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Prolegomenon

Comprehension of spoken language is achieved without much effort for most

of us. It is an automatic process, consisting of many steps, the complexity

of which is only realized when comprehension fails. This is often the case for

individuals who have suffered from brain damage resulting in aphasia. Only

if it is disturbed, all the steps necessary for the comprehension of a single

word become evident: starting from the filtering and analysis of speech sounds

out of the incoming sound stream, followed by the short term storage, the

identification and recognition of lexical items, and the retrieval of a word’s

meaning.

Often, when studying or describing this process, the focus lies merely on

auditory information, disregarding another form of information usually avail-

able to listeners: the information gained from the articulatory movements via

speechreading.1

It has been argued previously that the possibility to see a speaker’s face

helps to understand speech when there are adverse conditions, for example

several people speaking at the same time or background noise (Sumby & Pol-

1Terminology is not consistent in the literature and both ‘speechreading’ and ‘lipreading’
have been used. In this thesis the term ‘speechreading’ is used because the visual input
received is not restricted to the lips, but rather covers the lower face, neck, and the shoulders.
This terminology has been suggested by Campbell, Dodd, and Burnham (1998) in order to
state clearly that more than just lip information is taken into account and to stress that what
is read is indeed natural speech.

1
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lack, 1954). Information from speechreading is, however, not only integrated

in adverse conditions, but also when the auditory input is clear. Thus, seen

speech seems to play a role during comprehension. This has been shown by

experiments conducted by McGurk and MacDonald (1976), which led to the

discovery of the famous McGurk effect: dubbed incongruent auditory and visual

information (e.g. auditory /ba/ dubbed on visual /ga/) are integrated and yet

another syllable, comprising features of both input syllables is perceived (e.g.

/da/). Speechreading is also known to have a beneficial effect on the com-

prehension abilities of aphasic participants suffering from a speech perception

disorder (cf. Buchman, Garron, Trost-Cardamone, Wichter, & Schwartz, 1986;

Shindo, Kaga, & Tanaka, 1991).

Models of both auditory and audiovisual speech perception have been pos-

tulated. In these models, not speech sounds (phonemes) are the basic unit

of processing, but rather smaller entities, phonetic features, are assumed. In

this thesis, four experimental studies are described, which investigate several

aspects of auditory and audiovisual speech perception by non-brain-damaged

and aphasic listeners. Within those chapters three main issues are addressed

with different methodologies:

(1) The first issue addressed in the current thesis is the processing of phonemes

and their contrasts. Special attention will be paid to the role of phonetic

features in processing. It will be investigated whether processing depends

on the phonetic feature distinguishing phonemes, that means whether the

theoretically assumed differences between features can be supported by be-

havioral and neurophysiological data. The processing accuracy for various

features will be compared for a group of aphasic listeners in order to find

out whether all features are equally difficult to process. Furthermore, an

attempt will be made to determine the level of the deficit in aphasia: it will

be investigated whether automatic processing (representing the competence

level) is affected or whether the deficits are limited to later, performance

related processing levels.

(2) A second focus is on the influence of speechreading on comprehension.

The way the described advantage of audiovisual speech is manifested will

be studied: whether all phonetic dimensions benefit equally or whether

the advantage is due to a specific dimension. Another aim is to find out

whether audiovisual speech perception is more than a mere addition of

auditory and visual information.
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(3) Thirdly, several predictions made on the basis of the TRACE model of

audiovisual speech perception (Campbell, 1988, 1990) will be evaluated.

This model forms the basis of the studies carried out. It will be discussed

whether it can explain all findings of the conducted behavioral and neuro-

physiological experiments and if not, how it needs to be extended.

Below, an overview of the chapters and their contribution to the main re-

search focus of this thesis is given.

Chapter 1 provides background information on auditory and audiovisual

speech perception. First, the importance of phonetic features is discussed.

These subphonemic entities play an important role in the current studies and

in models of speech perception. Two of these models will be introduced: the Lo-

gogen model (e.g. Morton, 1969; Howard & Franklin, 1988) and the TRACE

model (McClelland & Elman, 1986). The Logogen model serves as a basis

to explain auditory comprehension deficits in aphasia. The TRACE model

provides more details about speech perception, and is, hence, the basis of the

experimental studies. As speech perception is not only based on auditory infor-

mation, but also on seen speech, chapter 1 also discusses the evidence in favor

of multimodality in speech perception, such as the McGurk effect (McGurk

& MacDonald, 1976). Moreover, four types of models explaining audiovisual

perception will be introduced. Finally, an overview of studies on audiovisual

perception in aphasia is provided.

Chapter 2 is the first experimental chapter. It describes a study on audi-

tory and audiovisual processing of the three phonetic dimensions in aphasic

listeners. In this study, several issues regarding the perception of phonemes

are addressed within a discrimination of nonwords paradigm. Pairs of non-

words were presented auditorily or audiovisually to two groups of participants:

a group of non-brain-damaged listeners and a group of aphasic participants

with a deficit in speech sound perception. The results of both groups will be

compared to establish whether the aphasic listeners show an impairment on

this task. It will be evaluated with regards to which kind of phonetic contrasts

(number and type of phonetic dimensions differing) participants have most dif-

ficulties. Furthermore, the influence of speechreading will be investigated, not

only for the overall performance, but also per phonetic dimension in order to

find out whether improvement is limited to one specific dimension and if so to

which.

In the second experimental chapter, chapter 3, a study on audiovisual per-
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ception and the McGurk effect is presented. A nonword identification task is

described with four conditions: auditory, visual (seen speech), audiovisual and

McGurk type stimuli. Three aphasic and fourteen non-brain-damaged listen-

ers participated. Their results will be discussed on the basis of accuracy and

reaction times. Next to a comparison of each of the aphasic participants with

the control group, another focus will lie on the evaluation of the benefits of

audiovisual processing. Finally, the occurrence of the McGurk effect and the

reaction times associated with various answer types will be discussed in order

to highlight potential differences in audiovisual integration strategies between

aphasic and non-brain-damaged listeners.

In chapter 4, the event-related potentials technology (ERP) is introduced.

The following two experiments make use of this method. Before discussing the

studies in chapters 5 and 6, a background on electroencephalograms (EEGs)

and event-related potentials is given. In this overview, it is explained how ERPs

are derived from the ongoing EEG signal and how the placement of electrodes

is standardized. Furthermore, three ERP components that are found in active

oddball designs are discussed: the mismatch negativity (MMN), the N2b, and

the P3. While the MMN is related to automatic processing, the N2b and

the P3 are associated with conscious, task-relevant detection of a mismatch.

This chapter, also, discusses studies that made use of the MMN to investigate

aphasic auditory processing and audiovisual perception in non-brain-damaged

listeners.

Chapter 5 describes an ERP study with thirteen non-brain-damaged partic-

ipants. An active oddball task was administered while the EEG was recorded.

Participants were asked to push a button whenever they encountered a deviant

stimulus in a sequence of repeating ‘standard’ stimuli. This experiment was

split in four sub-experiments with the presentation modalities ‘pure tones’, ‘au-

ditory syllables’, ‘visual (speechreading) syllables’, and ‘audiovisual syllables’.

Two deviants were used in the first three sub-experiments. In the audiovisual

sub-experiment, an additional McGurk type deviant was introduced. While

the results from the pure tones and visual syllables sub-experiments serve as

a baseline measure, the research questions focus on the other conditions. The

aim of this study is to find out whether different phonemic contrasts also elicit

distinct activation patterns, such that neural processing resembles the differ-

ences in subphonemic entities that are assumed by models of speech perception.

A second issue addressed in this study is an evaluation of the neural differences
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between auditory and audiovisual perception. While it has been shown be-

haviorally that speechreading aids comprehension, this chapter addresses the

brain correlates of this beneficial effect. In order to deepen the insight into

audiovisual integration, not only congruent but also incongruent McGurk type

stimuli form part of the analysis.

In chapter 6, the experiment described in chapter 5 is conducted with apha-

sic participants. First it will be established, based on the ‘pure tone’ results,

whether the paradigm as it was used for non-brain-damaged listeners is reliable

for aphasic participants. The activation patterns for the ‘pure tones’ differed

substantially from those of the non-brain-damaged participants, hindering the

analysis of the brain responses to speech stimuli. The results to the speech and

speechreading related conditions will, nonetheless, be discussed shortly on the

basis of visual inspection.

This thesis is concluded, in chapter 7, with a general discussion of all find-

ings. In this last chapter, the three main points which were raised in the

beginning of this prolegomenon are addressed again. Evidence from the four

experimental studies is combined to discuss the outcomes concerning those

issues and to come to final conclusions.
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CHAPTER 1

Auditory and Audiovisual Speech Perception

Comprehending spoken language is a complex task, consisting of a number

of processing steps. Various models have been proposed to describe language

comprehension. This chapter will discuss how processing is described in terms

of the Logogen model (e.g. Morton, 1969; Howard & Franklin, 1988). The

aphasia diagnostic battery “Psycholinguistic Assessments for Language Pro-

cessing in Aphasia (PALPA)” (Kay, Lesser, & Coltheart, 1992) is based on this

model. Therefore it forms the basis of the following description of aphasic dis-

orders of speech perception. For the current studies it is however necessary to

describe speech perception in more detail than is done in the Logogen model.

The TRACE model (McClelland & Elman, 1986), which will be discussed sub-

sequently, provides more details about the pre-lexical steps of processing than

the Logogen model and is therefore of particular interest to the current study

of phoneme perception.

Speech perception is, however, a multimodal process using not only auditory

but also visual information (Rosenblum, 2008). Therefore this chapter will

also focus on the multimodality of speech perception, discussing evidence for

this claim, introducing models describing multimodal processing and finally

addressing audiovisual processing in aphasia.

7
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1.1 Auditory speech perception

As mentioned above, two models of single word processing will be discussed

in this section: the Logogen model (e.g. Morton, 1969; Howard & Franklin,

1988) and the TRACE model (McClelland & Elman, 1986). Both models

describe the processing of phonemes and words. Phonemes are speech sounds

that are employed to form meaningful contrasts between words. They are built

by phonetic features of three distinct dimensions. The importance of phonetic

dimensions is therefore discussed first, before describing the models in more

detail.

1.1.1 Phonetic dimensions

Phonetic features define the different phonemes of a language (Chomsky &

Halle, 1968). These features can be categorized into the three (distinctive)

phonetic dimensions ‘place of articulation’, ‘manner of articulation’, and ‘voic-

ing’. A combination of these dimensions uniquely identifies each phoneme.

Changes in one phonetic dimension will lead to a different phoneme: changing,

for example, the ‘place of articulation’ from bilabial to alveolar would transform

a /p/ into a /t/. But also broader contrasts between two phonemes (changes in

two or three of the phonetic dimensions) are possible: /p/ and /z/ for example

are distinguished by ‘voicing’, ‘place of articulation’, and ‘manner of articula-

tion’. It is therefore not sufficient to classify two words or syllables as different

in one phoneme, as this distinction can be formed by differences in one, two or

all three distinctive dimensions. Rather the number and type of the phonetic

dimensions deviating should be mentioned as well.

The phonetic characteristics of the dimension ‘voicing’ are manifested dif-

ferently across languages: the distinction ‘voiced’ versus ‘voiceless’ is made

by differences in voice onset time (VOT). According to Lisker and Abramson

(1964) the voicing distinction in English is achieved by contrasting the onset

of voicing at the release of the lips (for /b/) with an onset of voicing up to

100ms later (/p/). Therefore the distinction in English is rather one between

voiceless and voiceless-aspirated. For other languages as Dutch and Hungarian

however, Lisker and Abramson (1964) found that the voiceless /p/ was pro-

duced by having the onset of voicing aligned with the release of the lips, while

the voiced counterpart /b/ was produced with a voice onset at least 50ms prior

to the lip-release.
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A distinction in ‘voicing’ therefore refers to different phonetic distinctions

in different languages, which is important when comparing English and Dutch

data. In Dutch and Hungarian, however, the distinction between ‘voiced’ and

‘voiceless’ is accomplished by similar VOT patterns.

1.1.2 Logogen model

The Logogen Model (e.g. Morton, 1969; Howard & Franklin, 1988) describes

single word comprehension and production in the oral and written modality.

This means that understanding, speaking, reading and writing single words are

covered by the model. As this thesis focuses on auditory language perception

and its disorders, only this part of the model will be described here. The

Logogen model consists of different modules, which all fulfill specific tasks.

In Howard and Franklin’s (1988) version of the Logogen model the modules

involved in language comprehension are the ‘auditory analysis’, the ‘auditory

input buffer’, the ‘phonological input lexicon’, and the ‘semantic system’. These

modules are connected by routes as shown in Figure 1.1.

Auditory analysis

The auditory analysis system is responsible for the recognition and analysis

of incoming speech. This is done by filtering the speech sounds out of the

background noise, for example enabling a listener to comprehend speech while

listening to music. The system needs to account for the perception of various

input types, such as different voices and even accents. Therefore an abstract

unit is needed in the recognition process. The input is analyzed and catego-

rized into phonemes by extracting phonetic features out of the incoming speech

stream. By combining the (distinctive) phonetic features the phonemes can be

recognized, discriminated and identified.

When hearing, for example, the word ‘pea’, the auditory analysis thus filters

the speech sounds from the background noises and identifies the phonemes /p/

and /i:/ by extracting the phonetic features [plosive], [bilabial], and [voiceless]

for /p/ followed by the features [high], [front], [unrounded] for /i:/.

Auditory input buffer

The auditory input buffer is an auditory short term memory system. It holds on

to the segments that result from the auditory analysis and their ordering. The

input is then matched upon the syllable structure of the relevant language.
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Spoken Word

Auditory
Analysis

Auditory
Input Buffer

Auditory
Input Lexicon

Semantic
System

Figure 1.1: Schematic outline of single word comprehension (adapted from Howard and
Franklin, 1988).

The buffer holds on to the elements that have been analyzed until they are

recognized by the following module, the auditory input lexicon.

In the example of the word ‘pea’, the buffer stores the output of the auditory

analysis, the phonemes /p/ and /i:/, and their ordering. Also it is assigned

the syllable structure ‘CV’. The resulting entry /pi:/ is stored in the buffer

until the next processing step, the recognition in the auditory input lexicon, is

completed.

Auditory input lexicon

The auditory input lexicon is a long term memory system storing word forms

(but not their meanings). In the auditory input lexicon, the incoming sound

stream is compared with the stored entries. At this point in processing, words

can be distinguished from nonwords, as the latter do not have an entry in the

lexicon. It is assumed that phonologically related words are stored closely to-
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gether, resulting in co-activation for related words: the more incoming sound

information is processed the higher the activation level of the target raises while

the activation for phonologically related competitors decreases. Ultimately, the

activation of the competitors diminishes and the target is recognized by reach-

ing threshold. During this process, there is a constant exchange of information

between the auditory input lexicon and the auditory input buffer.

The example word ‘pea’ is recognized as a word at this point in processing.

The input received from the auditory input buffer (/pi:/) activates, next to the

entry of ‘pea’, also entries of words that are phonologically related, such as ‘bee’,

‘glee’, ‘pie’ and ‘peek’. However, only the target ‘pea’ receives enough activation

to reach the necessary threshold to be selected. The matching meaning for the

word form ‘pea’ will be looked up in the next module, the semantic system.

Semantic system

Once the phonological representation is activated in the auditory input lexi-

con, the identified word is forwarded to the semantic system. This is a long

term storage for the meaning of words. It is not clear whether one seman-

tic system (as proposed by Howard and Franklin (1988) and Ellis and Young

(1988), among others) is sufficient. Other authors (e.g. Levelt, 1989) propose

a distinction between a verbal and a non-verbal semantic system.

In the semantic system words are ordered by meaning. Words from the

same semantic category (e.g. animals, tools or vegetables) or with related

meanings are stored closely together. When a target is activated by an item in

the input lexicon, related words also receive a certain amount of co-activation

(depending on their similarity), while the activation for the target is highest.

In this way, the correct word is finally understood. That means that for the

example word ‘pea’ also related words such as ‘lentil’, ‘bean’, and ‘spinach’

receive activation. The activation of ‘pea’ is however highest, which finally

leads to the understanding of the word ‘pea’.

1.1.3 Auditory speech perception in aphasia

In the previous section, speech perception as it occurs in non-brain-damaged

listeners has been described. Brain damage, for example due to a stroke, can

cause language impairments, called aphasia. In aphasia, production and com-

prehension of spoken and written language can be affected. Which modal-

ities are impaired differs between individuals. Each processing level can be
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affected independently from the others, leading from rather isolated deficits to

global deficits affecting all modalities. Language problems can therefore mani-

fest themselves very differently. Deficits of auditory comprehension have been

linked to the different modules of the Logogen model (Howard & Franklin, 1988;

Franklin, 1989). Franklin (1989) has given an overview of the different types

of comprehension disorders with accompanying case descriptions to underline

the distinctions between different processing components.

