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In birds and mammals, juvenile and adult foragers are often found apart from each other. In this study,
we found this is also true for red knots, Calidris canutus canutus, wintering on the intertidal flats of Banc
d’Arguin, Mauritania. Not only did juveniles feed separately from adults, they also fed at places where
they were more vulnerable to predation by large falcons. That the dangerous areas used by juveniles
were no better feeding areas led us to reject the food—safety trade-off that explained age-related dis-
tribution differences in many earlier studies. Instead, juveniles were displaced by adults in dyadic in-
teractions which suggests that they suffered from interference from adults. Juveniles retreated to feeding
areas that were more dangerous and yielded lower intake rates, and coped by extending foraging time by
using higher, nearshore intertidal areas that were exposed for longer. When disturbed by predators in
these nearshore areas, juveniles continued feeding whereas adults left. Thus, rather than compensating
for increased predation danger by higher intake rates, on the Banc d’Arguin red knot juveniles foraged for
longer.

© 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

predator

Foraging animals must choose between locations that differ in
many aspects, but food conditions and safety usually explain a lot of
the variation found (van Gils, Edelaar, Escudero, & Piersma, 2004;
Piersma, 2012). It is theoretically plausible (Houston &
McNamara, 1999; Houston, McNamara, & Hutchinson, 1993) and
has been empirically demonstrated (reviews by Brown, 1999;
Brown & Kotler, 2007; Cresswell, 2008; Lima, 1998) that in-
dividuals are capable of responding in adaptive ways to trade-offs
between energy gain and safety from predators, trade-offs that
may be mediated by the energy state of the animal (Barnett,
Bateson, & Rowe, 2007; Kotler, Brown, Mukherjee, Berger-Tal, &
Bouskila, 2010; Real & Caraco, 1986). According to the ideal free
distribution model, foragers should aggregate at patches where
their food is most abundant. If patches also differ in safety, prey
tend to aggregate in safer patches, even when these patches are
relatively poor in resources (Heithaus, 2001; Hugie & Dill, 1994).
Ultimately, owing to the balanced effects of interference, safety in
numbers and habitat choice by their own predators, foragers are
generally considered to trade rich and dangerous feeding

* Correspondence: P. ]. van den Hout, Department of Marine Ecology, NIOZ Royal
Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The
Netherlands.

E-mail address: piet.van.den.hout@nioz.nl (P. J. van den Hout).

opportunities against poor and safe options (Bednekoff, 2007;
Hugie & Dill, 1994; Moody, Houston, & McNamara, 1996).

However, individuals differ in their position on the food—safety
continuum (Houston & McNamara, 1999; Stephens & Krebs, 1986).
For instance, foraging animals that balance energy intake and
expenditure are expected to choose to forage in areas that are safest
from predators even when these areas are less rewarding (Brown,
1988; van Gils et al., 2004; Houston & McNamara, 1999). Other
individuals may forage in more danger-prone ways, for instance
because hunger forces them to exploit the rewards of dangerous
areas (see studies reviewed in Lima & Dill, 1990), or because inferior
competitive abilities and inexperience prevent them from satis-
fying their daily requirements in the presence of dominants
(Cresswell, 1994; Parker & Sutherland, 1986). Models of adaptive
behaviour then predict that greater danger is compensated for by
higher energy intake rates (Houston & McNamara, 1999). Indeed,
this is corroborated by field observations in a wide range of species
(reviewed in Lima & Dill, 1990). For example, in a Scottish estuary in
winter, adult and juvenile redshanks, Tringa totanus, segregated
into two areas, a mussel bed and a saltmarsh (Cresswell, 1994).
Juveniles were excluded from the mussel bed by adults. Predation
danger at the saltmarsh was much higher than at the mussel bed,
but food abundance was higher as well so that juvenile redshanks
in the saltmarsh achieved the highest intake rates.

0003-3472/$38.00 © 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
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The present study at Banc d’Arguin, Mauritania, can in the first
place be regarded as a verification of the age-related differences in
foraging distributions shown by Cresswell (1994), albeit in a trop-
ical setting and for a different shorebird species, the red knot,
Calidris canutus canutus. It can also be regarded as another test of
the general idea that predation danger and intake rates may be
traded off in class-specific distributional decisions. We investigated
age-related foraging patterns in the context of food and predator
abundance and tested whether the previous finding that juveniles
accept danger in return for better food is more generally observed.

