.8.

The desired outcome is obtained by executing Change Of Metering Responsible

and Move Out sequentially. The Change of Metering Responsible process contains

9 relevant activities that use one of the datafields under investigation. The Move Out

process contains 6 relevant activities. All 5 004 relevant different combinations in

the analysis, provide a different output than the desired output. In total, 272 distinct

outputs were identified, different than the desired output. The different outputs were

analyzed, to identify erroneous outputs, i.e. outputs that have a different origin. In

Table 4.8, an example is provided of such an erroneous output.

In 113 cases, the address known at the EMP (Energy Metering Point), Grid oper-

ator and MRParty is different than in the sequential case (as shown in Table 4.8),

which is implies that the incorrect address is assigned to these stakeholders. As a

result, the customer is charged for the consumption at the wrong address and will,

therefore, be charged for the wrong amount.

74 4.7. Analysis

Stakeholder Current MR New MR Address

EMP Different value Different value Different origin

GridOperator Correct Correct Different origin

MRParty Correct Correct Different origin

NewMRParty Different value Different value Different value

OldMRParty Different value Different value Correct

OldPVShipper Different value Different value Correct

OldSupplier Different value Different value Different value

PVShipper Correct Correct Different value

Supplier Correct Correct Different value

Table 4.8: Erroneous output 3rd comparison of the EC case.

The possibility exists that wrong address is used for measuring the en-

ergy consumption of the customer.

4.7.2 Telecom Company erroneous combinations
Buy Packages and Options – Close Customer without Freezing

In this comparison, the situation is analyzed where a customer creates new orders

on packages and options while his account is closed at about the same time. Three

datafields are traced: AccessADSL, AccessDialUp, and AccessWiFi, which hold

the status of the services available to the customer. These datafields are common

to both processes and are used by all stakeholders shown in Table 4.9.

The desired outcome is obtained by executing Buy Packages and Options and

Close Customer without Freezing sequentially. That is, first the customer creates a

new order on a package, next the account is closed. If one or more of these three

datafields did not change after the closing of a customer, potentially these services

are still available to the customer after the closing of a customer (and, therefore,

after terminating the contract). The Buy Packages and Options process contains 3

relevant activities that use one of the datafields under investigation. The Close Cus-

tomer process contains 4 relevant activities. All 34 relevant different combinations

in the analysis provide a different output than the desired output. In total, 24 distinct

outputs were identified, different than the desired output. The different outputs were

analyzed, to identify erroneous outputs, i.e. outputs that have a different origin. In

Table 4.9, an example is provided of such an erroneous output.

Chapter 4. Process interference identification 75

Stakeholder AccessADSL AccessDialUp AccessWiFi

BPM Layer Different origin Different origin Different origin

Prov. Interface Different origin Different origin Different origin

Front End Correct Correct Correct

Infranet Correct Correct Correct

Table 4.9: Erroneous output 1st comparison of the TC case.

In 10 cases, the values of the access to the order packages known to the BPM Layer

have a different origin, which implies that the incorrect order status is assigned to

the BPM Layer. These results can be observed in the processes as follows. The

first process (Buy Pacakages and Options) is executed and starts with reading the

values from the BPM Layer. As shown in Table 4.9, the erroneous combination

starts writing data in the BPM Layer and the Provisional Interface with the values

originating from the Provisional Interface. Consequently, the final value of the vari-

ables are not in line with the desired values and potentially open orders exist after

a customer-account is closed.

A customer can be closed and still have open orders on packages and

options.

Customer Move – Close Customer at End of Contract Terms

In this comparison, the situation is analyzed where a customer decides to move to

a new address while his account is closed at about the same time. Three datafields

are traced: CustomerBlocking, Services and Address. CustomerBlocking shows if

a customer is to be closed and is composed of a group of attributes including block-

ing flag, blocking remark and blocking date. Services holds the products delivered

to the customer. These datafields are common to both processes and used by all

stakeholders shown in Table 4.10.

The desired outcome is obtained by executing Customer Move and Close Customer

sequentially. That is, first the customer moves, next the contract is ended. The

Customer Move process contains 3 relevant activities that use one of the datafields

under investigation. The Close Customer process contains 14 relevant activities.

Out of 680 relevant different combinations in the analysis, 677 combinations pro-

76 4.7. Analysis

vide a different output than the desired output. In total, 181 distinct outputs were

identified, different than the desired output. The different outputs were analyzed, to

identify erroneous outputs, i.e. outputs that have a different origin. In Table 4.10,

an example is provided of such an erroneous output.

Stakeholder CustomerBlocking Servicess Address

BPM Layer Different origin Different origin Different value

Prov. Interface Different value Correct Correct

Front End Correct Correct Correct

Infranet Different origin Different origin Different value

Table 4.10: Erroneous output 1st comparison of the TC case.

In 175 cases, the value of Services known to the BPM Layer has a different origin,

which is implies that the incorrect status of the provided services is assigned to

the BPM Layer. If a customer is closed, the products of the customer should not

be available anymore to the customer. As a consequence, they cannot be moved

to a different address. However, if the products are moved to the new address

after closing, the products will still exist, while the customer already has closed his

account. This is clearly shown by the analysis results, where the value of Services

differs from the value in the erroneous case (Table 4.10). That is, the services

provided to the customer can be changed while the request for closing the account

is already initiated.

The possibility exists that a customer account is closed, but also a new

order is created to move a Broadband package.

Upgrade/Downgrade/Switch – Upgrade from ADSL to VoIP/IPTV/Broadband

In this comparison, the situation is analyzed where two processes are executed

simultaneously to update a package of products. The first process is using the

gathered data to downgrade a package, whereas the second is using the same

data for upgrading the package to a Broadband package. The datafield Account-

Details is traced, which is used for the change in packages and can have different

values depending on the package currently used by the customer. This datafield is

common to both processes and used by all stakeholders shown in Table 4.11.

Chapter 4. Process interference identification 77

The desired outcome is obtained by executing Upgrade/Downgrade/Switch and Up-

grade to Broadband sequentially. That is, first the package is downgraded, next the

package is upgraded to broadband. The Upgrade/Downgrade/Switch process con-

tains 6 relevant activities that use one of the datafields under investigation. The

Upgrade to Broadband process contains 5 relevant activities. Out of 462 relevant

different combinations in the analysis, 456 combinations provide a different output

than the desired output. In total, only 3 distinct outputs were identified, different than

the desired output. The different outputs were analyzed, to identify erroneous out-

puts, i.e. outputs that have a different origin. In Table 4.11, an example is provided

of such an erroneous output.

Stakeholder AccountDetails

BPM Layer Correct

Prov. Interface Correct

Front End Different origin

Infranet Different value

Table 4.11: Erroneous output 1st comparison of the TC case.

In 2 cases, the account details known from the Front End have a different origin,

which is implies that the incorrect account details are used throughout the remain-

der of the process.

If the order to downgrade a package could coexist along with an order for the up-

grade to another package, uncertain outcomes could occur as it is not clear which

of both orders is valid. As shown in Table 4.11, the BPM Layer uses different ac-

count details than inserted in the Front End. Consequently, different orders may

interfere and result in the different order provided than requested.

It is possible to use the same account data for creating different orders, or

even use different account data for different orders of the same customer.

4.8 Validation of results with process experts
The results of the analysis were validated by means of interviews with the process

experts at the EC and the TC. The validation consisted of informal interviews with

78 4.8. Validation of results with process experts

4 different process experts. First, the individual processes obtained by the analysis

were shown to process experts of the EC, to verify the process representation used

by the analysis with the execution of these processes in reality. It showed that

all processes as represented were reflecting the execution of business processes

reality.

Subsequently, the analyzed process pairs were assessed with the execution of busi-

ness processes in reality. That is, the concurrent execution as represented by the

analysis tool was validated with the potentiality of such a co-occurrence in reality.

Finally, the organizations awareness of each troublesome case was evaluated. The

interviews with the process experts clearly revealed the business nature of the prob-

lem, as the majority of the results was unknown. The most characteristic example

of such an unknown case is the parallel execution of a Supplier Change and a Move

Out.

Most of the problems emerging from the overlapping scenarios concerned customer

data or connection data without resulting in failing processes. Consequently, the

problems primarily affected the external stakeholders (customers), whereas they

did not directly affect the internal resources. As a result, most of these scenarios

were past the awareness of the organization and no mechanisms or procedures

were in place to prevent, correct or identify these errors. However, the process

experts were aware of a large number of customer complaints, which could now be

explained through the scenario’s obtained from the analysis.

Two of the severe cases were within the awareness of the organizations. These

processes were equipped in an ad-hoc manner with various mechanisms designed

to minimize the risk for these errors. The most typical cases of interference were

intercepted by custom-built triggers to either enforce alignment between the pro-

cesses or provide a process lock. That is, one of the processes is not allowed to

proceed until completion of the other process or not allowed to start at all.

Chapter 4. Process interference identification 79

4.9 Conclusion
The analysis showed that concurrently executed processes indeed may interfere

in practice. More specifically, almost all different activity orders involving important

data are causing erroneous outcomes. Although the total amount of activities (and,

therefore, different combinations if all activities are taken into account) is much

higher, the combinations used in the analysis only comprise relevant activities with

respect to the data used. As a result, the analysis clearly shows the effect of differ-

ent execution orders of relevant activities using essential data.

The validation with process experts revealed that the unknown problems as indi-

cated by the analysis tool are common practice in reality as well. The amount and

severity of the identified interference confirms the frequency of occurrence of the

problems as well as the according relevance for organizations.

Compared to other methods, this is a rather lightweight method. That is, it does not

require the availability of a formal representation of the business process. Instead,

it is applicable using semi-structured process documentation, providing results that

are legible by users without in-depth knowledge of implementation specifics.

However, the application of the methodology does not reveal whether the prob-

lems can be prevented by means of, for example, a better software implementa-

tion. Rather, application of the methodology identifies the potentially interfering

processes. Moreover, it provides insight in the severity of potential interference be-

tween concurrently executed processes, which provides the opportunity to resolve

or prevent these situations in the Enterprise Information System.

Correspondingly, the interference found in the analysis of EC and TC is not a result

of a poor software implementation. The analysis has been performed indepen-

dently from any implementation. In this respect, this analysis has gone beyond

past research, by analyzing the process flow along with the information required in

each of the distinct activities. The results of the application of the methodology to

the cases clearly show the importance and relevance of these business problems.

The methodology showed its ability to efficiently provide a representative and valu-

80 4.9. Conclusion

able insight in the interference between concurrent processes and the potential

disruptions emerging. Using this insight, additional measures can be taken in order

to identify and resolve potentially erroneous situations. In Chapter 5 and Chapter 6,

a framework is designed to prevent process interference by awareness of process

dependencies and automatic execution of compensation activities.

CHAPTER 5

Dependency scopes and

intervention processes

5.1 Introduction
Runtime handling of interference is required, in order to identify and resolve po-

tentially erroneous situations. In this chapter, process interference is prevented by

awareness of process dependencies and automatic execution of compensation ac-

tivities. Dependency scopes are introduced to represent the dependencies between

processes and data sources. In addition, intervention processes are developed to

repair inconsistencies using dynamic reconfiguration during execution of the pro-

cess. A business process supporting the WMO law is examined, to demonstrate

the proposed solution and to show feasibility of the approach.

First, the definition of the basic concepts is provided, where the approach for BP

repair is built upon. In this chapter, it is not necessary to provide the full seman-

tics of a business process to describe the basic concepts of dependency scopes

and intervention processes. Although a more elaborate, formal BP definition will be

provided in Chapter 6, for readability a more informal working definition of a busi-

84 5.1. Introduction

ness process (BP) is provided in this chapter. The concept of a business process

is defined here as follows:

Definition 5.1.1 (Business Process). A business process is a set of linked activities,

constructors and process variables that collectively realize a business objective or

a policy goal, where:

• Each activity is an atomic piece of work representing an interaction with some

service.

• Constructors represent the flow of execution, e.g. sequence, choice, paral-

lelism, join synchronization. These constructors have well-defined semantics,

e.g. defined in (Van Der Aalst et al., 2003b).

• A process variable is a variable over an arbitrary domain, which is typically

mapped into input/output parameters of activities (services).

Definition 5.1.2 (Sub-process). A sub-process is a business process that is en-

acted or called from another (initiating) business process (or sub-process), and

which forms part of the overall (initiating) business process (WfMC, 1999).

The process definitions presented above are not new. They have been imple-

mented in different workflow and business process management systems, e.g. us-

ing BPMN, or a BPEL notation.

Definition 5.1.3 (Volatile process variable). A volatile process variable is a process

variable that can be changed externally during execution of the process.

In Figure 5.1, two processes are presented. The decision made in Process 1 is

based on the value of process variable d. That specific decision determines whether

activities A1 and A2 are executed or rather A3 and A4. If d is changed by another

process (e.g. Process 2) during execution of A2, this may have consequences

for the decision made. That is, as a result of the data change, currently the wrong

branch of activities is being executed. In such a situation, the execution of A2 needs

to be cancelled and followed by compensating activities to compensate A2 and

Chapter 5. Dependency scopes and intervention processes 85

A1. Subsequently, the process should continue at A3. Therefore, it is desirable to

know what activities are implicitly relying on that process variable (d). Furthermore,

these activities should be notified if that data has changed, even if those changes

happened externally to the process being currently executed.

A1

A3

A2

A4

B1 B2

Set d = x'

Process 1

Process 2

[d = x]

[d ≠ x]

A5

Figure 5.1: Two business processes with concurrent data modification.

5.2 Dependency scopes
To identify the specific part of the process that depends on certain process vari-

able, we introduce a notion of dependency scope. Although a more elaborate, for-

mal definition will be provided in Chapter 6, for readability a more informal working

definition of a dependency scope is defined here as follows:

Definition 5.2.1 (Dependency Scope). A dependency scope (DS) is a structurally

correct subset of the business process, in which the activities are implicitly or ex-

plicitly relying on the accuracy of a volatile process variable accessed in the first

activity of that set.

During the execution of the entire DS, the process variable is assumed to remain

unchanged (or within a certain range of values) by an external process. Note that

this definition implies that an update of this process variable by the process will

end the DS of that particular process variable, whereas it may start a new DS.

In Figure 5.2, Process 1 is represented with a corresponding dependency scope.

At an instance level, a DS can be active or inactive. It is activated when the first

activity is started, which is part of the set that defines the DS. It is active as long

as an activity is executed that belongs to the DS. If the last activity of the set of

86 5.3. Intervention processes

consecutive activities is finished, the DS switches to be inactive.

A1

A3

A2

A4

[d = x]

[d ≠ x]

Dependency Scope DS1: {d}

A5

Figure 5.2: Business process with a dependency scope definition.

5.3 Intervention processes
If the variable d is changed by a concurrent process (e.g. Process 2 in Figure 5.1)

while DS1 is active, DS1 is notified of that change. If the change of d occurs during

the execution of A2, A1 has already executed. Consequently, some action is re-

quired to resolve the conflict caused by the change of d: the process should restart

again from the decision point prior to activity A1, which requires both A1 and A2 to

be rolled back to the initial state. This rollback may in some cases be provided by a

number of alternative activities to be executed before starting A3. For example, the

state of Process 1 is undesirable from a business perspective, due to the incorrect

decisions made as a result of the change of d. One or more repairing activities

should be interposed between A2 and A3, to recover Process 1 to a consistent

state that corresponds to reality again.

Definition 5.3.1 (Intervention Process). An intervention process is a sub-process

that is linked to a DS, comprising a set of compensation activities, which together

restore the consistent state of a business process. An intervention process has the

following properties:

• A condition over the set of data elements D of the DS determines when the

set of compensation activities needs to be executed.

• If the condition is true then the currently executed activity in the DS is stopped

and the compensation process is executed.

• The last activity provides a re-entry point in the business process.

Chapter 5. Dependency scopes and intervention processes 87

Figure 5.3 shows a sequence of compensating activities, which is defined as an

intervention process.

IA1 IA2 A3 A4

Figure 5.3: Specification of intervention activities.

The activities required to restore consistency may vary, even concerning the same

volatile process variable. However, if more intervention processes are connected to

one DS, then the conditions should be mutually exclusive. In addition, the activities

required to restore consistency may vary between processes. In some cases, it

may be sufficient to update the process variables in the currently executed activity

and proceed, whereas in a more severe case the activity needs to be cancelled

and to process should be resumed with another activity. An example of the process

including both a DS and an inserted intervention process is shown in Figure 5.4.

This solution allows for execution without manual process reconfiguration. As a

result of the activation of DS1, the activity currently being executed (A2) is halted.

Next, the process is continued at the Continue mark in Figure 5.4. This will start the

execution of the intervention activities. Note that IA1 and IA2 are not necessarily

cancellation or compensation activities, but may also be additional activities that

are required to finish the process regularly. After the intervention activities have

been finished, the process proceeds after DS1 in the regular process flow (A5). As

a result, A3 and A4 are part of the intervention process.

A1

A3 A4

[d = x]

[d ≠ x]

Dependency Scope DS1: {d}

A5

A2: Halt

IA1 A4

Continue

IA2 A3

Figure 5.4: Business process with dependency scope and connected intervention activities.

88 5.4. WMO dependency scope example

The concepts described above prevent the process designer from being forced to

check the value of the condition after every activity within the DS. That is, in order to

predefine the error-handling in case of process interference without the presented

concepts, for every activity the values of volatile process variables have to be tested.

A (simplified) example of such an undesirable situation is represented in Figure 5.5.

In more complex business processes, this would require a high amount of checks

predefined in the business process. It is to be expected that this way of overcoming

interdependency issues will strongly increase the complexity of each process model

and, accordingly, result in a cascading change after the model is to be updated.

A1
[d = x]

A3
[d ≠ x]

A2

A4

[d = x]

IA1 IA2

[d ≠ x]

[d ≠ x]

[d = x]

A5

Figure 5.5: Alternate solution to resolve dependencies.

5.4 WMO dependency scope example
The request for a wheelchair or a home modification may take up to 6 weeks until

the delivery of the provision. These processes depend on the correctness of some

process variables. However, these process variables may be changed by another

process running in parallel, independent of the WMO process, and are, therefore,

volatile. A change in either of these volatile process variables may potentially have

negative consequences for the WMO process, due to its dependencies on those

variables, and result in undesirable business outcomes. Consequently, changes in

these variables pose a potential risk of interference.

For instance, the activities after the decision until delivery are strongly depending

Chapter 5. Dependency scopes and intervention processes 89

on the accuracy of the citizen’s address. That is, the requirements of the wheelchair

not only depend on the citizen, but also on the residence as this may pose some

constraints to e.g. the width of the wheelchair. Consequently, an address change

after “Acquire requirements” might result in a wheelchair that does not fit the ac-

tual requirements. Similarly, if the citizen moves to a nursing home after “Check

tender with decision”, the home modification is not necessary anymore. However,

the supplier is not notified of this address change and the municipality is notified

through a different process, which is external to the WMO process. As a result,

unless some action is taken to cancel or update the order, the WMO process will

proceed with the home modification. In addition to “address”, the process depends

on the medical condition of the citizen, after executing the home visit and obtaining

the medical advice. If the condition of citizen deteriorates, potentially the provision

needs to be adjusted. If, on the other hand, the condition improves, the provision

may be no longer necessary.

In order to guard for changes to the volatile process variables, DSs can be defined

covering a section of the process for which such a change poses a potential risk of

interference. In Figure 5.6, a part of the process is annotated with the appropriate

DSs. The section covered by DS1 relies on the accuracy of the address as well

as the medical condition of the citizen, while the section covered by DS2 relies on

the accuracy of the WMO eligibility criteria. That is, if the legal criteria that are

relevant for the used contract have changed, this might affect the order itself, or the

potential suppliers that are participating in the tender procedure. Finally, the section

within DS3 depends on the address and the medical condition of the citizen as well,

however is separate from from DS1 because of the syntax of the BP. If a DS is

triggered by an external change on its process variable, potentially some recovery

activities need to be executed to restore consistency.

5.5 Required intervention processes
The required IPs may differ for each situation. For example, if the address change

is detected before the order for a wheelchair is sent to the supplier, it is sufficient

to execute the IP as shown in Figure 5.7a. However, if the order is already sent to

90 5.5. Required intervention processes

[Domestic help][Else]

[Wheelchair][Home Modification]

Tender
procedure

Check tender
with decision

[Tender
not ok]

[Tender ok]

Acquire
requirements

Handle invoice

+

Send order to
supplier

[Personal
budget]

[Care
in kind]

Handle invoice

+

Send request
to supplier

DS2:
{WMO Eligibility Criteria}

DS1:
{Address, Medical Condition}

Receive
delivery

confirmation

Receive
delivery

confirmation

DS3:
{Address,
Medical Condition}

Send order
confirmation to
selected supplier

Figure 5.6: Dependency scopes in the WMO process.

the supplier, some additional activities are required (Figure 5.7b). First of all, the

current order should be put on hold. After acquiring the requirements again, it is

evaluated whether there is a change. If not, the order can be resumed, otherwise

the old order should be cancelled and a new order should be sent.

Similarly, in case of home modification the IP also depends on the state at which the

address change occurs. If the address changes before the order is sent, it is suf-

ficient to execute the IP as represented in Figure 5.7c. Since the specifications on

the order directly rely on the address, a change of address implies a cancellation of

Chapter 5. Dependency scopes and intervention processes 91

Send order to
supplier

Home visit
Receive
delivery

confirmation

Acquire
requirementsa)

b) Send order to
supplier

Home visit
Acquire

requirements
Cancel order

Home visit Decision

[No medical advice]

[Medical
advice]

Home visitCancel order

Cancel order Notify city hall

d)

c)

e)

Receive
delivery

confirmation

[Approved]

[Rejected]

Tender
procedure

Check tender
with decision

Send order to
supplier

Receive
delivery

confirmation

[Tender not ok]

[Tender ok]

Terminate

Tender
procedure

Check tender
with decision

Send order to
supplier

Receive
delivery

confirmation

[Tender not ok]

[Tender ok]

Medical
Advice

[No medical advice]

[Medical
advice]

Medical
Advice

[No medical advice]

[Medical
advice]

Medical
Advice

Decision

[No medical advice]

[Medical
advice]

[Approved]

[Rejected]
Terminate

Medical
Advice

Decision

[Approved]

[Rejected]
Terminate

Decision

[Approved]

[Rejected]
Terminate

Figure 5.7: Required intervention processes corresponding to DS1, in case of an address

change

the order in all cases, if an order has already been sent. The remainder of the IP is

identical, as shown in Figure 5.7d. As opposed to the case of a wheelchair request,

the decision for the home modification depends explicitly on the physical properties

of the house itself. As a result, an address change may have its effect on the de-

cision, as the home modification may no longer be necessary in the new situation

(e.g. a request for an elevator will not apply if the citizen moves to a single-floor

residence). Therefore, the decision should be revised if the new situation differs

from the old situation, upon which the initial request was based. If the decision is

again positive, the IP proceeds similarly to the original BP. However, these exam-

ples assume that the citizen moves within the municipality (in our example this is

’Groningen’). If the citizen has moved to another municipality, the entire process

should be cancelled, regardless of the requested provision, as each municipality

has its own policies and procedures (Figure 5.7e).