Deficit in the auditory analysis component

A deficit in the auditory analysis of speech leads to a disorder or inability to

analyze the incoming speech. This disorder has been called ‘word-sound deaf-

ness’ (Franklin, 1989). It was first described by Kussmaul (1877), who called it

‘pure word deafness’ because the patient he described did not suffer from other

aphasic symptoms. Word-sound deafness can be diagnosed with auditory dis-

crimination tasks in which participants have to report whether two auditory,

phonologically related stimuli (words or nonwords) are the same or different.

In word-sound deafness, problems are restricted to linguistic material, while

there are no problems in discriminating or identifying non-linguistic auditory

stimuli. In her study, Franklin (1989) presented three patients with difficulties

in auditory discrimination: two with only mild impairments, and one with a

severe impairment. The latter was considered to suffer from ‘word-sound deaf-

ness’. Franklin (1989) did not classify the two patients with mild impairment

due to the mildness of their deficit.

Patients with a disorder in auditory analysis will present with severe com-

prehension problems, as their inability to identify and discriminate speech

sounds prevents them from (correct) further linguistic processing. It was, how-

ever, reported that aphasic patients perform better in word than in nonword

discrimination (Caplan & Aydelott-Utman, 1994). Cattell (1886) described

a single patient and showed, for the first time, that processing of words is

superior to processing of nonwords: letters were named faster when presented

within a word than when presented within a nonword (word-superiority-effect).

This general proof of word-superiority together with the findings of Caplan and

Aydelott-Utman (1994) indicates that there is a lexical influence even at this

early processing stage. Furthermore, aphasic individuals with a disorder of

the auditory analysis will have more severe problems in discriminating items

differing by less phonetic features. The more features are different, the easier

the discrimination task becomes (Blumstein, Baker, & Goodglass, 1977; Blum-
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stein, 1994). It is also important which dimension differs between phonemes

(Saffran, Marin, & Yeni-Komshian, 1976; Blumstein et al., 1977; Caplan &

Aydelott-Utman, 1994; Csépe, Osman-Sági, Molnár, & Gósy, 2001). Several

factors, which have a beneficial influence on the performance, have been de-

scribed. Among those are the use of context, slowed speech and the possibility

to see the speakers face, thus the possibility to gain speechreading information

(Buchman et al., 1986; Shindo et al., 1991). Of these, only the latter factor

was also successfully utilized in treatment studies (Gielewski, 1989; Morris,

Franklin, Ellis, Turner, & Bailey, 1996; Grayson, Hilton, & Franklin, 1997;

Hessler & Stadie, 2008).

In the previous section, the processes involved in the comprehension of the

word ‘pea’ have been described. If an aphasic patient with a deficit in the

auditory analysis perceives the sound stream belonging to the word ‘pea’, he

has problems in the extraction of the features. Therefore instead of [plosive],

[bilabial], and [voiceless], leading to the phoneme /p/, he might extract only

the features [plosive] and [bilabial] correctly and therefore forwards the wrong

phoneme to the buffer, namely /b/, the voiced counterpart of /p/. This influ-

ences all further processing steps as the incorrect input to the buffer cannot be

corrected later on in processing. Even if all other modules function flawlessly,

‘pea’ will not be comprehended correctly, but rather ‘bee’ will be perceived.

Deficit in the auditory input buffer

A disorder of the auditory input buffer results in problems with holding on to

the analyzed sounds. This leads to problems in the following steps of processing.

A disorder of the input buffer is identified by growing difficulties with increasing

stimulus length. This can be seen, for example, in (word or nonword) repetition

tasks. Problems concerning the order of phonemes are characteristic as well.

There can be misunderstandings based on a permutation of phonemes. Usually,

fewer problems occur with initial than with final sounds.

For the example task of comprehending ‘pea’ this means that the correct

order of the phonemes /p/ and /i:/ is not stored. Therefore the information

made available to the input lexicon could be /i:p/ rather than /pi:/.

Deficit in the auditory input lexicon

A deficit in the auditory input lexicon leads to problems in the activation of

lexical entries. It is possible that related words are activated instead of the

target. The more frequent a target is (i.e. the more often it occurs in the
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language) the easier it is to access the lexical entry. Lexical decision tasks can

detect this disorder. In these tasks, participants listen to a stimulus, which can

be either an existing word or a nonword. Words can vary in frequency of occur-

rence, while nonwords can differ in similarity to existing words. Patients with

a deficit in the auditory input lexicon will have difficulties in this task, which

are more profound for low-frequency words than for high-frequency words. A

disorder of this processing component has been called ‘word-form deafness’ by

Franklin (1989). Out of her nine patients, three presented with problems in au-

ditory lexical decision, while auditory discrimination was not impaired. Those

patients were considered to suffer from a deficit in the auditory input lexicon

and therefore from ‘word-form deafness’ (Franklin, 1989).

In the example of the word ‘pea’ a patient with word-form deafness would

have trouble in accessing the correct word form. It is possible that ‘pea’ is

not recognized as a word at all. Another possibility is that a competitor, for

example the phonological neighbor ‘knee’, is selected instead of the target.

Deficit in access to the semantic system

A disorder in accessing the semantic system (from the auditory input lexicon)

leads to difficulties in comprehending the meaning of the target word. However,

this problem with retrieving the meaning is limited to auditory comprehension.

If no other deficits exist, accessing the meaning can be accomplished if the

word is presented in the written modality. Impairments in the access to the

semantic system can be determined by comparing the results of auditory and

written semantic tasks as synonym judgment or word-picture-matching. If

the impairment is limited to the access and does not concern the semantic

system itself, difficulties will only occur in the auditory version of these tasks.

Franklin (1989) called this phenomenon ‘word-meaning deafness’ and presented

one patient who had problems in an auditory synonym judgment task, but

not in the written version. As his performance was not impaired in auditory

discrimination or lexical decision tasks this modality-specific deficit cannot be

attributed to deficits in the components described before and must, therefore,

result from a deficit in accessing the semantic system.

A patient with word-meaning deafness would have trouble in comprehending

the target word ‘pea’, while he is aware that it is an existing word. The access

to the semantic system is impaired, which leads to problems in retrieving the

correct meaning. Instead of the target the patient might select the meaning

of a related word, such as ‘lentil’. These problems occur only in auditory
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comprehension. Reading, writing and orally producing the word do not form

a problem.

Deficit in the semantic system

A disorder in the semantic system itself is central to all language modalities;

speaking, reading, writing and listening are all effected. Therefore semantic

errors should occur in every modality. The parameters ‘concreteness’ and ‘im-

ageability’ have a major influence of the performance of patients with a deficit

in the semantic system. Concrete or highly imageable words are considered

to be easier to process than abstract words. A task like synonym judgment

has the advantage that abstract words can be included to compare them to

concrete words. Franklin (1989) distinguished between two types of central

semantic deficits: general semantic deficit and abstract semantic deficit: in the

first, no effect of concreteness is found while in the second, only abstract words

are problematic. For each subtype, Franklin (1989) presented one case. Both

patients had no difficulties in auditory discrimination or lexical decision, but

presented with severe problems in auditory as well as written synonym judg-

ment. One of them showed an effect of concreteness while the other did not.

Therefore, Franklin (1989) came to the conclusion that the first suffered from

an abstract semantic deficit while the second had a general semantic deficit.

A patient with a general semantic deficit will have comparable difficulties

understanding the word ‘pea’ as one with word-meaning deafness. However

there are also problems in understanding the written word and producing the

word. The heard or written word ‘pea’ could be comprehended as ‘lentil’ or

‘bean’. Also when asked to name a picture of a ‘pea’, the patient could produce

a semantic paraphasia, naming it ‘lentil’. As the example ‘pea’ is a concrete

word, it should not form a difficulty for patients with an abstract semantic

deficit. An abstract word such as ‘peace’, however, can lead to comprehension

problems for patients with either a general semantic deficit or an abstract

semantic deficit.

In Table 1.1 below, an overview of the different levels of impairment is

provided. Furthermore the table lists the attributed symptoms and the termi-

nology that has been used to refer to the disorder.
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Table 1.1: Levels of impairment in auditory comprehension. Terminology taken from
Franklin (1989).

Functional deficit Symptoms Terminology

Auditory Analysis
Impairment in discriminating

Word Sound Deafnessand/or identifying speech sounds,
often improved by speechreading

Auditory Input Buffer
Problems to perceive the correct
order of sounds,
difficulties increase with length

Auditory Input Lexicon
Difficulties in recognizing

Word Form Deafness
and comprehending spoken words

Problems in comprehending

Word Meaning Deafness
Access to the spoken words,
Semantic System leading to semantic errors,

restricted to auditory modality

Semantic System

Difficulties in all semantic tasks,
General Semantic Deficit

independent of modality

Difficulties in all semantic tasks,
Abstract Semantic Deficitindependent of modality,

but specific for abstract words

1.1.4 TRACE model

While the Logogen model (Howard & Franklin, 1988) is a valuable tool in the

diagnosis of aphasic disorders, a model more specifically aimed at speech per-

ception is necessary to embed the current research theoretically. The TRACE

model of language processing1 (McClelland & Elman, 1986) is a model specif-

ically developed to explain the processes involved in auditory comprehension.

In this interactive activation model, several levels of processing are assumed:

a feature, a phoneme and a word level. The feature level contains acoustic

features, such as ‘acuteness’ or ‘vocalic’. These are connected to the phoneme

level, where single phonemes are represented. The third level holds complete

words. The three levels are fully interconnected. Units within one level are

connected via lateral inhibition. That means that units on the same level can

1The name TRACE refers to a specific function of the model: that of leaving traces of
activations. Those traces are a delay window which store the activation patterns of any given
moment before continuing the processing in order to account for the recovery of mispronun-
ciations or context influences
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inhibit each other. On the feature level, that means that activation of one value

of a feature inhibits activation of a different value of the same feature. Across

levels the connections are excitatory. This excitation applies both bottom-up

and top-down. Every feature is connected to every phoneme and every phoneme

to every word. However, the strength of activation differs. When the incom-

ing speech sound is low on vocality (that means when it is a consonant), the

feature ‘vocalic’ will be only weakly activated. The degree of this activation

is then compared to the defaults specified for each phoneme. The matching

phonemes with the most comparable value for ‘vocalic’ get the highest activa-

tion, while those who are furthest away will get the least activation. The input

is temporally organized to assure the correct order of phonemes in a word. This

model incorporates a delay window, called ‘trace’, to account for context and

mispronunciation effects (where incorrectly pronounced words are still recog-

nized). In the ‘trace’ all patterns of activation are stored that correspond to

a stimulus that has not yet been identified. A schematic illustration of the

model is depicted in Figure 1.2. A picture of the actual activation patterns of

the computer model2 is provided in appendix A.1.

In both the Logogen (e.g. Morton, 1969; Howard & Franklin, 1988) and the

TRACE (McClelland & Elman, 1986) model, activation of entries at one level

in course activates entries at the following level. In the Logogen model, this is

accomplished by employing thresholds: whenever a certain entry reaches the

critical threshold, it is chosen. In the TRACE model, the word with the highest

activation after a certain time is selected. This is one of the small differences

between the models. A major distinction is that the Logogen model aims to

explain single word processing in all modalities, while the TRACE model con-

centrates on auditory processing. As TRACE is a connectionist model which is

computationally implemented, many details about the activation patterns are

given. All bottom-up, top-down and within-level connections are specified. In

contrast to that, not many details are provided about the Logogen model, es-

pecially not concerning pre-lexical processing. Because of its highly interactive

architecture, TRACE can be easily extended to include also the processing of

visually perceived speech. Therefore, this model is particularly useful for the

current studies.

2A reimplementation by Strauss, Harris, and Magnuson (2007), called JTRACE, has been
used.
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Figure 1.2: TRACE model of speech perception.
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1.2 Audiovisual speech perception

The models described above account for the processing of auditory input. Lan-

guage comprehension is, however, a multimodal process. Not only auditory but

also visual information (seen speech) is employed in perception (Rosenblum,

2008). This has been demonstrated in different contexts, as discussed in the

following section.

1.2.1 Evidence for multimodality

Evidence for the primacy of multimodal processing comes from different stud-

ies investigating auditory and audiovisual speech processing. These studies

concern the comprehension of speech in noise (Sumby & Pollack, 1954), with

demanding contents (Reisberg, McLean, & Goldfield, 1987) or of incongruent

auditory and visual information (McGurk & MacDonald, 1976)

Speech perception in noise

Sumby and Pollack (1954) were the first to describe the influence of visual

information on auditory speech perception in noise. In their experiment par-

ticipants heard bisyllabic words which were presented with different levels of

noise. The speech-to-noise ratio varied from 0 to -30 db. That means that the

signal varied from speech and noise being evenly hard to the point where noise

was 30 db louder than the speech. Participants were asked to select the heard

word from a list. This task was used to define the intelligibility of the speech

signal. Intelligibility scores decreased as the speech-to-noise ratio decreased for

auditory only and audiovisual presentation. However the resistance to noise was

much higher when speech was presented audiovisually. The difference between

intelligibility scores in the auditory and audiovisual condition increased as the

speech-to-noise ratio decreased: the worse the listening conditions (more noise)

the bigger the difference between the auditory and the audiovisual condition.

With these findings, Sumby and Pollack (1954) showed that the participants

made use of the information presented visually, especially for speech difficult to

comprehend solely based on auditory information (due to high levels of noise).

The authors concluded that having access to visual information, i.e. seeing the

speakers face, contributes to comprehension. This finding is highly relevant

to ‘everyday speech perception’ since in normal listening situations, speech is

usually accompanied by background noise.
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Perception of demanding contents

While Sumby and Pollack’s (1954) study focused on speech that was difficult to

hear due to the added noise, Reisberg et al. (1987) took a different approach to

analyze the influence of speechreading. In their study, they increased the cog-

nitive load by presenting speech with demanding contents while the quality of

the auditory signal was not influenced. The participants were asked to shadow

(repeat as fast as possible) speech with and without the possibility to see the

speaker. The text passages were taken from Smith’s (1965) English translation

of Kant’s (1787) “Kritik der reinen Vernunft”. The shadowing performance

was scored by a judge blind to the condition of presentation (auditory or au-

diovisual). Shadowing performance was significantly better when speech was

presented audiovisually rather than only auditorily. The authors concluded

that perceiving intact auditory input can also be aided by speechreading. This

indicates that visual information is not only taken into account when the au-

ditory signal is degraded.

The McGurk effect

In the evidence for multimodality presented so far, auditory speech was difficult

to understand, either because of noise or because of cognitive demands. But

also clear auditory speech is influenced by visual information, as has been shown

by the findings of McGurk and MacDonald (1976). In their study, participants

watched dubbed videos with non-matching auditory and visual information

and had to report what they perceived. Instead of answering with the auditory

(/ba/) or the visual (/ga/) component of the video, they often reported a

fusion of both: /da/. Information gained through speechreading was combined

with the auditory information to form a percept, even though no necessity

to depend on visual information (e.g. due to background noise) was given.

This phenomenon, known as the ‘McGurk effect’ demonstrates that information

from the seen face forms part of language processing, supporting the notion of

primacy of multimodal processing: both auditory and visual information are

processed under all circumstances rather than visual information being a mere

fall-back mechanism that is only applied when needed.

Extending the described findings, Manuel, Repp, Studdert-Kennedy, and

Liberman (1983) conducted a study in which the syllable /va/ (visual) was

dubbed onto the syllable /ba/ (auditory). The majority of participants re-

ported to have heard /va/, the visual input. This was interpreted as another
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indication for the influence of seen speech on heard speech. Later this combi-

nation of syllables was studied by other authors investigating the integration of

speechreading (e.g. Saint-Amour, De Sanctis, Molholm, Ritter, & Foxe, 2007)

although it is not clear whether there really is an influence on the auditory

stimulus or rather a reliance on the visual part. Despite the differences to

the original McGurk effect this phenomenon is sometimes also referred to as

‘McGurk effect’. In the current studies, however, the term ‘McGurk effect’

refers to the classical fusion of auditory and visual input into a new phoneme,

different from both presented inputs.