METHODS
Study System

Up to 256 000 red knots (over 75% of the flyway population of
this subspecies; Piersma, 2007) have been estimated to winter at
Banc d’Arguin (Davidson & Piersma, 2009; Hagemeijer et al., 2004).
Adults arrive from late August onwards, followed by juveniles a
month later (Davidson & Piersma, 2009). Most birds leave Banc
d’Arguin in late April and early May to breed in north-central Siberia
(Dick, Piersma, & Prokosch, 1987; Piersma et al., 1990), returning in
August—September, but they generally do not go north before their
third calendar year (Piersma, van Gils, & Wiersma, 1996).

We assumed that the red knots we studied in the nonbreeding
season followed a satisficing strategy, that is, they balanced energy
intake and expenditure, at least until they started preparing for
migration to the breeding areas (van Gils, Battley, Piersma, & Drent,
2005). This means that they chose the safest foraging areas as long
as these allowed them to balance gross energy intake rate and
energy expenditure (Nonacs & Dill, 1993). At the Banc d’Arguin this
would mean that they should avoid nearshore areas, where the
presence of raptor-concealing cover makes them vulnerable to
surprise attack by large falcons (Dekker & Ydenberg, 2004; van den
Hout, Spaans, & Piersma, 2008; Rogers, Battley, Piersma, van Gils, &
Rogers, 2006). Despite this prediction we observed that most red
knots caught by falcons were in fact juvenile (van den Hout et al.,
2008). In the present study, we were able to assess the roles of
conspecific density and interference (Sutherland, 1996; Vahl, van
der Meer, Weissing, van Dullemen, & Piersma, 2005) because
before and immediately after high tide shorebirds are forced to
forage together, a feature of tidal systems exploited before in
studies of oystercatchers, Haematopus ostralegus (Ens & Goss-
Custard, 1984; Goss-Custard & Durell, 1987; Sutherland & Koene,
1982; Zwarts, Ens, Goss-Custard, Hulscher, & Durell, 1996).

Following Lank and Ydenberg (2003), we define ‘danger’ and
‘risk’ as follows. ‘Danger’ depends on predator abundance and
habitat structure and thus is essentially an attribute of the envi-
ronment. ‘Risk’ is the probability of a bird being caught, which is a
function of both danger and the antipredator measures taken by
prey through behaviour (Caro, 2005; Cresswell, 2008; Lima & Dill,
1990) or body composition (van den Hout, Mathot, Maas, &
Piersma, 2010; van den Hout, Piersma, Dekinga, Lubbe, & Visser,
2006; Lima, 1986).

Study Area

The Parc National du Banc d’Arguin is an area of shallow water,
intertidal sand- and mudflats and islands along the northern
Atlantic coast of Mauritania, bordering the Sahara desert from
about 20°50'N, 16°45'W to 19°20'N, 16°28'W (Isenmann, 2006;
Wolff, 2005; Wolff & Smit, 1990). It covers an area of 12 000 km?,
500 km? of which is intertidal. Much of the Banc d’Arguin is
covered by vast sea grass beds on the intertidal flats mainly

consisting of Zostera noltii (Altenburg, Engelmoer, Mes, & Piersma,
1982; van Gils et al., 2012; Isenmann, 2006; Wolff & Smit, 1990).
We studied red knots on the Iwik Peninsula (19°53'N, 16°17'W)
during the winters of 2002/2003 to 2008/2009, and in 2010/2011.
The central part of the peninsula consists of low barren hills (not
higher than 15 m), as well as the central part of site 7 (Fig. 1a),
which were favoured resting and perching sites of large falcons
(lanner, Falco biarmicus, barbary, Falco pelegrinoides, and peregrine
falcon, Falco peregrinus), and also functioned as points of departure
for their attack flights. Low dunes border the mudflats in areas 1
and 2 (Fig. 1a). These are used by large falcons as cover for surprise
attacks on shorebirds. Some sea grass beds (sites 8 and 9; Fig. 1a)
are separated from the peninsula by an approximately 1—1.5 km
wide channel. Other sites, including 6, 7, 10 and 11 (Fig. 1a), are
separated from the peninsula by narrow channels of 150—250 m.

