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We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic
expansion provided by chiral effective field theory. We take into account parity (P ) and time-reversal
(T ) violation which, at the quark–gluon level, results from the QCD vacuum angle and dimension-six
operators that originate from physics beyond the Standard Model. We show that the deuteron MQM
can be expressed in terms of five low-energy constants that appear in the P - and T -violating nuclear
potential and electromagnetic current, four of which also contribute to the electric dipole moments
of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum
angle and that its measurement would be complementary to the proposed measurements of light-nuclear
EDMs.

© 2012 Elsevier B.V. All rights reserved.
Permanent electric dipole moments (EDMs) of particles, nuclei,
atoms, and molecules are powerful probes for physics “beyond” the
Standard Model (SM) of particle physics. EDMs violate both par-
ity (P ) and time-reversal (T ) invariance (or, if we invoke the CPT
theorem of relativistic quantum field theory, CP invariance). EDMs
could be low-energy manifestations of some source of P and T vi-
olation (/P/T ) that originates at an energy scale comparable to or
even higher than that accessed by the LHC. At the current exper-
imental accuracy, electroweak quark mixing can be ignored, and
the only Standard Model (SM) source that can impact EDMs is the
QCD vacuum angle, θ̄ [1]. A nonzero measurement of a hadronic
EDM could be due to either beyond-the-SM /P/T sources or a finite
value of θ̄ , even though the current upper bound on the neutron
EDM already limits this angle to a very small value. Among the
possible beyond-the-SM /P/T sources, those represented by opera-
tors of effective dimension six [2] are expected to dominate: the
quark EDM (qEDM), the quark and gluon chromo-electric dipole
moments (qCEDM and gCEDM, respectively), and two independent
four-quark (FQ) interactions. From a theoretical point of view, it is
clearly an important priority to disentangle the dimension-four SM
θ̄ -term and the non-SM sources [3].

The deuteron is an excellent candidate for a sensitive EDM
search in a storage ring [4]. In a recent paper [5] we addressed the
EDMs of light nuclei, including the deuteron, within chiral effective
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field theory (EFT). The major advantage of such an EFT approach is
its direct link to QCD in that it exploits the different chiral proper-
ties of the fundamental /P/T sources. Moreover, the power-counting
scheme allows for a controlled framework such that the theoreti-
cal uncertainties can be estimated and the results can be improved
systematically. We showed that the EDMs of light nuclei can be
expressed in terms of essentially six /P/T parameters, or low-energy
constants (LECs). These LECs can in principle be calculated from
the underlying /P/T sources by solving QCD at low energies, in par-
ticular by lattice simulations. Lacking that, the size of the LECs can
be estimated by naive dimensional analysis. We concluded that the
EDMs of various light nuclei can give crucial complementary infor-
mation about the fundamental /P/T sources.

Since it is a spin-1 particle, the deuteron has one other static
/P/T electromagnetic moment, the magnetic quadrupole moment
(MQM). In this Letter, we address the deuteron MQM in the same
framework that was used in Ref. [5]. It was shown in Ref. [3] that,
in addition to LECs that contribute to the EDMs of light nuclei, the
deuteron MQM depends also on /P/T pion–nucleon–photon inter-
actions. Moreover, it was argued that only for the θ̄ term is the
deuteron MQM expected to be larger than the deuteron EDM (in
appropriate units). For the beyond-the-SM sources, the MQM is ex-
pected to be of similar size or somewhat smaller than the EDM.
This indicates that a measurement of the deuteron MQM, if possi-
ble, could play a central role in separating the various /P/T sources.

The conclusions of Ref. [3] were based on a chiral EFT in which
the one-pion exchange nucleon–nucleon (NN) force is treated in
perturbation theory [6]. This approach, expected to be valid at
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low energies, allows one to give analytical results for the deuteron
EDM and MQM, which, moreover, can be extended to sub-leading
orders. On the other hand, in NN scattering it was found that
the results do not converge in certain partial waves for momenta
somewhat lower than expected [7]. It is therefore important to
check the results of Ref. [3] in the framework of a chiral EFT that
treats pions nonperturbatively [8]. For the deuteron EDM it was
found that the two EFTs gave similar results [5]. In this Letter
we investigate this for the deuteron MQM as well and we ad-
dress the question, to what extent a possible measurement of the
MQM could be of help to separate the different /P/T sources. We
also compare our results to previous studies of the deuteron MQM
[9,10]. In particular, Ref. [10] used traditional meson-exchange NN
models and a general /P/T NN interaction [10,11]. We use the codes
of Ref. [10], but adapt and extend the framework (the /P/T NN po-
tentials and currents) to chiral EFT with nonperturbative pions. We
follow the hybrid approach of Ref. [5] in which nonperturbative
pion exchange is embedded into the P - and T -conserving (P T )
wave functions of modern, “realistic” potentials [12,13]. In princi-
ple our framework can be applied to the calculation of the MQM
of other light nuclei as well.