92 5.6. Implementation

5.6 Implementation
To show the feasibility of the approach, a prototype has been implemented on top

of a business process management platform (BPMP), which is a result of a joint

work with Pavel Bulanov and the implementation is mainly performed by him. This

BPMP adheres to modern change management techniques, such as case handling

and process inheritance, thus providing advanced runtime reconfiguration abilities.

A detailed discription of the BPMP is provided in Chapter 7. The prototype adds

dependency scopes over existing business process models, and maps each of the

defined dependency scopes to an appropriate trigger.

Business Process Modeller

Business Process Executor

Connectors

Prototype

U
se
r
In
te
rf
ac
e

Business Process Extender

Process Verifier

Monitor &
Control

Process
Specification

Trigger in Database

Business Process Management Platform

Figure 5.8: Architectural overview of the prototype.

Figure 5.8 depicts the architectural overview, where the left box represents the

simplified BPMP architecture, while the right box represents the structure of the

prototype itself. In the BPMP box, the major parts are the Business Process Mod-

eller and Business Process Executor. The former provides visual process design

Chapter 5. Dependency scopes and intervention processes 93

facilities, whereas the latter is responsible for process monitoring and execution.

Connectors at the bottom of the BPMP box provide communication with external

data, e.g. databases, or data provided by external services. Finally, the user in-

terface provides means for interaction with users, and is usually represented by a

web-based application.

In the prototype box, the Business Process Extender parses the process specifi-

cation in order to extract dependency scopes. Such dependency scopes can be

designed using standard BPMP process design facilities, and the information about

dependency scopes is saved along with the specification of the process in the in-

ternal process repository. Subsequently, the process specification can be retrieved

via the BPMP public API.

When the data modification occurs, a trigger is fired, which passes the correspond-

ing information to the Process Verifier. This verifier has access to the information

about existing business processes and their dependency scopes, which is provided

by business process extender. Based on the information about the processes being

currently executed by the BPMP, the process verifier makes the decision whether or

not to stop process(es) and fire the appropriate intervention process(es). In order

to support decision making, additional information must be associated with every

dependency scope, such as a table in the database, the criteria to find a row in the

table, and the criteria to identify which changes in the data are significant.

In Figure 5.9, the WMO process is modeled using the process designer with the

business process extender on top of it. Two nested dependency scopes (DS1 and

DS2) are specified. DS1 is assigned to Address, whereas DS2 is assigned to

WMO eligibility criteria. DS1 is associated with the table Citizens in the underlying

database and, whenever the Address is changed, the corresponding intervention

process is executed.

For example, consider the situation where a wheelchair is requested. Both Acquire

detailed requirements and Send order to supplier were executed, and Delivery is

about to be executed. If the address of the citizen is changed, potentially a erro-

neous situation may occur. Since the process is now within DS1, some intervention

94 5.6. Implementation

Check Tender

Tender
Procedure

Send Order to
Supplier

Tender = OK

Tender =
not OK

Send Order to
Supplier

Acquire
Requirements

Delivery
Confirmation

DS2: {WMO Eligibility Criteria}

Delivery
Confirmation

Send Request to
Supplier

Handle Invoice

provision =
‘home modification’

provision =
‘wheelchair’

provision =
‘care in kind’

provision =
‘personal budget’

DS1: {Address}

Figure 5.9: Screenshot of dependency scope implementation within the BPMP.

actions must be undertaken.

The sequence of actions in this case is the following:

• The process verifier is called with the information that a row is modified in the

Citizens table.

• The dependency scopes associated with the Citizens table (which is DS1) are

identified.

• The currently running process instances that are now inside that scope are

fetched. There is one running process instance, and the activated depen-

dency scope is DS1.

• A check is performed to verify if the data modification is significant for the

Chapter 5. Dependency scopes and intervention processes 95

process instance under investigation (since the address has been changed,

the modification is significant).

When all conditions are met, the intervention process is automatically executed as

follows:

• The original process is stopped.

• The compensation process assigned to DS1 is executed, as shown in Fig-

ure 5.7b.

A situation might occur that does require intervention, but the predefined interven-

tion processes attached to the dependency scope do not apply for this particular

situation. In these cases, two possible solutions can be suggested. First, the pro-

cess can be paused and require a human decision on how to proceed. Second, a

rollback can be executed. This is, however, the least desirable solution, especially

in processes with a long lead time.

5.7 Developed concepts and required patterns
The existing patterns concerning representation and utilization of data within pro-

cesses (Russell et al., 2004) offer a wide range of data constructs and informational

concepts that a business process engine is able to capture. Similarly, dependency

scopes and intervention processes require specific ways data is represented and

utilized in processes.

As such, the required constructs for data and data passing can be defined as data

patterns for both dependency scopes and intervention processes, which is very

similar to the data patterns defined by Russell et al. (2004). Following the same

notation, we extend the available data patterns with dependency scope data and

an incoming change event pattern.

Pattern (Dependency scope data)

Description: Data elements can be defined, whose new values are notified to a

96 5.7. Developed concepts and required patterns

dependency scope upon a change of that data element.

Example: The address variable used in DS1 of Figure 5.6.

Motivation: To provide support for awareness of external data changes in de-

pendency scopes. Typically these data elements will be used for monitoring the

changes of that variable by other processes.

Implementation: The definition of dependency scope data elements requires the

ability to define the portion of the process (i.e. the dependency scope) to which the

data elements are bound. The data elements are accessible by the dependency

scope during the execution of the activities in that dependency scope. The activities

of an intervention process also belong to the dependency scope, which implies that

external data changes are taken into account during execution of an intervention

process as well.

Pattern (Data Transfer by Value - Incoming change notification)

Description: The ability of a dependency scope to receive incoming change notifi-

cations of a data element with an update of its value accordingly.

Example: If the address changes during any of the activities in DS1 (Figure 5.6),

DS1 will be notified of that change.

Motivation: Under this scenario, the values of data elements are passed from the

process executor to the dependency scope.

Implementation: This approach to data passing is commonly used for communicat-

ing data elements upon their change to the respective subset of the process (i.e. the

dependency scope) that is relying on the value of that data element. Based on this

change, the process verifier can decide whether or not to execute an intervention

process.

Although we do not use the pattern definitions provided above, it is useful to present

our work in terms of data patterns defined by Russell et al. (2004), as it will help in-

dependent researchers to have a unified view over different approaches to business

process modelling and design.

CHAPTER 6

Automated intervention process

generation

It becomes evident from the example that even for a small DS, the complexity and

workload required for specifying the IPs cannot be underestimated. Manual IP

design is prone to oversights of possible situations that may arise: different IPs are

required not only depending on the current state, but also on the actual value of the

modified variable. As a result, for each possible state in a DS and type of change

to the modified variable, a different IP may be required. Moreover, since the same

BP may be used by more than one municipality, different IPs have to be specified

for each of the different cases, as they may have access to different compensation

services or comply with different rules.

Consequently, a mechanism is developed to automatically generate the IP based

on the DS, the current state, and the value of the volatile process variable. In this

section, the architecture of the framework supporting IP generation is presented.

Subsequently, each component of the architecture will be discussed in detail.

100 6.1. Architectural overview

6.1 Architectural overview
Figure 6.1 provides an overview of the main components of our framework, along

with their basic interactions. A Process Modeller (PM) is used to assist with the task

of the graphical modeling of the BP, providing a selection of standard control blocks

like sequence, flow, switch etc., and design tools for modeling DSs, in accordance

with their definition to be provided in Section 6.2. DSs include the specification

of some high-level goals of declarative nature, which have to be fulfilled by the

respective intervention process in case the conditions indicating an inconsistency

are fired.

Service Repository

prec:

eff:

Generate IP

CSP-based Planner

Process Executor

Process Modeller

Process
Specific
Constraints

DS

++

Verifier

Environment

Compose
Planning Domain

Domain Generator

Design Time

Runtime

Goal

Planning Domain

BP Specification
+

Atomic Actions

BP Specification

Service Descriptions

Planning Domain + Goal + Initial State

prec:

eff:

goal:

initial
state:

+
Initial State

Intervention Process

Compose
DSs

BP Specification

DS Definition

DS Generator

Figure 6.1: Main components of the framework and their basic interactions

The BP modelled by the PM uses activities that are available in the Service Repos-

itory (SR) by means of service operations. The SR keeps a list of service instances

(providers) that offer a set of service operations. Each service instance implements

Chapter 6. Automated intervention process generation 101

a service type, which specifies the interface of the service captured by some extra

semantics. These semantics allow each service operation to be represented as

a planning action, reflecting its functional behaviour in terms of preconditions and

effects, which are necessary for enabling the automatic generation of intervention

processes. A subset of the service operations are referenced by the BP specifi-

cation, whereas operations offered by other service instances can be marked as

pertinent compensation actions, and can become part of an IP if necessary.

The required DSs are discovered automatically in the DS Generator. The DS Gen-

erator automatically computes the appropriate sections in a BP that should be cov-

ered by a DS, based on the BP specification (obtained from the PM) and some

semantics regarding the input-output and the internal state variables of the service

operations (as defined in the SR). The resulting DSs are represented in the PM.

The Process Executor (PE) is responsible for executing the BP step by step (i.e.

the normal course of events as specified during design-time), and takes care of

discovering, binding and invoking the respective service operations residing in the

Environment, according to their specification as included in the SR. Some of the

variables describing the state of the environment can be directly changed by the

process being executed by the PE, through the invocation of services it has access

to, or can be modified by some external process. In the latter case, the PE receives

a modification event, and updates its current internal state accordingly. In addition

to process execution, the PE supports the use of DSs. Before execution of each

activity, the PE checks whether the current state indicates a modification of the

volatile variables that are guarded by a DS that covers this activity. If so, it verifies

whether any of the conditions specified in the DS hold. If a condition holds (e.g.

the new address is outside the current municipality), then the PE interrupts the

execution and invokes the AI Planner. The AI Planner requires as input (i) the

Planning Domain (ii) the initial planning state (i.e. the values of all process variables

at the current execution step and a set of variable interdependencies), and (iii) the

goal describing the desired properties to it be achieved (e.g. a notification should

be sent to the city hall). Before explaining the AI planner in more detail, we discuss

the notion of a Planning Domain.

102 6.1. Architectural overview

The Planning Domain is computed by the Domain Generator (DG) only once for a

certain process instance, the first time that the PE identifies the need for automatic

IP generation. In order to form the Planning Domain, the PE passes the Atomic

Actions (AA) and the BP specification (provided as output by the PM) to the DG.

The AA represent the BP-pertinent action descriptions as kept in the SR (i.e. the

ones referenced by the BP along with the compensation operations). Given these

two inputs, the DG can generate the encoding of the Planning Domain, by enriching

the generic action descriptions of the AA with extra preconditions and effects that

reflect the BP-specific interdependencies between the actions (e.g. sequence, flow

and switch).

Given the Planning Domain, the initial state and the goal, the AI planner generates

the appropriate IP that achieves the associated goal. The generated IP is then

returned to the PE. After the execution of the IP, the PE either proceeds with the

execution of the original BP, starting from the state right after the triggered DS

(as in Figures 5.7a-d, where the original BP execution resumes after ”Delivery”),

or aborts if the IP leads to a state that indicates the termination of the BP (as in

Figure 5.7e). If the former is the case, potential branches that were running in

parallel are also resumed from the point they were interrupted, otherwise the entire

process is interrupted. In the case of nested DSs, as for example DS1 and DS2 of

Figure 5.6, the PE checks first whether the conditions specified by the outermost

DS are true, and if not, it proceeds by checking the inner DS. The generated IP

is executed within the scope of the DS it was triggered from and the parent DSs.

Consequently, variable modifications that are received during the execution of an

IP are covered by the same DSs that covered the activity in the original BP, before

the planner was invoked. If no plan can be found, i.e. there is no way to overcome

the inconsistencies caused by the volatile variable modification using the activities

it has access to, then the BP is canceled, and a request for manual inspection is

issued.

The AI planner will be discussed in detail in Section 6.2.3 and Section 6.3, while

the algorithm of the DS generator is discussed in Section 6.4. The implementation

of the PE and the PM is presented in Section 7.1.

Chapter 6. Automated intervention process generation 103

6.2 Basic concepts
In order to automate the task of intervention process specification, the original BP

should be represented in a format which constitutes the appropriate semantic an-

notations. These annotations comprise the demarcation of the dependendency

scopes along with their accompanying goals and the formalization of the partici-

pating activities in terms of preconditions and effects. The BP-specific information

(concerning its structural constituent elements) is kept separate from the generic,

BP-independent service descriptions. The generic service descriptions are main-

tained in a separate repository and can be referenced by different BPs. The basic

syntactic structure of the BP builds upon the standarized executable language for

describing BPs with web services, WS-BPEL. In this section, the definition of the

basic concepts is provided, where the approach for BP repair is built upon.

6.2.1 Business process
First, we define the Service Repository consisting of a set of service type descrip-

tions and a set of service instances, which “implement” some service type. A ser-

vice type comprises the semantics which represent the logic of the provided func-

tionalities. Service instances refer to some concrete service offered by by a specific

provider, which comforms to a service type (since usually there are many function-

ally equivalent providers). The semantic markups defined in the service types are

necessary in order to automate the task of IP generation. They are expressed in

terms of preconditions, which model the propositions that have to hold in the current

state for an activity to be executed, and effects, which formulate how variables are

changed by the execution of the activity. The service type descriptions are based

on an IOPE (Input Output Preconditions Effects) model, which is followed by estab-

lished Web Service semantic languages like WSDL-S1 and OWL-S.

Definition 6.2.1 (Service Type (st)). A service type is a tuple st = (stid ,O ,SV),

where stid is a unique identifier, O is a set of service operations, and SV is a list of

variables, each ranging over a finite domain. These variables correspond to state

1www.w3.org/Submission/WSDL-S

104 6.2. Basic concepts

variables internal to the service, whose value can be changed by the operations of

the service.

Each service operation o ∈ O is a tuple o = (id(o), in(o), out(o), prec(o), eff (o))

where:

• id(o) is the identifier of the operation.

• in(o) is a list of variables that play the role of input parameters to o, ranging

over finite domains.

• out(o) is a list of variables that play the role of output parameters to o, ranging

over finite domains.

• prec(o) is a set of preconditions and eff (o) a set of effects (as defined in

Definition 6.2.8 with Var = in(o) ∪).

Definition 6.2.2 (Service Instance (si)). A service instance is a tuple

si = (iid(si), st(si)), where:

• st(si) refers to the identifier of the service type st ∈ ST this instance is com-

pliant with.

• iid(si) is the instance’s unique identifier. For each pair of service instances

si1 , si2 that have the same service type identifier st(si1) = st(si2),

iid(si1)
= iid(si2).

Definition 6.2.3 (Service Repository (SR)). A Service Repository SR = (ST , SI)

is a storage, which keeps a set of Service Types ST and a set of Service Instances

SI .

The SR plays the role of a pool of service types and instances, which are used

as the building elements of different process specifications. In the following, the

definition of a Business Process (BP) is provided, which includes the basic activi-

ties and control structures such as sequence, flow and switch. This is an elaborate

and formal definition of the BP, as initially defined Chapter 5. The BP is enriched

Chapter 6. Automated intervention process generation 105

with DSs, which also constitute parts of the process. Although the WMO process

(Figure 3.6) is represented in BPMN-notation for readability reasons, the BP spec-

ification used in this paper is block-structured (Ouyang et al., 2006; Kopp et al.,

2008), and is based on the basic constructs of BPEL. The syntax of the BP is well-

defined and unambiguous, so that they can be directly executed by the Process

Executor (see Section 7.1.2) and automatically transformed to a representation us-

able by the planner. The representation is ultimately a tree structure where a block

can have other blocks as children, and for each block its parent can be obtained.

The definition is recursive, so that control structures and DSs can be nested within

each other.

Definition 6.2.4 (Logical Condition (C)). A logical condition C conforms to the fol-

lowing syntax:

C ::= prop| ∧j Cj | ∨j Cj)|¬Cj

prop ::= var ◦ value | var1 ◦ var2 |(var1 � var2) ◦ value
where:

• var , var1 , var2 are variables ranging over finite domains.

• val is some constant belonging to var ’s domain.

• ◦ is a relational operator (◦ ∈ {=, <,>,
=,�,�}).

• � is a binary operator (� ∈ {+,−}).

Definition 6.2.5 (Business Process (BP)). Given a service repository SR, a busi-

ness process is a tuple BP = (PV , E), with E being a process element

E = ACT | SEQUENCE | FLOW | SWITCH |REPEAT |WHILE |DS, where:

• PV = PVi ∪ PVe is a set of variables ranging over finite domains.

- PVi is a set of internal variables, which are BP-specific. A subset of these

variables are passed as input parameters to the entire BP, and can be ini-

tialized with specific values at execution time.

- PVe is a set of external variables, which refer to state variables declared in

the SR. An external variable v ∈ PVe is a reference stid .iid .vid , where stid

106 6.2. Basic concepts

is the identifier of a service type st = (stid ,O ,SV) ∈ ST , iid is the identifier

of a service instance si = (iid , stid) ∈ SI , and vid is the identifier of some

state variable v ∈ SV .

• ACT is a process activity, as defined in Definition 6.2.6.

• SEQUENCE represents a totally ordered set of process elements, which are

executed in sequence: SEQUENCE{e1 . . . en}, where ei ∈ E .

• FLOW represents a set of process elements, which are executed in parallel:

FLOW {e1 . . . en}, where ei ∈ E .

• SWITCH is a set of tuples {(c1 , e1), . . . , (cn , en)}, where ei ∈ E and ci is a

logical condition C , with all variables ∈ PV . All ci participating in a SWITCH

are mutually exclusive, i.e. for any given assignment to PV , only a single ci

evaluates to true, and ei will be executed if ci evaluates to true.

• REPEAT represents a loop structure and is defined as a tuple (pe, c{pei}),
where c is a logical condition as already defined, and pe, pei ∈ E . c is eval-

uated just after the end of pe, and if it holds, then pe is repeated, after the

execution of the optional pei .

• WHILE is similar to REPEAT , with c being evaluated before pe starts.

• DS is a dependency scope as defined in Definition 6.2.7.

Definition 6.2.6 (Activity (ACT)). Given a service repository SR, an activity is a

process element E which represents one of the following constructs:

• the invocation of a service instance, with act = (id(act), in(act), out(act)),

where:

– id(act) is a reference stid .iid .oid , with stid being an identifier of a ser-

vice type st = (stid ,O ,SV) ∈ ST , iid the identifier of a service instance

si =(iid , stid) ∈ SI , and oid is the identifier of some operation o ∈ O .

– in(act) = in(oid).

– out(act) = out(oid).

Chapter 6. Automated intervention process generation 107

In BPEL it may correspond to an invoke, receive, reply , etc.

• the idle activity no-op, which corresponds to empty in BPEL.

• the special activity exit , whose execution causes the entire BP to halt (corre-

sponding to exit in BPEL).

The input (output) parameters of all activities in the BP form the sets IP (OP).

Input variables can be assigned with constant values or other process variables:

id(act)(ip1 := v1 , . . . , ipn := vn), where ipi ∈ in(act), vi ∈ PV , or vi is a value com-

pliant with ipi ’s domain. The activity outputs can be stored in some local process

variable: pvi := opi , where opi ∈ out(a) and pv ∈ PVi .

6.2.2 Dependency scope
The DS is a guard-verify structure, where the critical part of the BP is included in

the guard block, while the verify block specifies the types of events that require

intervention. Whenever such an event occurs, the control flow is transferred to the

verify block, and the respective goal is activated. Once the resulting IP finishes

execution in the updated environment, the control flow of the BP continues from the

point following the guard-verify structure, unless it is explicitly forced to terminate.

Definition 6.2.7 (Dependency Scope (DS)). Given a service repository SR and

a business process BP = (PVi ∪ PVe , E), a dependency scope is a tuple DS =

〈guard(V V){CS}, verify({(case(Ci): Gi | Eip | terminate(Gi) | terminate(Eip))})〉,
where:

• guard(VV) indicates the set of volatile variables VV ⊂ PVe whose modifica-

tion triggers the verification of the DS, and CS ∈ E a process element, which

is called the Critical Section. Whenever during the execution of CS an event

indicating a change in the value of a volatile variable vv ∈ VV is received, the

verify part of the DS is triggered, and the execution of BP is interrupted.

• verify({(case(ci) : Gi | Eip)}) comprises a set of tuples consisting of a case-

condition ci and a goal Gi or a process element Eip to be pursued if ci holds.

108 6.2. Basic concepts

– ci is a logical condition C. Providing a case condition is optional, with the

default interpretation being ci = TRUE .

– Gi specifies a goal, which ensures the satisfaction of the properties that

reflect the state right after the final activity of Eg . Gi is specified in the

goal language supported by the planner as presented in (Kaldeli et al.,

2009). After interrupting the BP execution, the plan that satisfies the

respective Gi (if it can be found) is executed. When the execution of the

plan is completed, the BP is resumed at the state after CS and from any

other parallel branches of the BP that were interrupted.

– If an Eip is pre-specified to be executed in case Ci holds, then the exe-

cution of BP is interrupted, Eip is executed, and after its completion BP

resumes from the end of CS .

• terminate(Gi) (terminate(Eip)) forces the process to terminate, i.e. abort the

execution of BP , after fulfilling Gi (completing the execution of Eip).

Please note that the Critical Sections described here are not related to critical sec-

tions as defined in operating systems research (Dijkstra, 1965; Lamport, 1987), as

the concurrent access to a certain data element is not and cannot be restricted to

a single process. That is, access to the data element is not locked.

The complete specification of the full WMO process, annotated with all DSs, is pro-

vided in 8.8. Following Definition 6.2.7, the DS specification representing DS1 of

Figure 5.6 is the following:

<DS>

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<!-- Subprocess covered by DS1 as in Figure 2 -->

</guard >

Chapter 6. Automated intervention process generation 109

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq -val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’�AND�bpMedCond!=’deceased ’">

<achieve -maint>

<known variable="dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

<terminate >

<achieve -maint>

<invalid variable="orderId"/>

</achieve -maint>

</terminate >

</case>

</verify >

</DS>

According to DS1 , if a modification in the address or the medical condition occurs

within the scope of the guarded subprocess, the following goals are pursued:

• If the address change indicates that the citizen has moved outside of the mu-

nicipality, the goal ensures that the intervention plan leads to a state, where

the order for a wheelchair or home modification (depending on the value of

the “provision” variable, which is determined by the activity “Intake and Appli-

cation”) has been cancelled, and a respective notification is sent to the city

hall. The plan will be equivalent to IP (e) of Figure 5.7.