Age Distribution

Observations with a telescope (20—60x magnification) allowed
us to distinguish juveniles from adults by plumage. Juveniles were
characterized by their whitish underparts with a pink-buff wash
and greyish brown upperparts; the coverts had pale fringes and
dark subterminal lines (Prater, Marchant, & Vuorinen, 1977).
Although these characteristics gradually faded in the course of
winter, some inner grey-brown coverts with subterminal bars
remained. Even when these bars had been lost, the brownish co-
verts were distinctive.

We examined flock sizes and age compositions at low tide (from
3 h before until 3 h after low tide). We made sure that all habitat
types in as large an area as possible were covered (Fig. 1). Birds and
flocks were assigned to habitat type and site (see Fig. 1a); for 421 of
the 696 flocks exact GPS positions were recorded (Fig. 1b). All field
observations on flock sizes and age distribution were done by
PJ.v.d.H. The overall contribution of juveniles to the local population
was estimated by dividing the total number of juveniles observed
across all areas by the total number of birds sampled. Owing to
limited access to offshore sea grass beds in the early years, we were
not able to establish separate year-to-year estimates and used an
overall estimate of the juvenile percentage in the population.

Predation Danger

During 1239 h of observations divided over 320 sessions which
lasted on average 4.0 h (range 0.5—12 h) a total of 26 different ob-
servers recorded the presence of predators. Predators included
mainly falcons and harriers (mainly marsh harrier, Circus aerugi-
nosus, and an occasional Montagu’s harrier, Circus pygargus). Kes-
trels, Falco tinnunculus, although commonly encountered, were not
considered to be dangerous to shorebirds, and were therefore not
included in analyses. Several other raptor species (black kite, Milvus
migrans, Bonelli’s eagle, Hieraaetus fasciatus, and golden eagle,
Aquila chrysaetos) were observed only once. Jackals, Canis aureus,
were occasionally seen, but during daylight hours hardly seemed to
disturb shorebirds. As hunting predators tended to move over
much larger areas than foraging shorebirds, each predator obser-
vation was assigned to one of the subsites in which we divided up
the study site (see Fig. 1; van den Hout et al., 2008).

Responses to Predation Danger

We measured responsiveness to predation danger through
behaviour and body state. As raptors as a rule rely on opportunities
to catch their prey during surprise attacks, habitat structures that
conceal attacks, such as dunes, significantly contribute to predation
danger by increasing the lethality of attack (Cresswell, Lind, &
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Figure 1. (a) Study area, showing subsites. Coordinates are in UTM. (b) Age composition (expressed as proportion of birds that is juvenile) for 421 flocks of red knots, between 3 h
before and 3 h after low tide; exact positions were mapped. The size of the dots represents group sizes ranging from 1 to 600 (square-root transformed to decrease size range for
ease of viewing). The isolines are the lines extending from places where raptors tended to start an attack (Iwik Peninsula, and subsite 7, where an observation tower provided a
resting place for falcons) beyond which areas were found to be dangerous, moderately dangerous or safe with respect to predation.

Quinn, 2010). We recorded the proportion of time spent vigilant
with respect to predator encounter frequency, distance from cover
and flock size. Head-up vigilance was defined as the raising of the
head from a head-down foraging position to at least a horizontal
position (Metcalfe, 1984).

We assessed responses of foragers to the threat of attack while
tallying age composition in flocks. Every now and then the flock
under observation was disturbed by a raptor and took flight. If the
age composition had been assessed just before the time of distur-
bance, it was possible to compare flock size and age composition
before and immediately after disturbance.