We start our discussion of the deuteron MQM from the effec-
tive hadronic Lagrangian involving the low-energy degrees of free-
dom: nucleon (N), photon (Aμ), and pion (π ). The P T part, which
originates from the quark kinetic (color- and electromagnetically
gauged) and mass terms in QCD, is well known [14,5]. At lead-
ing order (LO) it consists of the standard pion–nucleon axial-vector
coupling, g A = 1.27, and the pion–nucleon–photon interaction ob-
tained from gauging the g A term. The pion–photon interactions
stem from the pion charge. At next-to-leading order (NLO), the
photon couples to the nucleon via the covariant derivative in the
nucleon kinetic term and via the isoscalar and isovector magnetic
moments, respectively κ0 = −0.12 and κ1 = 3.7. The /P/T effec-
tive Lagrangian results from the most general /P/T Lagrangian at
the quark–gluon level. It was derived and discussed in detail in
Refs. [15,16]. The key observation is that the different fundamental
/P/T sources transform differently under chiral symmetry and there-
fore generate different hadronic interactions. Given enough inde-
pendent observables it will be possible to disentangle them [3].

We present here only the terms that are relevant for the LO
MQM calculation, which depends on five /P/T interactions. The La-
grangian

L/P/T = − 1

Fπ
N̄(ḡ0 τ · π + ḡ1π3)N + c̄π

Fπ
εμναβ vα N̄ Sβτ · π N Fμν

+ C̄1 N̄ N∂μ

(
N̄ SμN

) + C̄2 N̄τ N ·Dμ

(
N̄ Sμτ N

)
, (1)

contains isoscalar ( ḡ0) and isovector ( ḡ1) nonderivative pion–
nucleon couplings, an isoscalar pion–nucleon–photon coupling
(c̄π ), and two short-range /P/T NN interactions (C̄1, C̄2). Here
Fπ = 185 MeV is the pion decay constant, τ are the Pauli ma-
trices in isospin space, vμ (Sμ) is the nucleon velocity (spin),
εμναβ (with ε0123 = 1) the completely antisymmetric tensor,
Fμν = ∂μ Aν − ∂ν Aμ the photon field strength, and (Dμ)ab =
δab∂μ + eε3ab Aμ + O(π · ∂μπ/F 2

π ) a chiral covariant derivative.
Except for c̄π , these interactions play a role in the calculation of
nuclear EDMs [3,5,17] as well. The scaling of the LECs in terms of
the pion mass (mπ ), the characteristic QCD scale (MQCD ∼ 2π Fπ ),
and the scale of /P/T physics beyond the SM is given in Ref. [5]
for ḡ0, ḡ1, C̄1, and C̄2. The pion–nucleon–photon coupling c̄π has
the same scaling as the short-range contribution to the isoscalar
nucleon EDM, d̄0 [3].

The calculation of the deuteron MQM can be divided into two
contributions. The first contribution comes from an insertion of the
/P/T electromagnetic two-body current �J/P/T . The current has to be
Fig. 1. The three general classes of diagrams contributing to the deuteron MQM de-
scribed in the text. Solid and wavy lines represent nucleons and photons. The large
triangle denotes the P T wave function and the oval iterations of the P T potential.
The nucleon–photon vertex is the nucleon magnetic moment or the convection cur-
rent, and the photon attached to the oval is the P T two-body current. The black
squares without (with) an attached photon represent the /P/T potential (two-body
current).

two-body since the constituent nucleons, being spin-1/2 particles,
do not possess a MQM. The second contribution comes from the
electromagnetic current �J P T upon perturbing the wave function
of the nucleus with the /P/T potential V/P/T , such that the wave
function obtains a /P/T component. This current can be one- or
two-body. The required /P/T potential V/P/T and current �J/P/T can be
calculated from Eq. (1).

