

How superdiffusion gets arrested

de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M.J.; van de Koppel, Johan

Published in: Proceedings of the Royal Society of London. Series B, Biological Sciences

DOI: 10.1098/rspb.2013.2605

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): de Jager, M., Bartumeus, F., Kölzsch, A., Weissing, F. J., Hengeveld, G. M., Nolet, B. A., ... van de Koppel, J. (2014). How superdiffusion gets arrested: Ecological encounters explain shift from Lévy to Brownian movement. Proceedings of the Royal Society of London. Series B, Biological Sciences, 281(1774), [20132605]. DOI: 10.1098/rspb.2013.2605

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

How superdiffusion gets arrested: Ecological encounters explain shift from Lévy to Brownian movement

Supplementary table and figures

Suppl. Table 1: Best fits of exponential distributions (e.g. Brownian walks) and Pareto distributions (e.g. Lévy walks) to individual movement trajectories. The last column indicates whether a Brownian walk better represents the observed step length distribution than a Lévy walk (0 = LW fits better than BW; 1 = BW fits better than LW). Here, we used variable lower boundary estimates (l_{min}) and corrected for sample size in order to compare Akaike Information Criterions (AIC).

Density (kg m ⁻²)	Mussel nr	Brownian walk			Lévy walk			Brownian
		l _{min}	lambda	AIC	l _{min}	mu	AIC	walk fits best?
0	1	0.10	1.57	113.29	0.10	1.83	19.93	0
0	2	0.10	0.58	313.33	0.10	1.56	217.65	0
0	3	0.05	0.59	309.22	0.10	1.57	208.16	0
0	4	0.95	6.99	-183.09	0.95	8.72	-187.19	0
0	5	0.05	0.89	226.23	0.05	1.55	88.24	0
0	6	0.15	8.66	-227.78	0.15	3.10	-228.12	0
0	7	0.10	5.33	-130.63	0.10	2.20	-126.66	1
0	8	0.15	5.53	-137.87	0.15	2.55	-133.99	1
0	9	0.05	3.88	-67.40	0.05	1.87	-139.78	0
0	10	0.20	1.52	120.85	0.20	1.98	90.12	0
0	11	0.10	11.09	-277.17	0.05	2.35	-307.42	0
0	12	0.05	1.23	162.13	0.05	1.77	-85.90	0
0	13	0.05	0.47	357.08	0.05	1.44	219.35	0
0	14	0.05	0.18	549.22	0.05	1.38	330.15	0
0	15	0.05	0.99	205.15	0.05	1.68	-24.44	0
0	16	0.05	20.17	-396.88	0.10	3.74	-385.31	1
0	17	0.10	11.60	-286.20	0.10	3.19	-322.56	0
0	18	0.05	1.28	154.34	0.05	1.59	45.46	0
Average	18	0.13	4.59	44.66	0.14	2.45	-40.13	0.17
1.3	1	1.05	0.37	404.29	2.10	2.64	374.86	0
1.3	2	2.65	0.46	357.43	2.65	3.12	340.23	0
1.3	3	3.70	0.71	268.58	3.70	4.76	251.28	0
1.3	4	0.50	0.43	373.52	1.05	2.11	374.15	1
1.3	5	3.15	0.77	252.67	3.15	4.15	264.69	1
1.3	6	2.65	0.80	246.31	2.65	3.99	244.23	0
1.3	7	2.10	1.02	198.75	2.10	4.06	192.39	0
1.3	9	2.35	0.40	388.00	2.65	2.92	373.05	0
1.3	10	2.10	0.43	373.62	2.10	2.87	334.09	0
Average	9	2.25	0.60	318.13	2.46	3.40	305.44	0.22

Density (kg m ⁻²)	Mussel nr	Brownian walk			Lévy walk			Brownian
		l _{min}	lambda	AIC	l _{min}	mu	AIC	walk fits best?
2	1	0.75	0.33	427.68	1.05	1.98	422.09	0
2	2	2.15	0.44	369.44	2.15	2.68	372.77	1
2	3	2.65	0.53	327.30	2.65	3.29	317.86	0
2	4	2.85	0.26	469.67	2.40	2.28	481.10	1
2	7	2.10	0.48	348.91	2.10	2.70	359.88	1
2	8	3.10	0.37	400.85	3.10	2.93	397.65	0
2	10	1.05	0.35	416.77	1.50	2.26	397.66	0
Average	7	2.09	0.39	394.37	2.14	2.59	392.72	0.43
3.3	1	1.50	0.60	305.88	2.10	3.08	302.72	0
3.3	2	2.65	0.52	336.43	2.65	3.14	339.95	1
3.3	3	1.60	0.44	369.10	1.60	2.49	351.46	0
3.3	5	3.15	1.20	165.97	3.15	5.58	171.03	1
3.3	6	2.65	0.88	228.29	2.65	4.13	232.45	1
3.3	8	2.10	0.61	302.65	2.65	3.63	281.23	0
3.3	10	2.10	0.60	302.02	2.10	3.13	292.17	0
Average	7	2.25	0.69	287.19	2.41	3.60	281.57	0.43
5.2	1	1.05	1.25	157.25	1.05	3.18	148.01	0
5.2	2	2.10	0.88	228.71	2.10	3.63	234.94	1
5.2	3	3.00	0.89	227.34	3.00	4.53	227.91	1
5.2	4	3.15	0.76	257.64	3.15	4.19	261.18	1
5.2	5	3.70	1.12	180.00	3.70	5.99	182.54	1
5.2	7	3.15	0.78	251.06	3.15	4.28	254.33	1
5.2	9	3.70	1.00	201.04	3.70	5.60	201.87	1
5.2	10	2.65	0.75	261.99	2.65	3.86	258.35	0
Average	8	2.81	0.93	220.63	2.81	4.41	221.14	0.75

Suppl. Figure 1: Individual movement trajectories of 18 mussels in solitary treatment.

Suppl. Figure 2: Individual movement trajectories of 10 mussels in low density treatment (1.3 kg m^{-2}).

Suppl. Figure 3: Individual movement trajectories of 10 mussels in intermediate density treatment (2.0 kg m⁻²).

Suppl. Figure 4: Individual movement trajectories of 10 mussels in high density treatment (3.3 kg m^{-2}).

Suppl. Figure 5: Individual movement trajectories of 10 mussels in high density treatment (5.2 kg m^{-2}).