Food Distribution and Intake Rates

We sampled benthic food availability in a stratified random
fashion across our study area taking care to consider the two
distinct intertidal areas: bare and sea grass covered (see Honkoop,
Berghuis, Holthuijsen, Lavaleye, & Piersma, 2008). During April
2007, 448 samples were taken, evenly distributed over seven
sampling stations throughout the study area (see van Gils et al.,
2013 for details). In addition 56 samples were collected from sea
grass habitat (20 in December 2003, 10 in December 2004, 20 in
April 2005 and six in November 2006), and 85 samples from bare
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habitat (50 in December 2003, 15 in December 2004 and 20 in April
2005). This involved taking a core (1/56 m?) inserted in the sedi-
ment to a depth of 20 cm. To distinguish accessible from inacces-
sible prey (red knots have a bill length of 3—4 cm), the top layer (0—
4 cm) was separated from the bottom layer (4—20 cm). Both layers
were subsequently sieved over a 1 mm mesh. All prey remaining on
the mesh were stored frozen for later analysis. Each prey was
identified to species and size. Below we restrict our analyses to the
fraction of bivalves available to red knots. Prey are considered to be
available if they are both accessible (i.e. living in the top layer of the
sediment) and ingestible (i.e. small enough to be swallowed whole;
Zwarts & Wanink, 1993). With respect to the latter, maximal
ingestible lengths were calculated based on a gape circumference
limit of 30.6 mm for red knots (Zwarts & Blomert, 1992).

Red knots swallow shellfish whole, and process the items in
their muscular gizzard (Piersma, Koolhaas, & Dekinga, 1993). Shell
material is crushed and discarded through the intestine leaving
the flesh to be digested. Therefore it is standard usage in analyses
of bivalves as food for red knots (Dekinga & Piersma, 1993; van
Gils, Battley, et al., 2005; van Gils, Piersma, Dekinga, & Dietz,
2003), to determine energy content and the amount of indigest-
ible shell mass by separating the meat from the shell. We thus
dried both flesh and shell to constant mass in a ventilated oven at
55—60 °C. The shell was then weighed to the nearest 0.001 g using
an electronic balance. The dried flesh was incinerated at 550 °C for
2 h, after which we determined ash-free dry mass of the flesh
(AFDMgesh) by weighing it to the nearest 0.001 g on an electronic
balance. For small bivalves and gastropods that did not allow
separation of flesh and shell, dry mass and ash-free dry mass were
determined from entire specimens; species-specific correction
factors were used accounting for organic matter residing in the
hard parts (van Gils, Spaans, Dekinga, & Piersma, 2006), and the
loss of carbon in the incineration process. Prey quality, a major
determinant of a knot’s achievable daily intake rate under a
digestive constraint (van Gils et al., 2003; van Gils, Dekinga,
Spaans, Vahl, & Piersma, 2005; van Gils, de Rooij, et al., 2005), is
the ratio between energy content of the prey (AFDMgesn) and
indigestible shell mass (DMgpel)).

Energy intake rates were estimated by direct observation of
swallowed prey items using a 20—60x zoom spotting telescope.
Bird droppings were used to verify species composition, sizes and
mass values of ingested prey items. At places where we had
observed red knots foraging for at least half an hour, we collected
samples of 50 droppings. Of the 76 samples, 25 were from bare
habitat usually within 0—50 m off the shore and 51 from sea grass
areas at various distances from the shoreline (28 samples from 50—
250 m and 23 samples from 250—2000 m from shore). Droppings
were stored frozen until analysis. Using a binocular microscope
(Olympus SZ 51) we identified species and sorted them out to
weight fractions. By using the species-specific relationships be-
tween hinge and umbo (the rounded apex of a bivalve) to length as
derived from entire specimens, we could deduce the length classes
of specimens in the diet of birds, their AFDM, the indigestible shell
mass involved, and thus prey quality (Dekinga & Piersma, 1993; van
Gils, Battley, et al., 2005; Onrust et al, 2013). We calculated
instantaneous energy intake rates (mg AFDMgesh/s), for adult and
juvenile individuals, respectively, using the combination of item
intake rates and average energy equivalents of the prey as deduced
from the dropping analyses.

Prey composition in the field was estimated for three distance
classes from shorelines (0—50 m, 50—250 m, 250—2000 m) by
calculating species contributions expressed in AFDMgeqp. Likewise,
to estimate diet composition, we derived prey compositions from
droppings from juvenile-dominated (>50% juvenile) and adult-
dominated (<50% juvenile) flocks.