• If the new address of the customer is still within the range of the municipality

or/and the medical condition has changed to some new value that does not

indicate “deceased”, the final desired state is that the delivery of wheelchair

or home modification is performed by taking into account the new situation

(the new medical condition and/or address). Depending on the state at which

the modification occurs and the kind of the modification, the generated plan is

one of the IPs (a) to (d) of Figure 5.7. After the execution of the plan the BP

110 6.2. Basic concepts

execution resumes to handle the invoice.

• If the new value of medical condition indicates “deceased”, then the goal spec-

ifies that the order should be invalidated.

Depending on the state of the DS in the original BP, at which the relevant volatile

variable modification was identified, the generated plan may vary considerably for

the same goal. This way, one DS definition covers all forms of IPs specified in

Figure 5.7, which are generated automatically by the planner. The domain designer

just prescribes in the goal what properties have to be satisfied during recovery, but

is not required to know the combinations of actions that can achieve the goal. The

planner uses a heuristic that promotes optimal plans. As a result, the planner may

come up with different plans that fulfill the goal, depending on the available services.

Considering, for example, an address change after an order has been sent in DS1

in Figure 5.6. If the supplier service offers an updateOrder operation, the planner

will advocate an update in the order address information, instead of cancelling the

existing order and sending a new one.

Interdependencies between variables are also defined on top of the BP specifica-

tion, prescribing the direct dependency of some variables on the validity of some

other variable. The dependsOn relation is used for this purpose and adheres to fol-

lowing syntax: dependsOn(v) = {v1 , . . . , vn}. Whenever a change in variable v is

discovered or whenever v is invalidated (by transitivity, as an effect of some other

variable interdependency) by the PE, the direct invalidation of the current values

of v1 , . . . , vn is automatically implied, without the need of some special-purpose

process to take care of that. For example, dependsOn(bpAddress address) =

{hvOut homeInfo}, since hvOut homeInfo refers to the information retrieved for

the specific hvIn address. Thus, if the person moves to some other address, the

collected information is not valid anymore. In turn, a set of variables are directly

dependent on hvOut homeInfo, like arOut requirements reflecting the acquired re-

quirements concerning the wheelchair. On the other hand, an orderId is not directly

dependent on the address, since it remains valid after these variables change, un-

less some other course of interaction actively cancels it. These additional state-

ments are of particular relevance when the change of a volatile variable is discov-

Chapter 6. Automated intervention process generation 111

ered, so that all information directly dependent on the consistency of the volatile

variable also becomes obsolete, as shown in Section 6.3.3. The full set of variable

interdependencies that accompany the WMO process specifications are provided

in Appendix B.

6.2.3 The planning domain
Given a request by the Process Executor in case a DS is triggered, the Domain

Generator constructs a planning domain given a BP specification and an SR, which

is used by the planner for generating the IPs upon recovery requests. In the fol-

lowing, we provide the definition of a Planning Domain (PD), in line with (Kaldeli

et al., 2011) (the automatic composition of the PD is described in Section 6.3). The

planning domain has some special characteristics that distinguish it from classical

planning representations. The domain accommodates for numeric variables, which

can range over finite domains, including the input arguments of actions. In addi-

tion, numeric functions and effects beyond mere assignments are supported. The

planning domain is enriched with a knowledge-level representation to model obser-

vational actions, whose invocation provides some new information that is unknown

offline. Observational actions model data-providing services, which constitute the

largest proportion of nowaday’s services. The knowledge-level representation al-

lows us to address switches with conditions on the outcome of such actions, as will

be explained below. A step-by-step explanation of the automatic composition of the

PD is provided in Section 6.3.

Definition 6.2.8 (Planning Domain (PD)). A Planning Domain is a tuple

PD = 〈Var ,Par ,A〉, where:

• Var is a set of variables. Each variable v ∈ Var ranges over a finite domain

Dv.

• Par is a set of variables that play the role of input parameters to members of

A. Each variable p ∈ Par ranges over a finite domain Dp.

• A is the set of actions. An action a ∈ A is a tuple a = (id(a), in(a), precond(a),

effects(a)), where:

112 6.2. Basic concepts

– id(a) is a unique identifier

– in(a) ⊂ Par are the input parameters of a

– precond(a) is a propositional formula over Var ∪ Par , which conforms to

the following syntax:

precond(a) ::= prop| ∧i precond(a)| ∨i precond(a)|¬precond(a)
prop ::= var ◦ val | var1 ◦ var2 | (var1 � var2) ◦ val |

known(var),

where:

* var , var1 , var2 ∈ (Var ∪ Par).

* val is some constant.

* ◦ is a relational operator (◦ ∈ {=, <,>,
=,�,�}).

* � is a binary operator (� ∈ {+,−}).

– effect(a) is a conjunction of any of the following elements:

* assign(var , v), where v is some constant or v ∈ Var

* assign(var , f (v1 , v2)), where v1 , v2 ∈ (Var ∪ Par) or v1 , v2 are con-

stants, and f the sum or the subtract function

* increase(var , v) or decrease(var , v), where v ∈ Var or v is some con-

stant

* sense(var), where var ∈ Var .

* invalidate(var), where var ∈ Var . This effect states that var be-

comes unknown.

* prop(a) ⇒ effect(a), which models a conditional effect.

The output variables of an action are included as part of its sensing effects, i.e. they

are assigned a value which is unknown offline, and can be any value that is consis-

tent with the variable’s domain. A state s is defined as a tuple s = 〈(x1 ,Dx1
s), . . . ,

(xn ,D
xn
s)〉, where xi ∈ Var ∪ Par and Dxi

s ⊆ Dxi . The domain of x at state s is given

by the state-variable function x(s), so that x(s) = Dx
s if (x,Dx

s) ∈ s. If |Dx
s | = 1,

this means that x at s has a specific value. The domain modelling is based on

the Multi-valued Planning Task encoding (Helmert, 2009), which leads to a smaller

Chapter 6. Automated intervention process generation 113

number of variables ranging over larger domains, and is particularly well-suited for

constraint solvers. The effects of type sense are called observational, i.e. they ob-

serve the current value of a variable, while the assign and increase/decrease types

of effects are world-altering, i.e. actively change the value of a variable. An action

may have both observational and world-altering effects.

Sensing effects are particularly important to model situations that involve non-

deterministic assigments to variables. For example, the result of the deferred choice

after the “Decision” action in Figure 3.6 (i.e. dcOut confirm=true or dcOut confirm

= false) is modelled via an effect of the form sense(dcOut confirm). Sensing out-

comes are commonly used in deferred choices, (i.e. switch constructs) where the

condition depends on some interaction with the operating environment. Its verifi-

cation is thus deferred until runtime, after some variable is determined during the

execution of a knowledge-providing action. The invalidate type of effects indicate

that the value of a variable is not valid, and should therefore not be used by sub-

sequent actions before being observed again, in order to derive a sound value.

For example, the action cancelOrder(orderId) has as an invalidate(orderId), which

entails that the orderId of an order that was processed is no longer valid.

Conditional effects can be used to model deferred choices, where different ef-

fects are materialized, depending on which proposition holds. For example, the

negative effect of the activity “Check Tender with Decision” (if the tender selec-

tion is not approved by the municipality) entails the invalidation of the “Tender

Procedure” outcome for selecting the company to undertake the home modifica-

tion. As a result, the repetition of the “Tender Procedure” is enforced for the pro-

cess to go on. This behaviour is modelled by the effect ¬tsOut tenderSelOK ⇒
invalidate(ctOut tenderSel), and is automatically generated given the repeat struc-

ture of the BP specification, as it is explained in Section 6.3.

The domain is extended with additional variables to model the knowledge-level rep-

resentation, and to distinguish between sensing and world-altering actions. These

variables are generated automatically given a planning domain PD. First, for each

var ∈ Var , a new boolean variable var known is introduced, indicating whether var

is known at state s (var known(s) = true) or not (var known(s) = false). Given these

114 6.2. Basic concepts

additional knowledge-level variables, known(var) is equivalent to var known =

TRUE. Similarly, invalidate(var) is equivalent to assign(var known,FALSE). For

every variable kvar ∈Var that participates in an observational effect, a new vari-

able is introduced kvar response, which is a placeholder for the value returned

by the respective sensing operation. Since this value is unknown until execu-

tion time, kvar response ranges over kvar ’s domain (kvar response ∈ Dkvar). Thus,

sense(kvar) is equivalent to assign(kvar , kvar response). Furthermore, for each vari-

able cvar ∈ Var that is part of at least one world-altering effect, a boolean flag is

maintained, which becomes true whenever this effect takes place. Consequently,

the extended set of variables V = Var ∪ Par ∪Kb ∪ Cv ∪ Rv is obtained, where

Kb is the set of knowledge-base variables, Cv the set of the change-indicative vari-

ables, and Rv the response variables.

6.2.4 Encoding the domain into a CSP
The PD can be mapped into a Constraint Satisfaction Problem (CSP), which can

in turn be passed to a constraint solver, together with some goal that is expressed

in the form of constraints (see (Kaldeli et al., 2011)). The computed solution to the

CSP (assignment to variables) amounts to a plan (partially ordered sequence of

actions) that satisfies all the constraints imposed by the domain and goal.

Formally, a constraint satisfaction problem is a triple CSP = 〈X,D, C〉, where X =

{x1, . . . , xn} is a finite set of n variables, D = {D1, . . . , Dn} is the set of finite

domains of the variables in X so that xi ∈ Di, and C = {c1, . . . , cm} is a finite

set of constraints over the variables in X. A constraint ci involving some subset

of variables in X is a proposition that restricts the allowable values of its variables.

A solution to a CSP 〈X,D, C〉 is an assignment of values to the variables in X

{x1 = v1, . . . , xn = vn}, with vi ∈ Di, that satisfies all constraints in C.

Following a common practice in many planning approaches, we consider a bounded

planning problem, i.e. we restrict our target to finding a plan of length at most

k, for increasing values of k. Considering a planning domain extended with the

knowledge-level variables PD = 〈V,A〉, the target is to encode PD into a CSP =

〈XCSP ,D, C〉. First, for each variable x ∈ V ranging over Dx, and for each 0� i � k ,

Chapter 6. Automated intervention process generation 115

we define a CSP variable x[i] in CSP with domain Dx. Actions are also represented

as variables: for each action a ∈ A and for each 0� i � k−1 a boolean variable a[i]

is defined. The assignment to these action variables represents the plan. That is,

an action is executed at state i if a[i] is true. It should be noted that the computed

plan may include parallel actions (since multiple action variables can be assigned

to true at the same state). If some action a1 affects a variable that is part of the

preconditions of some other action a2, or if both affect the same variable, then a1

and a2 are prevented from being put in parallel by an additional constraint.

Action preconditions and effects, as well as frame axioms, are automatically en-

coded as constraints on the CSP state variables, based on the formulation de-

scribed in (Ghallab et al., 2004). Frame axiom constraints are also generated,

which guarantee that variables cannot change between subsequent states, unless

some action that affects them takes place. For every v ∈ Var − (Par ∪ Rv) and

for for each 0� i � k − 1 the constraint ∧j (actionAff (v)j) = 0) ⇒ v [i] = v [i + 1] is

added, where actionAff (v)j are the actions affecting v.

6.3 Automatic intervention process generation
In this section, the preliminary steps required for IP generation are explained. These

steps comprise the formation of the atomic actions, the generation of a planning

domain by the DG and the formation of the initial planning state by the PE. Further-

more, it is explained how complex BP-constructs are handled by the AI planner.

6.3.1 Formation of the atomic actions
The semantic specifications stored in the Service Repository are process-inde-

pendent, and capture the generic functionality of the respective service operations

in terms of preconditions and effects, so that they can be used in the context of

various BPs. Usually these preconditions and effects concern the set of inputs and

outputs of the respective operations and some additional aspects that are internal

to the particular service.

For each BP , the operations of a subset of service instances in the Service Repos-

116 6.3. Automatic intervention process generation

itory are marked as pertinent compensation methods. These methods can be part

of the intervention processes for repairing the BP , and are annotated by the domain

designer. If a permissive approach is adopted, the entire set of service instances in

the SI part of the SR is allowed to be used by the IP. These compensation methods,

along with the invocation methods referenced by the activities in the BP , form the

BP-Pertinent Methods (BPPM) set. For each method stid .iid .oid ∈ BPPM of a ser-

vice instance si = (iid , stid) ∈ SI , whose service description includes an operation

o with id(o) = oid , the PE generates some instance-level variables, preconditions,

and effects, based on its iid and the operation description o this method realizes.

The resulting set of instance-level method descriptions forms the Atomic Actions.

Atomic Actions (AA). Given a service repository SR, a business process BP ,

and a set of BP-pertinent methods BPPM, the Atomic Actions (AA) are formed as

follows:

• When the PE receives a request to execute the BP (i.e. for every new process

instance), a unique instance reference bp-iid is assigned.

• For each method bpo = stid .iid .oid ∈ BPPM , the service type

st = (stid ,O ,SV) ∈ ST is found, and the operation

o = (id(o), in(o), out(o), prec(o), eff (o)) ∈ O with id(o) = oid is retrieved.

• For each input parameter ipi ∈ in(o), a new input variable is created for

stid .iid .oid , with name bp-iid .stid .iid .oid .ipi and a domain identical to ipi .

Similarly, for each output parameter opi ∈ out(o), a new output variable is

created, with name bp-iid .stid .iid .oid .opi and a domain identical to opi . The

resulting instance-level input and output parameters form the sets in(bpo) and

out(bpo) respectively.

• Based on the preconditions and effects of o, the sets prec(bpo) and eff (bpo)

are generated, by substituting each input and output parameter with name v

appearing in prec(o) and eff (o) by the reference bp-iid .stid .iid .oid .v . In case

of a service state variable var ∈ SV with local name v , the reference is substi-

tuted with the universal name stid .iid .v , which is BP independent. If stid .iid .v

Chapter 6. Automated intervention process generation 117

has not been met before, the respective variable with name stid .iid .v and with

domain identical to var is created.

This way, for each act = stid .iid .oid ∈ BPPM the invocation method description

imd = (bp-iid .stid .iid .oid , in(act), out(act), prec(act), eff (act)) is created by the

PE. Each imd is converted to a planning action (see in Definition 6.2.8) a = (id(a) =

(bp-iid .stid .iid .oid , in(ai) = in(act)), prec(a) = prec(act), eff (a) = eff (act)). These

actions form the AA. The set of the instance-level inputs and outputs of all bpo ∈
BPPM form the Atomic Inputs (AI) and the Atomic Outputs (AO) respectively,

while the service state variables involved in the precon ditions or effects of the ser-

vice types of all bpo ∈ BPPM form the Atomic Service Variables (ASV).

The AA together with the set of variables AI ,AO ,ASV formed as described in the

definition above, reflect only the atomic-level semantics of the actions. In the con-

text of a certain BP, the universal action descriptions in the AA have to be enriched

with extra preconditions and/or effects, which reflect the process-specific interde-

pendencies, and which can be automatically inferred from the structure of the BP.

6.3.2 Generation of the planning domain
The Domain Generator (DG) is responsible for transforming the AA to a Planning

Domain. A Planning Domain comprises a process-specific representation of ac-

tions participating in the particular BP (to restrict their use according to the BP

structure) as well as the compensation activities that are allowed to be used by the

respective IPs. The first time the PE needs to call the AI Planner at a certain pro-

cess instance, the DG is called to generate the Planning Domain. Throughout the

entire process instance, the same Planning Domain can be used. Consequently,

the DG is only required once for a certain process instance. In the following, it is

explained how these additional semantics are added to the atomic descriptions of

the actions, in order to capture process-specific constraints.

Some additional assumptions regarding the BP definition given in Definition 6.2.5

have to be made, which allow us to derive all process-specific preconditions and

effects in an automatic way from the BP specification. Given a repeat structure

118 6.3. Automatic intervention process generation

repeat = (pe, c{pei}), if the optional intermediate pei is empty, it is assumed that

in case c holds, the outcomes of the activities in pe are automatically invalidated,

in order to to enforce the repetition of firstAct(pe). For example, if the outcome

of “Check tender with decision” is negative, another tender has to be selected.

As a result, the output of “Tender Procedure” (the supplier selection) has to be

invalidated.

On the other hand, in case a pei is intervened before pe, some activity in pei should

take care of the invalidation of the relevant outcomes of the actions in pe (as e.g. is

the case with “Return invoice to the supplier”). These additional restrictive assump-

tions are not necessary if the extra preconditions and effects are added explicitly by

the domain designer.

Algorithm 1 takes as input the BP specification, and the set of atomic actions AA

(which comprise the activities participating in the BP plus the allowed compensation

actions). By parsing the BP, it constructs the appropriate preconditions and effects

for each activity that is part of the BP. These preconditions and effects are added

on top of the atomic functional preconditions and effects of the respective action in

the AA. The BP is treated as a tree (represented as an XML tree), where the root

is the outer-most element in the specification, and the leaves are the activities. For

each element its parent can be obtained, and given an element one can reach its

children. The parsing starts from the root and gets the next element in a depth-first

way. If the element is an activity a, first its inputs are parsed: for each assignment to

an input parameter, the respective equality proposition is added to the preconditions

of a. Next, possible assignments of the outputs of a to BP variables of the form

bpVar := eOut v are parsed, and the respective assign effect is added to the effects

of a.

The preconditions enforcing the sequence relation of a with respect to its preced-

ing process element e, as computed by the PREVELEM function in Algorithm 3, are

returned by the function SEQPREC in Algorithm 3. These preconditions ensure that

the appropriate preceding actions are executed prior to a, depending on the type of

e. More specifically, SEQPREC obtains the preconditions corresponding to all execu-

tion paths that may lead to a, by finding the last action(s) of the respective execution

Chapter 6. Automated intervention process generation 119

Algorithm 1 Automatic addition of BP-specific preconditions and effects given a BP

specification and a set of atomic actions AA. The resulting set of BP-specific action

descriptions constitutes the Planning Domain.

procedure PD(BP ,AA)

while hasNext(BP) do

e = getNextElement(BP) //depth-first parsing of the BP tree

match type(e)

case activity :

while hasNextInput(e) do //parse input assigments

(ipi := v) = parseNextInput(e)

addPrec(getAction(id(e),AA), ‘ipi = v ’)

end while

while hasNextOutAssign(e) do //parse possible assigns of outputs to vars

(bpVar := eOut v) = parseNextOutAssign(e)

addEffect(getAction(id(e),AA), ‘assign(bpVar , eOut v)’)

end while

addPrec(getAction(id(e),AA), SEQPREC(PREVELEM(e), BP))

case switch{(c1 , e1), . . . , (cn , en)}:

while hasNextBranch(e) do //parse all branches of the switch

(ci , ei) = getNextBranch(e) //precs for all actions at the beginning of swich

∀ai ∈ FIRSTACT(ei): addPrec(getAction(id(ai),AA), ‘ci ’)

end while

case repeat(pe, c): //e is a repeat without an intermediate pei

∀ai ∈ LASTACT(pe): //effects for all actions after the loop pe:

//invalidate the outputs of all actions in the repeat loop

addEffect(getAction(id(ai), AA), ‘c ⇒ ∧aj∈pe,ok∈out(aj)invalidate(ok)’)

case otherwise: continue

end while

end procedure

120 6.3. Automatic intervention process generation

paths, and the possible respective conditions on which this path is depending.

The function PREVELEM(a, BP) returns either the previous element of a in a se-

quence relation if such one exists, or otherwise it recursively returns to the ances-

tors of a, until it reaches a sequence relation. If no sequence exists in its roots,

there is no activity preceding a. If e=PREVELEM(a, BP) is an activity, the precondi-

tion states that the outputs of e have to be known. If e is a sequence, then SEQPREC

is computed on the last element in that sequence. In case of a repeat-construct,

SEQPREC is called recursively on the loop element. Moreover, the negation of the

condition at the end of the loop should hold for the control flow to proceed with the

execution of a.

Algorithm 2 Function for computing preconditions capturing sequence relations.

The computed preconditions are added to the action that follows in the BP.

function SEQPREC(e,BP): Precondition

match type(e)

case activity :

return ‘∧oj∈out(e) known(oj)’ //action’s outputs are valid

case seq{e1 , . . . , en}: SEQPREC(en ,BP)

case repeat{pe, c{ei}}: return ¬c ∧ SEQPREC(pe,BP)

case switch{(c1 , e1), . . . , (cn , en)}: //ei of switch-branch ci is valid if ci

return ‘∧i (¬ci ∨ SEQPREC(ei ,BP))’

case flow{e1 , . . . , en}: //all parallel eis are valid

return ‘∧i SEQPREC(ei)’

case empty :

if PREVACT(e) �= ∅ then

SEQPREC(PREVACT(e,BP))

else

return true

end if

end function

Chapter 6. Automated intervention process generation 121

For multiple incoming branches in the case of flow, the sequence preconditions

modelling all elements in the flow are obtained. If the e is of type switch =

{(c1 , e1), . . . , (cn , en)), the preconditions state that the element ei should be ex-

ecuted prior to a only if the respective branch was taken, i.e. if condition ci holds.

Finally, if e (the previous element with respect to the parent element of a) is the

empty activity, and parent(a) is not the root of the BP, then the algorithm proceeds

recursively in computing the sequence preconditions entailed by the ancestors of e.

Algorithm 3 Auxiliary function for obtaining the previous element in a sequence.

function PREVELEM(e,BP): Element //Returns the previous element of e

match type(parent(e,BP))

case seq{e1 , . . . , en}:

if e = ei ∧ i �= 1 then

return ei−1 //if e = ei not last in seq, return ei−1

else //if last, the previous is the previous of the parent

PREVELEM(parent(e,BP))

end if

case otherwise:

if parent(e,BP)=∅ then //if root

return ∅

else //in all other cases, previous is the previous of the parent

PREVELEM(parent(e,BP))

end if

end function

After taking care of the sequence preconditions, Algorithm 1 proceeds with check-

ing the case where the current element in the tree is of type switch. In this situation,

for each branch(ci , ei) of the switch the condition ci is added as a precondition to the

first activity(ies) of ei. These first activities are computed by the function FIRSTACT

in Algorithm 4. FIRSTACT recursively obtains the first element(s) of ei, depending on

the type of ei, until this element is an activity. In the next step, if e = repeat(pe, c), a

conditional effect is added, which invalidates the results of all actions in the loop el-

ement pe, in case the repeat condition c holds, in order to compel their repetition. In

Section 8.8 the final planning domain representing the WMO process, as produced

122 6.3. Automatic intervention process generation

by Algorithm 1, is presented.

The outcome of the algorithm is a BP-specific Actions Set (BPAS), which is the orig-

inal AA enriched with the extra preconditions and effects. Together with the set of

variables consisting of the variables AI ,AO ,ASV as described in Section 6.3.1 and

the internal process variables PVi declared in the BP , they constitute the planning

domain considered by the planner. The BP-specific planning domain is thus de-

fined as PD = 〈Var ,Par ,Act〉 (see Definition 6.2.8), with Var = PVi ∪AO ∪ASV ,

Par = AI , and Act = BPAS .