Often, the audiovisual integration underlying the McGurk effect has been

regarded as an automatic unconscious process (e.g. Colin et al., 2002; Soto-

Faraco, Navarra, & Alsius, 2004). There is, however, convincing evidence that,

next to experiencing the McGurk effect, also the unimodal information is con-

sciously processed. Soto-Faraco and Alsius (2007, 2009) did a ‘McGurk study’,

in which their participants were asked to judge the synchrony of the audiovi-

sual stimuli as well as to report their perception. It was found that in a certain

window of asynchrony, although this asynchrony was detected, a multisensory

percept (‘McGurk’ response) was reported. Soto-Faraco and Alsius’ (2007,

2009) data show that there is also conscious access to the unisensory inputs,

which can explain the ‘awkward’ feeling reported by many participants.

The McGurk effect has been replicated investigating the influence of differ-

ent factors, such as native language and age. The original study (McGurk &

MacDonald, 1976) was conducted with English-speaking children and adults.

Replications have been carried out in different (combinations of) languages:

Sekiyama and Tohkura (1991) investigated the McGurk effect in Japanese.

They report that the effect is less likely to occur than in English and is influ-

enced by the intelligibility of the auditory signal. Also in Cantonese and Dutch,

the effect occurs less often than in English (De Gelder, Bertelson, Vroomen,

& Chen, 1995). There was no difference concerning the number of fusion re-

sponses for the Dutch and Cantonese speakers. The results for Dutch were

supported by findings from Klitsch (2008). Aloufy, Lapidot, and Myslobodsky

(1996) compared Hebrew and English speakers. English speakers were much

more susceptible to the McGurk effect than speakers of Hebrew, who also rec-

ognized the incongruity more readily. Sekiyama (1997) tested Chinese native

speakers with English and Japanese McGurk stimuli. When tested with En-

glish stimuli, the participants perceived more fusions than when tested with
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Japanese stimuli. Generally, they showed only a modest McGurk effect, which

was, also for the English stimuli, much lower than for English native speakers.

Colin, Radeau, and Deltenre (1998) tested French native speakers with differ-

ent sound intensities and found a generally low number of fusion responses,

which increased with decreasing sound intensity. Grauwinkel and Fagel (2006)

used synthetic speech to evaluate the McGurk effect in German. The number

of McGurk responses was much lower than in English and was also dependent

on the amount of white noise added. The more white noise was added, the

more the participants shifted focus to the visual condition, resulting in more

fusion, more visual and less auditory answers.

Another factor influencing the susceptibility to the McGurk effect is the

age of the participant. The effect has been shown in infants of 4.5 months old

(Burnham & Dodd, 2004) and increases with age. Even within the group of

adults it has been shown, that older adults perceive fusions more readily than

younger adults (Klitsch, 2008; Ohde & Abou-Khalil, 2001). Klitsch (2008)

explained the increased occurrence of the McGurk effect in the group of older

adults with a cognitive account: participants have to divide their attention

to attend both modalities, as instructed. This is easy for the younger adults

resulting in detection of the incongruity more often and therefore focusing on

the dominant (auditory) modality. The group of older adults cannot divide the

attention as easily which prevents them from isolating one modality resulting

in more McGurk responses.

1.2.2 Models of audiovisual integration

To explain audiovisual integration, several models have been proposed. Robert-

Ribes, Piquemal, Schwartz, and Escudier (1996) categorized these models in

four distinct groups. The authors formulated three questions on the basis

of which the categories can be established. Those questions are addressed

subsequently, starting with the most general: is there a common representation

of both modalities (auditory and visual)? If there is none the model is a ‘direct

integration model’. If there is a common representation, the next question is

asked: is the integration of both types of information an early or late process?

If it is a late process (occurring after the derivation of a code for each modality),

the category of the model is a ‘separate identification model’. If there is early

integration, the last question needs to be asked: is there a dominant modality?

Models that suggest a dominant modality (usually the auditory) are classified
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as ‘dominant recoding models’ while those with an amodal (possibly motor)

representation are in the category of ‘motor space recoding models’. This

classification taken from Robert-Ribes et al. (1996) is also depicted in the

flowchart below (Figure 1.3).

Common
representation?

Direct
Identification
Model (DI)

Late or early
integration?

Separate
Identification
Model (SI)

Dominant
modality?

Dominant
Recoding

Model (DR)

Motor Space
Recoding

Model (MR)

yes no

late early

yes no

Figure 1.3: Flowchart of audiovisual speech recognition models (adapted from Robert-Ribes
et al., 1996).

In the following sections the four types of models will be discussed. When-

ever possible, examples of existing models will be given to illustrate the fea-

tures of the category. Furthermore, possible disadvantages of the models will

be highlighted.

Direct identification models

The first category of models is formed by those models in which the input sig-

nals (auditory as well as visual) are transmitted directly to a bimodal classifier,

as illustrated in Figure 1.4 below. There is no access to the unimodal infor-

mation of the input prior to integration. Robert-Ribes et al. (1996) call these

types of models therefore ‘direct identification models’ (DI).

A model of this type was proposed by Summerfield (1987) by extending

Klatt’s (1979) “Lexical Access From Spectra (LAFS)” model to incorporate
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Auditory input

Visual Input

Code

Figure 1.4: Sketch of DI model (adapted from Robert-Ribes et al., 1996).

speechreading. In the original model, words were identified from a finite, but

large repertoire. The best match between a stored template and the spectral

input was chosen. To account for coarticulation effects, the stored sequences

were pairs of phonemes rather than single phonemes. Summerfield (1987) pro-

posed an extension to include seen speech: next to spectra also images of the

speaker’s mouth were stored and compared.

Robert-Ribes et al. (1996) argued that this type of model should be rejected

because a common representation seems necessary to explain experimental find-

ings. It has been found, that participants can detect the audiovisual incon-

gruity, but are still subject to an automatic fusion of both inputs (Summerfield

& McGrath, 1984). This indicates that a common representation, where both

modalities can be compared (before being fused), is required. Therefore, ac-

cording to Robert-Ribes et al. (1996), direct integration models as described

above have to be rejected.

Separate identification models

The second type of model is called ‘separate identification model’ (SI) by

Robert-Ribes et al. (1996). A sketch of the general architecture of this kind of

models is given in Figure 1.5. Two parallel recognition processes are assumed,

one for each modality. The features from each modality are then fused into a

single code. This fusion can be accomplished on logical or probabilistic values.

Auditory input

Visual input

Code

Code

Code

Figure 1.5: Sketch of SI model (adapted from Robert-Ribes et al., 1996).

Examples of SI models assuming a fusion based on logical values are dis-

cussed by Summerfield (1987). This is for example the case in the ‘Vision:

Place, Audition: Manner’ (VPAM) hypothesis: the percept relies on the visual
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input to gain information about the place of articulation and on the acoustic

input for information about voicing and manner of articulation.3 The fusion

between the two codes based on the use of probabilistic (or fuzzy-logical) values

has been assumed in the ‘Fuzzy Logical Model of Perception’ (Oden & Mas-

saro, 1978; Massaro, 1987). In this model the percept is chosen from competing

hypotheses on the basis of probability estimations. It operates in three steps:

evaluation, integration and decision. Evaluation is performed for each modal-

ity separately based on sensory cues (phonetic features). Those are stored

(depending on experience) in the long term memory as prototypes. The input

is then compared to them and the probability of agreement with the proto-

types is computed. In the integration stage the probabilistic values of both

modalities are taken together to calculate an overall probability. In the last

step, ‘decision’, the stimulus with the highest overall probability is chosen as

percept.

Another model of this type has been proposed by Campbell (1988, 1990).

Her model is an extension of the TRACE model of auditory speech perception

(McClelland & Elman, 1986) described above, adding mechanisms accounting

for speechreading. The visual features introduced by Campbell (1988, 1990)

are ‘mouth opening’ and ‘lip-shape’. Together with the acoustically perceived

features, these seen features form the feature level, with interaction within this

level and with the phoneme level. The features ‘mouth opening’ and ‘lip-shape’

mainly convey information necessary to decode the ‘place of articulation’. This

model therefore predicts that ‘place of articulation’ is influenced by speechread-

ing, but it is not clear whether there is also influence on the dimensions ‘manner

of articulation’ and ‘voicing’.

Another advantage of Campbell’s (1988, 1990) model is the fact that the

McGurk effect can also be explained in terms of it: the relevant acoustic fea-

tures to discriminate /p/, /t/, and /k/ are ‘diffuse’, ‘acute’, and ‘burst’. Upon

hearing a /p/, the phoneme /p/ naturally receives the highest activation. Be-

cause /t/ is still somewhat similar it also receives substantial activation (for

instance /p/ and /t/ do not differ on ‘diffuse’). The phoneme /k/, however,

receives least activation, as it shares less similarities with /p/. Simultaneously

to hearing /p/, the participants see the speaker articulating /k/. Therefore

the phoneme /k/ receives the most activation from the two seen features. The

3Summerfield (1987) gives some evidence against a model as simple as that, but introduces
other versions of rule-based models, which rely on more distinguished rules.
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phoneme /t/ is identical to /k/ concerning ‘mouth opening’ and differs only

slightly with regard to ‘lip-shape’. Therefore it also receives substantial activa-

tion from the two seen features. The phoneme /p/ however differs immensely

from /k/ concerning both seen features. It is characterized not only by a closed

mouth, but also by a different ‘lip-shape’, with wider spread lips. It, therefore,

receives little to no activation from the seen features. As activation from both

input types is cumulated, neither /p/ nor /k/, which served as inputs, but /t/

is finally selected because it received overall the highest activation. This is

depicted in Figure 1.6.

Acoustic features Seen features

Diffuse Acute Burst
Mouth

Opening
Lip-shape
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Solid lines ( ) represent strong excitation, dashed lines ( ) weaker excitation and dotted
lines ( ) a very weak or no excitation.

Arrows ( ) represent inhibitory connections.

Figure 1.6: The adjusted TRACE model for McGurk items. Only the features that differ
between /p/, /t/, and /k/ are taken into account. The strength of the connections
represents the excitation based on the input (auditory /p/ dubbed on visual /k/).
For example, a strong link between the feature ‘diffuse’ and the phonemes /p/ and
/t/ is assumed because the ‘diffuse’ value of the input (/p/) strongly activates
the phonemes /p/ and /t/. The phoneme /k/ differs substantially from the
input with regards to this feature and, thus, the excitation is very weak, which
is represented by a dotted line.

Robert-Ribes et al. (1996) give several arguments against late integration.

They claim that the strongest argument is provided from studies investigat-

ing how speechreading can be aided by acoustic information (Rosen, Fourcin,
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& Moore, 1981; Grant, Ardell, Kuhl, & Sparks, 1985; Breeuwer & Plomp,

1986). In those studies, (normal hearing) participants had to identify speech

from speechreading, complemented with auditory information (e.g. the over-

all amplitude and/or fundamental frequency of the stimulus). While it was

impossible to identify for example the feature ‘voicing’ with either type of in-

formation alone, participants succeeded with the combination of both input

types. According to Robert-Ribes et al. (1996), this is incompatible with late

integration, as neither decoding module provides any cue allowing a decision

on the voicing feature. This indicates that fusion must occur at an early stage

of processing and the separate identification models have to be rejected.

Yet, when considering the interactive architecture of the TRACE model,

this criticism can be rejected: even though the model suggests that separate

codes are generated, it does not imply that either of theses codes is sufficient

to recognize a phonetic feature unambigously. It is rather the interaction of

the different code types that leads to the correct result.

Dominant recoding models

The third type of model integrates both types of incoming information before

a code is generated. Because there is a dominance of the auditory input, it

is called ‘dominant recoding model’(DR) (Robert-Ribes et al., 1996). The

visual input is recoded into a representation of the auditory modality. This is

done independently from the auditory input. Only after both types of input are

processed, they are fused. A sketch can be seen in Figure 1.7. This architecture

has not been used to build psychophysical models and was only a few times

implemented in automatic speech recognition (e.g. Robert-Ribes et al., 1996).

Auditory input

Visual input

???

Code

Figure 1.7: Sketch of DR model (adapted from Robert-Ribes et al., 1996).

Robert-Ribes et al. (1996) argue that in a dominant recoding model (with

dominance of the auditory modality), the visual information can only influence

the auditory percept if they are contradictory or if the auditory information is

affected by noise. However, data from Lisker and Rossi (1992) show that vi-

sual information can bias a clear, congruent auditory stimulus. In their study

participants had to judge the rounding category of a vowel, for example the
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French /W/ (the unrounded counterpart of /u/). When presented ‘visually

only’, participants correctly rejected it as being rounded: /W/ was considered

rounded only 1 percent of the times. In an ‘auditory only’ condition, the same

vowel was judged rounded 60 percent of the times. When presented audiovisu-

ally, the interaction of the two modalities became apparent, as the vowel was

judged rounded 25 percent of the times. This is difficult to explain in a model,

that assumes a dominance of the auditory modality as the visual information

clearly influences the perception here. Therefore, also the dominant recoding

model seems unlikely to Robert-Ribes et al. (1996).

Motor space recoding models

In the last type of model, the ‘Motor space recoding model’ (MR), both inputs

are translated into an amodal description and then fused (Robert-Ribes et al.,

1996). A sketch of this architecture is shown in Figure 1.8. A classical example

of this type of model would be the ‘Motor Theory of Speech’ (Liberman &

Mattingly, 1985). In this model, the amodal description is a motor descrip-

tion (vocal tract configurations or motor programs). Both input modalities

establish their own vocal tract configurations, which are then fused and finally

forwarded to a phonetic classifier. This process can take into account that

some dimensions can hardly be seen (as the velum) and give less weight to

input about that dimension gained through seen speech.

Auditory input

Visual input

??? Code

Figure 1.8: Sketch of MR model (adapted from Robert-Ribes et al., 1996).

The motor space recoding model can explain all the data given as counter-

arguments to the before described models. In fact, Robert-Ribes and colleagues

state that they “do believe that the only model compatible with the whole set

of experimental data in the field of AV perception is the MR model” (Robert-

Ribes et al., 1996, p. 199).

This notion is controversial. Massaro and Chen (2008), for example argue

against the motor theory of speech (Liberman & Mattingly, 1985; Galantucci,

Fowler, & Turvey, 2006) and present data in favor of their own model (the

fuzzy logical model of perception), which represents the group of separate iden-

tification models. One major problem of the motor theory of speech is that it
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cannot explain the top-down influence that lexical information has on phoneme

perception, such as the biasing influence lexical constraints have on phoneme

identification (Massaro & Oden, 1995). For example, the findings of Ganong

(1980) showed this influence: a sound on the /d/-/t/ continuum was more

likely to be judged /d/, when presented in the context ‘dash-tash’ (where only

the first is an existing word). The same sound was however judged /t/, when

in the context of ‘dask-task’, where ‘dask’ is a nonword. Another problematic

issue for the motor theory of speech is the ability of infants to perceive speech

sounds and speech sound distinctions they do not produce yet (MacNeilage,

1991). Massaro and Chen (2008) further argue that it is not clear how the

McGurk effect can be explained within a framework based on motor represen-

tations. If the auditory input and the visual input are both transformed into a

motor representation, there will be two conflicting motor representations. The

motor theory does not provide any information on how this problem can be

resolved and the observed fusion perception can be explained.

In the current studies, the focus therefore lies on Campbell’s (1988, 1990)

adoption of the TRACE model. This model can explain the beneficial influence

of visual information on (aphasic) comprehension and especially the occurrence

of the McGurk effect with interaction between the different kinds of features

perceived auditorily and visually.

1.2.3 Audiovisual speech perception in aphasia

It has been found that seeing the speaker’s face improves comprehension in

aphasic individuals with word-sound deafness (Buchman et al., 1986). Shindo

et al. (1991) investigated this advantage in more detail: one patient with word

deafness and three patients with auditory agnosia4 were tested (among other

measures) with a speechreading test. Participants were asked to repeat or write

down the perceived word or sentence. It was presented in three conditions:

‘speechreading only’, ‘auditory’, and ‘audiovisual’. While a group of control

participants scored at ceiling in the auditory and audiovisual conditions, all four

patients showed difficulties in the auditory condition and much less so in the

audiovisual condition. However, their ‘speechreading only’ results were lower

than those of the control group. That means that they were not extraordinary

4Auditory agnosia is a more general deficit in auditory perception than word-sound deaf-
ness. Patients with auditory agnosia also suffer from difficulties in perceiving non-speech
sounds (Brown, 1974).



30 CHAPTER 1. SPEECH PERCEPTION

speechreaders, but that combining both types of information in the audiovisual

condition leads to the improvement that was found.