Agonistic Interactions between Adult and Juvenile Foragers

To quantify the extent of competitive interactions between
adults and juveniles, we studied flocks as they were crowding into
nearshore habitat during the final stage of flooding between 10 and
25 October 2006. In area 1 (Fig. 1a) we conducted 103 group scans
(Martin & Bateson, 1993), categorizing foraging habitat as either sea
grass or bare sandflat. Scans of 5—10 min were made by slowly
moving the telescope, at 20x magnification, from one side to the
other, covering an angle of approximately 90°. Depending on the
stage of the tide, the total area we scanned for birds varied between
50 and 400 m?. We described each interaction in terms of age of the
contestant (adult, juvenile or uncertain) and recorded the direction
of aggressive displacements (adult displacing juvenile, or vice
versa, and adults or juveniles displacing members of their own age
group). Using the overall numbers of adults and juveniles present,
we compared observed aggressive displacements between classes
of individuals (adult—adult, juvenile—juvenile, adult—juvenile)
with predictions under the assumption that age biases do not exist
(Groves, 1978). For a mixed flock of adults and juveniles of any
specified composition:

p = number of adults/(number of adults + number of juveniles)
q = number of juveniles/(number of adults + number of juveniles)

Thus, the expected frequencies of aggressive interactions, when
interactions occur between random individuals, are p? and g for
aggression among adults and juveniles, respectively, and 2pq for
adult over juvenile and juvenile over adult interactions. So, the
relative probabilities of age-specific displacement events (Pattack)
were assumed to depend on encounter probability between in-
dividuals (Pencounter) and the chance that, upon encounter, an
aggressive displacement occurs (Pattackjencounter), Such that:

Pattack = Pencounter < Pattack|enc0unter

For all 92 group scans and each possible type of interaction the
directions of deviations from expected frequencies were counted
and evaluated by a chi-square test.
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Energy State and Gizzard Size

As demonstrated for waterfowl (van Gils et al., 2007; Madsen &
Klaassen, 2006) and for red knots (van Gils et al., 2006; Wiersma &
Piersma, 1995), estimates of body mass and fat load can be ob-
tained by visual inspection of abdominal profiles. While recording
site choice and flock size, we assessed abdominal profile indices
(APIs) of adult and juvenile individuals in a range from 1 (very
lean) to 5 (very fat) (Wiersma & Piersma, 1995) with a 20—60x
zoom spotting telescope. To evaluate consistency of API recordings
in the field, we tested for 14 birds whether variation in API cor-
responded to variation in body mass (Madsen & Klaassen, 2006),

and found that it did (linear regression: Rgdjusted = 0.34, P=0.04;
body masses were measured no more than 3 weeks before the API
estimations).

Shell mass constrains the rate of energy intake (see above),
while the level of this constraint is set by gizzard size (van Gils et al.,
2003). To compare digestive capacities of age classes, gizzard sizes
were measured in birds captured with mist nets at night (Leyrer
et al., 2013; Leyrer, Spaans, Camara & Piersma 2006). This was
done by A.D. during April 2007—2009 using an ultrasound appa-
ratus with a 7.5 MHz linear probe (Pie 200, Pie Medical Benelux BV,
Maastricht, The Netherlands; for further details, see Dietz, Dekinga,
Piersma, & Verhulst, 1999).
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Statistics

All analyses were done in the R working environment (R
Development Core Team 2012, version 2.15.1). We used logistic
regression for binomial data on juvenile proportions (Warton & Hui,
2011). To deal with overdispersion caused by many zeros, for each
binomial count we added a normally distributed random intercept
term to the model (Warton & Hui, 2011) using the Ime4 library in R
(Bates, Maechler, & Bolker, 2012), or used a quasibinomial gener-
alized linear model. A zero-inflated binomial model with log link
from the library pscl (Jackman, 2012) was applied to test the
number of raptors encountered as a function of distance to the
shoreline. To examine whether the model fitted the data signifi-
cantly better than the null model (the intercept-only model), we
compared a quasibinomial generalized linear model to a null model
without predictors using a chi-square test on the difference of log
likelihoods. A Voung test was then applied to investigate further
whether a model was an improvement above a standard Poisson
model (procedure adopted from UCLA Academic Technology Ser-
vices, University of California). All significance tests were two tailed.