6.3.3 Formation of the initial planning state
The initial planning state comprises the values of all variables at the current state of

execution and the knowledge level with respect to the variables interdependency

rules. Given the manually specified variable interdependencies in terms of the

dependsOn sets, these are enriched during execution of the BP by the PE: if an ac-

tion comprising an assignment effect assign(v ′, v) or an increase(decrease) effect

increase(v ′, v) (decrease(v ′, v)), has been executed, variable v′ is added automati-

cally to the dependsOn(v) set (if the set does not already exist, it is created). Each

time the AI planner is called by the PE, the initial planning state is formulated as

follows:

• Each variable var ∈ PV is equal to a value corresponding to the state of exe-

cution, i.e. considering the assignments to the BP input parameters, the out-

puts of the service invocations, the assignments to variables, and the received

external events (for more details see Section 7.1).

• For each variable var for which no specific value has been acquired yet, the

respective knowledge variable known var is set to false at the initial state

(known var(0) = false).

• Given a change event on a volatile variable vv, the interdependency rules

are parsed. For each var ∈ dependsOn(vv), known var(0) = false, indicat-

ing that the value of var as reflected by the current state of execution is not

valid. The same is done recursively for each var ′ ∈ dependsOn(var), for all

var ∈ dependsOn(vv).

Chapter 6. Automated intervention process generation 123

Algorithm 4 Auxiliary functions used for adding switch and repeat conditions as

preconditions.

function FIRSTACT(e,BP): Set[Element] //Find the first action(s) of an element

match type(e)

case switch = {(c1 , e1), . . . , (cn , en)}:

return FIRSTACT(e1 ,BP) ∪ . . .∪ FIRSTACT(en ,BP)

case repeat = {pe, c{pei}}: return FIRSTACT(pe,BP)

case flow{e1 , . . . , en)}:

return FIRSTACT(e1 ,BP) ∪ . . .∪ FIRSTACT(en ,BP)

case seq{e1 , . . . , en}: return FIRSTACT(e1 ,BP)

case activity : return e

end function

function LASTACT(e,BP): Set[Element] //Find the last action(s) of an element

match type(e)

case switch = {(c1 , e1), . . . , (cn , en)}:

return LASTACT(e1 ,BP) ∪ . . .∪ LASTACT(en ,BP)

case repeat = {pe, c{pei}}: return LASTACT(pe,BP)

case flow{e1 , . . . , en)}:

return LASTACT(e1 ,BP) ∪ . . .∪ LASTACT(en ,BP)

case seq{e1 , . . . , en}: return LASTACT(en ,BP)

case activity : return e

end function

6.3.4 Generating the intervention process
By starting from the initial state as delivered by the PE, and depending on the goal,

the IP can be computed by the AI planner using the planning domain. This IP may

include the re-invocation of activities with the up-to-date input parameters, if this

is required to achieve the goal (e.g. pay a visit to the new address to acquire the

informed requirements), or try to find a sequence of “undo” actions that actively

lead to the invalidation of some variables (e.g. try to cancel an order that has been

sent if possible).

124 6.3. Automatic intervention process generation

In case of deferred choices (i.e. XOR-constructs (switches) where the value of a

variable participating in the respective condition is unknown off-line) it has to be

ensured that the right branch is followed at runtime. One way to address this issue

is to rely on conditional plans, as e.g. presented in (Pistore et al., 2005; Hoffmann

et al., 2012). However, for these approaches it is difficult to deal with sensing out-

comes that range over numeric-valued domains. Herein, we resort to a re-planning

mechanism to model deferred choices, where the value of the condition is acquired

during runtime.

The plan originally returned by the planner is optimistic, i.e. the variables that are

unknown off-line are assumed to have values that lead to the shortest plan that ful-

fills the goal. Thus, in the case of the IP Figure 5.7c, it generates the plan that corre-

sponds to the assumption that the output of “HomeVisit” hvOut maRequired = false,

which indicates that the home inspection does not entail the need for a medical ad-

vice, that the decision is positive, and that the supplier selected by the customer is

approved. Whenever a knowledge-providing activity is executed by the PE, and the

initially unknown variable is instantiated, the outcome is compared with the value

assumed by the plan. That is, it is checked whether the new knowledge incor-

porated in the CSP violates any constraint. If no violation is detected, then the

execution of the IP may proceed according to the initial plan. In case of a violation,

the planner is invoked again with the same goal and a new initial state, including

the value of the sensed variable. As a result, a request for a Home Modification

may require the following series of interactions when planning for Goal achieve-

maint(known(delOut delId)) (see Section 6.2.2), in order to obtain the IP shown in

Figure 5.7c (the input parameters are omitted for brevity):

Initial plan: {HomeVisit,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}

Execute HomeVisit Output: hvOut maRequired = true, constraint violation, re-plan

New plan: {MedicalAdvice,Decision,TenderProcedure,CheckTender ,SendOrder ,Delivery}
Execute: MedicalAdvice maOut medInfo = ‘Document12A′

Execute Decision Output: dcOut approvalCheck = true

Execute TenderProcedure Output: tpOut tenderSelection = ‘ACMFrizianConstructions′

Execute CheckTender Output: ctOut tenderOK = false, constraint violation, re-plan

Chapter 6. Automated intervention process generation 125

New plan: {TenderProcedure,CheckTender ,SendOrder ,Delivery}
Execute TenderProcedure Output: tpOut tenderSelection =‘van der Meer Elevators’

Execute CheckTender Output ctOut tenderOK = false

Execute SendOrderToSelSupplier Output: soOut orderId = ‘14578AS ′

Execute Delivery Output: dlOut conf = ‘Delivered′

If the output of “Decision” is negative, then no plan exists that satisfies the goal. In

that case, the planner returns a message indicating that the goal is not satisfiable,

causing the BP execution to be aborted. In total 9 service operations are invoked

as part of the IP.

The IP generated by the planner is finite in all cases. Although the AI Planner

can model finite loops (i.e. a repetition of certain activities), the IP cannot have

indefinite loops, since the plan is a finite, partially ordered set of actions. The loops

as a result of deferred choices are caused by BP specific preconditions and effects.

The planner may be called indefinitely as a result of deferred choices, if the output

of the sensing actions keeps satisfying the loop condition. To avoid such situations,

an upper limit is put to the number of times the replanning process can be invoked.

6.4 Automatic identification of critical sections
The algorithm of automated generation of the parts of a BP covered by a DS is pre-

sented in Algorithm 5 below. The algorithm guarantees that the computed CSs are

elements of the BP in compliance with Definition 6.2.5. CSs cover all activities that

are directly or indirectly dependent on the same set of volatile variables VV . That

is, they either use a vv ∈ VV as input or use the output of another activity, which

is dependent on vv . These activities are referred to as Dependent Activities (DA).

In order to ensure that important change events will not pass untreated, any part of

the process in a potential execution path between two activities dependent on the

same VV should also be covered by the respective CS. This is necessary to take

care of any modification of vv that occurs during the execution of this intermediate

part, since the modification may require the cancelation or repetition of some pre-

ceding part of the BP which relied on some vv ∈ VV (e.g. performing a new visit

to the new house if the address has changed), and which is used by a succeeding

126 6.4. Automatic identification of critical sections

a)

b)

c)

Figure 6.2: CS creation examples

element (e.g. to calculate the characteristics of the requested wheelchair). How-

ever, branches in switch or flow constructs that are not on a potential path between

two activities dependent on some vv , should not be unnecessarily included in the

respective CS, in order to avoid unnecessary invocation of intervention processes.

In Figure 6.2, some examples of CSs are provided to illustrate the properties de-

scribed above. The shaded activities are dependent on VV and should be covered

by a CS. The CSs are indicated by a dashed line. In case (a), only the specific

branches of the switch-constructs that comprise dependent activities are included

in the CS. In situation (b), however, the second switch has to be covered entirely by

a CS, because the last activity is dependent on VV as well. Any modification event

regarding a vv ∈ VV that occurs during the upper branch (which is not dependent

on VV) has still to be dealt with, since the last activity may use a a variable that is

a result of some dependent activities before the switch, which produced this result

based on the obsolete vv . In situation (c), both branches of the first switch con-

tain activities that are not dependent on VV . However, as they both are on a path

between activities that are dependent on VV , the entire switch is covered by a CS.

The main function of Algorithm 5 is extractScopes, which takes as an input a BP

specification in accordance with Definition 6.2.5 and the list of volatile variables

VV . extractScopes returns a list of tuples 〈VVi ,CSi〉, which correspond to the

Chapter 6. Automated intervention process generation 127

guard parts of all DSs in the BP. Given a BP = (PVi ∪ PVe ,E), VV = PVe . That

is, all state variables that are declared in the SR and used in the BP should be

guarded, since their modification may be a source of erroneous results. The BP is

treated as a tree (represented in XML), where the root is the outermost element in

the specification, and the leaves are the activities.

Algorithm 5 Automatic computation of the set of the pairs Guard={〈VVi ,CSi〉},

consisting of volatile variables and respective elements that constitute the Critical

Sections

1: function EXTRACTSCOPES(BP ,VV): List[(List[V], E)]

2: for each vv ∈ VV do

3: guardList = ∅
4: DE = GETDEPENDENTELEMS(vv ,BP)

5: for each ei ∈ DE do

6: tmpCS = ∅
7: DE = DE .remove(ei)

8: for each ej ∈ DE do

9: if type(minCommonAncestor(ei, ej))=sequence then

10: tmpCS = tmpCS ∪ GETTEMPCS(ei, ej , BP)

11: DE = DE .remove(ej)

12: end if

13: end for

14: for tmpCSi ∈ tmpCS do

15: guardList .add(〈{vv}, tmpCSi〉)
16: end for

17: end for

18: end for

19: MERGESCOPES (guardList)

20: end function

The outermost loop in the function extractScopes iterates over the list of volatile

variables VV . For each vv ∈ VV , critical sections are extracted separately. At the

end, identical CSs for different variables are merged by mergeScopes into a united

CS. The first step (line 4) is to find all activities and switch–blocks that depend

directly or indirectly on the volatile variable vv , by calling the function

128 6.4. Automatic identification of critical sections

getDependentElems. First (line 24), all activities for which vv is assigned to some

of their input parameters directly or by transitivity are added to the dependent el-

ements DE . Then (line 34), DE is augmented by adding all switch–blocks whose

condition is either on vv , or some variable produced by the already considered ac-

tivities. All elements in DE are arranged in a breadth-first order as they appear in

the BP.

Algorithm 6 Find all activities and switchblocks that depend directly or indirectly on

the volatile variable vv

21: function GETDEPENDENTELEMS(vv ,BP): List[Element]

22: varList = {vv}
23: DE = ∅
24: for each ai ∈ BP .getActivities do

25: for each ipi := v ∈ ai .parseInputAssignments do

26: if v ∈ varList then

27: for each opi ∈ out(ai) do

28: varList .add(opi)

29: end for

30: DE .add(ai); break;

31: end if

32: end for

33: end for

34: for each SWITCHi ∈ BP .getSWITCHelements do

35: ci = SWITCHi .getFirstCondition

36: if ci .getLeftVariable ∈ varList then

37: miDE.add(SWITCHi);

38: end if

39: end for

40: return DE

41: end function

The next step in extractScopes is to iterate through the list DE . In the inner loop, for

each pair of elements ei, ej , it is checked whether their minimal common ancestor

is of type sequence. If so, then the function getTempCS is called, which returns a

set of elements that are candidates for being CSs with respect to the variable vv ,

Chapter 6. Automated intervention process generation 129

and lie between ei and ej . Then, ej can be removed from DE , since subsequent

inspections on it are redundant, as the appropriate CSs covering it have already

been computed.

Function getTempCS(ei , ej ,BP) first calls getPathBtw to compute the path between

ei and ej (line 44), which comprises all elements that are part of the sequence be-

tween ei and ej , including the special markers StartBranchEl and EndBranchEl .

These markers indicate the start (splits) and end points (joins) of branching ele-

ments. Consequently, a path is a list with members of type Item (line 59), where

an item is either a process element or a BranchElMarker . Markers are added in

the path only if they concern joins (splits) for which the respective split (join) is not

encountered during the traversal of the BP from ei to ej . This way, the markers

divide the path into the appropriate sequences of elements (lines 46 to 53), each of

which is a candidate for being a CS.

Algorithm 7 Obtain temporary Critical Sections

42: function GETTEMPCS(ei , ej ,BP): List[Elem]

43: tmpCSList = ∅
44: path = GETPATHBTW(ei , ej ,BP)

45: currCS = ∅

46: for each item ∈ path do

47: match type(item)

48: case Element:

49: currCS .attachInSeq(item)

50: case BranchElMarker:

51: tmpCSList .add(currCS)

52: currCS = ∅
53: end for

54: return tmpCSList

55: end function

Function getPathBtw uses the auxiliary function nextItems (not explained in the

algorithm for space reasons), which returns a list consisting of the next element

in the sequence path, and some possible EndBranchEl , if any are encountered

before the next element is fetched. These are added to the path, and the process

130 6.4. Automatic identification of critical sections

proceeds by fetching the next items (line 60), until the element in the sequence that

contains ej is reached. In the latter case, pathInElem is called, which traverses the

path within this last element until ej is reached. If the element containing ej is an

activity or sequence, this activity (ej) or the subsequence till ej (line 70) are returned

respectively. If the element is a switch or flow, then a StartBranchEl marker is added

in the list of results, and the branch containing ej is inspected. pathInElem is called

recursively on this branch, and all items in the path leading to ej are collected in

pathj . Consequently, the computation of the entire path is completed, and returned

to getTempCS . The path is traversed (line 46), and divided into the appropriate

CSs: currCS is constructed as a sequence of the elements in path, until a marker

is met, at which point currCS is added to the list of candidate CSs.

Once the list of temporary CSs tmpCS regarding a volatile variable vv is com-

puted as described above, extractScopes proceeds with constructing the respective

guardList consisting of tuples 〈{vv}, tmpCSi〉 (line 14). After repeating the process

described above for each vv ∈ VV , mergeScopes is called, in order to clean up the

candidate CSs. The following steps are performed in that order:

• If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where CS1 and CS2 are

identical, then they are replaced by a single tuple 〈{v1, v2}, CS1〉.

• If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where v1 =v2 and

CS1 .descendantOf (CS2), then the former tuple is removed as redundant.

• If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉 cor-

respond to the branches of a switch, i.e. there is an eswitch = switch{
(CS1 , e1), . . . , (CSn , en)}, then these are replaced with a single CS, which covers

the entire switch–element. A similar process is performed for flow branches.

• If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉 are

interrelated through a sequence relation, i.e. there is a seq{CS1 , . . . ,CSn}, then

these are replaced with a single CS, which covers the entire sequence.

Algorithm 5 has been applied to the BP specification of the WMO process repre-

sented in Figure 3.6. The algorithm identified three volatile variables, and all five

Chapter 6. Automated intervention process generation 131

critical sections related to them. The total time for parsing the WMO process spec-

ification and computing all CSs is below 100 msec. The discovered CSs can then

be projected on the Process Modeller, as presented in Chapter 7.

Algorithm 8 Function for computing elements that are candidates for critical sec-

tions.

56: function GETPATHBTW(ei , ej ,BP): List[Item]

57: currElem = ei

58: while ¬ currElem.contains(ej) do

59: path.append(currItems)

60: currItems = NEXTITEM(currElem, ei ,BP)

61: currElem = currItems.getElement

62: if currItems = ∅ then return ∅
63: end if

64: end while

65: path.append(PATHINELEM(currElem, ej ,BP))

66: return path

67: end function

68: function PATHINELEM(el , endEl ,BP): List[Item]

69: match type(el)

70: case activity:

71: return {el}
72: case sequence:

73: return el .subsequenceTill(endEl)

74: case SWITCH ∨ flow:

75: pathj = {StartBrEl}
76: branchj = el .getBranchWith(endEl)

77: return pathj .append(PATHINELEM(branchj , endEl ,BP)

78: return ∅
79: end function

CHAPTER 7

Implementation and evaluation

7.1 The prototype
The proposed approach for automatic process recovery upon data changes has

been implemented in a prototype, comprising the components of the architecture

outlined in Figure 6.1.

7.1.1 The process modeller
The Process Modeller (PM) is implemented in Java, by the use of standard Java 2D

graphical libraries. It supports all basic BP modelling constructs, including SE-

QUENCE, FLOW, SWITCH etc., with an added support for DS modelling and gen-

eration. Furthermore, the PM provides for the declaration of the process variables,

i.e. the definition of their name and type. However, the actual object creation is

handled by the PE, which keeps and manages a local database as described in

Section 7.1.2. The PM is connected to the Service Repository, so that the BP de-

signer can use service operations that exist in the SR as activities in the BP being

modelled.

Figure 7.1 presents a screenshot of the PM, showing the graphical representation

134 7.1. The prototype

Check Tender

Tender
Procedure

Send Order to
Supplier

tenderOK
== TRUE

tenderOK
== FALSE

Send Order to
Supplier

Acquire
Requirements

Delivery
Confirmation

DS2:
{WMO Eligibility Criteria}

Delivery
Confirmation

Send Request
to Supplier

Handle
Invoice

provision ==
‘home modification’

provision ==
‘wheelchair’

provision ==
‘care in kind’

provision ==
‘personal budget’

DS1:
{Address, Medical Condition}

DS3: {Address,
Medical Condition}

Figure 7.1: Screenshot of the Process Modeller.

of the DSs of the WMO process from Figure 5.6. The DSs are saved along with the

rest of the process specification. The final output of the PM is an XML representa-

tion of the BP, which conforms to Definition 6.2.5. This representation is passed to

the PE for execution, as described in the next subsection.

7.1.2 The process executor
The Process Executor (PE) is responsible for executing a BP as specified by the

PM. The PE takes as an input a BP specification in conformance with an XML

schema that represents Definition 6.2.5, and with the BP input parameters instanti-

ated to specific values. The PE works in cooperation with the Service Repository as

described in Definition 6.2.3. The details of the Service Instances implementation

are outside the scope of this thesis. For testing purposes (presented in Section 7.2),

Chapter 7. Implementation and evaluation 135

the service invocations are simulated.

The activities included in the BP specification must refer to method invocations that

can be retrieved from the SR. Given a fully qualified reference to an invocation

method stid .iid .oid specified by an activity in the BP specification, the PE retrieves

the respective description kept in the SR.

Check Tender

Tender
Procedure

Process Instance

Send Order

Service Repository

HomeModification

CheckTender

SendOrderToSelSupplier

TenderProcedure

HomeModification.iid.CheckTender

HomeModification.iid.TenderProcedure

HomeModification.iid.SendOrderToSelSupplier

...

Service Descriptions:

Service Instances:

(“WMO_hm_GR”, “HomeModification”)
...

iid = WMO_hm_GR

Figure 7.2: Example of a Service Type and a Service Instance.

For example, the activity “Send Order ” in Figure 7.2 refers to “HomeModification.

iid .sendOrderToSel − Supplier ”, which corresponds to the method “sendOrderToSel-

Supplier ” of the “HomeModification” service type, and is provided by the service

instance with identifier “WMO hm GR” (see Definition 6.2.3). As shown in Fig-

ure 7.2, the service type of “HomeModification” as well as the service instance

(provider) “WMO hm GR” are kept in the SR. It should be noted that the value of

the variable iid in the BP specification may be unknown before a process is actu-

ally started, and an assignment to another value iid = iv can be used instead of a

predefined value. The value of iv can be provided by the user at execution time, or

retrieved by the PE as an output value of a service method call. In the example in

Figure 7.2 the value “WMO hm GR” for the variable iid is provided at the time the

process instance execution starts.

In the current implementation, an activity is executed by directly invoking the re-

136 7.1. The prototype

spective method, without checking whether the preconditions prescribed in the cor-

responding service instance description in the AA hold. Control flows are treated

as by a typical execution engine.

The data flow and knowledge about the environment are handled by a local storage

(LS), which is maintained by the PE and reflects its knowledge about the environ-

ment and the state of the process instance execution. Some of these variables

are specific to a particular BP running instance, and some are common to multiple

BPs. During execution, the PE updates the LS according to the new information it

receives from the environment (from service method invocations), and to the spec-

ifications included in the BP description (assignments to variables). When the PE

receives a request for executing an instance of a BP specification BP = (PV ,E),

it assigns a unique identifier bp-iid to the running instance, and constructs the AA

along with the instance-level inputs and outputs AI ∪AO (as described in Sec-

tion 6.3.1), which are added to the LS. Each service state variable sv ∈ ASV (see

Section 6.3.1) is added to the LS if it does not already exist. This way, state vari-

ables of the AA are shared among running process instances, whereas instance-

level input and output variables are unique to each process instance. Moreover,

the PE constructs the instance-level internal variables declared in the BP (i.e. for

each var ∈ PVi) with name v a variable with name bp-iid .v and domain identical

to var ’s domain is added to the LS. The internal process variables are also unique

to the process instance. The value of an instance-level variable cannot be changed

by any other external factor other than the BP instance bp-iid it belongs to, while a

shared variable can be modified by any other entity that calls the service operation

which affects it.

The distinguishing feature of the PE with respect to other well-known BP execution

engines is the support for dealing with the DSs specified in a BP. When a process

execution runs into a DS, the PE turns into a special “DS mode”. In that mode,

the PE creates an event listener for each of the volatile variables specified in the

DS. It is assumed that modification events can be captured by subscribing to spe-

cific variables of interest, and that external services that have the permission to

change these variables, publish an appropriate event that is caught by the sub-

Chapter 7. Implementation and evaluation 137

scribed clients (listeners). The details of event firing and catching are out of scope

of the paper.

The event handling is deferred until the activity currently being executed finishes,

thus avoiding potential inconsistencies that may result from canceling an activity in

the middle of execution. Therefore, the information conveyed by the data modifica-

tion events is stored in a memory list that maintains tuples of the recently modified

variables and their latest values. A new event on the same variable overwrites the

old value of the variable kept in the memory list. This list of recent changes is

checked prior to executing the next activity within a DS, and if it is not empty, the

conditions in the verify block of the DS are checked towards the latest values kept

in the list. If a condition evaluates to true, the respective goal or process element is

fired, while the BP execution is suspended. In case of a flow, all parallel branches

are put on hold. The list of recent changes is cleared, and the LS is updated ac-

cordingly, by incorporating the most up-to-date values to the respective variables.

In case a goal has to be pursued, the planner is invoked in order to create a plan

which is then executed, while in the case of a pre-specified element this is directly

executed. After a plan or a pre-specified element is executed the initial process

execution is resumed, starting from the activity which is immediately after the end

of the current DS. In case parallel branches were suspended, these are resumed

as well (the underlying assumption is that the execution of the generated IP does

not introduce any inconsistencies in the suspended concurrent branches). The

only exception is when there is a terminate annotation referring to the goal that is

triggered (see Definition 6.2.7), in which case the original BP is terminated instead.