Next to the beneficial effect of speechreading reported above, there are also

studies making use of the McGurk effect to evaluate audiovisual integration in

aphasia. By investigating the McGurk effect it was hoped to find out whether

audiovisual processing in aphasia differs from the processing in non-brain dam-

aged populations. Several studies focusing on the McGurk effect in aphasia

will be discussed in the following section.

McGurk effect in aphasia

In order to analyze the integration of speechreading, several authors stud-

ied the McGurk effect in aphasic populations (Campbell et al., 1990; Youse,

Cienkowski, & Coelho, 2004; Klitsch, 2008). Campbell et al. (1990) conducted

an experiment on the McGurk effect in four brain-damaged participants, two

of whom suffered from left hemisphere brain damage. One of these participants

presented with aphasia, the other with pure alexia and hemianopia. The apha-

sic participant was impaired in auditory processing, but was able to speechread.

He exhibited a McGurk effect on words (e.g. auditory ‘pick’ dubbed on visual

‘kick’, McGurk perception ‘tick’) and consonants (e.g. auditory /aba/ dubbed

on visual /aga/, perception /ada/), but reported the visual part for vowels

(e.g. auditory ‘erbee’ dubbed on visual ‘erboo’, perception ‘erboo’). The

alexic participant had a good auditory performance, but was hardly able to

speechread. Her responses were most often resembling the auditory part of the

stimuli. The other two participants had right hemisphere lesions and suffered

both from prosopagnosia (one developmental, one acquired). Both were able to

speechread, but only the participant with acquired prosopagnosia showed fu-

sion responses. Campbell (personal communication) tested another participant

with global aphasia, which resolved to word deafness. He was poor in identi-

fying auditorily presented syllables and did not improve when materials were

presented audiovisually. For this participant, no McGurk effect was found.

Another description of the McGurk effect in aphasia was presented by Youse

et al. (2004), who assessed a male patient with mixed aphasia and two non-

brain-damaged participants. The aphasic participant exhibited problems in

a syllable identification task for all three tested conditions: ‘auditory only’,

‘visual only’, and ‘audiovisual’ (congruent and McGurk). In each condition,

syllables were presented and had to be identified by the participant. The

syllables used in this experiment were /bi/, /di/, and /gi/ for all conditions
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and additionally McGurk stimuli for the audiovisual condition: auditory /bi/

dubbed onto visual /gi/ (so called ‘fusion stimuli’) and vice versa (‘combination

stimuli’). From a preliminary analysis, it seemed that the participant showed

only McGurk responses (in this case /di/) on the incongruent stimuli. However,

the results were seriously influenced by a response bias, as was shown by the

congruent condition, where he also very often picked the answer /di/ (in 83%

of the cases, while only 33% were correct). The reported McGurk responses

could therefore have emerged as a result of this bias.

Klitsch (2008) compared the performance of a group of six Dutch apha-

sic participants to a group of age-matched non-brain-damaged control partic-

ipants. The task consisted of watching a video and choosing between three

answer options: the McGurk-type answer, the auditory component or the vi-

sual component of the video. The study was designed to examine the influence

of different factors (e.g. the age of the participants and lexical status of the

material) on the performance. The stimuli were therefore subdivided into sets

of different lexicality. One set was formed by lexical auditory and visual forms,

leading again to a lexical percept. A second set was made of lexical auditory

and visual forms, however leading to a non-lexical outcome. Another set con-

sisted of non-lexical auditory and visual forms, leading to a lexical percept and

the last set was made of non-lexical inputs leading to a non-lexical response.

Aphasic and age-matched participants exhibited the same number of over-

all McGurk responses (43% and 45%, respectively). Also, the response pattern

(most often McGurk type answers, followed by auditory and visual answers) did

not differ significantly between the groups. Regarding the influence of lexical

status on the McGurk effect, Klitsch (2008) reported that both groups showed

the highest percentage of McGurk responses in the condition with non-lexical

inputs leading to a lexical output, indicating a lexical influence on the McGurk

effect. This difference is however only significant for the aphasic group. Results

per group and lexical condition can be seen in Table 1.2.

The finding that lexical status can influence pre-lexical perception has also

been reported by Ganong (1980) (see above). Based on his findings as well as

her own results into account, Klitsch (2008) argues that the McGurk effect is a

phonetic-phonological effect, which is influenced by lexical status. This lexical

influence is stronger for aphasic than for non-brain-damaged listeners.



32 CHAPTER 1. SPEECH PERCEPTION

Table 1.2: Overview of McGurk responses in Klitsch’s (2008) study; L = lexical, NL = non-
lexical.

Auditory + Visual Aphasic Age-matched Younger All
→ McGurk Participants Controls Controls Participants

L + L → L 38.3% 39.5% 22.3% 33%
L + L → NL 27.5% 34.8% 16.6% 26%
NL + NL → L 66.7% 55.0% 28.0% 50%
NL + NL → NL 36.7% 44.8% 22.7% 36%

All Stimuli 43% 45% 22% 34.6%

In the studies described in this thesis, the audiovisual processing of speech

is investigated in aphasic and non-brain-damaged listeners. Due to the lexical

influences, as reported by Klitsch (2008), only nonwords will be used in the

experiments in order to exclude a lexical bias. In chapter 2, the focus lies on

identifying the phonetic dimensions that are particularly difficult for Dutch

aphasic listeners and how these dimension are influenced by speechreading.

Chapter 3 relates more specifically to the dimension ‘place of articulation’ and

investigates the McGurk effect in Dutch aphasic listeners, combining offline

scores with online reaction times, in order to gain more insight into the pro-

cesses involved in audiovisual speech perception. Both studies have theoretical

as well as practical aims: on the one hand they will contribute to the knowledge

about audiovisual speech perception and on the other hand they will help to

identify the damage to the processing system in aphasia in more detail. The

latter is the basis for developing more specific treatment programs in the fu-

ture. The aims and research questions of the individual studies are introduced

in the respective chapters.



CHAPTER 2

Phonetic Dimensions in Aphasic Perception1

2.1 Introduction

This chapter reports a study which investigates the influence that different

phonetic dimensions have on speech sound processing in Dutch aphasic par-

ticipants and how speechreading can aid processing. First, we will, however,

give a background on the phonetic dimensions, the influences of speechreading

on comprehension and how that can be accounted for in a speech processing

model. Deficits in speech sound discrimination will also be discussed.

2.1.1 Phonetic dimensions

Phonemes are considered to consist of phonetic features (Chomsky & Halle,

1968). These features can be categorized into the three (distinctive) phonetic

dimensions ‘place of articulation’, ‘manner of articulation’, and ‘voicing’. A

combination of these dimensions uniquely identifies each phoneme. Changes in

one phonetic dimension will lead to a different phoneme: changing, for example,

1This chapter is a slight adaption of Hessler, Jonkers, and Bastiaanse (2010). Terminology
has been changed in order to be consistent throughout the thesis.
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the ‘place of articulation’ from bilabial to alveolar would transform a /p/ into

a /t/. However, also broader contrasts between two phonemes (changes in two

or three of the phonetic dimensions) are possible: /p/ and /z/ for example, are

distinguished by ‘voicing’, ‘place of articulation’, and ‘manner of articulation’.

Therefore, it is not sufficient to classify two words or syllables as different in

one phoneme, as this distinction can be formed by differences in one, two or

all three distinctive dimensions. Rather the number and type of the phonetic

dimensions differing should be mentioned as well.

The phonetic characteristics of a particular phonetic dimension are man-

ifested differently across languages: The distinction ‘voiced’ vs. ‘voiceless’ is

made by differences in voice onset time (VOT). According to Lisker and Abram-

son (1964) the voicing distinction in English is achieved by contrasting onset

of voicing at the release of the lips (for /b/) with an onset of voicing up to

100ms later (/p/). Therefore the distinction in English is rather one between

voiceless and voiceless-aspirated. For other languages such as Dutch and Hun-

garian, however, Lisker and Abramson (1964) found that the voiceless /p/ was

produced by having the onset of voicing aligned with the release of the lips,

while the voiced counterpart /b/ was produced with a voice onset at least 50ms

prior to the lip-release.

A distinction in ‘voicing’ therefore refers to different phonetic distinctions

in different languages, which makes a comparison of for example Dutch and En-

glish data difficult. In Dutch and Hungarian, however, the distinction between

‘voiced’ and ‘voiceless’ is accomplished by similar VOT patterns.

2.1.2 Speechreading

The extraction of phonetic information out of the speech stream is an early

component of language comprehension. Language comprehension is however

a multimodal process. Not only auditory but also visual information (seen

speech) is employed in perception (Rosenblum, 2008). It has been demon-

strated that seeing the speaker facilitates comprehension in a noisy environ-

ment (Sumby & Pollack, 1954) or with cognitively demanding contents under

good listening conditions (Reisberg et al., 1987).

More evidence for the fact that speechreading is automatically integrated

into speech perception is provided by experiments carried out by McGurk and

MacDonald (1976). In their study, participants watched dubbed videos in

which auditory and visual information did not match, and they were asked to
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report what they perceived. Instead of answering with the auditory (/ba/) or

the visual (/ga/) component of the video, they usually reported a fusion of both

(/da/). This even occurred when the participants were aware of the dubbing.

This so-called ‘McGurk’ effect actually shows the influence of speechreading.

It is also a demonstration of the integration of both modalities by producing

a percept which is a fusion of seen and heard speech. This proves that the

information a listener gains from the lip-movements of the speaker cannot be

ignored and is automatically taken into account in generating a percept. There-

fore, speechreading should not be understood as a substitute mechanism that

only mediates when needed, but as one that supports auditory comprehension.

Campbell (1988, 1990) suggested a model explaining speech perception with

multimodal (auditory and visual) input. Her model is based on the TRACE

model of language processing (McClelland & Elman, 1986). In this interactive

activation model of speech processing several levels of processing are assumed:

a phonetic, a phonological, and an abstract phonemic level. The phonetic level

consists of acoustic as well as lip-read features. These are connected to the

phonological level, where phonemes are represented. The third level, consisting

of abstract phonemic units, is necessary to explain why some people actually

‘hear’ phonemes which are not articulated, but only written, such as the /b/

in ‘comb’. The three levels are fully interconnected. Units within one level

are connected via lateral inhibition, that means that units can inhibit each

other. Across levels the connections are excitatory. This excitation applies

both bottom-up and top-down. The input is temporally organized to assure

the correct order of phonemes in a word. This model incorporates a delay

window, called TRACE, to account for context and mispronunciation effects

(where incorrectly pronounced words are still recognized). In the TRACE all

patterns of activation are stored that correspond to a stimulus that has not yet

been identified.

To integrate the information from speechreading, Campbell (1988, 1990)

introduced two new features at the level of phonetic units into the model:

‘mouth opening’ and ‘lip-shape’. Together with the acoustically perceived fea-

tures, these visual features form the phonetic units which interact with each

other and with the phonological units. A schematic overview of the 1990 ver-

sion of the model is shown in Figure 2.1.2 The features ‘mouth opening’ and

‘lip-shape’ mainly convey information necessary to decode the ‘place of artic-

2A more detailed description of the model can be found in Chapter 1.
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Figure 2.1: Schematic overview of a model of audiovisual processing, based on Campbell
(1990).

ulation’. This model therefore predicts ‘place of articulation’ to be influenced

by speechreading, but it is not clear whether there is also influence on the

dimensions ‘manner of articulation’ and ‘voicing’.

2.1.3 Impairments of processing

Brain damage can lead to an impairment in processing phonemes. This disor-

der was first described by Kussmaul (1877), who called it ‘pure word deafness’

because the patient he described did not suffer from other aphasic symptoms.

Terminology was not consistent and now a common term is word-sound deaf-

ness (Franklin, 1989). Word-sound deafness can be diagnosed with auditory

discrimination tasks, in which participants have to report whether two auditory

(phonologically related) stimuli (words or nonwords) are the same or different

(e.g. “house” and “mouse”). In word-sound deafness, the problems are re-

stricted to linguistic material, while there are no problems in discriminating or

identifying non-linguistic auditory stimuli.
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Aphasic participants with a disorder in analyzing speech sounds will have

problems in discrimination of items differing in fewer phonetic dimensions.

The more dimensions are different, the easier the discrimination task becomes

(Blumstein et al., 1977). Factors that have a beneficial influence are the use

of context or slowed speech and, most importantly for the present study, the

possibility to see the speaker, thus the possibility to gain speechreading infor-

mation (Buchman et al., 1986; Shindo et al., 1991). The use of speechreading

information has also been successfully utilized in treatment studies (Gielewski,

1989; Morris et al., 1996; Grayson et al., 1997; Hessler & Stadie, 2008).

Hessler and Stadie (2008) evaluated the effects of a systematic treatment

of the auditory analysis of speech in a patient with aphasia. The treatment

was based on the beneficial influence of speechreading. During treatment, six

different tasks were carried out: auditory discrimination of syllables, auditory

discrimination of phonemes, word-picture matching, word-picture verification,

heard word-written word matching, and heard word-written word verification.

In all tasks, the distractors were phonologically related to the targets. Treat-

ment started with items with broad distinctions (three phonetic dimensions)

and speechreading possible. After mastery of this condition, more difficult

conditions were presented (less dimensions different, no speechreading possi-

ble). The efficiency of treatment was measured by comparing pre- and post-

treatment performance in the treatment tasks on a set used during treatment

and a matched, non-trained set of stimuli. Apart from showing general im-

provement in both the trained and the untrained set, the authors also analyzed

the performance on individual phonetic dimensions. The aphasic patient im-

proved in discrimination of ‘place of articulation’ contrasts as well as ‘manner

of articulation’ contrasts (also for untrained stimuli). These results cannot be

explained in terms of the model by Campbell (1988, 1990) described above.

Influence on other dimensions than ‘place of articulation’ is not predicted by

this model. The results of Hessler and Stadie (2008) indicate that speechread-

ing can be beneficial for perceiving the other dimensions as well. It is therefore

not clear which phonetic dimensions (‘place of articulation’, ‘manner of artic-

ulation’, and/or ‘voicing’) make use of the additional information from seen

speech.

Processing of which phonetic dimensions is most impaired in aphasic com-

prehension disorders has been investigated previously: Blumstein et al. (1977)

compared the processing of the dimensions ‘place of articulation’ and ‘voicing’
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in English speaking aphasic participants and found that they have most prob-

lems with ‘place of articulation’. They did not include the dimension ‘man-

ner of articulation’. Saffran et al. (1976) and Caplan and Aydelott-Utman

(1994), however, found (also for English aphasic listeners) that ‘voicing’ ac-

tually is more difficult than ‘place of articulation’. Similar results have been

found for Hungarian by Csépe et al. (2001) for two aphasic participants with

unilateral left-hemisphere lesions (opposed to the bilateral cases also investi-

gated). Klitsch (2008) used two subtests of the Dutch version of the PALPA

(Bastiaanse, Bosje, & Visch-Brink, 1995) to investigate whether aphasic lis-

teners showed differences in detecting distinctions in the dimensions ‘place of

articulation’, ‘manner of articulation’, and ‘voicing’. In the two discrimination

tasks carried out, words as well as nonwords were investigated. Generally the

performance of the aphasic participants was better when word pairs had to be

distinguished. The detection of differences in ‘place of articulation’ was worse

than ‘manner of articulation’ but only for nonwords. The comparison of ei-

ther ‘place of articulation’ or ‘manner of articulation’ with ‘voicing’ was more

difficult, as ‘voicing’ distinctions were realized in initial positions, the other

contrasts however in final (less salient) position or metathesis. For compari-

son with ‘voicing’, only the performance in metathesis distinctions in ‘place of

articulation’ and ‘manner of articulation’ was taken into account. Compared

like this, performance on ‘voicing’ distinctions was worse than on ‘manner of

articulation’ distinctions, while there was no difference with ‘place of articu-

lation’. Klitsch (2008), therefore, came to the cautious conclusion that ‘place

of articulation’ was affected most, but also noted that the dimension ‘voicing’

could not be compared reliably to the other dimensions, because they were not

occurring in the same position within the stimuli.

In the current study, all three dimensions will be compared again, but ma-

nipulated in the same position (initially). In order to investigate the influence

speechreading has on the discrimination performance, the task will be presented

in three conditions: with only auditory input, with audiovisual input and with

only visual input (a video of lip-movements, serving as a control condition).

Based on the former studies, we expect that aphasic participants with a

disorder in speech sound processing benefit from information derived from

speechreading in discriminating between similar phonemes. Therefore, their

overall performance in the ‘audiovisual’ condition will be better than in the

‘auditory only’ condition. This beneficial influence of speechreading will be
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manifested in the phonetic dimension ‘place of articulation’. Based on Camp-

bell’s (1988, 1990) model no beneficial influence is predicted on the dimensions

‘manner of articulation’ and ‘voicing’.