RESULTS

At low tide, foraging juveniles and adults showed a clear
segregation across spatial scales of hundreds to tens of metres
(juveniles foraging in the vicinity of adult flocks, without mixing in;
Fig. 1b). Across most flock sizes the percentage of juveniles in flocks

Table 1

deviated from the population mean of 14% (Fig. 2). Juveniles were
underrepresented in flocks larger than approximately 60 birds and
overrepresented in smaller flocks (generalized linear mixed model
fitted by Laplace approximation: model: y ~ flock
size + (1]occasion_id), z=—-22,25, df=1, P<0.001). Closer to
shore, flocks were smaller and consisted of relatively more juve-
niles (Fig. 3a, b; generalized linear model: t = —3.2, P < 0.001).

The probability of encountering a raptor declined with
increasing distance from shorelines (Fig. 3c; zero-inflated binomial
model with logit link: z= —6.396, P < 0.001). The proportion of
time spent vigilant interacted with raptor encounter probability
and increased with the proximity to shoreline (Fig. 3d; GLM logistic
regression, quasibinomial: t = —4.075, P < 0.001). When disturbed
by an aerial predator, flock sizes decreased from a mean =+ SE of 74
+ 20 birds (N = 25) to a mean =+ SE of 4 & 1 individuals (Fig. 4a). The
birds remaining after a raptor disturbance were largely juvenile
(Fig. 4b; GLM, quasibinomial: t = 4.743, P < 0.001). When foragers
were driven together at incoming tide (our ‘semiexperiment’), ju-
veniles suffered more aggression (both from adults and from other
juveniles) than adults, both in sea grass and in bare habitat (Table 1;
sea grass: (% =55.9, P<0.001; bare: ¢ =33.5, P<0.001). Red
knots that foraged further offshore had higher API than those closer
to shorelines (Fig. 3e; GLM: t = 3.996, P < 0.001), and although this
relationship did not differ between adults and juveniles, adult APIs
were generally larger than those of juveniles (Fig. 3e; GLM:
t=-7153, P < 0.001).

At 50—250 m from shore, food abundance was significantly
higher than at both 0—50 m and 250—2000 m, with the latter two
not being different (Fig. 5a; ANOVA: F,460=7.387, P < 0.001;
mean + SE  AFDM g/m2 at 0-50m =247 +041; at 50—
250 m = 3.41 + 0.37; at 250—2000 m = 1.91 + 0.09). Juveniles had
lower instantaneous intake rates than adults, not only at the level of
food items taken (mean + SE=2.38 + 0.16 items/min versus
3.36 £ 0.21 item/min for adults), but also in terms of energy intake
(mean + SE = 0.18 + 0.01 mg versus 0.39 + 0.03 mg AFDM/s for
adults). For both age classes, energy intake rates increased with
distance away from shore, the factors ‘age’, ‘distance class from
shore’ and their interaction all being significant (Table 2, Fig. 5b).

As shown previously (Honkoop et al., 2008), Loripes lucinalis was
the most abundant species in sea grass areas, whereas Dosinia
isocardia dominated in bare shoreline areas (Fig. 6a). Dosinia rather
than Loripes prevailed in the diets of both adults and juveniles
(Fig. 6b; consistent with recent findings by van Gils et al., 2013).
Juvenile knots tended to feed more on Dosinia than adults across all
sites (Fig. 6b). Juveniles in shoreline habitat fed nearly entirely on
Dosinia, whereas their diet was much more varied offshore (Fig. 6¢).
Juveniles, but not adults, also included mud crabs, Panopeus afri-
canus, in their diet (Fig. 6b, c). It is through this high-quality prey
that juveniles in offshore areas of 250—2000 m experienced on
average a higher food quality than adults, whereas the reverse was
true for areas of 0—250 m from shore (Fig. 5c). This yields a sig-
nificant interaction between age and distance from shore (Fig. 5c;
ANOVA: F, 359 = 24.66, P < 0.001). Food quality in both adult and
juvenile diets was lowest in nearshore areas (0—50 m from shore;
Fig. 5¢). Although with an average fresh weight 0f 9.28 g, gizzards of

Summary of results from group scans recording age-related aggressive displacements between individual red knots at incoming tide

Habitat Nobs Nind % Juvenile Relative probability of aggressive displacement (%)