In case of nested DSs, the conditions are verified for all active dependency scopes

starting from the most outer one and going inward. When the execution of a sub-

process covered by some DS is finished, then the respective DS is removed from

the list of active DSs, as well as all event listeners associated with it. If the list is

empty, then PE leaves the “DS mode” and does not listen to any data modification

events. Note that while executing an IP, the PE still remains in the same “DS mode”.

The modification events received during the IP execution are treated in the same

way as the execution of the process element covered by the DS in the BP. More

138 7.1. The prototype

specifically, an IP “inherits” the DSs that covered the activity responsible for invoca-

tion of the planner. In case a DS condition is triggered, the current IP execution is

interrupted and new IP is generated. After the execution of that IP, the PE returns

to the state after the DS in the original BP.

In order to generate a plan, the AI planner needs a planning domain representation

(see Definition 6.2.8). To this end, the PE calls the Domain Generator, by passing

to it the Atomic Actions (AA), built as described in Section 6.3.1 by including all

service instances referenced in the BP and a set of eligible compensation services

from the SR. The planning domain is constructed only once for a specific BP, the

first time that a DS is triggered. The goal taken from the DS specification and the

current state, i.e. the values of the variables that are part of the planning domain as

reflected by the updated database, are handed over to the AI planner, which uses

them along with the planning domain to compute a plan. This plan, which includes

only sequence and flow structures, is then passed for execution to the PE. Loops in

the plan are “flattened”, i.e. the plans explicitly include all repetitions in sequence.

Deferred choices (such as in the case of switches) are addressed indirectly as

already described in Section 6.3.4: whenever the PE executes an operation that

returns a new value, the constraint solver is called to check whether this value

leads to any inconsistencies with respect to the outcome anticipated by the plan. If

that is the case, the planner is re-invoked with the current state of execution as the

initial state (having the same goal).

7.1.3 The planner
The planner is implemented in Java, and communicates with the PE through stan-

dard method calls. Upon receiving a request for computing a plan from the PE, the

planner translates the BP-specific planning domain, the initial state and the goal it

received into a CSP, as presented in Section 6.2.4. A standard constraint solver is

applied to solve the CSP, in order to find a solution that amounts to a valid plan.

The Choco v2.1.1 constraint programming library1 is used, which provides a large

choice of implemented constraints, as well as a variety of pre-defined and custom

1www.emn.fr/z-info/choco-solver

Chapter 7. Implementation and evaluation 139

search methods. The solution to a CSP amounts to a partially ordered plan, i.e. one

that may contain parallel actions if not restricted by interdependencies between ac-

tions. This plan is passed to the PE for execution, as described in the previous

section.

7.2 Evaluation
The aim of the evaluation is (i) to demonstrate the effectiveness of our approach

with respect to our working example presented in Section 7.1 and (ii) to test the

performance with respect to the time that is required to generate the necessary

IPs. The specification of the desired goals and DSs has been conducted in close

cooperation with WMO employees at the municipality of Groningen. Our experience

confirmed that the translation of the requirements as expressed by non-technical

employees to the representation required by our framework is rather intuitive, and

is relatively easily understood when shown to non-experts for proof-checking.

In the tests presented in the next subsection, service invocations are simulated,

and the methods provided by the service instances have a predefined behaviour,

simulated according to the different situations we want to test. The performance of

the framework has been tested with respect to atomic action repositories of increas-

ing size, since domains that comprise a large set of actions, may raise concerns of

inefficiency. All tests presented thereafter were performed on a computer with an

Intel® Core™2 Duo processor @2,83GHz, with 3GB of RAM, running Java 1.6.0

24.

7.2.1 Tests on case study
In order to test the framework we have developed on a real case-study, the WMO

process shown in Figure 3.6 was modelled, along with the DSs shown in Figure 5.6.

The BP specification representing the case-study is as shown in 8.8, while the

Planning Domain used by the planner is the output of Algorithm 1, given this BP

specification and the set of atomic actions descriptions.

Table 7.1 provides an overview of the times required to generate the initial plans for

140 7.2. Evaluation

all IPs shown in Figure 5.7, corresponding to DS1 of Figure 5.6, in case of a change

in the applicant’s address. In all cases, the time for generating the respective initial

IP is below 1 second and, therefore, neglectable. However all IPs in this example,

except for case (e), comprise one or more deferred choices, which implies that re-

planning may be needed. As a result, after the execution of a knowledge-providing

action, a violation check verifies whether the actual output differs from the expected

value. If that is the case, the planner is invoked again with the same goal, but

starting from the updated state corresponding to the newly sensed value(s).

IP Plan length Time for planning (in sec)

a 5 0.51

b 6 0.59

c 6 0.60

d 7 0.62

e 2 0.39

Table 7.1: Performance results for generating the IPs of Figure 5.7

Tables 7.2a and 7.2b present the times for computing each updated plan in the case

of some possible environmental behaviour for the IPs depicted in Figures 5.7b and

5.7c, which have 2 and 3 deferred choices respectively. Re-planning is performed

until the goal as specified in Section 6.2 is satisfied, or no solution can be found.

The reported times are the average over 4 separate test runs.

The IP in Figure 5.7b corresponds to the situation where a change in address

occurs when a wheelchair is already ordered but not yet delivered. The initial

plan in Table 7.2a is generated assuming optimistic outcomes for the variables

that are unknown at runtime. Consequently, it is assumed that no extra medical

advice is required (hvOut medAdvReq=FALSE) and that the decision is positive

(dcOut decision= ‘Approved’). During execution of the initial plan, the PE may find

out that a medical advice is required, in which case it updates the plan accordingly

by including an extra action. If the outcome of the decision is negative, a constraint

violation is encountered by the PE. The new situation (with dcOut decision= ‘Not

Approved’) is sent to the planner for re-planning. In that case, however, no plan can

be found that fulfills the goal, and the PE is informed accordingly.

Chapter 7. Implementation and evaluation 141

The IP in Figure 5.7c covers the case where the address changes at the stage

where a home modification is requested, but the request is not yet confirmed. Ta-

ble 7.2b presents the times for the initial plan (assuming no medical advice, a pos-

itive decision, and the selected tender to be approved), and the potential updates

as a result of re-planning. The actual service invocations may lead to the following

discrepancies: the medical advice is actually required, and the plan is updated; the

decision is negative, in which case no plan can be found that reaches the goal; the

selected tender is not approved and a new plan is computed, asking the user to

make a new selection (see also Section 6.3.4 for a possible execution behaviour

showing the exact service invocations that take place).

State when planner is called Plan length Time for violation check and planning (in sec)

Initial state 6 0.62 (optimistic plan)

“Medical Advice required” 5 0.29 (violation, new plan)

“Rejected” - (no plan) 0.02 (violation, goal cannot be satisfied)

(a)

State when planner is called Plan length Time for violation check and planning (in sec)

Initial state 6 0.61 (optimistic plan)

“Medical Advice required” 6 0.32 (violation, new plan)

“TenderNotOK” 4 0.19 (violation, new plan)

“Rejected” - (no plan) 0.02 (violation, goal cannot be satisfied)

(b)

Table 7.2: Re-planning times for the IP of Figure 5.7b (a) and the IP of Figure 5.7c (b)

7.2.2 Scalability in a simulated domain
In the case of the WMO process, the planning domain comprises 16 actions (i.e.

the BP-pertinent methods including both the actions that are part of the BP and the

compensation actions), while the largest IP consists of 7 actions (note that if one

adds up all actions that are executed as part of the re-planning process, the total

number of actions that are executed as part of an IP may be significantly larger).

For most BPs, the length of the IPs for recovering from the most usual situations

are relatively short. However, there are occasions where the length of the required

IPs might be significantly larger than the examples presented for the WMO case.

For example, since the planner cannot produce plans with structured loops, many

142 7.2. Evaluation

repetitions of a set of actions may be required to represent the desired pattern.

In order to evaluate the scalability of our framework with respect to the size of

the required IPs (i.e. the number of activities they comprise), a number of tests

have been performed with different goals, whose fulfillment requires IPs with an

increasing size from 5 to 30 activities. For the sake of these tests, a virtual set of

100 atomic actions has been created, comprising the search space of the planner.

The actions in the domain are interconnected through trivial sequence relations, so

that all actions preconditions and effects are conjunctions of the same arity. The

results of these tests are summarized in Table 7.3. They give an impression of how

composition time is affected by the size of the required IP, for a given a business

domain that consists only of sequence structures. The tests show that for a trivial

domain, less than 6 sec are required to generate an IP comprising as many as 30

activities.

5 act 10 act 15 act 20 act 25 act 30 act

Planning time (in sec) 4.89 5.12 5.21 5.33 5.51 5.69

Table 7.3: Performance results: Time for generating IPs of increasing size (domain

size=100)

The time required to generate an IP is not only affected by the size of the do-

main, but also depends highly on the structure of both the planning domain, i.e. the

interdependencies between the actions, and the goal. Disjunctive propositions re-

sulting either from action preconditions or the goal (e.g. in cases where the under-

condition goal construct is used), are known to add an extra burden to the con-

straint solver. Therefore, the most costly structures for the planner’s performance

are nested XORs with many branches (see Algorithm 3) and to a less extent the

repeat structures leading to a disjunctive effect (see Algorithm 1). More information

about the performance of the planner on different scenarios can be found in (Kaldeli

et al., 2011). The experimental evaluation presented herein confirms that the time

for generating an IP in realistic situations is a matter of a few seconds, which is an

acceptable performance considering the average throughput time of long-running

BPs (varying between 1 and 6 weeks for the WMO case).

CHAPTER 8

General discussion and

conclusion

8.1 Introduction
The main purpose of this thesis is to investigate how business process interfer-

ence can be identified and prevented in enterprise information systems. In order

to achieve this objective, this research is divided into three parts, as described in

detail in Section 1.3. Part I concerned the identification of process interference

in business processes. The identification of specific interference cases and the

analysis of the details of these cases assisted us in Part II, where a number of IT

artefacts were developed, in order to prevent process interference and ensure cor-

rect process results. Finally, in Part III, the developed artifacts and corresponding IT

architecture were implemented and tested on a case study in eGovernment. Con-

sequently, we were able to evaluate the developed artifacts on performance and

capability to resolve process interference.

In this final chapter, a reflection and discussion will be provided on the research

in this thesis. The structure of this chapter is as follows. First, we will provide a

146 8.2. Reflection on the research process

discussion on the research process itself. Next, we will subsequently provide a

detailed discussion on each of the three parts.

8.2 Reflection on the research process
Design science creates and evaluates IT artifacts to solve organizational problems

(Hevner et al., 2004). The research presented in this thesis is triggered by a busi-

ness problem, where the problem statement is a general formulation of the problem

as perceived by organizations and their stakeholders. According to the model of

Peffers et al. (2007), this research can be categorized as problem initiated design

science.

In design science, seven distinct guidelines are specified for conducting and evalu-

ating good research (Hevner et al., 2004). As design science is inherently a problem

solving process, an innovative (and, therefore, novel), purposeful artifact must be

created for a certain problem domain, to resolve a formerly unresolved problem.

The established utility must be thoroughly evaluated. The presented research must

be rigorously defined, formally represented, coherent, and internally consistent.

Design science is an iterative process, using a heuristic search strategy to produce

a feasible and good design that can be implemented in the business environment

(Hevner et al., 2004). Finally, the results of the research (i.e. the designed artifacts)

must be communicated effectively to a technical audience as well as a managerial

audience.

The required artifacts to solve the problem can be constructs, methods, models,

instantiations or better theories (March and Smith, 1995). In this research, the

developed artifacts will be in the form of newly developed modelling constructs.

The guidelines are summarized in Table 8.1 and are used for the evaluation in the

following subsections accordingly.

Chapter 8. General discussion and conclusion 147

Guideline Description

Guideline 1: Design as an Artifact Design-science research must produce a viable artifact in the form

of a construct, a model, a method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research is to develop technology-

based solutions to important and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design artifact must be rigor-

ously demonstrated via well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must provide clear and verifiable

contributions in the areas of the design artifact, design foundations,

and/or design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the application of rigorous

methods in both the construction and evaluation of the design arti-

fact.

Guideline 6: Design as a Search Process The search for an effective artifact requires utilizing available

means to reach desired ends while satisfying laws in the problem

environment.

Guideline 7: Communication of Research Design-science research must be presented effectively both to

technology-oriented as well as management-oriented audiences.

Table 8.1: Design-Science Research Guidelines (Source: (Hevner et al., 2004))

8.2.1 Design as an artifact
Design-science research must produce a viable artifact in the form of a construct, a

model, a method, or an instantiation. In this thesis, both a method and a modelling

construct have been developed. An interference identification method and identi-

fication tool have been developed in Chapter 4. In addition, dependency scopes

and intervention processes have been developed, along with the algorithms for au-

tomated specification (Chapter 5 and 6). Therefore, we consider the first guideline

to be fulfilled.

8.2.2 Problem relevance
The research presented in this thesis is triggered by a business problem, where

the problem statement is a general formulation of the problem as described by the

anecdotal evidence of organizations and their stakeholders (Chapter 1). In addition,

process interference as such has been acknowledged in literature, but has not yet

been resolved satisfactorily (Chapter 2).

This is supported by the results of the analysis of the EC case and TC case, which

148 8.2. Reflection on the research process

shows that process interference is indeed widely spread in industry. The problem

itself is important, as the effects on organizations and society can be considerable

(Chapter 4).

8.2.3 Design evaluation
According to Guideline 3, the utility, quality, and efficacy of a design artifact must

be evaluated. The evaluation of the designed artifact should include the integration

of the developed modelling constructs in the business environment (Hevner et al.,

2004). This environment includes the technical infrastructure, which constitutes the

implementation of the developed modelling constructs. The business environments

presented by the EC case and TC case established the requirements for the evalu-

ation, whereas the WMO case was used as an expository instantiation (Gregor and

Jones, 2007) in Chapter 7.

The developed modelling constructs are evaluated in terms of usability, accuracy,

performance and reliability. The modelling constructs have been specifically de-

signed to fit with current modelling standards. However, the first implementation

revealed that manually defined intervention processes only provide a linear im-

provement as the complexity of the process increases (along with the number of

dependency scopes). In order to improve the usability of the artifacts, automatic

generation of intervention processes and critical sections has been facilitated.

The accuracy in runtime recovery from process interference has been evaluated by

a simulation of the process with disruptions. The evaluation of the modelling con-

structs shows that the modelling constructs provide an accurate runtime recovery

from process interference and perform well. In addition, the developed modelling

constructs proved to be reliable in resolving various interference cases.

This way the requirements of Guideline 3 have been fulfilled.

8.2.4 Research contributions
According to Guideline 4, design-science research must provide clear and verifiable

contributions in the areas of the artifact and design methodology. This thesis pro-

Chapter 8. General discussion and conclusion 149

vides a problem identification technique (Chapter 4) as well as a problem solution

technique (Chapter 5 and 6).

Prior to this research, process interference was acknowledged in academic liter-

ature, but a suitable solution for all cases was not provided. Using the artifacts

developed in this thesis, process interference can be automatically resolved and,

therefore, erroneous process outcomes can be prevented.

8.2.5 Research rigor
Guideline 5 stresses the application of rigorous methods in both the construction

and evaluation of the design artifact. First, the existing knowledge base regarding

the problem was investigated in Chapter 2. Existing academic literature is investi-

gated to identify the extent to which process interference is solved with the current

business process modelling techniques and to identify which constructs have al-

ready been developed that migth contribute to develop an integrated solution.

In Chapter 4, a method was developed and utilized for identifying the extent of

process interference in two case studies. The resulting insights were used for the

design of the artifacts (the modelling constructs) in Chapter 5 and Chapter 6. During

the design of the artifacts, continuous improvements were made to the design while

implementing and testing the solution on the WMO case.

The designed artifacts were finally evaluated in Chapter 7. The research process

itself is evaluated in this chapter.

8.2.6 Design as a search process
According to Guideline 6, the search for an effective artifact requires the use of

available instruments to reach a desired solution while satisfying all constraints in

the problem environment. Design science is an iterative process, using a heuristic

search strategy to produce a feasible and good design that can be implemented in

the business environment (Hevner et al., 2004). This research fulfills Guideline 6

as follows.

150 8.2. Reflection on the research process

First, two cases were analyzed to identify the extent of the problem, which can

serve as a basis for the solution to be developed. The method developed and used

for this analysis can be considered a design artifact as well. The second part of

the research presented in this thesis comprises the design of the solution to the

problem. By utilizing an iterative design process, the quality of process repair was

improved in a second iteration.

The heuristic design solution is developed with a close proximity of an ”optimal”

solution in mind. That is, for each disruption, the framework should (i) respond

to that disruption, (ii) find a suitable intervention process and (iii) pose a minimal

additional effort to the process designer. As such, the first priority was to establish

that the developed solutions did work. Subsequently, the required effort for the

process designer (i.e. the intended user of the developed artifact) was reduced

by an iterative process of automation design for subsequent components of the

designed artifact. This resulted in the automated generation of the planning domain

(Section 6.3.2) and the automated generation of the critical sections (Section 6.4).

The iterative process was facilitated by the expository instantiation of the WMO

case. In Table 8.2, an overview is provided of the research instruments used in

each phase of this research.

Activity Data source Research instruments

Initiation phase Practitioners, literature Interviews and literature review

(Chapter 2)

Case study phase Process experts, documentation, Interviews, analysis of process

(Chapter 3) literature documentation and literature

Method development phase Transcribed interviews, structured Analysis of documentation and litera-

ture

(Chapter 4) documentation, literature, practical

experience

Solution development phase Formal definition of the problem from Interpretation of the problem as

(Chapter 5 and 6) Phase I, practical experience obtained from the case study and

expository instantiation

Solution evaluation phase Process output, execution time Expository instantiation

(Chapter 7)

Table 8.2: Overview of used research instruments

Chapter 8. General discussion and conclusion 151

8.2.7 Communication of research
Although the presentation of this research is aimed at an audience familiar with

business processes, workflows and data representations, the thesis also contains

important, useful information for a managerial audience.

The output of this research is communicated through conference papers, journal

papers, conference presentations and this thesis. This way, the problem, the prob-

lem identification process and the developed solution are provided to both technical

and managerial audiences.

Consequently, Guideline 7 has been fulfilled.

8.3 Discussion on Part I: Process interference iden-

tification
In this part, a methodology is presented that allows to identify and analyze the po-

tential inconsistency issues resulting from concurrently executed processes. More-

over, this methodology is applied to two distinct cases, showing the severity of the

problem for these organizations.

8.3.1 Reflection on results
The analysis showed that concurrently executed processes indeed may interfere

in practice. Furthermore, the validation with process experts revealed that the un-

known problems as indicated by the analysis tool are common practice in reality

as well. The amount and severity of the overlap identified confirms the presumed

frequency of occurrence of the problems as well as the corresponding relevance for

organizations.

The methodology showed its ability to efficiently provide a representative and valu-

able insight in the interference between concurrent processes and the potential dis-

ruptions. In addition, the methodology is applicable using semi-structured process

documentation and does, therefore, not require the availability of a formal repre-

sentation of the business process. Consequently, the provided results are legible

152 8.3. Discussion on Part I: Process interference identification

by users without in-depth knowledge of implementation specifics.

8.3.2 Methodological considerations
From a methodological point of view, this part uses a triangulation strategy (Ben-

basat et al., 1987). The tool presented in Chapter 4 can be interpreted as a method-

ological instrument that has been applied in two case studies (i.e. EC and TC) to

successfully identify process interference. This application of the tool verifies the

technical implementation of the proposed methodology. Experts from both com-

panies have been consulted to ascertain the practical relevance of the data-flow

errors identified by the tool. This has further confirmed the added business value of

the tool. Moreover, from a design science perspective, the established criteria for

artifact-driven research (Gregor and Jones, 2007) have been satisfied.

Within this methodology-based context, one of the most important findings is that

two of the seven identified cases of severe data-flow errors where known to the

process experts. Highlighting these findings in front of the experts lent immediately

more credibility to this work, and expanded their effort to identify symptoms and

causes of the other tool-identified errors. Furthermore, revealing the basic nature

of the error eased the finding of solutions for these errors.

8.3.3 Process interference vs. software
The application of the methodology reveals potential problems in concurrent pro-

cess execution with shared data and identifies the potential interfering processes.

Moreover, it provides insight in the severity of potential interference between con-

currently executed processes and the variables that are involved, which provides

the opportunity to resolve or prevent these situations in the Enterprise Information

System.

The analysis has been performed independent from any implementation and does,

therefore, not reveal whether the problems can be prevented by other measures,

such as coordination or a better software implementation. Correspondingly, the

cases of potential interference found in the analysis of EC and TC is not a result of

a poor software implementation.

Chapter 8. General discussion and conclusion 153

A vast majority of the identified erroneous cases concerned the problems responsi-

ble for many unresolved customer complaints that proved hard to diagnose. These

complaints could not be resolved through existing techniques of process analysis

and verification. In this respect, this part has gone beyond past research, by analyz-

ing the process flow along with the information required in each of the distinct activ-

ities. As a result, the problems responsible for the unresolved customer complaints

could be identified and located. The results of the application of the methodology

to the case clearly show the importance and relevance of these business problems,

as severe overlap in concurrent processes is widely spread.

In addition to the theoretical deduction of the potential consistency issues, this part

contributes indirectly to the area of business intelligence as well. If data-flow er-

rors remain undetected, business strategies formulated from mining transactional

data would be ineffective. For example, if organizations are planning to tailor busi-

ness strategies according to the geographical distribution of customers, then inac-

curate addresses would translate to wrongful interpretations of consumer prefer-

ences. Therefore, the methodology does not only improve operational efficacies

(i.e., better customer service), but it also augments strategic decision making (i.e.,

data mining in formulating business strategies).

8.4 Discussion on Part II: Concepts definition and

automation
In this part, an approach is presented for automated runtime process repair in case

of interference, which ensures the recovery of a BP from erroneous states without

the necessity of predefining all potential interference situations, and the respective

ways to overcome them.

8.4.1 Reflection on developed artifacts
For that purpose, dependency scopes are defined to represent the dependencies

between processes and data sources. In addition, intervention processes are de-

veloped to repair erroneous path situations using dynamic reconfiguration during

154 8.4. Discussion on Part II: Concepts definition and automation

execution of the process. We have shown that both dependency scopes and inter-

vention processes can easily be integrated within an existing BPMS platform.

Dependency scopes

The correct identification of the sections of a business process, whose correct exe-

cution depends on some volatile variable, is very important. These sections should

be guarded upon, so that whenever a modification event is received during their

execution, an appropriate intervention process is executed, in order to restore the

process to a consistent state. However, the task of manual specification of these

critical sections can become cumbersome and prone to errors, especially for pro-

cesses with a complex structure, using many shared resources. To facilitate this

task, an algorithm was developed, which automatically computes the appropriate

critical sections, given a BP specification and some semantics regarding the input-

output and the internal state variables of the service operations used by the pro-

cess.