It is also expected that the degree of difference has an influence on the

performance: The more dimensions differ between two items, the easier dis-

crimination becomes for the individuals with aphasia. They will have least

difficulties with distinguishing stimuli when all three phonetic dimensions dif-

fer, while differences in only one phonetic dimension are expected to cause most

problems.

Additionally, it will be investigated whether all three phonetic dimensions

are equally difficult for individuals with aphasia or whether one of them is

particularly difficult and, if so, which one. For the ‘audiovisual’ condition it

is predicted that the dimension ‘voicing’ will be most difficult, as within this

dimension it is not possible to make use of visual information. This prediction,

however, does not hold for the ‘auditor only’ condition, as there is no visual

information available.

2.2 Methods

2.2.1 Participants

Six participants with aphasia (three female) and 14 non-brain-damaged control

participants (seven female) took part in this study. All participants were native

speakers of Dutch, right-handed, and reported normal hearing. The hearing

was also judged as within functional limits by their speech-therapists. Vision

was normal or corrected to normal. The aphasic participants were between

47 – 64 years old (mean age: 52.33). The participants in the control group

were matched with the aphasic participants for age (mean age 56.29; range 49

– 67), gender, and region of origin. They had never experienced neurological

problems and had no (history of) language disorders.

All aphasic participants were at least 3 months post-onset. None of them

had demonstrated any language disorders prior to the CVA. They did not suffer

from any neuropsychological problems influencing the testing (such as severe

attention disorders). The participants were selected on the basis of their results

in the PALPA nonword discrimination task (Bastiaanse et al., 1995). In this

task, participants hear two nonwords which are either the same or differ in one
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phonetic dimension from each other. They have to judge whether both heard

stimuli are the same. A failure to do so has been attributed to an impairment

of the auditory analysis of speech. This task was administered using a record-

ing of the stimuli in order to maximize the comparability between participants.

As the normative data of the PALPA (Bastiaanse et al., 1995) are collected

with direct speech, Klitsch (2008) collected normative data for the recorded

version. We compared the results of our participants to her normative data.

Performance more than 2 SD below the mean of Klitsch’s group were consid-

ered as impaired. Only aphasic participants with impaired performance on the

discrimination task were included in this study. Thus, all aphasic participants

in this study had a deficit in the auditory analysis of speech. Furthermore, all

but one participant had been diagnosed with a standardized battery, the Ak-

ense Afasietest (AAT) (Graetz, De Bleser, & Willmes, 1992). The performance

in two sub-parts, the Token Test and the comprehension part, gives an indi-

cation of the comprehension abilities of the participants. In the Token Test,

participants have to follow commands such as “Touch the green rectangle”

or “Put the red square under the red circle”. These commands, of which 50

are presented, vary in length and complexity. The results are reported as error

scores. A score of ‘0’ would therefore mean ‘no errors’, while ‘50’ represents the

fact that no command at all could be executed correctly. The comprehension

part of the AAT consists of word and sentence comprehension tasks. A word

or sentence is presented and the participant is asked to choose between four

pictures, one depicting the target and the other three distractors (one or two

of which are related to the target). The maximum score that can be reached

is 120. An overview of the personal data of the aphasic participants and their

results on these two AAT tasks (Graetz et al., 1992) and the PALPA nonword

discrimination task (Bastiaanse et al., 1995) are given in Table 2.1.

Table 2.1: Overview of the personal data of the aphasic participants.

Initials Age Gender
Type Months AAT AAT PALPA
of post- Token Compre- Nonword
Aphasia onset Test hension Discrimination

WB 57 male Wernicke 148 37 94 56/72
BB 64 male Global 5 50 67 53/72
EK 48 male Anomia 16 11 88 58/72
TB 47 female Global 8 33 53 68/72
JH 51 female Mixed 44 36 89 66/72
MB 47 female Global 4 50 68 64/72
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2.2.2 Materials

The materials consisted of one-syllable nonwords with CVC(C) structure. They

were spoken by a male native speaker of Dutch, who was recorded in a quiet

room with daylight. Additionally, a light diffuser was used to avoid shading

on the recorded material in order to ensure optimal visual information. The

recorded frame included the lower part of the speaker’s face (from the bottom

of the nose), the neck, and the upper chest. For the recording, a video camera

and separate cardioid microphone were used. The video was then digitized

into avi-files at a sampling rate of 48 kHz with 32-bit-stereo quantization. All

stimuli were edited with Adobe Premiere to form video files with a duration

of 3 seconds each. Recording was done with 25 frames per second (thus 40 ms

per frame). Therefore each file consisted of 75 frames. The video showed the

speaker in rest (with a closed mouth) for 12 frames (480 ms) at the end of each

video. The resting phase in the beginning was varied slightly to ensure equal

length of all videos. To provide equal length of rest, the last or first frame of

the video was artificially prolonged, where necessary.

As the experiment was carried out in three conditions (‘audiovisual’, ‘au-

ditory only’, and ‘visual only’ presentation), the audiovisual video files were

then further edited to create the stimuli for the other conditions. For the ‘au-

ditory only’ condition, the picture was deleted, leaving the sound and a blank

screen. In the ‘visual only’ condition, the audio trace was removed resulting in

a video without sound. Finally, the video files were converted into Windows

Media files (.wmv), reducing file size in order to guarantee smooth running of

the experiment without long delays for loading the files.

As said above, the material consisted of pairs of nonwords. These were

presented either ‘auditorily only’, ‘audiovisually’ or ‘visually only’, depending

on the sub-condition of the experiment. Distribution of the material can be

seen in Figure 2.2. A complete overview of the used stimuli can be found in

appendix B.1.

2.2.3 Procedure

Each participant was tested in three sessions: In the first session the PALPA

nonword discrimination task (Bastiaanse et al., 1995) was carried out. The

experimental task was administered in two further sessions. The task used in

this study was a discrimination task, asking the participants to state whether
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Figure 2.2: Overview of materials used.

two heard and/or seen syllables are the same. It was carried out in three

different conditions: (1) ‘auditory only’ (2) ‘audiovisual’, and (3) ‘visual only’.

The last condition was introduced as a control condition, indicating that the

presumed better performance in the ‘audiovisual condition’ was not solely due

to the visual information. For all three conditions, the same stimuli were used.

The items of each condition were split into two blocks, so that only half of the

items were presented in one session. The order of presentation of the blocks

was balanced between participants.

The materials were presented to the participant on a laptop equipped with

headphones and a response box using E-Prime 2.0 (Psychology Software Tools).

For each condition there were five practice trials before the experiment started.

On those items feedback was provided. The practice trials were repeated if

the participant requested it or if it seemed necessary to explain the procedure

again. The experimental task was only started once the participants responded

correctly to at least 80% of the trials in the ‘auditory only’ and ‘audiovisual’

conditions without help. Each condition was presented separately, not mix-

ing the conditions. Items were randomized to prevent learning effects across

conditions. The order in which the conditions were presented was varied be-

tween participants, so that a possible learning effect would not favor a certain

condition.

A schematic outline of the procedure per trial is shown in Figure 2.3. Item

presentation occurred self-paced. Prior to each pair of nonwords an asterisk was

shown on the screen. The video only started when requested by the participant



2.3. RESULTS 43

Fixation
(self-paced)

Stimulus 1
(3000ms)
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Answer
(max. 5000ms)
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Figure 2.3: Overview of applied procedure.

by pushing a button. After both nonwords were presented, the participant

had 5 seconds to respond with ‘yes’ or ‘no’. This response was also given

by pushing a button (a green button for ‘yes’ and a red one for ‘no’). If no

response had been recorded after 5 seconds, the nonword pair was presented

again with another 5 seconds to decide. If there was no answer after the

second presentation, the next stimulus pair was presented. Each condition of

the experiment consisted of 108 stimulus pairs; however, as mentioned above,

only half of those were presented within one session.

2.3 Results

2.3.1 Overall performance

The non-brain-damaged control participants scored at ceiling for the ‘auditory

only’ and ‘audiovisual’ conditions. In the ‘visual only’ condition, they per-

formed worse, failing mainly in contrasts involving only ‘voicing’ or ‘manner

of articulation’ or the combination of both. The aphasic participants scored

significantly lower than control participants on all conditions (2-tailed Mann-

Whitney-U tests: ‘auditory only’: 99% - 87% correct, Z=-3.521, p<0.001; ‘au-

diovisual’: 99% - 90% correct, Z=-3.545, p<0.001; ‘visual only’: 83% - 63%

correct, Z=-3.387, p<0.001). Because the non-brain-damaged control partici-

pants performed at ceiling the following analyses were only conducted within
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the group of aphasic participants.

2.3.2 Influence of speechreading

Based on previous studies it was expected that aphasic participants with speech

sound processing disorders benefit from speechreading. It was investigated

whether the performance of the aphasic participants also improved with speech-

reading. The results in the three conditions ‘auditory only’, ‘audiovisual’,

and ‘visual only’ (control condition) differed significantly (Friedman Anova

χ²(2)=12, p<0.01). Post-hoc Wilcoxon tests revealed that the ‘audiovisual’

condition was significantly easier than both the ‘auditory only’ (Z=-2.207,

p<0.05) and the ‘visual only’ condition (Z=-2.201, p<0.05). There was also

a significant advantage for the ‘auditory only’ over the ‘visual only’ condition

(Z=-2.207, p<0.05). This also holds on an individual basis: The performance

in the ‘audiovisual’ condition was better than in the ‘auditory only’ condition

for five out of the six aphasic participants.

Analysis by phonetic dimension

According to Campbell’s (1988, 1990) model, it was expected that performance

concerning the dimension ‘place of articulation’ would improve with the addi-

tion of speechreading cues. No improvement was predicted for the other two

dimensions. In order to investigate the influence of speechreading a comparison

of the ‘audiovisual’ and the ‘auditory only’ conditions separately for each pho-

netic dimension was carried out. It revealed no significant differences for the

dimensions ‘place of articulation’ (2-tailed Wilcoxon test: Z=-0.816, p=0.414)

and ‘voicing’ (2-tailed Wilcoxon test: Z=-.674, p=0.5). For the dimension

‘manner of articulation’, a trend for better performance on ‘audiovisual’ stim-

uli could be found (2-tailed Wilcoxon test: Z=-1.826, p=0.068). The individual

results in appendix B.2 show that this trend was not caused by single partic-

ipants, but was found for four of the six aphasic participants, while the other

two showed no difference between both conditions.

2.3.3 Number of distinguishing dimensions

Based on the results of Blumstein et al. (1977), it was predicted that the

number of phonetic dimensions differing would influence the performance of

the aphasic participants, such that the fewer phonetic dimensions differ the

worse the performance becomes.
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Analyses revealed that the number of dimensions differing within the pair

played a role for aphasic participants in the ‘auditory only’ (Friedman Anova:

χ²(2)=8.667, p<0.05) and ‘audiovisual’ (Friedman Anova: χ²(2)=11.143,

p<0.01) conditions. In the auditory condition, it was found that differences

in one distinctive dimension were significantly less likely to be detected than

differences in two (2-tailed Wilcoxon test: Z=-2.023, p<0.05) or three (2-tailed

Wilcoxon test: Z=-2.207, p<0.05) dimensions. There was however no sig-

nificant difference between distinctions in two and three dimensions (2-tailed

Wilcoxon test: Z=0.0, p=1.0). Similar results have been found for the au-

diovisual condition: distinctions in two and three dimensions were not signifi-

cantly different from each other (2-tailed Wilcoxon test: Z=-1.604, p=0.109),

while both were easier to perceive than distinctions in one dimension (2-tailed

Wilcoxon test: Z=-2.201, p<0.05 for both comparisons). The individual data

of the aphasic participants (appendix B.1) show that these findings were not

caused by the performance of single participants, but hold for all aphasic par-

ticipants in the ‘auditory only’ condition and all but one in the ‘audiovisual’

condition.

2.3.4 Type of distinguishing dimension

Previous studies have found contradictory results concerning the question which

phonetic dimension is most impaired in aphasic perception. Therefore, no pre-

diction was made for the ‘auditory only’ condition. For the ‘audiovisual con-

dition’ it was expected that differences in the dimension ‘place of articulation’

would be the easiest to perceive, as, following Campbell’s (1988, 1990) model,

beneficial influence of speechreading is assumed for this dimension, but not for

the other two dimensions.

An analysis of the influence of type of dimension (‘place of articulation’

vs. ‘manner of articulation’ vs. ‘voicing’) was carried out, showing significant

results for the ‘auditory only’ condition (Friedman Anova: χ²(2)=6.7, p<0.05)

and marginally significant results for the ‘audiovisual’ condition (Friedman

Anova: χ²(2)=4.727, p=.094). For both conditions it appears that ‘voicing’

was the most difficult to distinguish, followed by ‘place of articulation’ and

‘manner of articulation’ (see Figure 2.4). In both the ‘auditory only’ and the

‘audiovisual’ condition, five out of six aphasic participants showed the same

pattern as the group, with ‘voicing’ being most difficult (see appendix B.2).

The group result, therefore, reflects a vast majority of the participants’ perfor-

mances, rather than being caused by extremes in the data distribution.
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Figure 2.4: Percentage of correct aphasic responses to different dimensions in auditory only
and audiovisual conditions.

2.3.5 Answer bias

Results of ‘yes-no-paradigms’ can be influenced by an answer bias of the partic-

ipants. This can be corrected by using methods from signal-detection research.

Within this paradigm the hit-rate and the false-alarm-rate are used to cal-

culate a measure of discriminability, d-prime. The calculation of d-prime is

a parametric procedure. As the current data do not fulfill the demands for

parametric testing, d-prime could not be calculated. Instead a non-parametric

variant, a-prime (A’), was calculated to correct for a response bias. A’-scores

vary between ‘0’ (no discriminability) and ‘1’ (perfect discriminability), with

‘0.5’ being chance-level. In the current study we applied the algorithms from

Snodgrass, Levy-Berger, and Haydon (1985) to calculate A’. All statistical anal-

yses have been repeated using the bias-corrected A’-scores. Also using these

scores (rather than the non-corrected ones) it becomes evident that the aphasic

participants score significantly worse than the non-brain-damaged controls in

all three conditions (‘audiovisual’, ‘auditory only’, and ‘visual only’). Regard-

ing the analyses within the aphasic group, the results resembled those of the

non-corrected scores, with two exceptions: The overall difference between the

‘audiovisual’ and the ‘auditory only’ condition does not yield significance, but

forms a trend when based on A’-scores. The same is true for the difference

between two and one dimension distinctions found in the ‘auditory only’ condi-
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tion: Using the corrected A’-scores a trend, rather than a significant difference,

can be found, indicating that two dimensions cause more difficulties than one.

The individual A’-scores are mentioned in appendix B.2 and the results of the

statistics using A’-scores are provided in appendix B.3.

2.4 Discussion

The aim of the current study was to investigate how perception of phonetic

dimensions is impaired in speech processing by individuals with aphasia and

how that processing is influenced by speechreading. A discrimination task

was carried out in three conditions: ‘auditory only’, ‘audiovisual’, and ‘visual

only’ stimulus presentation. A group of fourteen non-brain-damaged control

participants and six aphasic participants took part in this study. The aphasic

participants were diagnosed with different syndromes, but shared a deficit in

processing speech sounds. The small number of aphasic participants does not

allow for general conclusions, rather all conclusions drawn refer only to the

group tested.

It was found (repeating numerous previous studies) that discriminating

pairs of nonwords is more difficult for individuals with an aphasic disorder

in speech sound processing than for non-brain-damaged control participants.

When analyses use the bias-corrected A’-scores this observation also holds.

Generally, the aphasic participants showed a very homogeneous pattern.

For all analyses reported in this paper, a broad majority of the aphasic par-

ticipants showed performance in the same direction as the group. The group

analyses were, therefore, based on a consistent pattern within the group rather

than on extreme performances of single participants. The possibility that hear-

ing problems influenced the results is ruled out by the fact that the aphasic

participants had only slight problems with differences in three dimensions in

the ‘auditory only’ condition. If the underlying problems were in hearing, this

condition should have been affected as well.

Overall, there was a trend to better performance of individuals with aphasia

in the ‘audiovisual’ condition than in the ‘auditory only’ condition, indicating

that the additional visual information gained from speechreading facilitates

their discrimination abilities. The performance in the control condition with

‘visual only’ stimulus presentation was worse than in both other conditions,

indicating that the superiority of the ‘audiovisual’ condition is not due to pure

visual information, but rather the combination of auditory and visual input.
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For the non-brain-damaged control group no difference between the ‘auditory

only’ and the ‘audiovisual’ conditions were found, as they performed at ceiling

in both. No further analyses were carried out for the non-brain-damaged control

group.