To first order in the /P/T sources, the deuteron MQM is thus a
sum of two reduced matrix elements,

Md = 1√
30

(〈Ψd||M̃ ||Ψd〉 + 2〈Ψd||M ||Ψ̃d〉
)
. (2)

The deuteron ground state |Ψd〉 and its parity admixture |Ψ̃d〉 are
the solutions of homogeneous and inhomogeneous Schrödinger
equations,

(E − H P T )|Ψd〉 = 0, (3)

(E − H P T )|Ψ̃d〉 = V/P/T |Ψd〉, (4)

respectively, where H P T is the P T Hamiltonian. The MQM opera-
tors M and M̃ are obtained from the corresponding currents �J P T

and �J/P/T , respectively. The Cartesian component along the z di-
rection, M33, which is proportional to the spherical harmonic Y 0

2 ,
takes the form

M33 = 2
∫

d3x x3
(�x × �J (�x))3, (5)

where �x is the position where the current density is probed. Given
the current in momentum space,

�J (�q) =
∫

d3x e−i�q·�x�J (�x), (6)

M33 can also be derived as

M33 = −2 lim
�q→0

(∇q3∇q1 J2(�q) − ∇q3∇q2 J1(�q)
)
. (7)

The three classes of contributions to the deuteron MQM de-
scribed above are shown in Fig. 1. In order to decide which
diagrams give the main contribution to the MQM we apply the
power counting rules outlined in Ref. [5]. These rules provide an
expansion in Q /MQCD, where Q is the generic momentum in the
process, in this case of the order of the deuteron binding momen-
tum. In the power counting estimates below we use Q ∼ mπ ∼ Fπ

since they are numerically of the same order. For each class we
take the P T vertices from the interactions described above and the
/P/T LO vertices from Eq. (1). The iteration of the LO P T potential
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Fig. 2. Diagrams contributing to the /P/T two-nucleon current. Solid, dashed, and
wavy lines represent nucleons, pions, and photons. A square marks a /P/T interaction
and the other vertices P T interactions. Only one topology per diagram is shown.

is not suppressed, and is necessary among nucleons in reducible
intermediate states, as indicated in diagrams (b) and (c) of Fig. 1.
Such iteration among nucleons before and after any /P/T insertion
builds up the P T wave function, represented in Fig. 1 by the trian-
gles. In the following power counting we omit this overall factor.
The scaling in terms of the LECs in Eq. (1) of diagram (a) is then

Da = O
(

e
ḡ0

F 2
π

Q 2

MQCD

)
+O

(
c̄π Q 2

F 2
π

Q 2

MQCD

)

+O
(

eC̄2 F 2
π

Q 2

MQCD

)
, (8)

while diagrams (b) and (c) scale as

Db,c = O
(

e
ḡ0,1

F 2
π

Q 2

MQCD

)
+O

(
eC̄1,2 F 2

π

Q 2

MQCD

)
. (9)

Which contribution dominates depends on the fundamental /P/T
source, the dimension-four θ̄ -term and the dimension-six terms:
qEDM, qCEDM, gCEDM, and FQ.

• For the θ̄ term, only the isoscalar coupling ḡ0 plays a role at
LO. In order to generate ḡ1, the θ̄ term requires an insertion of
the quark mass difference, which causes a relative suppression
of ḡ1 relative to ḡ0 by a factor εm2

π/M2
QCD [15], where ε =

(md − mu)/(mu + md). The other couplings, c̄π and C̄1,2, also
contribute at sub-leading orders. Since ḡ0 enters in principle
through the three classes of diagrams with similar factors, all
these classes are equally important.

• For the qCEDM, we need both pion–nucleon interactions, since
there is no relative suppression of ḡ1. Again, all three classes
are, a priori, equally important.

• For the qEDM, the purely hadronic interactions are suppressed
by factors of the fine-structure constant, and only c̄π is impor-
tant. Thus only diagram (a) matters.

• For the chiral-invariant (χ I) /P/T sources (gCEDM and FQ), the
pion–nucleon interactions, which break chiral symmetry, are
suppressed by a factor m2

π/M2
QCD compared to the /P/T short-

range NN interactions, which conserve chiral symmetry. The
latter are therefore as important as the pion–nucleon inter-
actions. For the χ I sources again all three diagrams could be
important.