Intervention processes

For complex processes, it is unfeasible to specify the appropriate intervention pro-

cesses manually, as this can be particularly time-consuming and error-prone, while

it is difficult to ensure that all important intervention cases are taken into account.

Therefore, an approach for automating the generation of intervention processes

at runtime was proposed, by using domain-independent AI planning techniques.

This way, intervention processes are composed on the fly, taking into account the

characteristics of the business process in execution, the available compensation

activities, and the properties that have to be fulfilled to recover from the erroneous

situation. As such, we show how AI planning can be used to ensure that the con-

sistency of the process execution results in an automatic way.

In this thesis, we have mainly concentrated on process interference situations be-

tween different processes, as this is the most typical in practice. However, the

problem of process interference is not necessarily a single instance problem. For

example, an order may consist of multiple order lines, deliveries may group different

Chapter 8. General discussion and conclusion 155

orders etc. Although not explicitly presented in this thesis, our approach may also

be applied to check if the process interferes with itself. The framework developed

in this thesis considers data overlap, which causes interference. If data overlap

occurs with multiple process instances resulting in interference, the AI planner will

provide a solution, regardless whether the processes are essentially the same.

However, a situation might occur that does require intervention, but the AI planner

is not able to generate an intervention process that fulfills the goal. In these cases,

two possible solutions can be suggested. First, the process can be paused and

require a human decision on how to proceed. Second, a rollback can be executed.

This is, however, the least desirable solution, especially in processes with a long

lead time.

8.5 Discussion on Part III: Implementation and eval-

uation

8.5.1 Interference resilience
To evaluate the feasibility of the approach, an architecture has been designed and

a prototype has been implemented. The WMO process of the eGovernment case

study was implemented with the prototype and the execution of the process was

simulated. A number of deliberate disruptions were inserted during execution, in

order to test the resilience of the developed IT artifacts on external data changes

and, therefore, to test the solution for process interference.

The results indicate that coupling DSs with declarative goals and generating IPs

at runtime by means of AI planning is a usable and realistic method for resolving

erroneous path situations caused by process interference. The proposed method is

both sound and complete. That is, the generated IPs always satisfy the properties

specified in the goal, and if there exists a combination of activities that achieves the

goal, then this sequence is found.

The IP generated is finite in all cases. Although generated IPs may include finite

loops through an enumerated repetition of certain activities, they cannot include

156 8.6. Reflection, limitations and further research

indefinite loops, since a plan provided by the AI planner is a finite, partially ordered

set of actions. However, if the output of deferred choices continuously satisfies the

loop condition, the AI planner may be called indefinitely. In order to avoid such

situations, an upper limit is put to the number of times the re-planning process can

be invoked.

8.5.2 Performance
Apart from the quality of the generated IPs, the performance of the AI planner

has been evaluated as well. First, the planning time for a large number of IPs

was measured for the WMO process. Next, the scalability of the framework was

evaluated with respect to the size of the required IPs (i.e. the number of activities

they comprise), as the time required to generate an IP is not exclusively dependent

on the structure of the planning domain (i.e. the interdependencies between the

actions, and the goal). For that purpose, a number of tests have been performed

with different goals, whose fulfillment requires IPs with an increasing size from 5 to

30 activities.

The performance evaluation shows that the time required for generating an IP in

realistic situations is a matter of a few seconds, which is an acceptable performance

considering the average throughput time of long-running BPs (varying between 1

and 6 weeks for the WMO case).

8.6 Reflection, limitations and further research

8.6.1 Reflection on available expertise
As mentioned in Chapter 1, this thesis is a joint work with the department of Dis-

tributed Systems of the University of Groningen. The work presented in this thesis

required experts in different fields with respect to the AI techniques and formalisms.

Part I relies on the correctness of the formal process interference definition. Con-

sequently, we acquired the required expertise from a model checking expert, Doina

Bucur, for verifying the correctness of the formalisms presented in Chapter 4. Ad-

ditionally, we have collaborated with Eirini Kaldeli and Pavel Bulanov for obtaining

Chapter 8. General discussion and conclusion 157

the knowledge regarding the AI planning techiques and the service-oriented imple-

mentation of the architecture.

8.6.2 Reflection on the solution
Initially, this research focussed on process and data integration, however, case

studies indicated that the problem could not be resolved in this way. An integration

of data with the process specifications requires data to be a fundamental part of

workflow verification. This implies that all data changes initiated by processes out-

side the scope of the process model are still not incorporated as part of the process

design and its exception handling. As a result, both the identification and runtime

solution of process interference cannot be provided using such an integration.

It appears that the process interference problem cannot be resolved without the

concept of a dependency scope. However, a number of alternatives can be identi-

fied with respect to the algorithm for transforming the business process specification

into a planning domain as well as the planner itself.

The domain generator algorithm, as presented in Section 6.3.2, takes the precon-

ditions regarding deferred choices and loops into account, in order to ensure that

the generated intervention processes are still compatible with the business rules in

the original process. However, the explicit process structures were not incorporated

as this would pose a too strong restriction on the generated intervention process.

That is, if certain preconditions occur in a loop, the loop itself should not necessarily

be preserved by means of additional preconditions. Consequently, process struc-

tures are only implicitly preserved by preconditions of the first activities in those

structures.

Within the same architecture several techniques for generating intervention pro-

cesses can be identified, some of which have been reviewed in Section 2.4. How-

ever, the CSP-planner used in this thesis is domain independent and supports ex-

tended goals, including temporal goals and maintainability. Nevertheless, the gen-

eration of intervention processes is not limited by the AI techniques used in this

thesis.

158 8.6. Reflection, limitations and further research

8.6.3 Limitations
The application of the methodology reveals potential problems in concurrent pro-

cess execution with shared data. Obviously, it does not reveal whether the problems

can be prevented by other measures, such as coordination or a better software im-

plementation. Furthermore, the methodology does not show the exact erroneous

output or the implications for reality. Rather, application of the methodology only

identifies the potential interfering processes. Moreover, it provides insight in the

severity of potential interference between concurrently executed processes and the

variables that are involved.

Concerning the designed artifacts, an intervention process is only generated and

executed in case of change events that are covered by dependency scopes. Al-

though dependency scopes are automatically identified, still a dependency might

be overlooked due to changes that are not timely reported by users or customers.

Consequently, the new business reality may result in errors that are not captured

by the framework.

Furthermore, a situation might occur that does require intervention, but the AI plan-

ner is not able to generate an intervention process that fulfills the goal. In these

cases, two possible solutions can be suggested. First, the process can be paused

and require a human decision on how to proceed. Second, the entire process can

be reverted, which includes cancelling all orders etc. This is, however, the least

desirable solution, especially in processes with a long lead time.

8.6.4 Directions for future research
Foreseen future research for the identification methodology can be described as

follows. The development of a context-independent categorization of data can con-

tribute to the generalizability of the method. Essential data can be defined and

represented in terms of data hierarchies, indicating the importance of data for the

smooth running of one or more business processes within and/or across corporate

hierarchies. In defining essential data according to data hierarchies, it might be pos-

sible to incorporate additional tracing capabilities into the tool that enable process

experts to trace the impact caused by specific data-flow errors.

Chapter 8. General discussion and conclusion 159

Foreseen future research for the designed artifacts can be described as follows.

Although the focus of this thesis is to deal with inconsistencies that result from pro-

cess interference, the overall approach based on domain-independent AI planning

for BP reconfiguration is more general. For example, the system can be extended

so that it can be used for process adaptation in case of changes in the business

requirements/rules. The dynamic nature of the CSP-based planning framework

allows the incorporation of changes in the BP-specific constraints at runtime: con-

straints which become obsolete can be removed on-the-fly from the constraint net-

work, and the same holds for the addition of new constraints. It should be noted

that the precondition and effects language used in the service descriptions is in

line with existing semantic markups for Web Services such as OWL-S. Finding a

suitable and yet powerful interface for designing goals and service descriptions and

integration with existing standards is open for future investigation.

8.7 Answer to the research questions

RQ1: How can business process interference be identified?

Process interference is defined in this thesis as the situation where data modica-

tions by one process affect one or more other concurrently executing processes,

which potentially causes an undesired process outcome for one or more of these

processes.

Process interference can be identified by a combinatorial analysis of concurrent

business processes by comparing the desired outcome and the outcome as pro-

vided by a certain execution combination.

RQ2: How can the severity of existing business process interference be as-

sessed?

The severity of the erroneous outcomes resulting from process interference is de-

fined by both the number of possible erroneous execution combinations and the

nature of the erroneous outcome itself. A large number of possible erroneous exe-

cution combinations implies that concurrent execution of the processes under inves-

160 8.7. Answer to the research questions

tigation have a large probability to provided an erroneous outcome. Furthermore,

it is potentially more harmful if the value of a certain process variable is not only

different from the desired situation, but also originates from a different stakeholder

than in the desired situation.

Consequently, the severity of existing business process interference can be as-

sessed using the tool, by analyzing both the number of erroneous situations and

the actual values.

RQ3: How can business process interference be prevented in enterprise in-

formation systems and which artefacts are required to ensure process and

data consistency?

Erroneous process outcomes are the result of erroneous path situations, which are

a consequence of process interference. By identifying and explicitly representing

the dependencies between processes and data sources, the potential occurrence

of erroneous path situations can be intercepted. Consequently, if the external data

change indeed would cause a potentially erroneous outcome, the currently exe-

cuted process can be dynamically reconfigured to resolve the potentially trouble-

some situation.

As such, process interference (more specifically, the potentially undesired process

outcomes) can be prevented by defining explicit dependencies between processes

and data sources along with dynamic runtime process repair by means of automatic

reconfiguration.

The main artefacts developed in this thesis are Dependency Scopes (DS) and In-

tervention Processes (IP). Dependency scopes are defined to represent the de-

pendencies between processes and data sources. Intervention processes are de-

veloped to repair erroneous path situations using dynamic reconfiguration during

execution of the process.

Chapter 8. General discussion and conclusion 161

RQ4: What techniques are required for automated recovery from process in-

terference?

Manual specification of dependency scopes and intervention processes poses a

significant workload on the process designer. In addition, manual specification is

prone to errors, due to the complexity of the processes and their interactions with

the environment.

For that reason, techniques are required to automate the specifcation of both de-

pendency scopes and intervention processes. As such, an algorithm for automatic

identification of dependency scopes has been developed, which is capable of gen-

erating the appropriate dependency scopes based on the process description and

data specification. In addition a Domain Generator has been developed to enable

such automatic DS composition and automated composition of the planning do-

main, which is required for identifying the available activities for the intervention

process. Subsequently, a CSP-based planner will generate the intervention pro-

cess required to resolve the erroneous situation. The aforementioned techniques

together allow for automated revovery from process interference.

8.8 Implications for organizations
In the real world, the errors caused by process interference lead to customer com-

plaints, legal cases, and many untraceable societal costs (Van Beest et al., 2010b).

Although the process provides erroneous results in such cases, no immediate soft-

ware errors occur. Consequently, the incorrect impression exists that the process

runs well. As a result, the origin of these unresolved customer complaints have

proven to be hard to diagnose and their root cause, process interference, is over-

looked in process management software architectures.

The developed methodology showed its ability to efficiently provide a represen-

tative and valuable insight in the interference between concurrent processes and

the potential disruptions emerging. The application of the developed methodology

to two case studies clearly indicated the severity and importance of the problem.

For all analyzed process pairs, a significant number of combinations resulted in

162 8.8. Implications for organizations

serious disruptions in the process outcomes. The developed methodology clearly

contributes to the identification and diagnosis of the problems that result from pro-

cess interference. As such, organizations are provided with a tool that allows for a

clear analysis of those processes that require additional measures to prevent the

customer complaints resulting from process interference.

Using the developed artifacts, process interference can be resolved in an auto-

mated way and, therefore, the described erroneous process outcomes can be pre-

vented. The application of the approach in business domains where data can be

changed by external factors, can be highly beneficial for organizations, particularly

considering the pervasiveness of the problem. Potential inconsistencies are re-

solved before actual erroneous outcomes are provided to the customer. The afore-

mentioned customer complaints and legal cases can, for that reason, be prevented.

Furthermore, potential inconsistencies are resolved in a way that enables a higher

degree of flexibility by reducing hard-coded dependency solutions and workflow re-

pair mechanisms. Due to the full automated support of the developed artifacts, the

provided solution does not require additional effort from the process designer.

In addition, the application of the framework will be beneficial to those organizations

that tend to change their business processes rather frequently. As a result of the

automated dependency checks and repair processes, it can be expected that flexi-

bility increases, as the amount of manually specified exception handling processes

can be reduced. Consequently, deployed EISs will pose a smaller constraint on

organizational agility.

In summary, an important and widespread business problem is addressed and re-

solved in this thesis, while preserving business process flexibility and minimizing

developer effort.

Bibliography

M. Aiello and A. Lazovik. Monitoring assertion-based business processes. Interna-

tional Journal of Cooperative Information Systems, 15:359–389, 2006.

A.A. Alwan, Ibrahim H., and N.I. Udzir. A framework for checking and ranking

integrity constraints in a distributed database. Journal of Next Generation Infor-

mation Technology, 2:37–48, 2011.

A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. Liu, S. Thatte,

P. Yendluri, and A. Yiu. Web services business process execution language ver-

sion 2.0, 2007. WS-BPEL TC OASIS, April 2007.

T. Au, U. Kuter, and D. Nau. Web Service Composition with Volatile Information. In

Proceedings of the 4th International Semantic Web Conference (ISWC), pages

52–66, 2005.

H. Balsters and G.B. Huitema. Semantics of interoperable and outsourced informa-

tion systems. In Enterprise Interoperability, Lecture Notes in Computer Science,

pages 13–22. Springer London, 2007. ISBN 978-1-84628-714-5.

C. Beckstein and J. Klausner. A meta level architecture for workflow management.

Journal of Integrated Design and Process Science, 3:15–26, 1999.

I. Benbasat, D.K. Goldstein, and M. Mead. The case research strategy in studies

of information systems. MIS Quarterly, 11:369–386, 1987.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-

ery in Database Systems. Addison-Wesley, 1987. ISBN 0-201-10715-5.

166 Bibliography

H.H. Bi and J.L. Zhao. Mending the lag between commercial needs and research

prototypes: A logic-based workflow verification approach. In 8th INFORMS Com-

puting Society Conference, pages 191–212, 2003.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide (2nd Edition). Addison-Wesley Professional, 2005. ISBN 0321267974.

T.D. Bouma. Process analysis and requirement specification of software as service

for WMO provision applications at dutch municipalities, 2010.

D. Bucur and M. Kwiatkowska. On software verification for sensor nodes. Journal

of Software and Systems, 84:1693–1707, 2011.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems, 8:244–263, 1986.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,

Cambridge, Massachusetts and London, UK, 1999.

P. Dadam and M. Reichert. The ADEPT project: a decade of research and devel-

opment for robust and flexible process support. Computer Science - R & D, 23:

81–97, 2009.

T.H. Davenport and J.E. Short. The new industrial engineering: information tech-

nology and business process redesign. Sloan Management Review, 31:11–27,

1990.

M. De Leoni, M. Mecella, and G. De Giacomo. Highly dynamic adaptation in pro-

cess management systems through execution monitoring. BPM 2007, pages

182–197, 2007.

M De Leoni, G. De Giacomo, Y. Lespèrance, and M. Mecella. On-line adapta-

tion of sequential mobile processes running concurrently. In Proceedings of the

2009 ACM symposium on Applied Computing, SAC ’09, pages 1345–1352. ACM,

2009.

T. Dewett and G.R. Jones. The role of information technology in the organization:

a review, model, and assessment. Journal of Management, 27:313–347, 2001.

Bibliography 167

R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business

process models in bpmn. Information and Software Technology, 50(12):1281–

1294, 2008.

E.W. Dijkstra. Solution of a problem in concurrent programming control. Communi-

cations of the ACM, 8:569, 1965.

E.A. Emerson and J.Y. Halpern. ”sometimes” and ”not never” revisited: on branch-

ing versus linear time temporal logic. Journal of the ACM, 33:151–178, 1986.

H.M. Ferreira and D.R. Ferreira. An integrated life cycle for workflow management

based on learning and planning. International Journal of Cooperative Information

Systems, 15:485–505, 2006.

M. Fowler and K. Scott. UML distilled (2nd edition): a brief guide to the standard ob-

ject modeling language. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2000. ISBN 0-201-65783-X.

M. Gajewski, H. Meyer, M. Momotko, H. Schuschel, and M. Weske. Dynamic failure

recovery of generated workflows. Database and Expert Systems Applications,

International Workshop on, pages 982–986, 2005.

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of 1987 ACM SIGMOD

International Conference on Management of Data, pages 249–259. ACM, 1987.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.

Morgan Kaufmann, 2004.

K. Göser, M. Jurisch, H. Acker, U. Kreher, M. Lauer, S. Rinderle, M. Reichert, and

P. Dadam. Next-generation process management with adept2, 2007.

S.D. Gregor and D. Jones. The anatomy of a design theory. Journal of the Associ-

ation for Information Systems, 8(5):312–335, 2007.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.

ACM Computing Surveys, 15(4):287–318, 1983.

M. Helmert. Concise finite-domain representations for pddl planning tasks. Artificial

Intelligence, 173:503–535, 2009.

168 Bibliography

M. Henneberger, B. Heinrich, F. Lautenbacher, and B. Bauer. Semantic-based plan-

ning of process models. In Multikonferenz Wirtschaftsinformatik (MKWI). GITO-

Verlag, Berlin, 2008.

A.R. Hevner. A three cycle view of design science research. Scandinavian Journal

of Information Systems, 19(2):87–92, 2007.

A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in information sys-

tems research. MIS Quarterly, 28(1):75–105, 2004.

J. Hoffmann, I. Weber, and F. Kraft. SAP Speaks PDDL: Exploiting a software-

engineering model for planning in business process management. Journal of

Artificial Intelligence Research, 44:587–632, 2012.

P. Jarvis, J. Moore, J. Stader, A. Macintosh, A. Casson-du Mont, and P. Chung. Ex-

ploiting ai technologies to realise adaptive workflow systems. In In Proceedings

of the AAAI Workshop on Agent-Based Systems in the Business Context, 1999.

AAAI Technical Report WS-99-02., 1999.

K. Jensen and L.M. Kristensen. Coloured Petri Nets - Modeling and Validation of

Concurrent Systems. Springer-Verlag Berlin, 2009. ISBN 9783642002830.

P. Johannesson and E. Perjons. Design principles for process modelling in enter-

prise application integration. Information Systems, 26(3):165–184, 2001.

M.B. Juric. Business Process Execution Language for Web Services BPEL and

BPEL4WS 2nd Edition. Packt Publishing, 2006. ISBN 1904811817.

E. Kaldeli, A. Lazovik, and M. Aiello. Extended goals for composing services. In

Proceedings of the 19th International Conference on Automated Planning and

Scheduling (ICAPS 2009). AAAI Press, 2009.

E. Kaldeli, A. Lazovik, and M. Aiello. Continual planning with sensing for Web

Service composition. In Proceedings of the 25th AAAI Conference on Artificial

Intelligence (to appear). AAAI Press, 2011.

O. Kopp, D. Martin, D. Wutke, and F. Leymann. On the choice between graph-based

and block-structured business process modeling languages. In Modellierung be-

Bibliography 169

trieblicher Informationssysteme (MobIS 2008), volume 141 of Lecture Notes in

Informatics (LNI), pages 59–72. Gesellschaft für Informatik e.V. (GI), 2008.

H.F. Korth and G. Speegle. Formal models of correctness without serializability. In

Proceedings of 1988 ACM SIGMOD International Conference on Management

of Data, pages 379–386. ACM, 1988.

L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems, 5:1–11, 1987.

H.J. Levesque, R. Reiter, Y. Lesprance, F. Lin, and R.B. Scherl. GOLOG: A logic

programming language for dynamic domains. The Journal of Logic Programming,

31(13):59–83, 1997.

H. Li and Y. Yang. Dynamic checking of temporal constraints for concurrent work-

flows. Electronic Commerce Research and Applications, 4(2):124–142, 2005.

Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for business

process models. IBM Systems Journal, 46:335–361, 2007.

T. Madhusudan, J.L. Zhao, and B. Marshall. A case-based reasoning framework for

workflow model management. Data Knowledge Engineering, 50:87–115, 2004.

S.T. March and G.F. Smith. Design and natural science research on information

technology. Decision Support Systems, 15:251–266, 1995.

A. Marrella and M. Mecella. Continuous planning for solving business process

adaptivity. In 12th International Working Conference on Business Process Mod-

eling, Development and Support (BPMDS 2011), in conjunction with CAiSE 2011,

2011.

J. Martin. Managing the Data-base Environment. Prentice-Hall, Englewood Cliffs,

New Jersey, 1983. ISBN 0-13-550582-8.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of ar-

tificial intelligence. volume 4, pages 463–502. Edinburgh University Press, 1969.

H.S. Meda, A.K. Sen, and A. Bagchi. On detecting data flow errors in workflows.

Journal of Data and Information Quality, 2:1–31, July 2010.

170 Bibliography

Welfare Ministry of Health and Sport. Wet maatschappelijke ondersteuning (wmo),

2008. 29-11-2008; (http://www.minvws.nl/dossiers/wmo/).

D. Moitra and J. Ganesh. Web services and flexible business processes: towards

the adaptive enterprise. Information & Management, 42:921–933, 2005.

G. Monakova, F. Leymann, S. Moser, and K. Schäfers. Verifying business rules

using an smt solver for bpel processes. In Business Process and Services Com-

puting Conference: BPSC’09, pages 81–94, 2009.

R. Müller, U. Greiner, and E. Rahm. Agentwork: a workflow system supporting

rule-based workflow adaptation. Data and Knowledge Engineering, 51:223–256,

2004.

T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the

IEEE, volume 77, pages 541–580, 1989.

L. Mǎruşter and N.R.T.P. Van Beest. Redesigning business processes: a method-

ology based on simulation and process mining techniques. Knowledge and Infor-

mation Systems, 21:267–297, 2009.

J.M. Nicolas. Logic for improving integrity checking in relational data bases. Acta

Informatica, 18:227–253, 1982.

OMG. Unified modeling language: Infrastructure, version 2.0, 2005. Object Man-

agement Group (OMG), Document Number formal/05-07-05.

OMG. Business process model and notation beta 1 for version 2.0, 2009.

C. Ouyang, M. Dumas, A.H.M. Ter Hofstede, and W.M.P. Van Der Aalst. From

BPMN process models to BPEL web services. In International Conference on

Web Services (ICWS), pages 285–292, 2006.

C. Ouyang, E. Verbeek, S. Breutel, M. Dumas, and A.H.M. Ter Hofstede. Formal

semantics and analysis of control flow in WS-BPEL. Science of Computer Pro-

gramming, 67:162–198, 2007.