For the aphasic participants, it was further tested whether the general ad-

vantage of the ‘audiovisual’ over the ‘auditory only’ condition was due to im-

provement on one of the phonetic dimensions in particular. Therefore, the

difference between the ‘audiovisual’ and the ‘auditory only’ conditions was

analyzed individually for each of the three phonetic dimensions ‘place of ar-

ticulation’, ‘manner of articulation’, and ‘voicing’. According to the model of

Campbell (1988, 1990) improvement, particularly in the dimension ‘place of ar-

ticulation’ was expected when additional speechreading is possible. However,

we did not find significant differences between ‘audiovisual’ and ‘auditory only’

presentation for any of the dimensions individually. It is, hence, not possible

to say whether there was more improvement for one of the dimensions than for

another. The general improvement is, therefore, not due to one dimension in

particular, but rather to a summation of improvement on all of them.

These findings are not in line with Campbell’s (1988, 1990) model, as only

improvement for distinctions in ‘place of articulation’ was predicted. This pre-

diction was previously questioned in the treatment study by Hessler and Stadie

(2008). They found improvement for ‘manner of articulation’ after a treatment

based on utilizing speechreading. Therefore, it seems that Campbell’s (1988,

1990) model needs to be extended to account for influences from visual features

other than ‘mouth opening’ and ‘lip-shape’.

The difficulties individuals with aphasia experience when discriminating

stimuli were more profound for smaller distinctions. As previously reported

by Blumstein and Cooper (1972) and Blumstein et al. (1977) for English, we

also found for Dutch that differences are less likely to be detected if the items

within the pair differ in one phonetic dimension (rather than in two or three).

This holds for the ‘auditory only’ as well as for the ‘audiovisual’ condition.

Even though performance is generally better in the ‘audiovisual’ condition it is

still impaired, especially regarding the small differences. Speechreading adds

information that enhances speech sound processing for small as well as larger

differences. Therefore, the distinction between one and two or three dimensions

can also be found for the ‘audiovisual’ condition. In their explanation why

smaller differences are more difficult to perceive, Blumstein and Cooper (1972)
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note that in a discrimination task it is not necessary to analyze the auditory

information into its linguistic components. A mere comparison of the phonetic

properties of the two stimuli is sufficient. Therefore, they argue, the worse

performance for the small differences can be explained by the fact that they are

perceptually closer together. This argument is supported by the fact that the

dimensions are phonetically conveyed differently: ‘voicing’ is based on temporal

cues while ‘place of articulation’ and ‘manner of articulation’ rely mainly on

spectral cues. When ‘voicing’ and at least one of the spectral dimensions differ,

both types of cues are involved, while in differences in one dimension only either

temporal or spectral cues are altered. Therefore one type of cue is the same in

the stimuli, making a distinction more difficult.

The question of which dimension is most difficult to perceive for individuals

with aphasia has been addressed previously with ambiguous results. Blumstein

et al. (1977), for English, and Klitsch (2008), for Dutch, found ‘place of ar-

ticulation’ to cause most difficulties. Saffran et al. (1976) and Caplan and

Aydelott-Utman (1994), for English, and Csépe et al. (2001), for Hungarian,

however, found ‘voicing’ to be most impaired, as in the current study. As

mentioned above, Dutch and English, though both Germanic languages, dif-

fer in their phonetic realization of ‘voicing’ of plosives: While Dutch contrasts

voiced (voice onset before lip-release) and voiceless-unaspirated (voice onset

during lip-release) sounds, English shows a differentiation between voiceless-

unaspirated (voice onset during lip-release) and voiceless-aspirated (voice onset

after lip-release) (Lisker & Abramson, 1964; Jansen, 2004). This difference can-

not explain the ambiguous results within the English data. It, however, makes

it difficult to compare the English and Dutch data. A comparison of the Dutch

and Hungarian data, on the other hand, is possible as both languages have

a similar phonetic realization of ‘voicing’ (Lisker & Abramson, 1964; Jansen,

2004).

The difference in performance between ‘voicing’ on the one hand and the

two other dimensions on the other hand could, for the ‘audiovisual’ condition,

be explained by the fact that ‘voicing’ cues are considered to be not visible. As

we however found the same pattern in the ‘auditory’ condition, thus without

visual information, we suggest a different analysis: The difference between the

phonetic dimensions can be explained by the different phonetic cues encoding

them. As explained above, ‘voicing’ is phonetically conveyed by temporal cues,

while ‘place of articulation’ and ‘manner of articulation’ are based on spectral
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cues. As distinctions in ‘voicing’ are most difficult for the aphasic participants,

they seem to have predominantly an impairment in processing the temporal

cues necessary to perceive the difference between ‘voiced’ and ‘voiceless’.

In conclusion, the current study shows that additional visual information

(gained from speechreading) positively influences the discrimination abilities of

aphasic participants with a speech sound processing disorder. To what degree

the individual phonetic dimensions are influenced could not be conclusively

answered. Contrasts between items are more easily detected if they result from

wider distinctions (more differing phonetic dimensions). Furthermore, the type

of dimension differentiating items is of importance, indicating that differences

in ‘voicing’ are most difficult to perceive for Dutch individuals with an aphasic

disorder of speech sound processing.

2.4.1 Clinical implications
In the current study, it was shown that different phonetic dimensions can be

affected to different degrees in speech sound processing disorders. It is yet to

be determined how this relates to more general comprehension tasks as lexi-

cal decision and word-picture matching or real-life comprehension. As lexical

retrieval is dependent on the correct phonetic input, the auditory analysis of

speech sounds is an important part of the comprehension process: It is the first

step to accurate word processing. The actual influences of different phonetic di-

mensions on higher-level tasks and real-life comprehension, however, still need

to be established in follow-up research. Only then can the next step, improving

treatment, be made. However, Hessler and Stadie (2008) have shown that tak-

ing into account the phonetic structure of stimuli while utilizing speechreading

is beneficial. The results of the current study give more information about the

characteristics that need to be considered in developing treatment, such as the

fact that distinctions in ‘voicing’ were more difficult to detect for the current

group of aphasic participants than those in ‘place of articulation’ or ‘manner

of articulation’.

If these differences actually effect higher processes and real-life comprehen-

sion as well, it should be investigated for all patients prior to treatment, which

dimensions are especially problematic for them. Treatment for patients as the

ones described in the current study should then include a focus on the timing

cues necessary to perceive distinctions in ‘voicing’. The current study there-

fore provides not only the theoretical conclusions described above, but also

preliminary clinical implications can be drawn.



CHAPTER 3

Audiovisual Processing in Aphasic and

Non-Brain-Damaged Listeners: A Study on the McGurk

Effect

3.1 Introduction

Auditory speech perception has been described in terms of different models.

One of these is the TRACE model of speech perception (McClelland & El-

man, 1986). In this interactive activation model, several levels of processing

are assumed: a feature level, a phoneme level, and a word level. The fea-

ture level consists of acoustic features, such as ‘acuteness’ and ‘vocalic’. These

are connected to the phoneme level, where single phonemes are represented.

The third level consists of complete words. The three levels are fully inter-

connected. Units within one level are connected via lateral inhibition, so that

units can inhibit each other. On the feature level, this means that activation

of one value of a feature inhibits activation of a different value of the same

feature. Across levels the connections are excitatory. This excitation applies

both bottom-up and top-down. The input is temporally organized to assure

the correct order of phonemes in a word. This model incorporates a delay

51
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window, called TRACE, to account for context and mispronunciation effects

(where incorrectly pronounced words are still recognized). In this delay window

all patterns of activation are stored that correspond to a stimulus that has not

yet been identified.

Unlike as described by the TRACE model (McClelland & Elman, 1986),

speech perception is based not only on auditory but also on visual informa-

tion (seen speech). Therefore Campbell (1988, 1990) extended the model. The

feature level consists of the same acoustic features as assumed in the original

model. It has, however, been extended by also including visual features based

on the input from seen speech. The visual features introduced by Campbell

(1988, 1990) are ‘mouth opening’ and ‘lip-shape’. While Campbell (1990) pro-

vided the values of the model for ‘mouth opening’, she did not implement or

specify the feature ‘lip-shape’. The feature ‘lip-shape’ is part of the model as

it is discussed in the current study. Together with the acoustically perceived

features, these visual features form the units on the feature level, which can

inhibit each other. The feature level is connected by means of excitation to

the phoneme level. The features ‘mouth opening’ and ‘lip-shape’ mainly con-

vey information necessary to decode the ‘place of articulation’. Based on this

model, it is predicted that ‘place of articulation’ is influenced by speechread-

ing. Other models of audiovisual processing have been proposed as well, for

example the fuzzy-logical model of speech perception (Oden & Massaro, 1978;

Massaro & Oden, 1995; Schwartz, 2010) and a recent neural network model

by Loh, Schmid, Deco, and Ziegler (2010). However, the aim of the current

study is not to discriminate between different models, therefore these models

will not be discussed further. The extended TRACE model (Campbell, 1988,

1990) will be used to explain the McGurk effect in the following section and

the results in the discussion.

The notion that speech perception is audiovisual can be supported by

the findings of McGurk and MacDonald (1976). In their study, participants

watched dubbed videos with non-matching auditory and visual information

and had to report what they perceived. Instead of answering with the auditory

(/pa/) or the visual (/ka/) component of the video, they mostly reported a

fusion of both: /ta/. This phenomenon, known as the McGurk effect, demon-

strates that information from the seen face forms part of speech perception,

supporting the notion of primacy of multimodal processing: both auditory

and visual information are processed under all circumstances rather than vi-
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sual information being a mere fall-back mechanism that is only applied when

needed. Often the audiovisual integration underlying the McGurk effect has

been regarded as an automatic unconscious process (e.g. Colin et al., 2002;

Soto-Faraco et al., 2004). There is, however, convincing evidence that next to

experiencing the McGurk effect, the unimodal information is also consciously

processed. In studies of Soto-Faraco and Alsius (2007, 2009), participants were

asked to judge the synchrony of the audiovisual stimuli as well as to report

their perception. It was found that for some degrees of asynchrony, the asyn-

chrony was detected, but also a multimodal percept (‘McGurk’ response) was

reported. The first task required conscious access to unimodal information,

while the latter is evidence in favor of audiovisual integration. Soto-Faraco

and Alsius (2007, 2009) concluded that both unimodal and multimodal infor-

mation were accessed during audiovisual integration.

The strength of the McGurk effect differs between languages. While the

original findings on English (McGurk & MacDonald, 1976) showed a strong

effect (98% for voiced stops, 81% for voiceless stops), much weaker effects were

reported for other Germanic languages. De Gelder et al. (1995) reported an

occurrence of 56% for Dutch participants. Klitsch (2008) observed a McGurk

incidence of 43% for Dutch aphasic listeners, 45% for age-matched control

participants, and 22% for young adults. For German, Grauwinkel and Fagel

(2006) reported the rather low incidence of McGurk answers of 19.3% when

stimuli were presented in clear hearing conditions. De Gelder et al. (1995)

claim that language-specific speech-processing architectures, due to differences

in the phonological system, influence the magnitude of the McGurk effect. It

has been suggested that the size of the phoneme inventory plays an important

role in explaining cross-linguistic differences (Massaro, Cohen, Gesi, Heredia,

& Tsuzaki, 1993). The phoneme /D/, for example, is only found in English and

not in Dutch or German, but accounts for 10% of the responses reported by

MacDonald and McGurk (1978).

The McGurk effect can be explained with the model introduced above: the

relevant acoustic features to discriminate /p/, /t/, and /k/ are ‘diffuse’, ‘acute’,

and ‘burst’.1 Upon hearing a /p/, the phoneme /p/ naturally receives the high-

est activation. Because /t/ is still somewhat similar it also receives substantial

activation (for instance /p/ and /t/ do not differ on ‘diffuse’). The phoneme

1The classification of phonemes is based on the original TRACE model (McClelland &
Elman, 1986), in which the dimensions were taken from Jakobson, Fant, and Halle (1952),
but treated as continua (cf. Oden & Massaro, 1978).
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/k/, however, receives least activation, as it shares fewer similarities with /p/.

Simultaneously to hearing /p/, the participants see the speaker articulating

/k/. Therefore the phoneme /k/ receives the most activation from the two

seen features. The phoneme /t/ is identical to /k/ concerning ‘mouth opening’

and differs only slightly with regard to ‘lip-shape’. Therefore, it also receives

substantial activation from the two seen features. The phoneme /p/ however

differs immensely from /k/ concerning both seen features. It is characterized

not only by a closed mouth, but also by a different ‘lip-shape’, with wider

spread lips. It, therefore, receives little to no activation from the seen features.

As activation from both input types is cumulated, neither /p/ nor /k/, which

served as inputs, but /t/ is finally selected, because overall it received the high-

est activation. The outline of the model and how the McGurk effect can be

explained in terms of it are depicted in Figure 3.1.
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Solid lines ( ) represent strong excitation, dashed lines ( ) weaker excitation and dotted
lines ( ) a very weak or no excitation.

Arrows ( ) represent inhibitory connections.

Figure 3.1: The adjusted TRACE model for McGurk items. Only the features that differ
between /p/, /t/, and /k/ are taken into account. The strength of the connections
represents the excitation based on the input (auditory /p/ dubbed on visual /k/).
For example, a strong link between the feature ‘diffuse’ and the phonemes /p/ and
/t/ is assumed because the ‘diffuse’ value of the input (/p/) strongly activates
the phonemes /p/ and /t/. The phoneme /k/ differs substantially from the
input with regards to this feature and, thus, the excitation is very weak, which
is represented by a dotted line.
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Brain damage can lead to an impairment in speech perception, specifi-

cally affecting the processing of phonemes (Franklin, 1989). These problems of

phonemic processing can occur independently of or in association with other

aphasic symptoms. Blumstein et al. (1977) showed that a disorder in speech

sound discrimination is more pronounced for small differences, thus for items

that differ along fewer phonetic dimensions. These findings have been repli-

cated for Dutch recently by Hessler et al. (2010).

Furthermore, Blumstein et al. (1977) also addressed the question of whether

the dimension type also influenced the performance. They found differences in

‘place of articulation’ to be most impaired. Klitsch (2008) found similar results

for Dutch. Contrary to those findings, some authors found the feature ‘voicing’

to cause most difficulties (Saffran et al., 1976; Caplan & Aydelott-Utman, 1994;

Csépe et al., 2001; Hessler et al., 2010).

Participants with deficits in speech sound processing often benefit from see-

ing the speaker (e.g., Buchman et al., 1986; Shindo et al., 1991; Schmid, Thiel-

mann, & Ziegler, 2009). Schmid and Ziegler (2006), however, described a group

of aphasic participants who did not benefit from speechreading. They claimed

that these participants suffered from a functional deficit affecting processing

on a level after audiovisual integration occurred. Evidence in favor of a benefi-

cial influence of speechreading also comes from treatment studies that utilized

speechreading successfully (e.g., Morris et al., 1996; Hessler & Stadie, 2008).

The beneficial effect of speechreading is not specific for one of the phonetic

dimensions, but rather a summation of small improvements on all dimensions

(Hessler et al., 2010). The fact that speechreading improves perception leads

to the question of how participants with a deficit in phoneme processing han-

dle the integration. This question can be addressed by investigating how these

participants perceive McGurk-type stimuli.

Several authors looked at the McGurk effect in aphasic populations

(Campbell, 1990; Youse et al., 2004; Klitsch, 2008). These studies confirm that

participants with aphasia and an impairment in speech perception are subject

to the McGurk effect. While the studies of Campbell (1990) and Youse et al.

(2004) were case studies, Klitsch (2008) studied a group of six aphasic partici-

pants. Unfortunately, the participant in the Youse et al. (2004) study showed

a strong answer bias, which leads to difficulties in interpreting the results.

However, the studies of Campbell (1990) and Klitsch (2008) clearly showed

that the outcome of audiovisual integration did not differ between aphasic and
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non-brain-damaged participants.