We now turn to the calculation of the various ingredients in
these diagrams, starting with the currents. For the nucleons we
use incoming momenta �p1 = �P/2 + �p and �p2 = �P/2 − �p, and out-
going momenta �p′

1 = �P ′/2 + �p′ and �p′
2 = �P ′/2 − �p′ . The photon

momentum �q = �P − �P ′ is outgoing. For convenience we introduce
�k = �p − �p′ . The spin (isospin) of nucleon i is denoted by �σ (i)/2
(τ (i)/2).

The relevant /P/T two-body currents that appear in diagram class
(a) of Fig. 1 are shown in Fig. 2. Since the deuteron wave function
is isoscalar, the /P/T currents need to be isoscalar as well in order
to contribute to the MQM. Only the current in diagram (c), which
stems from qEDM, meets this requirement, and we find
Fig. 3. Diagrams contributing to the P T two-nucleon current.

�J/P/T (�q, �k) = − g Ac̄π

F 2
π

τ (1) · τ (2)

[
�σ (1) × �q �σ (2) · (�k − �q/2)

(�k − �q/2)2 + m2
π

− �σ (2) × �q �σ (1) · (�k + �q/2)

(�k + �q/2)2 + m2
π

]
. (10)

In diagram classes (b) and (c) of Fig. 1 the photon interacts in-
stead with a P T current. The P T one-body current in diagram (b)
is either the nucleon magnetic moment or the convection current
coming from the nucleon kinetic energy,

�J P T (�q, �pi) = e

4mN

{[
1 + κ0 + (1 + κ1)τ

(i)
3

]
i �σ (i) × �q

+ (
1 + τ

(i)
3

)
(2�pi − �q)

}
, (11)

where i is the index of the nucleon that interacts with the photon.
In diagram (c) we require the P T two-body currents depicted in
Fig. 3:

�J P T (�q, �k) = i
eg2

A

F 2
π

(
τ (1) × τ (2)

)
3

×
{
−2�k �σ (1) · (�k + �q/2)

(�k + �q/2)2 + m2
π

�σ (2) · (�k − �q/2)

(�k − �q/2)2 + m2
π

+ �σ (1) �σ (2) · (�k − �q/2)

(�k − �q/2)2 + m2
π

+ �σ (2) �σ (1) · (�k + �q/2)

(�k + �q/2)2 + m2
π

}
. (12)

With the methods outlined in Refs. [18,5], these currents
can straightforwardly be Fourier transformed to coordinate space,
where we denote by �x(i) the position of nucleon i and by �r =
�x(1) −�x(2) the relative position. We also introduce the Yukawa func-
tion

U (r) = e−mπ r

4πr
. (13)

The MQM operators are, from Eq. (10),

M̃33 = 2
g Ac̄π

F 2
π

τ (1) · τ (2)
[(

3σ
(1)
3 x(1)

3 − �σ (1) · �x(1)
)�σ (2)

− (
3σ

(2)
3 x(2)

3 − �σ (2) · �x(2)
)�σ (1)

] · �∇r U (r), (14)

and from Eqs. (11) and (12),

M33 = e

2mN

{[
1 + κ0 + (1 + κ1)τ

(i)
3

](
3σ

(i)
3 x(i)

3 − �σ (i) · �x(i))
+ 2

(
1 + τ

(i)
3

)�x(i)
3

(�x(i) × �p(i))
3

}
− eg2

A

2F 2
π

(
τ (1) × τ (2)

)
3

{[
σ

(1)
3

(�σ (2) ×�r)3

+ σ
(2)
3

(�σ (1) ×�r)3

] + 4
[
x(1)

3

(�x(1) × �σ (1)
)

3 �σ (2)

+ x(2)
3

(�x(2) × �σ (2)
)

3 �σ (1)
] · �∇r

}
U (r), (15)

where �p(i) = −i �∇x(i) .
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The last ingredients we need are the deuteron wave function Ψd
and its parity admixture Ψ̃d . They have been calculated in Ref. [10]
using modern high-quality phenomenological P T potentials and
a /P/T potential dominated by pion exchange and extended with
heavy-meson exchange. In the EFT spirit, it would be best to cal-
culate Ψd from a P T Hamiltonian fully consistent with chiral sym-
metry and renormalization-group invariance, but an accurate fit
to two-nucleon data with these properties does not yet exist. For
those sources for which the MQM is dominated by long-distance
physics, we expect no significant differences when using the phe-
nomenological potentials, and thus for Ψd we use the results of
Ref. [10]. For comparison with Ref. [5], we give below numbers cor-
responding to the Argonne v18 (AV18) potential [12]. Differences
with results obtained from the NijmII and Reid93 potentials [13]
are within a few percent, except for the cases of C̄1,2 insertion—for
which more details will be provided later.