Bibliography 171

K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A design science

research methodology for information systems research. Journal of Management

Information Systems, 24(3):45–77, 2007.

C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle

Mathematik, Bonn, Germany, 1962.

M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web

Services by Planning at the Knowledge Level. In 19th Int. Joint Conference on

Artificial Intelligence, pages 1252–1259, 2005.

K. Ramamritham and P.K. Chrysanthis. In search of acceptability criteria: Database

consistency requirements and transaction correctness properties. In Distributed

Object Management, pages 212–230. Morgan Kaufmann, 1993.

S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes

in workflow systems a survey. Data and Knowledge Engineering, 50:9–34, 2004.

M.D. Rodrı́guez-Moreno and P. Kearney. Integrating ai planning techniques with

workflow management system. Knowledge-Based Systems, 15(5-6):285–291,

2002.

M.D. Rodrı́guez-Moreno, D. Borrajo, A. Cesta, and A. Oddi. Integrating planning

and scheduling in workflow domains. Expert Systems and Applications, 33(2):

389–406, 2007.

N. Russell, A.H.M. Ter Hofstede, D. Edmond, and W.M.P. Van Der Aalst. Work-

flow data patterns. Technical Report FIT-TR-2004-01, Queensland University of

Technology, 2004. QUT Technical report.

N. Russell, A.M.H. Ter Hofstede, D. Edmond, and W.M.P. Van Der Aalst. Work-

flow data patterns: Identification, representation and tool support. In Conceptual

Modeling – ER 2005, volume 3716 of Lecture Notes in Computer Science, pages

353–368. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-29389-7.

N. Sidorova, C. Stahl, and N. Trčka. Soundness verification for conceptual work-

flow nets with data: Early detection of errors with the most precision possible.

Information Systems, 36(7):1026–1043, 2011.

172 Bibliography

S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory

with Mathematica. Addison-Wesley, Reading, MA, 1990.

S. Sohrabi and S.A. McIlraith. Preference-based web service composition: A mid-

dle ground between execution and search. In Proceedings of 9th International

Semantic Web Conference (ISWC), pages 713–729, 2010.

S.X. Sun, J.L. Zhao, J.F. Nunamaker, and O.R.L. Sheng. Formulating the data-flow

perspective for business process management. Information Systems Research,

17:374–391, 2006.

N. Trčka, W.M.P. Van Der Aalst, and N. Sidorova. Data-flow anti-patterns: Dis-

covering data-flow errors in workflows. In Proceedings of the 21st International

Conference on Advanced Information Systems Engineering - CAiSE ’09, volume

5565 of Lecture Notes in Computer Science, pages 425–439. Springer-Verlag,

2009.

S.D. Urban, L. Gao, R. Shrestha, and A. Courter. The dynamics of process model-

ing: New directions for the use of events and rules in service-oriented computing.

In The Evolution of Conceptual Modeling, volume 6520 of LNCS, pages 205–224.

Springer-Verlag, 2011.

N.R.T.P. Van Beest, P. Bulanov, J.C. Wortmann, and A. Lazovik. Resolving busi-

ness process interference via dynamic reconfiguration. In Proceedings of 8th

International Conference on Service Oriented Computing (ICSOC), pages 47–

60. Springer, 2010a.

N.R.T.P. Van Beest, N.B. Szirbik, and J.C. Wortmann. Assessing the interference in

concurrent business processes. In Proceedings of 12th International Conference

on Enterprise Information Systems (ICEIS), pages 261–270, 2010b.

W.M.P. Van Der Aalst. Verification of workflow nets. In Proceedings of the 18th

International Conference on Application and Theory of Petri Nets, ICATPN ’97,

pages 407–426. Springer-Verlag, 1997.

W.M.P. Van Der Aalst. The application of petri nets to workflow management. The

Journal of Circuits, Systems and Computers, 8:21–66, 1998.

Bibliography 173

W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14:5–51, 2003a.

W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14:5–51, 2003b. ISSN

0926-8782.

W.M.P. Van Der Aalst, B. Van Dongen, J. Herbst, L. Mǎruşter, G. Schimm, and

A. Weijters. Workflow mining: A survey of issues and approaches. Data and

Knowledge Engineering, 47:237–267, 2003c.

W.M.P. Van Der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows: Bal-

ancing between flexibility and support. Computer Science - R & D, 23:99–113,

2009.

P.J. Van Strien. Towards a methodology of psychological practice, the regulative

cycle. Theory and Psychology, 7:683–700, 1997.

H.M.W. Verbeek. Analyzing BPEL processes using petri nets. In Florida Interna-

tional University, pages 59–78, 2005.

H.M.W. Verbeek, T. Basten, and W.M.P. Van Der Aalst. Diagnozing workflow pro-

cesses using woflan. The Computer Journal, 44:246–279, 2001.

I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness: on the verification of

semantic business process models. Distr. and Parallel Databases, 27:271–343,

2010.

M. Weske. Formal foundation and conceptual design of dynamic adaptations in a

workflow management system. In System Sciences, 2001. Proceedings of the

34th Annual Hawaii International Conference on, 2001.

M. Weske, G. Vossen, and F. Puhlmann. Workflow and service composition lan-

guages. In Peter Bernus, Kai Mertins, and Gnter Schmidt, editors, Handbook on

Architectures of Information Systems, International Handbooks on Information

Systems, pages 369–390. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-

25472-0.

174 Bibliography

WfMC. The workflow management coalition specification, terminology and glos-

sary, 1999. Document Number WFMC-TC-1011.

S.A. White. Business process modeling notation (bpmn) version 1.0., 2004. Busi-

ness Process Management Initiative, BPMI.org.

Y. Xiao and S.D. Urban. Process dependencies and process interference rules for

analyzing the impact of failure in a service composition environment. In Proceed-

ings of the 10th International Conference on Business Information Systems, vol-

ume 4439 of Lecture Notes in Computer Science, pages 67–81. Springer Berlin

/ Heidelberg, 2007.

Y. Xiao and S.D. Urban. Using data dependencies to support the recovery of con-

current processes in a service composition environment. In Proceedings of the

16th International Conference on Cooperative Information Systems, pages 139–

156, 2008.

Y. Xiao, S.D. Urban, and S. Dietrich. A process history capture system for analysis

of data dependencies in concurrent process execution. In Data Engineering Is-

sues in E-Commerce and Services, volume 4055 of Lecture Notes in Computer

Science, pages 152–166. Springer Berlin / Heidelberg, 2006.

Appendices

A. Analysis results
In this Appendix, the low-level results of the analysis presented in Chapter 4 are

presented. First, an explanation is provided of the low-level metadata as used by

the analysis tool.

The first digit of each value always represents the stakeholder. The next two digits

hold the count of WRITE assigments, which increment for every WRITE execution.

Table 8.3 provides an overview of the values of d known at each stakeholder at the

different states of the process shown in Figure 8.1. The initial values of d are set

to 100, 200 and 300 for S1, S2 and S3 respectively. S1 executes A to read the

value of d from S2. S1 and S2 now both hold the value 200. Next, S1 executes B to

request an update of d. Therefore [1] is added to the write sequence, to indicate that

process1 writes a new value to d. Note that in this case there is only one process,

but the added value of this annotation in case of two or more processes is clear: the

write sequence represents the order of write operations to a datafield. In addition,

200 is changed into 201, to indicate that this is the first WRITE activity. This number

will increase at each WRITE activity. As a result, S1 has a different value of d than

S2 and S3, as S2 sent the write request to S3. Hence, S1 did not receive this

update and holds an outdated value.

Note that the first digit of the value of d never changes as a result of a WRITE

operation, as this digit stores the stakeholder this value originates from (hence the

178 EC - First comparison

S1 S2

A: READ REQUEST

A: READ RESPONSE

S3

B: WRITE REQUEST

B: WRITE RESPONSE

C: WRITE REQUEST

C: WRITE RESPONSE

Figure 8.1: Sequence Diagram showing READ and WRITE services

between stakeholders.

initial values of 100, 200 and 300). After execution of C, the first digit of the value at

S1 equals 2 (201). This implies that the value known to S1 is read from S2 prior to

the WRITE operation. This way, the origin of a value can be traced at the final value.

Initial value Value after A Value after B Value after C

Stakeholder Value Value Write Seq Value Write Seq Value Write Seq

S1 100 200 201 [1] 201 [1]

S2 200 200 200 202 [1]

S3 300 300 201 [1] 202 [1]

Table 8.3: Value of d at different states in the process.

EC - First comparison: Change of Supplier – Move Out
In this comparison, the situation is analyzed where a person changes his energy

provider and decides to move to a new address at about the same time. Three

datafields are traced: Supplier, New Supplier, and Address. The initial values of

the first comparison are provided in Table 8.4 below.

The desired outcome is obtained by executing Change of Supplier and Move Out

sequentially, which is shown in Table 8.5. In Table 8.6, an example is provided of

the erroneous output represented by Table 4.6 in Chapter 4.

Appendices 179

Stakeholder Supplier New Supplier Address

CCP 100 100 100

EMP 200 200 200

GridOperator 300 300 300

MRParty 400 400 400

NewPVShipper 500 500 500

NewSupplier 600 600 600

OldPVShipper 700 700 700

OldSupplier 800 800 800

TM2010 900 900 900

Table 8.4: Initial values 1st comparison EC case.

Supplier New Supplier Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

CCP 100 100 100

EMP 218 [1][2] 615 [1][1][1][2] 819 [2][2]

GridOperator 218 [1][2] 300 819 [2][2]

MRParty 218 [1][2] 606 [1][1][1] 819 [2][2]

NewPVShipper 207 [1] 606 [1][1][1] 608 [1][1]

NewSupplier 211 [1][1][1][1] 606 [1][1][1] 608 [1][1]

OldPVShipper 700 615 [1][1][1][2] 700

OldSupplier 822 [2][2][2] 615 [1][1][1][2] 813 [2]

TM2010 822 [2][2][2] 900 900

Table 8.5: Desired output 1st comparison EC case.

Supplier New Supplier Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

CCP 100 100 100

EMP 215 [1][2] 611 [1][1][2][1] 816 [2][1][2]

GridOperator 215 [1][2] 300 816 [2][1][2]

MRParty 215 [1][2] 611 [1][1][2][1] 816 [2][1][2]

NewPVShipper 215 [1][2] 611 [1][1][2][1] 816 [2][1][2]

NewSupplier 221 [1][2][1][1][1] 611 [1][1][2][1] 816 [2][1][2]

OldPVShipper 700 611 [1][1][2][1] 700

OldSupplier 222 [1][2][1][1][1][2] 611 [1][1][2][1] 807 [2]

TM2010 222 [1][2][1][1][1][2] 900 900

Table 8.6: Erroneous output 1st comparison EC case.

180 EC - Second comparison

EC - Second comparison: Change of Supplier – Meter Change
In this comparison, the situation is analyzed where a person changes his energy

provider and his meter is to be changed at about the same time. Three datafields

are traced: Supplier, Meter Reading, and Address. The initial values of the second

comparison are provided in Table 8.7.

Stakeholder Supplier Meter Reading Address

EMP 200 200 200

GridOperator 300 300 300

MRParty 400 400 400

NewPVShipper 500 500 500

NewSupplier 600 600 600

OldPVShipper 700 700 700

OldSupplier 800 800 800

PVShipper 900 900 900

Supplier 1000 1000 1000

TM2010 1100 1100 1100

Table 8.7: Initial values 2nd comparison EC case.

The desired outcome is obtained by executing Change of Supplier and Meter Change

sequentially. The output is shown in Table 8.8.

Supplier Meter Reading Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

EMP 206 [1] 311 [2] 607 [1][1][1][1]

GridOperator 300 300 607 [1][1][1][1]

MRParty 206 [1] 400 607 [1][1][1][1]

NewPVShipper 206 [1] 500 607 [1][1][1][1]

NewSupplier 206 [1] 1110 [1][1][1][1][1] 607 [1][1][1][1]

OldPVShipper 206 [1] 700 700

OldSupplier 206 [1] 800 800

PVShipper 206 [1] 900 607 [1][1][1][1]

Supplier 206 [1] 314 [2][2][2][2] 607 [1][1][1][1]

TM2010 1100 314 [2][2][2][2] 1100

Table 8.8: Desired output 2nd comparison EC case.

In Table 8.9, an example is provided of the erroneous output represented by Ta-

ble 4.7 in Chapter 4.

Appendices 181

Supplier Meter Reading Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

EMP 207 [1] 301 [2] 608 [1][1][1][1]

GridOperator 300 300 608 [1][1][1][1]

MRParty 207 [1] 400 608 [1][1][1][1]

NewPVShipper 207 [1] 500 608 [1][1][1][1]

NewSupplier 207 [1] 312 [2][2][1] 608 [1][1][1][1]

OldPVShipper 207 [1] 700 700

OldSupplier 207 [1] 800 800

PVShipper 207 [1] 900 608 [1][1][1][1]

Supplier 200 314 [2][2][1][2][2] 200

TM2010 1100 314 [2][2][1][2][2] 1100

Table 8.9: Erroneous output 2nd comparison EC case.

EC - Third comparison: Change of Metering Responsible – Move

Out
In this comparison, the situation is analyzed where the metering responsible is

changed for a certain contract and the owner of that contract decides to move to

a new address at about the same time. Three datafields are traced: Current MR,

New MR, and Address. The initial values of the third comparison are provided in

Table 8.10 below.

Stakeholder Current MR New MR Address

EMP 100 100 100

GridOperator 200 200 200

MRParty 300 300 300

NewMRParty 400 400 400

OldMRParty 500 500 500

OldPVShipper 600 600 600

OldSupplier 700 700 700

PVShipper 800 800 800

Supplier 900 900 900

Table 8.10: Initial values 3rd comparison EC case.

The desired outcome is obtained by executing Change of Metering Responsible

and Move Out sequentially. The output is shown in Table 8.11.

In Table 8.12, an example is provided of the erroneous output represented by Ta-

ble 4.8 in Chapter 4.

182 TC - First comparison

Current MR New MR Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

EMP 107 [1][2] 108 [1][1][2] 709 [2][2]

GridOperator 200 200 709 [2][2]

MRParty 300 300 709 [2][2]

NewMRParty 102 [1] 104 [1][1] 405 [1][1]

OldMRParty 102 [1] 104 [1][1] 500

OldPVShipper 107 [1][2] 108 [1][1][2] 600

OldSupplier 107 [1][2] 108 [1][1][2] 706 [2]

PVShipper 800 800 405 [1][1]

Supplier 900 900 405 [1][1]

Table 8.11: Desired output 3rd comparison EC case.

Current MR New MR Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

EMP 105 [1][2] 107 [1][2][1] 409 [1][2][1]

GridOperator 200 200 409 [1][2][1]

MRParty 300 300 409 [1][2][1]

NewMRParty 105 [1][2] 107 [1][2][1] 409 [1][2][1]

OldMRParty 105 [1][2] 107 [1][2][1] 500

OldPVShipper 105 [1][2] 107 [1][2][1] 600

OldSupplier 105 [1][2] 107 [1][2][1] 701 [2]

PVShipper 800 800 409 [1][2][1]

Supplier 900 900 409 [1][2][1]

Table 8.12: Erroneous output 3rd comparison EC case.

TC - First comparison: Buy Packages and Options – Close Cus-

tomer without Freezing
In this comparison, the situation is analyzed where a customer creates new orders

on packages and options while his account is closed at about the same time. Three

datafields are traced: AccessADSL, AccessDialUp, and AccessWiFi, which hold

the status of the services available to the customer. The initial values of the first

comparison are provided in Table 8.13.

In Table 8.15, an example is provided of the erroneous output represented by Ta-

ble 4.9 in Chapter 4.

Appendices 183

System AccessADSL AccessDialUp AccessWiFi

BPM Layer 100 100 100

Prov. Interface 300 300 300

Front End 500 500 500

Infranet 700 700 700

Table 8.13: Initial values comparison 1 TC.

AccessADSL AccessDialUp AccessWiFi

Stakeholder Value Write Seq Value Write Seq Value Write Seq

BPM Layer 116 [1][1][2][2][2][2] 117 [1][1][2][2][2][2] 118 [1][1][2][2][2][2]

Prov. Interface 116 [1][1][2][2][2][2] 117 [1][1][2][2][2][2] 118 [1][1][2][2][2][2]

Front End 500 500 500

Infranet 700 700 700

Table 8.14: Desired output 1st comparison TC.

AccessADSL AccessDialUp AccessWiFi

Stakeholder Value Write Seq Value Write Seq Value Write Seq

BPM Layer 316 [2][2][2][2][1][1] 317 [2][2][2][2][1][1] 318 [2][2][2][2][1][1]

Prov. Interface 316 [2][2][2][2][1][1] 317 [2][2][2][2][1][1] 318 [2][2][2][2][1][1]

Front End 500 500 500

Infranet 700 700 700

Table 8.15: Erroneous output 1st comparison TC.

TC - Second comparison: Customer Move – Close Customer at

End of Contract Terms
In this comparison, the situation is analyzed where a customer decides to move to

a new address while his account is closed at about the same time. Three datafields

are traced: CustomerBlocking, Services and Address. The initial values of the

second comparison are provided in Table 8.16.

The desired outcome is obtained by executing Customer Move and Close customer

sequentially. That is, first the customer moves, next the contract is ended. The

output is shown in Table 8.17.

In Table 8.18, an example is provided of the erroneous output represented by Ta-

ble 4.10 in Chapter 4.

184 TC - Second comparison

System CustomerBlocking Services Address

BPM Layer 100 100 100

Prov. Interface 300 300 300

Front End 500 500 500

Infranet 700 700 700

Table 8.16: Initial values comparison 2 TC.

CustomerBlocking Services Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

BPM Layer 711 [1][2][2][2] 704 [1] 702 [1]

Prov. Interface 310 [2][2][2][2] 300 300

Front End 500 500 500

Infranet 711 [1][2][2][2] 704 [1] 702 [1]

Table 8.17: Desired output 2nd comparison TC.

CustomerBlocking Services Address

Stakeholder Value Write Seq Value Write Seq Value Write Seq

BPM Layer 110 [2][1][2][2] 111 [1] 703 [1]

Prov. Interface 308 [2][2][2][2] 300 300

Front End 500 500 500

Infranet 110 [2][1][2][2] 111 [1] 703 [1]

Table 8.18: Erroneous output 2nd comparison TC.

Appendices 185

TC - Third comparison: Upgrade/Downgrade/Switch – Upgrade

from ADSL to VOIP/IPTV/Broadband
In this comparison, the situation is analyzed where two processes are executed

simultaneously to update a package of products. The first process is using the

gathered data to downgrade a package, whereas the second is using the same data

for upgrading the package to a Broadband package. The datafield AccountDetails

is traced. The initial values of the third comparison are provided in Table 8.19.

System AccountDetails

BPM Layer 100

Prov. Interface 300

Front End 500

Infranet 700

Table 8.19: Initial values 3rd comparison TC.

The desired outcome is obtained by executing Upgrade/Downgrade/Switch and Up-

grade to Broadband sequentially. That is, first the package is downgraded, next the

package is upgraded to broadband. The output is shown in Table 8.17.

AccountDetails

Stakeholder Value Write Seq

BPM Layer 704 [1][1][2]

Prov. Interface 300

Front End 704 [1][1][2]

Infranet 703 [1][1]

Table 8.20: Desired output 3rd comparison TC.

In Table 8.21, an example is provided of the erroneous output represented by Ta-

ble 4.11 in Chapter 4.

AccountDetails

Stakeholder Value Write Seq

BPM Layer 704 [1][1]

Prov. Interface 300

Front End 102 [1][2]

Infranet 704 [1][1]

Table 8.21: Erroneous output 3rd comparison TC.

186 Appendix B

B. BP represention of the WMO process
For brevity and clarity reasons, aliases are used instead of the full activity or vari-

able identifiers, i.e. the complete references to service invocation methods, pa-

rameters and state variables which reside in the SR. For instance, the full identi-

fier TenderWCSupplier .12CB .tenderDecision is represented by the activity decision.

Moreover, we have omitted the declaration of the local process variables that are

used for storing the outputs of activities (e.g. tmp hvOut homeInfo).