Klitsch (2008) investigated the effect in more detail and also had a look at

the lexical influences on the McGurk effect. The stimuli were subdivided into

sets of different lexicality. One set was formed by lexical auditory and visual

forms, leading again to a lexical percept. A second set was made of lexical

auditory and visual forms, however leading to a non-lexical outcome. Another

set consisted of non-lexical auditory and visual forms, leading to a lexical per-

cept and the last set was made of non-lexical inputs leading to a non-lexical

response. Klitsch (2008) reported that both groups showed the highest per-

centage of McGurk responses in the condition with non-lexical inputs leading

to a lexical output, indicating a lexical influence on the McGurk effect. Fur-

thermore, the number of McGurk responses did not differ between aphasic and

non-brain-damaged participants for either lexicality condition.

The previous research on the McGurk effect in aphasia, however, relied on

offline measures and therefore provided limited information about processing

itself. In the current study we will investigate audiovisual processing in aphasic

and age-matched non-brain-damaged listeners by combining offline scores with

online reaction times. The aim is to find out whether there are differences

between healthy and aphasic processing, when looking closer into the processing

itself, rather than only considering its result. In order to investigate this, a

nonword identification task will be carried out in four conditions: ‘auditory

only’ (participants can only hear the speaker), ‘audiovisual’ (the speaker can

be heard and seen), ‘McGurk’ (auditory /p/ dubbed onto visual /k/, expected

percept /t/), and ‘visual only’ (participants can only see the speaker).

We expect that the aphasic participants will be both slower and less accurate

than the non-brain-damaged participants in the ‘auditory only’, the ‘visual

only’, and the ‘audiovisual’ conditions. As the influence of speechreading on

processing has proven beneficial (Buchman et al., 1986; Shindo et al., 1991;

Schmid et al., 2009; Hessler et al., 2010), we furthermore expect higher accuracy

of the aphasic participants and shorter reaction times for both groups in the

‘audiovisual’ compared to the ‘auditory only’ condition.

Finally, based on the results of Klitsch (2008), we assume that the number

of McGurk answers will not differ between the aphasic and age-matched non-

brain-damaged control participants, although it may vary in extent between

individuals. The answer pattern is not expected to differ between both groups

either.
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The reaction times to the different answer types will be compared. Norrix,

Plante, and Vance (2006) investigated reaction times in a McGurk experiment

with healthy adults and adults with language learning disabilities (but no brain

damage). They found that the reaction times of both groups were longer when

a McGurk stimulus was presented than when congruent stimuli needed to be

processed. However, Norrix et al. (2006) did not analyze the results related

to the reported perception of the participants, but related to the presented

stimulus. It is therefore not clear whether this slow-down for the McGurk

stimuli was only present when participants experienced the McGurk effect. We

assume that not the stimulus type, but the percept accounts for the reaction

times, leading to longer reaction times when perceiving a fusion (thus giving a

McGurk-type answer) than when perceiving either the auditory or the visual

component of a McGurk-type stimulus, as only in the first case is audiovisual

integration necessary. Therefore we will not compare the reaction times to

different stimulus types, but to different percepts.

3.2 Methods

3.2.1 Participants

A total of 3 aphasic participants and a group of 14 control participants (7

female) took part in this study. All participants were native speakers of Dutch,

right-handed, and reported normal hearing. Vision was normal or corrected to

normal. The control participants were matched with the aphasic participants

for age (mean age 56; range 49-67) and region of origin. They had never

experienced neurological problems and had no (history of) language disorders.

The aphasic participants were tested by their speech and language ther-

apists with the Aachen Aphasia Test (AAT) for Dutch (Graetz et al., 1992).

The AAT consist of several subtests: (1) Token Test, (2) repetition, (3) written

speech, (4) naming, (5) language comprehension, and (6) spontaneous speech.

Subsequently participants were tested with three subtests of the PALPA

test battery (Bastiaanse et al., 1995): auditory discrimination of nonwords,

auditory discrimination of words, and grapheme naming. The first two tasks

served to assess auditory processing abilities. In both tasks pairs of nonwords

or words were presented, and the participant was asked to state whether stimuli
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were the same or different. This test was presented from tape, not allowing for

speechreading. The grapheme naming task was carried out in order to ensure

that the aphasic participants were able to identify speech sounds from written

letters, a capacity necessary in the design of the current study. Furthermore,

all aphasic participants also took part in an earlier study on phoneme discrim-

ination, where their abilities to discriminate between speech sounds differing

in various dimensions were tested with auditory and audiovisual presentation

(Hessler et al., 2010, see also chapter 2). The general description of the aphasic

participants and the results on the described tests are presented below.

Participant WB

WB is a 57 year old male who worked as a sales director until he had a left hemi-

sphere ischaemic CVA at age 45, 148 month prior to testing. He was diagnosed

with Wernicke’s aphasia. He had 37 errors on the Token Test and his scores for

repetition, written speech, naming, and language comprehension were 66/150,

58/90, 100/120, and 94/120 respectively. His spontaneous speech was judged

on a 0-5 scale as 3 (communicative ability), 5 (articulation & prosody), 4 (auto-

matic speech), 3 (semantic structure), 3 (phonemic structure), and 3 (syntactic

structure). WB had problems in both the auditory word and nonword discrim-

ination tasks: he scored 56/72 correct on the nonword discrimination task and

65/72 on the word discrimination. In both tasks his main problems were in

identifying differences, he hardly had any ‘false alarm’ responses. Problems oc-

curred mainly when the distinction was in voicing (3/12 correct for nonwords),

although he also exhibited problems in place contrasts (9/12 correct). Naming

of graphemes did not cause any problems: both upper- and lowercase letters

were correctly named in all cases.

In a previous study on nonword discrimination (Hessler et al., 2010), WB

exhibited problems in nonword discrimination especially for small differences

(in one phonetic dimension), which were most profound for voicing, but also

affected distinctions in place of articulation. He was overall better when speech-

reading was possible than with auditory stimulus presentation.

Participant EK

EK is a 48 year old male who has worked as an interim manager at different

businesses. EK presented with a deviance in the white matter of the brain

which was discovered 16 months prior to testing. He suffered from memory loss,

which affected the period prior to the onset. On the basis of the AAT the speech
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and language therapist diagnosed anomic aphasia. EK had 11 errors on the

Token Test and his scores for repetition, written speech, naming, and language

comprehension were 148/150, 85/90, 110/120, and 88/120 respectively. His

spontaneous speech was judged on a 0-5 scale as 5 (communicative ability),

5 (articulation & prosody), 5 (automatic speech), 4 (semantic structure), 4

(phonemic structure), and 5 (syntactic structure).

Discrimination of words was hardly impaired (70/72), but EK showed more

severe problems in discrimination of nonwords (58/72), where he had mainly

difficulties with distinctions in voicing (6/12), but also with place (10/12) and

manner (10/12) of articulation. He mastered grapheme naming with one error

for both upper- and lowercase letters. This is well within the normal range.

EK also participated in the discrimination study. He had problems with

distinctions in one and two phonetic dimensions, affecting all three dimensions

(voicing, place, and manner of articulation). His scores differed not much

between auditory and audiovisual presentation, indicating that he might not

benefit from speechreading. This could be due to his poor performance in

processing of seen speech: in a condition where only the articulatory movements

were visible, he showed a discrimination performance at chance level.

Participant JH

JH is a 51 year old female who is a housewife and cleaning woman. She suffered

from an ischaemic CVA in the left arteria cerebri media 44 months prior to

testing. She was diagnosed with mixed aphasia based on the AAT results.

She had 36 errors on the Token Test and her scores for repetition, written

speech, naming, and language comprehension were 100/150, 60/90, 89/120,

and 89/120 respectively. Her spontaneous speech was judged on a 0-5 scale as

2 (communicative ability), 5 (articulation & prosody), 5 (automatic speech), 3

(semantic structure), 4 (phonemic structure), and 2 (syntactic structure). She

also suffered from apraxia of speech.

She scored 66/72 and 67/72 on the PALPA tasks on nonword and word

discrimination, which is below the range of control participants who had been

tested with the same audio recording (cf. Klitsch, 2008). In the nonword

tasks she mainly made errors with distinctions in place of articulation. In the

word task the pattern was more balanced between place of articulation and

voicing distinctions. Grapheme naming was tested only for uppercase letters.

She scored 20/26 correct, although she occasionally substituted the letter name

with the sound it produces. The problems she experienced seemed to be caused
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by the apraxia of speech, rather than a problem in letter recognition.

In the discrimination study JH had problems with distinctions in one or two

dimensions, which were most profound for voicing distinctions. She performed

better when speechreading was possible than with auditory presentation only.

3.2.2 Materials

The testing materials consisted of 30 one-syllable nonwords with CVC(C) struc-

ture. They were spoken by a male native speaker of Dutch, who was video-

recorded in a quiet room with daylight. Additionally, a light diffuser was used

to avoid shading on the recorded material for optimal visual information. The

recorded frame included the lower part of the speaker’s face (from the lower

part of the nose), the neck, and the upper shoulders. For recording, a video

camera and separate cardioid microphone were used. The video was then digi-

tized into avi-files at a sampling rate of 48 kHz with 32-bit-stereo quantization.

All stimuli were edited with Adobe Premiere to form video files with a dura-

tion of 3 seconds each. As recording was done with 25 frames per second (i.e.,

duration of one frame is 40 ms), each file consists of 75 frames. The video

showed the speaker in rest (with a closed mouth) for 12 frames (480 ms) in

the end of each video. The resting phase in the beginning varied slightly to

ensure equal length of all videos. To warrant equal length of rest, the last or

first frame of the video was artificially prolonged, where necessary. The audio-

visual congruent video files were then further edited to derive the stimuli for

the other conditions. For the ‘auditory only’ condition the picture was taken

away, leaving the sound and a blank screen. In the ‘video only’ condition the

audio trace was deleted resulting in a video without sound. To establish the

McGurk items, video and audio traces from different recordings were dubbed

onto each other. Special attention was paid to the synchrony of picture and

sound. Neither the auditory and visual input nor the expected McGurk answer

comprised existing Dutch words.

As described above, the number of McGurk answers in Dutch was not ex-

pected to be high. This was not a major concern of the current study, as the

focus was on comparing the reaction times for different answer types. Nonethe-

less we decided to evaluate the McGurk items in a pilot study in order to include

the highest possible number of McGurk answers in the reaction time analysis.

A total of 16 native Dutch speakers, who were not involved in the project, took

part in the pilot study. McGurk items not provoking a ‘McGurk effect’ in any
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participant were re-edited (n=3). Finally the video files were converted into

‘Windows Media’ files (.wmv), reducing file size in order to guarantee smooth

running of the experiment without long delays for loading the files.

The stimuli used in this experiment are given in the appendix (cf. Tables

C.2.1 and C.2.2). Presentation of the stimuli occurred in four different condi-

tions: ‘auditory only’ (participants could only hear the speaker), ‘audiovisual’

(congruent information from hearing and seeing the speaker), ‘McGurk’ (au-

ditory /p/ dubbed onto visual /k/, expected percept /t/), and ‘visual only’

(participants could only see the speaker). The last served as a control condi-

tion to ensure that possible advantages in the ‘audiovisual condition’ were not

solely due to the visual information but rather to a fusion of auditory and visual

input. For each condition there were 30 stimuli. In the non-McGurk conditions

10 started with /p/, 10 with /t/, and 10 with /k/. The same rhymes were used

in all four conditions, however the distribution of the initial phoneme differed,

so that a syllable starting with /p/ in the auditory condition started with either

/t/ or /k/ in the visual and with the remaining phoneme in the audiovisual

condition. In the McGurk condition stems were presented with an auditory /p/

dubbed onto a visual /k/ as initial phoneme. Every rhyme was therefore used

with each phoneme and also every rhyme occurred in each condition. Further-

more, there was the same number of /p/, /t/, and /k/ responses in each of the

non-McGurk conditions. In order to avoid a disproportionately high number

of /t/-responses (because of the McGurk condition) 60 audiovisual congruent

fillers (30 beginning with /k/ and 30 beginning with /p/) were added.

Pilot study2

The McGurk stimuli were evaluated in a pilot study. They were presented

to 16 native Dutch speakers (12 female) for evaluation. The mean age of the

participants was 44.44 years (range 26-67). All participants, except one, were

right-handed and none were involved in the project. Three of them had heard

from the McGurk effect before, while the others were not familiar with it.

Video files were converted into flash format and displayed one by one on a

website. Participants were instructed to pay attention to what they hear and

what they see. They were required to write down what the speaker said for each

video file. Also they were asked to state possible problems they encountered for

2This description of the pilot study was not part of the original paper (Hessler, Jonkers,
& Bastiaanse, 2011) due to space restrictions, but is presented here, in order to provide
additional information about the materials that were used.
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each video file (such as noise or asynchrony). Overall, 50 stimuli were presented,

consisting of 30 McGurk items, 9 other dubbed stimuli and 11 audiovisual

congruent items to ensure variability in the answers. After the completion of

this task participants were re-directed to another website where they were asked

for some background information (age, gender, handedness, native language

and familiarity with the McGurk effect).

Overall, participants responded to the items with 29.58% McGurk answers

(range: 0% - 70%). The auditory part was provided in 24.17% of the responses

(range: 3.33% - 60%) and 32.08% resembled the visual part of the videos (range:

3.33% - 60%). The remaining 14.17% were other responses, for example the

syllable without the initial phoneme. When only considering the relevant age

group (participants older than 45, n=8) the values slightly change. Results

for all participants compared to only those older than 45 are shown in Figure

3.2. Values missing to form a hundred percent were other responses, mostly

not giving any initial consonant as well as some completely unrelated answers.

The individual results of the 16 participants and the results per item can be

found in appendix C.

The results from an item-based analysis were used for the quality control of

the material. Three items were re-analyzed and re-edited because none of the

participants showed a McGurk effect on them. Furthermore, another five items

were re-analyzed and/or re-edited because (one or two) participants reported

noise or asynchrony of picture and sound. On none of the items, more than

two participants stated problems in the video file.

3.2.3 Procedure

A nonword identification task was carried out. An identification task was

chosen rather than a repetition task to be able to include participants with

speech or language production difficulties. The participants watched videos of a

speaker pronouncing a syllable. Then they had to choose which of three written

syllables matched the video. It was ensured that all participants were able to

read the nonwords correctly. The task was carried out in the four conditions

described above: ‘auditory only’, ‘audiovisual’, ‘McGurk’, and ‘visual only’.

Items were presented on a laptop equipped with headphones and a response

box using the program E-Prime (Psychology Software Tools). Items were split

into two blocks, which were presented in separate sessions. Items of all four

conditions were displayed within those blocks in randomized order. It was

balanced between participants which block was displayed in which session.
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Figure 3.2: Percentage of occurrence per answer type for all participants and for only par-
ticipants above 45 years.

Participants could determine the interstimulus interval by requesting a new

item by pressing a button after seeing a fixation asterisk. The trial started with

a short display of a picture (500 ms), indicating the modality of the following

stimulus: ‘auditory’, ‘visual’ or ‘audiovisual’ (for ‘audiovisual’ and ‘McGurk’

condition). The indicator showed an ear for the ‘auditory only’ condition,

an eye for the ‘visual only’ condition or both for the ‘audiovisual’ condition.

This prepared the participants to direct their attention to either or both of

the modalities. Subsequently the video file was played. Then, the participants

saw a screen with three written syllables, from which they had to choose.

The alternatives always had the same rhyme of the syllable, but started with

/k/, /p/ or /t/. To avoid confusion for the aphasic participants these words

were written in different colors, corresponding to colors on the response box.

For reasons of consistency, /k/ was always red, appearing on top, /p/ was in

the middle and green, and /t/ was on the bottom and blue. The position

of the written syllable also related to the position of the matching button on

the response box.3 After the presentation of the video the participants had

3 While this approach is helpful in avoiding confusion, it could become a problem if a
participant has a response bias, preferring a certain position or color. This is not the case for
the non-brain-damaged participants nor for two of the aphasic participants. WB, however,
seemed to choose the phoneme /t/ more often than the others (56% of his answers started
with /t/, 28% with /p/ and 16% with /k/). It is not clear whether this is due to a bias,
however, because of circularity in the explanations: while the potential preference for /t/
can be explained by the fact that WB perceived syllables starting with /t/ most clearly
and therefore made least errors for these syllables, it could also be that he made least errors
because of an initial preference for /t/, the matching button or color. Therefore a bias cannot
be excluded for WB, but also cannot be proven. For all remaining participants it was clear
that there was no bias.
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5 seconds to answer by pushing the appropriate button on the response box.

Regardless of the type of answer (correct, incorrect, or no response) the next

item was presented, but again a fixation asterisk was shown first, indicating

that the participant could start the next trial. Before the actual experiment

started, five practice items were presented. Two of them were in the auditory

modality, one in the visual and two in audiovisual congruent. No practice item

was presented in the McGurk condition in order to avoid biasing the participant

for a certain answer. The participant got feedback on the practice items. If

required by the participant or if it was necessary to clarify the procedure,

the practice trials were repeated. During the experiment the answers and the

reaction times were recorded, and no feedback was provided.