Adult < adult Adult— juvenile Juvenile — adult Juvenile & juvenile
Sea grass 56 1969 39 18.5 27.5 4.7 493
Bare 47 1377 35 31.2 18.0 3.9 47.0

The direction of the displacement (adult or juvenile chasing individual of their own age group, adult chasing juvenile and vice versa) is shown for various locations along the

shoreline, grouped in sea grass and bare habitat.
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Figure 5. (a) Food availability (in ash-free dry mass of the flesh of prey, AFDM/m?), (b) energy intake rates (mg AFDM/s) and (c) food quality as experienced by adults and juveniles,

for three distance classes from shorelines (0—50, 50—250, 250—2000 m).

juveniles were smaller than those of adults at 10.0 g, the difference
was not significant (Welsh two-sample t test: t3753 = —1.7732,
P = 0.084; Naguit = 64, Njuvenile = 18).

DISCUSSION

Around the Iwik Peninsula at Banc d’Arguin juvenile red knots
foraged closer to shore where danger of predation by large falcons
was higher. This closely resembles the description of redshanks
foraging in a Scottish estuary (Cresswell, 1994). However, whereas
juvenile redshanks attempted to forage with adults (and were
chased off), juvenile red knots apparently avoided foraging in the

Table 2
Analyses of variance of energy intake rates of red knots as a function of distance from
shore

Independent variable Sum of squares df P

Age 2.887 1 <0.001
Distance from shore (DFS) 1.014 2 <0.001
Age*DFS 0.632 2 0.004
Error 14.842 259

presence of adults altogether, unless adults were forced upon them
during the final stage of the incoming tide. As we have shown, this
is probably because of their vulnerability to interference from
adults, which means they would not achieve sufficient intake rates
in their presence. Although their avoidance behaviour renders
them at greater predation danger, unlike Cresswell’s redshanks the
juvenile red knots did not compensate for the danger with higher
intake rates. In fact, intake rates in dangerous areas were lower
than in safer areas. Therefore we firmly reject the food—safety
trade-off hypothesis in the present case.

Our results suggest that juveniles, at sites that are more
dangerous and yield lower intake rates, cope by foraging for longer.
They achieved this extra feeding time by using nearshore areas,
which remained exposed for longer (Fig. 7). This would nicely
explain why foragers that need to spend at least 13 h foraging kept
feeding in shoreline bare habitat zones during all stages of the tide
(Fig. 7). That juveniles need to compensate for inferior competitive
skills by foraging for longer is also indicated by the juveniles being
far more reluctant than adults to interrupt their foraging activities
when disturbed by an aerial predator. Even when nearby foragers
collectively took flight upon disturbance, juveniles tended to stay
put (Fig. 4). During such occasions we even observed adult flocks
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Figure 6. (a) Food composition in the field (expressed in ash-free dry mass of the flesh contained in prey) as derived from benthos sampling, for three distance classes from
shorelines (0—50, 50—250, 250—2000 m). (b, c) Diet composition, as reconstructed from droppings, expressed in ash-free dry mass of the flesh contained in prey. (b) Flocks with
more than 50% juveniles or less than 50% juveniles. (c) Juvenile-dominated flocks divided over nearshore bare areas (0—50 m from cover) and sea grass-covered areas further from
shore. For ease of viewing, only the most important prey types are indicated, and species with an occurrence of less than 1% were pooled.

skimming low over foraging juveniles. The latter suggests that the
observed age-related differences in escape decisions were not
caused by differences in attentiveness (Ydenberg & Dill, 1986), but
must have been caused by the fact that juveniles tolerate more
danger as they are less willing to pay the costs of fleeing (cost of
flight and loss of feeding opportunity).