<BusinessProcess name="WMO">

<input >

<parameter name="bpAddress" type="dt:address"/>

<parameter name="bpCid" type="dt:citInfo"/>

<parameter name="bpEligCrit" type="dt:lawInfo"/>

<parameter name="bpMedCond" type="dt:medInfo"/>

</input>

<sequence >

<execute name="intake"

input="itIn_Cid=bpCid;itIn_address=bpAddress"

output="tmp_itOut_prov:=itOut_prov"/>

<repeatUntil >

<sequence >

<execute name="homeVisit"

input="hvIn_Cid=bpCid;hvIn_address=bpAddress"

output="tmp_hvOut_homeInfo:=hvOut_homeInfo;tmp_hvOut_maRequired:=

hvOut_maRequired"/>

<DS name="DS0">

<guard >

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<switch >

<case condition="hvOut_maRequired=true">

<execute name="medicalAdvice"

input="maIn_cid=bpCid"

output="tmp_maOut_medInfo:=maOut_medInfo"/>

</case>

<otherwise >

<empty/>

</otherwise >

</switch >

Appendices 187

<execute name="Decision"

input="dcIn_cid=bpCid;dcIn_homeInfo=tmp_hvOut_homeInfo;

dcIn_eligCrit=bpEligCrit;dcIn_medInfo=tmp_maOut_medInfo"

output="tmp_dcOut_approvalCheck:=dcOut_approvalCheck"/>

</sequence >

</guard >

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’">

<achieve -maint>

<known var="dcOut_approvalCheck"/>

</achieve -maint>

</case>

</verify >

</DS>

<switch name="rejected">

<case condition="dcOut_approved=false">

<pick>

<onMessage variable="appeal">

<switch name="appealGranted">

<case condition="appeal=’granted ’">

<empty/>

</case>

<otherwise >

<exit/>

</otherwise >

</switch >

</onMessage >

<onAlarm ><for>’PT14D ’</for>

<exit/>

</onAlarm >

</pick>

</case>

<otherwise >

<empty/>

</otherwise >

</switch >

</sequence >

<condition >dcOut_approved=true</condition >

188 Appendix B

</repeatUntil >

<switch name="selectProvision">

<case condition="itOut_prov=’care�in�kind ’">

<sequence >

<DS name="DS3">

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<execute name="sendOrder"

input="sdhrIn_cid=bpCid;sdhrIn_orderInfo=

tmp_hvOut_homeInfo;sdhrIn_address;bpAddress"

output="orderId:=sdhrOut_orderId;orderContents:=

sdhrIn_orderInfo"/>

<execute name="receiveDeliveryConfirmation"

input="dlIn_cid=bpCid;dlIn_id=orderId;dlIn_address=

bpAddress;dlIn_delContents=orderContents"

output="tmp_dlOut_conf:=dlOut_conf"/>

</sequence >

</guard >

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’�AND�bpMedCond!=’

deceased ’">

<achieve -maint>

<known var="tmp_dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

<terminate >

<achieve -maint>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

</verify >

</DS>

Appendices 189

<execute name="handleInvoice"

input="hiIn_cid=bpCid;riIn_id=orderId"

output="tmp_hiOut_invId:=hiOut_invId"/>

</sequence >

</case>

<case condition="itOut_prov=’personal�budget ’">

<empty/>

</case>

<otherwise >

<sequence >

<DS name="DS1">

<guard>

<variables >

<variable name="bpAddress"/>

<variable name="bpMedCond"/>

</variables >

<sequence >

<switch >

<case condition="itOut_prov=’wheelchair ’">

<sequence >

<execute name="acquireRequirements"

input="arIn_cid=bpCid;adIn_homeInfo=

tmp_hvout_homeInfo"

output="tmp_arOut_requirements:=arOut_requirements"/

>

<execute name="sendOrder"

input="soIn_cid=bpCid;soIn_orderInfo=

tmp_arOut_requirements;soIn_address=bpAddress"

output="orderId:=soOut_orderId;orderContents:=

soIn_orderInfo"/>

</sequence >

</case>

<case condition="itOut_prov=’home�modification ’">

<DS name="DS2">

<guard>

<variables >

<variable name="bpEligCrit"/>

</variables >

<sequence >

<repeatUntil >

<execute name="tenderProcedure"

input="tpIn_cid=bpCid;tpIn_homeInfo=

tmp_hvOut_homeInfo"

output="tmp_tpOut_tenderSelected:=

tpOut_tenderSelected"/>

<execute name="checkTender"

input="ctIn_cid=bpCid;ctIn_selTender=

tmp_tpOut_tenderSelected;ctIn_eligCrit=

190 Appendix B

bpEligCrit"

output="tmp_ctOut_tenderOK:=ctOut_tenderOK"/>

<condition >ctOut_tenderOK=true</condition >

</repeatUntil >

<execute name="sendOrderConfirmation"

input="sosIn_cid=bpCid;sosIn_sid=

tmp_tpOut_tenderSelected;sosIn_orderInfo=

tmp_hvOut_homeInfo;sosIn_address=bpAddress"

output="orderId:=sosOut_orderId;orderContents:=

sosIn_orderInfo"/>

</sequence >

</guard >

<verify >

<achieve -maint>

<known variable="orderId"/>

</achieve -maint>

</verify >

</DS>

</case>

</switch >

<execute name="receiveDeliveryConfirmation"

input="dlIn_cid=bpCid;dlIn_id=orderId;dlIn_address=

bpAddress;dlIn_delContents=orderContents"

output="tmp_dlOut_conf:=dlOut_conf"/>

</sequence >

</guard >

<verify >

<case condition="bpAddress.county!=’Groningen ’">

<terminate >

<achieve -maint>

<eq-val var="notifiedCityHall" value="TRUE"/>

<eq-val var="messagePar" value="countyChange"/>

<invalid var="orderId"/>

</achieve -maint>

</terminate >

</case>

<case condition="bpAddress.county=’Groningen ’�AND�bpMedCond!=’

deceased ’">

<achieve -maint>

<known variable="dlOut_conf"/>

</achieve -maint>

</case>

<case condition="bpMedCond=’deceased ’">

<terminate >

<achieve -maint>

<invalid variable="orderId"/>

</achieve -maint>

</terminate >

Appendices 191

</case>

</verify >

</DS>

<execute name="handleInvoice"

input="hiIn_cid=bpCid;riIn_id=orderId"

output="tmp_hiOut_invId:=hiOut_invId"/>

</sequence >

</otherwise >

</switch >

<execute name="payment"

input="pmIn_invId=tmp_hiOut_invId"

output="tmp_pmOut_conf:=pmOut_conf"/>

</sequence >

</BusinessProcess >

192 Appendix C

C. Variable interdependencies
The variable interdependencies of the WMO process are can be defined as follows:

dependsOn(bpAddress) = {hvOut homeInfo}

dependsOn(hvOut homeInfo) = {maOut medInfo, dcOut approvalCheck ,

arOut requirements, tpOut tenderSelection}

dependsOn(tpOut tenderSelection) = {ctOut tenderOK}

dependsOn(bpMedCond) = {maOut medInfo, dcOut approvalCheck ,

arOut requirements, ctOut tenderOK}

dependsOn(bpEligCrit) = {ctOut tenderOK}

D. Modelling the WMO process as a planning domain
Intake(itIn cid, itIn address)

Prec:

itIn cid = bpCid ∧ itIn address = bpAddress

Eff:

sense(itOut prov)

HomeVisit(hvIn cid, hvIn address)

Prec:

hvIn cid = bpCid ∧ hvIn address = bpAddress

known(itOut prov)

Eff:

sense(hvOut homeInfo) ∧ sense(hvOut maRequired)

MedicalAdvice(maIn cid)

Prec:

maIn cid = bpCid ∧ known(hvOut maRequired) ∧
hvOut maRequired = true ∧ known(hvOut homeInfo)

Appendices 193

Eff:

sense(maOut medInfo)

Decision(dcIn cid, dcIn homeInfo, dcIn eligCrit, dcIn medInfo)

Prec:

dcIn homeInfo = hvOut homeInfo ∧ dcIn cid = bpCid ∧
(¬hvOut maRequired ∨ known(maOut medInfo) ∧
(hvOut maRequired ∨ true) ∧ ¬known(dcOut approvalCheck) ∧
(¬hvOut maRequired ∨ dcIn medInfo = maOut medInfo)

Eff:

sense(dcOut approvalCheck)

AcquireRequirements(arIn cid, arIn homeInfo)

Prec:

(itOut prov = 3 ∨ itOut prov = 4) ∧ itOut prov = 3 ∧
arIn cid = bpCid ∧
arIn homeInfo = hvOut homeInfo ∧
known(dcOut approvalCheck) ∧ dcOut approvalCheck = true

Eff:

sense(arOut requirements)

TenderProcedure(tpIn cid, tpIn homeInfo)

Prec:

(itOut prov = 3 ∨ itOut prov = 4) ∧ itOut prov = 4) ∧
tpIn cid = bpCid ∧ tpIn homeInfo = hvOut homeInfo ∧
known(dcOut approvalCheck) ∧ dcOut approvalCheck = true

Eff:

sense(tpOut tenderSelected)

194 Appendix D

CheckTender(ctIn cid, ctIn selTender, ctIn eligCrit)

Prec:

ctIn cid = bpCid ∧ ctIn selTender = tpOut tenderSelected , ctIn eligCrit = bpEligCrit

Eff:

sense(ctOut tenderOK) ∧
(ctOut tenderOK = false) ⇒ invalidate(tpOut tenderSelection)

SendOrder(soIn cid, soIn orderInfo, soIn address)

Prec:

soIn cid = bpCid ∧ soIn address = bpAddress ∧
known(arOut requirements) ∧ soIn orderInfo = arOut requirements ∧
¬known(orderId)
Eff:

sense(soOut orderId) ∧ assign(orderId , soOut orderId) ∧
assign(orderContents, soIn orderInfo)

SendOrderToSelSupplier(sosIn cid, sosIn sid, sosIn orderInfo, sosIn address)

Prec:

sosIn cid = bpCid ∧ sosIn sid = tpOut tenderSelected ∧
known(ctOut tenderOK) ∧ ctOut tenderOK = true ∧
sosIn address = bpAddress ∧ sosIn orderInfo = hvOut homeInfo ∧
¬known(orderId)
Eff:

sense(sosOut orderId) ∧ assign(orderId , sosOut orderId) ∧
assign(orderContents, sosIn orderInfo)

SendDHRequest(sdhrIn cid, sdhrIn orderInfo, sdhrIn address)

Prec:

(itOut prov = 1 ∨ itOut prov = 2) ∧ itOut prov = 2) ∧
sdhrIn cid = bpCid ∧ sdhrIn address = bpAddress ∧

Appendices 195

sdhrIn orderInfo = hvOut homeInfo ∧ known(dcOut approvalCheck) ∧
dcOut approvalCheck = true ∧ ¬known(orderId)
Eff:

sense(sdhrOut orderId) ∧ assign(orderId , sdhrOut orderId) ∧
assign(orderContents, sdhrIn orderInfo)

DeliveryConfirmation(dlIn cid, dlIn id, dlIn address, dlIn delContents)

Prec:

dlIn cid = bpCid ∧ dlIn id = orderId ∧
dlIn delContents = orderContents

Eff:

sense(dlOut conf)

ReceiveInvoice(riIn cid, riIn id)

Prec:

riIn cid = bpCid ∧ riIn id = orderId ∧
known(dlOut conf)

Eff:

sense(riOut invId)

CheckInvoice(ciIn invId)

Prec:

known(riOut invId) ∧ ciIn invId = riOut invId ∧
¬known(ciOut invoiceOK)

Eff:

sense(ciOut invoiceOK)

ReturnInvoice(rtiIn invId)

Prec:

196 Appendix D

known(riOut invId) ∧ riOut invId = rtiIn inveId

∧ciOut invoiceOK = false

Eff:

invalidate(riOut invId) ∧ invalidate(ciOut invoiceOK)

Payment(pmIn invId)

Prec:

(¬(itOut prov = 1 ∨ itOut prov = 2) ∨
((¬itOut prov = 1 ∨ known(dcOut approvalCheck) ∧
(¬itOut prov = 2 ∨ known(ciOut invoiceOK))))

∧ (¬(itOut prov = 3 ∨ itOut prov = 4) ∨ known(ciOut invoiceOK))

∧ pmIn invId = riOut invId

Eff:

sense(pmOut conf)

CancelOrder(coIn orderId)

Prec:

known(orderId) ∧ coIn orderId = orderId

Eff:

invalidate(orderId)

NotifyCityHall(nchIn msg)

Prec:

∅

Eff:

sense(nchOut sent)

List of abbreviations

AA Atomic Action

AAS Atomic Action Set

ACID Atomicity, Consistency, Isolation, Durability

AI Artificial Intelligence

API Application Programming Interface

ASV Atomic Service Variables

BP Business Process

BPAS BP-specific Actions Set

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modelling Notation

BPMP Business Process Management Platform

BPPM Business Process Pertinent Model

CS Critical Section

CSP Constraint Satisfaction Problem

CTL Computation Tree Logic

DA Dependent Activity

DE Dependent Element

DG Domain Generator

DS Dependency Scope

DSRM Design Science Research Methodology

EC Energy Company

200

ECH Energy Clearinghouse

EDSN Energy Data Services Netherlands

EIS Enterprise Information System

IOPE Input, Output, Preconditions, Effects

IP Intervention Process

IS Information System

LS Local Storage

MC Measuring / Metering Company

OWL-S Semantic Web Ontology Language

PD Planning Domain

PE Process Executor

PHCS Process History Capture System

PI Process Instance

PLM Process Lifecycle Monitor

PM Process Modeller

PN Petri Net

PV Process Variable

SI Service Instance

SD Service Description

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

SR Service Repository

ST Service Type

TC Telecom Company

TSO Transmission System Operator

UML Unified Modelling Language

VV Volatile Variable

WfN Workflow Net

WMO Law of societal support (Wet Maatschappelijke Ondersteuning)

WSDL Web Services Description Language

WSDL-S Semantic Web Services Description Language

XML eXtensible Markup Language

Acknowledgements

The process of writing a Ph.D. thesis is something which cannot be accomplished

alone. In the past five years, I have been supported by many people, to whom I

would like to express my gratitude in this way.

First and foremost, I would like to express my gratitude to my promotor, prof. dr. ir.

Hans Wortmann, for giving me the opportunity to pursue a Ph.D. I enjoyed working

with Hans and I am looking forward to continue our collaboration. I would also like

to thank my co-promotor, dr. Alexander Lazovik, for the many detailed discussions

regarding the technical part of the developed concepts.

I would like to thank the members of the reading committee, prof. dr. ir. W.M.P. van

der Aalst, prof. dr. G.B. Huitema and prof. dr. M. Weske, for assessing this thesis

and providing constructive and valuable comments.

Several people have contributed to this thesis. I have worked extensively with Eirini

Kaldeli and Pavel Bulanov. Our collaboration has led to highly valuable discussions

and the most important contributions of this thesis. I am very grateful for their effort

on the AI planner and the prototype implementation. Furthermore, I would like to

thank Doina Bucur for carefully reviewing the formal part of Chapter 4.

Besides being my paranymphs, Jan Braaksma and Boyana Petkova are also very

good friends and colleagues. We had great times together during work and after

work during drinks and many other non-research related events.

204

Laura Mǎruşter introduced me to the academic world, which I greatly appreciate.

With her I wrote my first two publications. I would like to thank Nick Szirbik for the

inspiring conversations about science and the digressions to his many great stories

about history.

I would like to thank all my friends and colleagues for the drinks, the coffee and the

great conversations about anything but research.

Furthermore, the valuable support provided by the secretary cannot be left unno-

ticed. In particular, I would like to express my gratitude to Irene Ravenhorst for the

countless occasions where she made certain that important documents were re-

viewed on time. She always managed to squeeze me into the ever-busy schedule

of Hans whenever necessary.

I would like to thank the people and companies, whom I cannot address by name,

for their time and providing insight in their business processes. I am very grateful to

Tjitte Bouma and Heinjo Rozing for the many hours they spent on transforming the

raw data to readable process models.

Finally, I would like to express my thanks and gratitude to my parents Rob and

Ria, my brother Marc and my sister Juliette who have always supported me and

motivated me throughout my life. Without them, this thesis would definitely not be

there.

Nick van Beest

Groningen, The Netherlands

January 2013

Summary

Business processes are found everywhere in modern organizations. Increasingly,

business processes are supported by automated means. Concurrent execution

of business processes is common in most organizations, though these processes

may (partially) use the same resources in terms of information required. Such mu-

tual dependency on process variables may cause inconsistencies during process

execution, especially in highly distributed service environments. Although these

processes may properly terminate, they may lead to undesirable outcomes from a

business perspective. This is due to interference via changing data in process in-

stances running concurrently. The situation where data is simultaneously modified

by several processes is known as process interference.

Process interference occurs far more often than most people realize. Because

there is often not an immediate software error, the incorrect impression exists that

the process runs well. Nevertheless, in the real world these interferences lead to

wrong invoices, wrong addresses, wrong decisions and so on. These errors in the

real world lead to customer complaints, legal cases, and many untraceable societal

costs but not to the root cause: the fact that process interference is not properly

solved in process management software architecture.

In Chapter 4 of this thesis, the process interference problem is defined formally

using temporal logic (CTL*). This formal specification provides the temporal char-

acteristics of interference. Based on this formal definition, two case studies were

conducted at a large Energy company and a large Telecom company in the Nether-

208

lands, to identify erroneous outcomes as a result of process interference. The pro-

cess descriptions are based on detailed documentation about the process and user

experience. Due to the complexity of the analysis, a software tool has been devel-

oped to simulate the different concurrent execution combinations. This tool provides

the functionality to provide a complete overview of the erroneous situations. The

analysis shows that process interference is far more than a rare unfortunate excep-

tion. It is widespread in these organizations and many interference cases could be

identified.

In order to resolve this problem, a number of design concepts have been proposed

and tested in Chapter 5 to prevent process interference by awareness of process

dependencies and automatic execution of compensation activities. Dependency

scopes are introduced to represent the dependencies between processes and data

sources and mark the critical sections of the process that are vulnerable for inter-

ference. A dependency scope is a part of the business process with a set of volatile

process variables, where the activities of the dependency scope are implicitly or ex-

plicitly relying on the accuracy of those process variables. Intervention processes

are introduced to repair inconsistencies during execution of the process. An in-

tervention process is a sub-process, comprising a set of compensation activities,

which together restore the consistent state of a business process. These model-

ing concepts can be seamlessly integrated in existing Business Process Modeling

platforms.

In Chapter 6, these concepts are further developed and automated. Consequently,

the dependency scopes can be generated at design time based on the process

model and the information available from the used software services. The inter-

vention process is generated during runtime, when a change in the volatile process

variables occurs. Based on a well-defined specification of the business process

and declarative goals runtime inconsistencies can be resolved by employing AI

planning. Both the dependency scope specification and the intervention process

generation occurs automatically based on the existing business process specifica-

tion. These solution concepts are powerful and do not require explicit modeling of

all cases and conditions, but can be applied generically. Consequently, it is shown

Summary 209

that process interference can be resolved during runtime without additional mod-

elling effort for the process designer.

Finally, the performance and the feasibility have been tested. In order to evaluate

the feasibility of the approach, an architecture has been designed and a prototype

has been implemented in Chapter 7. The results indicate that coupling dependency

scopes with declarative goals and generating intervention processes at runtime by

means of AI planning is a usable and realistic method for resolving erroneous path

situations caused by process interference. The proposed method is both sound and

complete. The IP generated is finite in all cases. Although generated IPs may in-

clude finite loops through an enumerated repetition of certain activities, they cannot

include indefinite loops, since a plan provided by the AI planner is a finite, partially

ordered set of actions. Consequently, the generated intervention processes always

satisfy the properties specified in the goal. If there exists a combination of activities

that achieves the goal, then this sequence is found in the developed architecture.

Nederlandstalige samenvatting

In moderne organisaties worden bedrijfsprocessen veelal ondersteund door infor-

matiesystemen. Parallelle uitvoer van bedrijfsprocessen komt frequent voor en

deze processen kunnen (gedeeltelijk) gebruik maken van dezelfde informatie. Een

dergelijke onderlinge afhankelijkheid tussen procesvariabelen kan inconsistenties

veroorzaken in het proces, met name in sterk gedistribueerde service omgevin-

gen. Hoewel deze processen uitgevoerd kunnen worden zonder softwarefouten,

kunnen ongewenste resultaten optreden vanuit het perspectief van de klant. Dit

wordt veroorzaakt door interferentie via datamutaties door processen die parallel

worden uitgevoerd. De situatie waar gegevens gelijktijdig worden gemodificeerd

door verschillende processen wordt procesinterferentie genoemd.

Procesinterferentie komt veel vaker voor dan men zich realiseert. In de meeste

gevallen doet zich niet direct een onmiddellijke softwarefout, waardoor de verkeerde

indruk kan bestaan dat het proces goed loopt. In werkelijkheid kunnen deze storin-

gen echter leiden tot verkeerde facturen, verkeerde adressen, verkeerde beslissin-

gen, etc. Dit resulteert in klachten van klanten, rechtszaken, en vele niet te traceren

maatschappelijke kosten. De feitelijke oorzaak is echter lastig te traceren: het feit

dat procesinterferentie niet goed wordt ondervangen in huidige informatiesystemen.

In hoofdstuk 4 van dit proefschrift wordt procesinterferentie formeel gedefinieerd

met behulp van temporele logica (CTL*). Deze formele specificatie geeft de tem-

porele karakteristieken van procesinterferentie weer. Op basis van deze formele

specificatie worden twee case studies uitgevoerd, bij een groot energiebedrijf en

212

een groot telecombedrijf in Nederland, om de foutieve resultaten te identificeren als

gevolg van procesinterferentie. De procesbeschrijvingen zijn afkomstig van gede-

tailleerde documentatie over het proces en de ervaring van de gebruikers. Gezien

de complexiteit van de analyse is een softwaretool ontwikkeld om verschillende

situaties van parallelle uitvoer van processen te simuleren. Deze tool biedt de func-

tionaliteit om een volledig overzicht te genereren van alle foutieve situaties. Deze

analyse heeft aangetoond, dat procesinterferentie veel meer is dan een weinig

voorkomende uitzondering in een goed lopend proces. Procesinterferentie komt

vaak voor in deze organisaties en een groot aantal interferentie gevallen kon wor-

den geı̈dentificeerd.

Om procesinterferentie te voorkomen is in hoofdstuk 5 een aantal modelleringscon-

cepten geı̈ntroduceerd en getest. Dependency scopes zijn geı̈ntroduceerd om de

afhankelijkheden te representeren tussen processen en data en markeren de kri-

tieke sectoren van het proces die gevoelig zijn voor interferentie. Een dependency

scope is een deel van het bedrijfsproces met een set procesvariabelen, waar de

activiteiten van de dependency scope impliciet of expliciet uitgaan van de juistheid

van die procesvariablen. Interventie processen zijn geı̈ntroduceerd om geconsta-

teerde inconsistenties tijdens de uitvoering van het proces te repareren. Een in-

terventie proces is een subproces, welke een reeks compensatie activiteiten om-

vat, die samen de consistente toestand van een bedrijfsproces herstellen. Deze

modelleringsconcepten kunnen worden geı̈ntegreerd in bestaande Business Pro-

cess Modelling platformen.

In hoofdstuk 6 zijn deze concepten verder uitgewerkt en geautomatiseerd. Een al-

goritme is ontwikkeld, waarmee dependency scopes kunnen worden gegenereerd

op basis van het procesmodel en de informatie die beschikbaar is van de gebruikte

software services. De interventie processen worden tijdens de uitvoer van de pro-

cessen gegenereerd, zodra er een verandering in de procesvariabelen is geconsta-

teerd. Op basis van een goed gedefinieerde specificatie van het bedrijfsproces en

de declaratieve doelen van die processes kunnen inconsistenties worden opgelost

door het gebruik van KI planningstechnieken. Zowel de specificatie van de de-

pendency scopes als de generatie van de interventie processen is automatisch op

Nederlandstalige samenvatting 213

basis van de bestaande bedrijfsproces specificatie. Op deze manier is geen ex-

pliciete modellering vereist van alle specifieke situaties en omstandigheden. Pro-

cesinterferentie kan dus worden opgelost tijdens uitvoer van de processen zonder

dat dit extra modellering vereist voor de procesontwerper, waardoor de ontwikkelde

technieken generiek kunnen worden toegepast.

Ten slotte zijn de haalbaarheid van de methode en de prestaties getest. Om de

haalbaarheid van de aanpak te evalueren, is een architectuur ontworpen en een

prototype geı̈mplementeerd in hoofdstuk 7. Dit prototype is getest op een case van

lokale overheden, waar ook de prestaties van de architectuur zijn gevalueerd. De

resultaten laten zien dat het koppelen van dependency scopes met declaratieve

doelen en het runtime genereren van interventie processen door middel van KI

planningstechieken een bruikbare en realistische methode is voor het oplossen

van inconsistenties als gevolg van procesinterferentie. De voorgestelde methode

genereert interventie processen die zowel sound als volledig zijn. De interven-

tie processen zijn eindig in alle gevallen. Hoewel de interventie processen lussen

kunnen bevatten door middel van een herhaling van bepaalde activiteiten, zijn deze

lussen altijd eindig, aangezien de planner per definitie een eindige reeks activiteiten

genereert. De gegenereerde interventie processen voldoen in alle gevallen aan de

eigenschappen die in het doel zijn gesteld. Als er een combinatie van activiteiten

bestaat waarmee het doel kan worden bereikt, dan wordt in de ontwikkelde archi-

tectuur in alle gevallen een geschikt interventie proces gegenereerd.