The ground state of the deuteron is mainly a 3 S1 state with
some 3 D1 admixture. The matrix element of M̃ is found to be

1√
30

〈Ψd||M̃ ||Ψd〉 = 0.07
Fπ c̄π

e
e fm2. (16)

The relevant matrix elements of M are obtained with Ψ̃d from
the LO /P/T two-nucleon potential. The general /P/T NN potential was
derived in Ref. [19] and we summarize the relevant parts here. In
coordinate space the potential is given by

V/P/T (�r) = − ḡ0 g A

F 2
π

τ (1) · τ (2)
(�σ (1) − �σ (2)

) · ( �∇r U (r)
)

− ḡ1 g A

2F 2
π

[(
τ

(1)
3 + τ

(2)
3

)(�σ (1) − �σ (2)
)

+ (
τ

(1)
3 − τ

(2)
3

)(�σ (1) + �σ (2)
)] · ( �∇r U (r)

)
+ 1

2

[
C̄1 + C̄2τ

(1) · τ (2)
](�σ (1) − �σ (2)

)
· ( �∇rδ

(3)(�r)). (17)

In this expression, at LO ḡ0 originates from θ̄ term, qCEDM, and χ I
sources; ḡ1 from qCEDM and χ I sources; and C̄i from χ I sources
only.

If the parity admixture comes from a ḡ1 pion exchange, the
deuteron wave function acquires a 3 P 1 component. In order to get
back to the ground state, the deuteron can couple to the photon
via the isovector one-body or the two-body currents in Eqs. (11)
and (12), respectively. The result is

2√
30

〈Ψd||M |∣∣Ψ̃d
(3 P 1

)〉
= −[

0.031(1 + κ1) + 0.003 + 0.008
] ḡ1

Fπ
e fm2, (18)

where the first and second terms come from the isovector mag-
netic moment due to the spin and convection current, respectively;
and the third term from the P T two-body current.

After an isoscalar pion exchange, where the /P/T pion–nucleon
vertex is the ḡ0 interaction, or an insertion of one of the /P/T
isoscalar nucleon–nucleon interactions C̄1,2, the deuteron wave
function obtains a 1 P 1 component instead. In this case, the
deuteron needs to couple to the isoscalar nucleon magnetic mo-
ment or an isoscalar two-body current, which is not present at LO.
The result is

2√
30

〈Ψd||M |∣∣Ψ̃d
(1 P 1

)〉
= −

[
0.044

ḡ0 + 0.0013F 3
π (C̄1 − 3C̄2)

]
(1 + κ0) e fm2. (19)
Fπ
Fig. 4. Deuteron MQM due to the F 3
π (−C̄1 + 3C̄2) short-range /P/T interaction as

function of a regulating mass m, for various P T Hamiltonians.

For the contact interaction with

C̄0 ≡ C̄1 − 3C̄2 (20)

we apply a strategy followed in Refs. [20,5]: it is simulated in
our calculations by a fictitious heavy-meson (of mass m) exchange,
since

m2C̄0

4πr
e−mr → C̄0δ

(3)(�r) (21)

as m goes to infinity. As shown in Fig. 4, when m reaches 2.5 GeV,
the results converge at about � 10% level, so we report the above
numbers at this scale. While in this figure one sees good consis-
tency between the AV18 and NijmII results, the Reid93 result is off
by a factor of 2. The main reason is that the Reid93 potential gen-
erates a deuteron S state whose short-distance wave function is
enhanced, leading to more sensitivity to C̄0. The large discrepancy
between different potentials suggests that for χ I sources, for which
C̄0 contributes to the MQM at leading order, a fully consistent cal-
culation of Ψd within EFT is necessary if this part of the matrix
element needs to be known better than within a factor of 2.