Throughout the study area, and even when foraging away from
adults, intake rates of juveniles were lower than those of adults.
Although this is probably a consequence of juveniles being evicted
from the best foraging areas, age differences in foraging skills may
contribute to this difference. In general, juvenile shorebirds tend to
be less efficient foragers than adults, and there is evidence that the
greater the skill needed to find and handle prey, the less successful
juveniles are compared to adults and the longer it takes them to
acquire those skills (Durell, 2000; Durell, 2003; Wunderle, 1991). Red
knot are foragers on buried bivalves in soft sediments that are
located by a highly specialized technique of remote sensing (Piersma,
van Aelst, Kurk, Berkhoudt, & Maas, 1998), and we have indications
that the sea grass root systems interfered with the detection of these
prey (J. de Fouw, unpublished data). That adults, and not juveniles,
achieve highest intake rates in the 250—2000 m zone despite a lower
food abundance (Fig. 5a, b) may be explained by lower vigilance costs
due to their aggregated foraging in safe offshore areas. (Fig. 3d). It
does not hold for the few juveniles here, which are apparently unable
to benefit from flockmates for vigilance.

The observations around high tide suggest that juveniles are
subordinate to adults and suffer direct forms of interference (Goss-
Custard & Durell, 1987; Vahl, van der Meer, Meijer, Piersma, &
Weissing, 2007). Although we did not study the mechanisms of
interference in detail, we observed juveniles inspecting the suc-
cesses of others more often than adults, thereby effectively eliciting
agonistic interactions. The additional occurrence of cryptic inter-
ference (Bijleveld, Folmer, & Piersma, 2012) at low tide is suggested
by the fact that even in places where juveniles did forage in the
vicinity of adult-dominated flocks, rather than mixing in, they
tended to forage on the periphery of these flocks. Bijleveld et al.
(2012), in an indoor experiment, showed that foraging efficiency
of subordinate red knots decreased in the presence of dominant
competitors, even when interference was rare or absent.

The idea that the age-related distributions in the field emerge
from differences in social status is consistent with the observations
of Leyrer et al. (2012) in the same study area. At the larger spatial
scale of roosting and adjacent foraging areas, Leyrer et al. observed
a sex- and age-structured distribution of red knots. Since the larger
females and the older birds predominated at the richest of the two
areas, it was argued that differences in competitive ability
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Figure 7. Minimal foraging time needed by foragers to gain required daily energy
intake rate, dependent on their short-term intake rate, illustrating why poor foragers
should feed closer to shorelines. Assuming a maintenance metabolism of 1.38 W at
Banc d’Arguin (Piersma, 1994), we arrive at a minimal required daily energy of 119 kJ.
With an energy density of 22 kJ/g AFDMges, (Zwarts & Wanink, 1993), and an assim-
ilation efficiency of 0.725 (Piersma, 1994), we can estimate the minimal time
(excluding digestive breaks; van Gils, Dekinga, et al., 2005) that red knots need for
foraging dependent on their energy intake rates. A smoothed tide line was added.
Foragers that are in the grey surface area, owing to low intake rates (second y-axis),
need more time than what is maximally available to cover their daily energy
requirements.



P. J. van den Hout et al. / Animal Behaviour 88 (2014) 137—146 145

maintained this spatial structure. The consistent phenotypic dif-
ferences (in terms of API) across habitat zones (distances from
shore) that we observed in our study (Fig. 3e), are also consistent
with a structured distribution, and refute the idea that individuals
regularly switch between offshore and nearshore areas. That
nearshore foragers had lower API than the ones further from shore
may be because these individuals respond to the higher predation
danger by reducing body mass (mass-dependent predation risk;
Carrascal & Polo, 1999; Gosler, Greenwood, & Perrins, 1995; Lima,
1986), just as we found in an indoor experiment with red knots
(van den Hout et al., 2010). Yet, we cannot exclude the possibility
that their low APIs reflect a hunger state caused by foraging con-
straints (e.g. van Gils et al., 2007).

Our results lead us to reject the idea of a food—safety trade-off
(i.e. individuals feeding at dangerous places do so because of the
higher energy rewards there). In contrast to Cresswell’s juvenile
redshanks (and the many other studies summarized in Lima & Dill,
1990), the juvenile red knots at Banc d’Arguin were not really able
to compensate for danger with higher intake rates. By accepting
higher levels of danger, however, the juveniles were able to
compensate by foraging for longer at the high nearshore flats. They
could do this without any disturbance from adult competitors
(which satisfied their needs more quickly at the safer offshore
areas, and thus could free up time for other activities). Our study
shows that a sound understanding of bird distribution cannot be
achieved on the basis of instantaneous distribution patterns alone,
but must include how individuals adjust time budgets to prevailing
foraging conditions.
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