The dependence of the deuteron MQM on ḡ0,1, C̄0, and c̄π

was studied in Ref. [3] in a framework where pion exchange is
treated perturbatively. At LO in that framework, the coefficients in
front of ḡ0(1 + κ0)/Fπ and ḡ1(1 + κ1)/Fπ were found to be, re-
spectively, −0.146 and −0.049, in agreement with the results in
Ref. [9] where a zero-range approximation for the NN interaction
was assumed. Considering the large intrinsic uncertainty (∼ 30%)
in the perturbative-pion calculation, the perturbative-pion ḡ1 co-
efficient is in reasonable agreement with Eq. (18). A similar agree-
ment was found for the deuteron EDM [5]. On the other hand, the
perturbative-pion ḡ0 coefficient is three times larger than Eq. (19),
suggesting that the effects of additional pion exchanges, neglected
in the LO perturbative calculation, are larger in the 1 P 1 channel
than in the 3 P 1 channel. We have verified that, if the tensor force
is ignored and the same strong force is assumed for both the 1 P 1
and 3 P 1 channels, the ratio of the strong parts of the MQM matrix
elements due to the isoscalar and isovector one-body currents be-
comes 3, which is consistent with Refs. [9,3]. Preliminary results
of an NLO calculation in the perturbative-pion framework indi-
cate that, indeed, NLO corrections influence the ḡ0 coefficient by
a larger amount than the ḡ1 coefficient [21].

In the framework of perturbative pions, the P T convection and
two-body currents in diagram (b) and (c) of Fig. 1 enter at NLO and
are expected to be smaller than the contribution from the isovec-
tor magnetic moment. This agrees with the numerical results in
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Eq. (18) where the convection and two-body currents only enter
at the ∼ 5% level. These currents would have been small (∼ 30%)
even if the isovector magnetic moment had been more natural,
that is, if 1 + κ1 were � 1.

The result for c̄π in Eq. (16) is somewhat smaller than ex-
pected from the power counting estimate in Eq. (8), Md(qEDM) ∼
0.2Fπ c̄π fm2, and is more in line with the expectation of the
perturbative-pion calculation, O(γ c̄π/MNN MQCD) ∼ 0.07Fπ c̄π fm2,
where MNN = 4π F 2

π/g2
AmN is the characteristic scale where pi-

ons become nonperturbative [6] and γ is the deuteron binding
momentum. A more detailed comparison with the perturbative-
pion calculation is complicated by the appearance of a short-range
current, which is needed for renormalization purposes. Neglecting
the counterterm and using for the renormalization scale μ = MNN ,
the perturbative result becomes 0.08Fπ c̄π fm2, in good agreement
with Eq. (16). A comparison between the contributions from the
short-range /P/T NN interactions in the perturbative and nonper-
turbative calculations is not useful because the LEC C̄0 includes
different physics and thus has different scalings in the two EFTs.

The deuteron MQM was previously calculated in Refs. [9,10],
in which the deuteron MQM was assumed to be dominated by
/P/T one-pion exchange (OPE). Since these calculations did not use
the chiral properties of the fundamental /P/T sources, the /P/T pion–
nucleon interactions were assumed to be all of the same size.
Our analysis shows that these assumptions only hold in case of
a qCEDM. For ḡ0 and ḡ1 OPE we confirm the results in Ref. [10],
but our ḡ0 result is 3 times smaller than the result in Ref. [9] due
to the discrepancy discussed above.

We are now in the position to discuss the results for the var-
ious /P/T sources. It was noted in Ref. [3] that the observation of
a deuteron MQM, together with the nucleon and deuteron EDMs,
could provide important clues to separate the various /P/T sources.
In particular, it was concluded that only for chiral-symmetry-
breaking, but isoscalar, sources like the QCD θ̄ term is the deuteron
MQM, in appropriate units, substantially larger than the deuteron
EDM. For chiral- and isospin-breaking sources, like the qCEDM, the
deuteron MQM and EDM are expected to be of the same size, and
a measurement of both would fix the couplings ḡ0 and ḡ1, allow-
ing a prediction of other /P/T observables, like the 3He EDM. For
the χ I sources and the qEDM, in the perturbative-pion approach
the MQM depends on one- and two-body LECs that do not con-
tribute to the EDM. For these sources the MQM was found to be
of the same size, or slightly smaller, than the EDM, but an ob-
servation of the MQM would not give us predictive power. These
conclusions, based on the perturbative-pion power counting, are
confirmed here by the nonperturbative results.

For the QCD θ̄ term, the deuteron EDM is dominated by the
isoscalar nucleon EDM, dd ∼ 2d̄0 [3,5]. A naturalness lower bound
on the isoscalar nucleon EDM is provided by the non-analytic
terms stemming from the pion cloud [22], |d̄0| � 0.01(|ḡ0|/
Fπ ) e fm. The deuteron MQM is dominated by the ḡ0 piece in
Eq. (19). Combining the two with the deuteron mass md , we find

∣∣∣∣mdMd

dd

∣∣∣∣ � 0.21(1 + κ0)

∣∣∣∣ ḡ0

Fπ d̄0

∣∣∣∣ e fm � 21(1 + κ0). (22)

At LO in the perturbative-pion approach, this ratio is about three
times larger, as discussed above. Nonetheless, the nonperturbative
calculation confirms that for isoscalar chiral-breaking sources the
deuteron MQM is expected to be larger than the EDM in units
of md .

In case of the qCEDM, where ḡ0 and ḡ1 have similar scal-
ings, both the deuteron EDM and MQM are dominated by pion
exchange. At LO, the EDM depends on ḡ1 only [5], and the MQM
on the ḡ0,1 contributions in Eqs. (18) and (19). The MQM/EDM ra-
tio becomes

mdMd

dd
� 1.6(1 + κ1) + 2.2(1 + κ0)

ḡ0

ḡ1
+ 0.6, (23)

which formally is O(1). However, due to the large anomalous
isovector magnetic moment, numerically the ratio could be O(10).
This means that the measurement of a large MQM/EDM ratio does
not necessarily imply that the θ̄ term is the dominant /P/T mecha-
nism.

If a qEDM is the dominant /P/T source, the MQM is given by
Eq. (16). It is solely coming from a two-body /P/T current. The
EDM is given by the sum of the neutron and the proton EDM,
dd � 2d̄0 [5]. Combining these results gives

mdMd

dd
� 0.7

c̄π

d̄0
, (24)

which is O(1) by naive dimensional analysis (NDA). As we ob-
served in the previous discussion, the matrix element of the op-
erator with coefficient c̄π is smaller than the power counting es-
timate, so a more accurate conclusion is that, for /P/T from the
qEDM, the deuteron MQM is expected to be slightly smaller than
the EDM, in agreement with Ref. [3].

Finally, for chiral-invariant sources, the MQM is dominated by
the sum of Eqs. (18) and (19). From the NDA estimates in Ref. [5],
we find F 4

π C̄0/ḡ0 = O(F 2
π/m2

π ) � 2, such that the C̄0 contribution
only enters at the ∼ 10% level. The deuteron EDM at LO formally
depends on ḡ1 and the isoscalar nucleon EDM, but numerically the
latter is expected to dominate, with pion-exchange corrections at
the ∼ 15% level [5]. Ignoring the numerically small convection and
two-body currents,∣∣∣∣mdMd

dd

∣∣∣∣ �
[

0.21(1 + κ0)

∣∣∣∣ ḡ0

Fπ d̄0

∣∣∣∣
+ 0.15(1 + κ1)

∣∣∣∣ ḡ1

Fπ d̄0

∣∣∣∣
]

e fm. (25)

By power counting we would expect the ratio to be O(1), but since
the deuteron is weakly bound, pion exchange is smaller than ex-
pected. Using the NDA estimate |d̄0| ∼ 5(|ḡ0,1|/Fπ ) e fm, we con-
clude that for χ I sources the deuteron MQM should be smaller
than the EDM.

In conclusion, we computed the deuteron MQM for various /P/T
sources: the QCD θ̄ term, quark EDM, quark and gluon chromo-
EDMs, and chiral-invariant four-quark operators. We performed
these computations at leading order in the framework of chiral
EFT, with pions treated nonperturbatively. The same parameters as
in the corresponding calculation of light-nuclear EDMs appeared
here, except for the quark EDM, which involves an independent
short-range two-nucleon current. While the results confirm the
qualitative conclusions of Ref. [3], there are important quantita-
tive differences. Due to its enhanced sensitivity to the QCD θ̄ term,
a potential measurement of the deuteron MQM would be comple-
mentary to one of the deuteron EDM.
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