3.2.4 Analysis

In the current study the results will be analyzed with regard to the assumptions

and questions introduced above. Different methods will be used to carry out

these analyses. Due to the different profiles in the pre-testing, the three apha-

sic participants will not be grouped, but discussed independently. Accuracy

and reaction times of each aphasic participant will be compared to the range

of the control group to examine possible differences between the aphasic par-

ticipants and the non-brain damaged control participants. A second analysis

will be concerned with the difference between conditions. Because of handling

data of individual participants, the nonparametric Wilcoxon test will be used

to determine whether conditions differ significantly from each other. For the

same reason, nonparametric tests (Friedman Anova and Wilcoxon test) will

be used when comparing answer types in the McGurk condition. The analy-

sis comparing the reaction times per answer type will be carried out with the

nonparametric Kruskal-Wallis test and post-hoc Mann-Whitney U tests, where

applicable. These are independent tests, but we will compare results produced

by the same individuals. However, as we will analyze answer types rather than

stimulus presentations, there is a different number of items in each category

and reaction times cannot be compared on the basis of pairs either. In order to

back up the findings from the Kruskal-Wallis tests, nonparametric correlations

(Spearman rank correlations) will be carried out as well. All reaction times

are included in the analysis, which means not only reaction times of correct

answers. However, the overview of the results (Table 3.1) also provides the

reaction times of correct answers as reference.
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3.3 Results

The accuracy of the non-brain-damaged control participants was at ceiling in

the ‘auditory only’ and ‘audiovisual’ condition. In the ‘visual only’ condition,

their performance did not reach ceiling. A comparison of the reaction times of

this group revealed that they reacted faster in the ‘audiovisual’ condition than

with ‘auditory only’ stimulus presentation (Z = -2.152; p<.05). The results of

the control group and the three individuals with aphasia can be found in Table

3.1. Individual results of the non-brain-damaged participants are provided in

the appendix (Table C.3.1).

Table 3.1: Results and reaction times in the ‘auditory only’, ‘audiovisual’, and ‘visual only’
conditions, for each individual aphasic participant and the group of non-brain-
damaged control participants. The reaction times for correct responses are given
in parentheses. The mean of the control group was calculated by averaging the
reaction times of all answers within the given condition, while the range reflects
the minimum and maximum average reaction time of individual participants in
the control group.

Initials
Auditory Only Audiovisual Visual

correct RT correct RT correct RT

WB 53% 2176ms (2078ms) 73% 1674ms (1628ms) 52% 1899ms (1535ms)
EK 59% 2718ms (2536ms) 76% 2516ms (2395ms) 24% 3189ms (3198ms)
JH 55% 2755ms (2756ms) 89% 2353ms (2259ms) 47% 2938ms (2763ms)

controls:
mean 99% 1462ms 100% 1422ms 78% 2177ms
range 90-100% 1085-1807ms 97-100% 1091-1786ms 67-93% 1674-2682ms
95% CI 98-100% 1347-1578ms 99-100% 1309-1534ms 74-82% 1985-2346ms

Within the McGurk condition there was a difference in prevalence of the

three answer types for the non-brain-damaged participants (χ²=30.964, df=2,

p<.001). Post-hoc analyses revealed that there were more visual answers than

auditory (Z=-2.548, p<.05) or McGurk-type answers (Z=-5.568, p<.001). Fur-

thermore, auditory answers were more common than McGurk-type answers

(Z=-3.079, p<.01). Reaction times differed between the three answer types

(χ²=27.405, df=2, p<.001). Participants reacted significantly more slowly

when giving a McGurk-type answer than when giving an auditory (U=4166,

p<.001) or visual (U=5601, p<.001) answer. There was no significant difference

between the latter two (U=12965.5, p=.948). The additional analyses with the

Spearman rank correlations showed comparable results: there is a significant

correlation between answer type (McGurk, auditory or visual) and the reaction

time for the control group (r=.201, p<.001). The results of the control group
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and the three aphasic participants in the McGurk condition are given in Table

3.2. The individual results of the non-brain-damaged participants can be found

in the appendix (Table C.3.2).

Table 3.2: Overview of answer patterns in the McGurk condition for the three individuals
with aphasia and the control group. The mean of the control group was calculated
by averaging the reaction times of all answers with the given answer type, while
the range reflects the minimum and maximum average reaction time of individual
participants in the control group.

Initials
McGurk (/t/) Auditory (/p/) Visual (/k/)

Incidence RT Incidence RT Incidence RT

WB 50% 1989ms 23% 2316ms 27% 2195ms
EK 18% 1912ms 46% 2061ms 36% 2297ms
JH 39% 2565ms 39% 2718ms 22% 2693ms

Controls:
mean 22% 2021ms 33% 1650ms 44% 1644ms
range 0-50% 1136-3048ms 0-100% 1125-2636ms 0-93% 903-3617ms
95% CI 12-32% 1868-2174ms 15-52% 1537-1762ms 26-63% 1544-1743ms

The aphasic participant WB had problems in all three conditions. His

accuracy was outside the normal range for auditory, audiovisual, and visual

stimulus presentation. His reaction times were larger in the auditory only and

in the visual only condition, but fell within the normal range in the audiovisual

condition. WB responded significantly faster in the audiovisual condition than

in the auditory only condition (Z=-2.293, p<.05). Furthermore he showed a

trend to higher accuracy, which failed to reach significance (Z=-1.604, p=.109).

In the McGurk condition, WB did not show a significant preference for either

answer type (χ²=3.800, df=2, p=.150). Moreover, the chosen answer type

did not influence the reaction time (Kruskal-Wallis: χ²=0.755, df=2, p=.686,

Spearman rank correlation: r=-0.161, p=.395).

EK showed both a lower accuracy and higher reaction times than the control

group in all three conditions. EK did not benefit from speechreading. Neither

his accuracy (Z=-1.155, p=.248) nor his reaction times (Z=-1.375, p=.202)

differed between auditory only and audiovisual stimulus presentation. In the

McGurk condition, there was no difference in the prevalence of the different

answer types (χ²=3.500, df=2, p=.174). Also, the reaction times were not

influenced by the given answer type (Kruskal-Wallis: χ²=0.419, df=2, p=.811,

Spearman rank correlation: r=-0.017, p=.930).

JH was both slower and less accurate than the non-brain-damaged control

group in all three conditions. Her performance was improved by speechreading.

She performed significantly more accurate (Z=-2.714, p<.01) and marginally
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faster (Z=-1.898, p=.058) in the audiovisual condition compared to the au-

ditory only condition. JH did not show a preference for either answer type

in the McGurk condition (χ²=1.786, df=2, p=.409). Furthermore, the chosen

answer type did not influence her reaction times (Kruskal-Wallis: χ²=0.603,

df=2, p=.740, Spearman rank correlation: r=-0.135, p=.494).

In summary, all three aphasic participants performed less accurate and

slower than the control group in the three conditions ‘auditory only’, ‘audiovi-

sual’, and ‘visual only’, except for WB, whose reaction time fell into the normal

range for the ‘audiovisual’ condition. Additional speechreading speeded up the

reaction times of the control group, WB, and JH, but not the reaction times of

EK. JH also showed a higher accuracy with speechreading possible, while only

a trend was found for WB. In the McGurk condition, the non-brain-damaged

control participants produced mainly visual answers, followed by auditory an-

swers and McGurk-type answers. None of the aphasic participants showed a

preference for either answer type. The reaction times of the non-brain-damaged

participants were influenced by the answer type they chose: reaction times were

largest when a McGurk-type answer was given. There was no influence of an-

swer type for either of the aphasic participants (see Figure 3.3).
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Figure 3.3: Reactiontime per answer type.
*: Mann-Whitney-U test, p<.05.
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3.4 Discussion

In the current study we investigated the processing of audiovisual speech in

three participants with aphasia and a group of non-brain-damaged control par-

ticipants. Several hypotheses were formulated and examined.

It was found that each of the aphasic participants performed worse in a

nonword identification task than a group of non-brain-damaged control par-

ticipants. This was true with ‘auditory only’ as well as ‘audiovisual’ stimulus

presentation. This outcome was expected as the aphasic participants were se-

lected on the basis of their accuracy on nonword discrimination, a task closely

related to the current research task.

With regard to the reaction times, it was found that in the ‘auditory only’

condition all three aphasic participants answered slower than the non-brain-

damaged control group. In the ‘audiovisual’ condition, however, the reaction

times of one of the aphasic participants, WB, was within the range of the

control group. Additional speechreading in this condition apparently provided

sufficient information for him to increase his processing speed up to a normal

level. The other two aphasic participants were, again, slower than the non-

brain-damaged group in this condition. In the McGurk condition, there were

three answer types possible. The patterns and reaction times for each chosen

answer type will be discussed below.

One of the central questions of this study concerned the effect of speechread-

ing on the perceptive abilities of the aphasic participants. In a previous study,

it was shown that nonword discrimination improves when speechreading is pos-

sible (Hessler et al., 2010). Hence, we expected that the aphasic participants

would benefit from additional visual information in an identification task as

well. We compared their scores and reaction times in the ‘auditory only’ and

‘audiovisual’ condition. The later allowed for speechreading while the first

only provided the auditory speech signal. WB and JH showed improved per-

formance (higher accuracy for JH and faster processing for WB and JH) with

speechreading than without, while no significant difference between the condi-

tions was found for EK. Schmid and Ziegler (2006) also reported a group of

aphasic participants that did not benefit from speechreading. They performed

comparably in the auditory and the audiovisual condition of a discrimination

task. While the authors assume that in those cases a stage of phonological

processing was affected at which auditory and visual information have already

been integrated, it seems more likely that EK had a problem in gaining infor-
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mation from speechreading: he was also particularly impaired in the ‘visual

only’ condition, where he had only 24% correct answers. This is performance

at chance-level. This explains why he did not perform better in the ‘audio-

visual’ than in the ‘auditory only’ condition. In the ‘visual only’ condition,

accuracy was lower and reaction times longer than in the ‘auditory’ condition

for each aphasic participant and also for the non-brain-damaged participants.

Therefore, the better performance in the ‘audiovisual’ condition did not solely

rely on information from speechreading, but rather the combination of audi-

tory and visual information. The difference between the ‘auditory only’ and

the ‘visual only’ condition was larger for the non-brain-damaged participants

than for either of the aphasic participants. This is not due to the fact that the

aphasic participants do exceptionally well in the ‘visual only’ condition, but

can be explained by their poor performance in the ‘auditory only’ condition.

The group of non-brain-damaged participants scored at ceiling in the ‘audi-

tory only’ condition, so only reaction times were compared for this group. They

showed faster processing of audiovisual than of mere auditory information.

The decreased reaction times indicate that during processing all information

provided was used automatically and speechreading and auditory information

were integrated to speed-up processing. This supports previous reports that

speechreading is not only beneficial when the auditory signal is disturbed but

also in other contexts, such as cognitively demanding contents (Reisberg et al.,

1987).

The ‘McGurk’ condition was analyzed with regard to the answer patterns of

the participants. Within the group of non-brain-damaged control participants

a difference between the prevalence of answer types was found. Visual answers

were most common, followed by auditory answers that in turn were more com-

mon than McGurk-type answers. However, this is only true when looking at

the non-brain-damaged participants as a group. The individual data given in

Table C.3.2 in the appendix, show that different kinds of patterns exist: par-

ticipants can have a preference for either answer type (see participants C4 and

C8 for a strong preference for auditory or visual answers and participant C11

for a less extreme preference of McGurk answers) or a rather mixed pattern

(see participant C7). The majority of the control participants, however, show

a preference for a visual answer. Generally, a rather low number of McGurk

type answers were given by the non-brain damaged control participants.

The strength of the McGurk effect differs between languages. Unlike the
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original findings for English (McGurk & MacDonald, 1976), the McGurk effect

seems less strong for Dutch and German (De Gelder et al., 1995; Grauwinkel &

Fagel, 2006; Klitsch, 2008). Another aspect potentially explaining the rather

weak McGurk effect in the current study is that voiceless stops were used.

McGurk and MacDonald (1976) found a weaker effect for voiceless (81%) than

for voiced stops (98%). However, the Dutch phonological system does not

include the sound /g/, which precludes using voiced stops when testing the

McGurk effect in Dutch participants. While the rather low incidence of McGurk

answers might be judged problematic, it does not influence the main concern

of the current study, as this examined the reaction time patterns per answer

type.

The aphasic participants show diverging patterns, with inter-individual vari-

ances. However, none of them preferred visual answers. Although this is op-

posed to the general pattern of the control group, the results of the aphasic

participants resemble those of individual members of the control group. Dif-

ferences in response patterns are quite common. The McGurk effect has been

described as a phenomenon with large inter-individual differences (cf. Schwartz,

2010). Interestingly, WB and JH show only a small number of visual answers

although they benefit from speechreading. Nonetheless they did not develop a

bias for visual information.

The reaction times in the McGurk condition were analyzed in relation to the

chosen answer type. For the non-brain-damaged participants, reaction times

differed depending on what answer type was chosen. Their reaction time was

the longest when they gave a McGurk type response. This could reflect addi-

tional resources necessary when a fusion of auditory and visual information is

perceived. None of the aphasic participants showed a slow-down when giving a

McGurk type answer. The performance of the aphasic participants is therefore

not only quantitatively different (they reacted slower in all conditions, except

for WB in the audiovisual condition) but also qualitatively different, which can

be seen in the diverging patterns. In the following sections we will provide two

different accounts for these findings, one based on the experimental findings of

Soto-Faraco and Alsius (2007, 2009), the other based on the adapted TRACE

model (Campbell, 1988, 1990).

Soto-Faraco and Alsius (2007, 2009) argued that their participants had con-

scious access to the unimodal information, and thus processed the auditory and

visual information separately before integrating them to a McGurk percept.
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This finding can explain the slow-down that the non-brain-damaged partici-

pants experienced: reaction times were slower due to processing two layers, the

unimodal and the integrated input. We assume that the aphasic participants

relied solely on multimodal processing, not gaining access to the underlying

unimodal information, and therefore do not show a slow-down in processing

compared to the other conditions. However, this hypothesis still needs to be

tested, as we did not record whether participants had access to unimodal in-

formation in the current study. In a future study the research as carried out

here could be combined with an additional task as described by Soto-Faraco

and Alsius (2007, 2009), asking the participants to judge the synchrony of the

stimuli. The results of this judgment may indicate whether aphasic partici-

pants indeed do not access the unimodal information of stimuli prior to fusion

unlike non-brain-damaged control participants.

However, the diverging reaction time patterns can also be explained in terms

of the adapted TRACE model (Campbell, 1988, 1990). If it is assumed that

individuals can weigh activations from distinct input types differently, this ac-

counts for the preference of different answer types. While some participants

might value visual information more than auditory, others might have the op-

posite preference. As explained in the introduction, there is excitation (both

bottom-up and top-down) between levels and inhibition within a level. This

means that the auditory input matching /p/ activates features that in turn

activate the /p/ on the phoneme level, which consecutively activates the values

of other features matching /p/ as well. This inhibition is supportive in cases

where the input is consistent, as it helps to reach threshold activation faster.

However, in the McGurk stimuli the visual input does not match and therefore

values of the seen features are activated that match /k/. The auditory input

(via the phoneme level) and the visual input therefore activate different values

of the same feature. Due to the inhibition principles, different values of one

feature try to inhibit each other. This inhibition could play an important role

with regard to the reaction times found. The mutual attempts to inhibition

might delay the activation of the following processing level, the phoneme level.

However, this would only be the case whenever there is no preference for either

type of input. In the cases where subsequently a visual or auditory answer is

given, there might have been an initial preference for this type of input, ne-

glecting the other input type and therefore not causing a multimodal inhibition

clash.
A reason why aphasic listeners did not suffer from a slow-down could then
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be that the inhibition (at least) on feature level is not working properly. A

lack of inhibition on the lexical-semantic level of language comprehension has

been reported for participants with aphasic speech perception deficits (Wiener,

Connor, & Obler, 2004; Janse, 2006; Yee, Blumstein, & Sedivy, 2008). If a

similar deficit applies to the feature level, activation is passed on to the next

level without clashing inhibition. Therefore all answer types would be equally

slow.

3.5 Conclusions
In the current study, we investigated audiovisual processing in aphasic and

non-brain-damaged participants. It was found that the aphasic participants

were generally slower and less accurate in identifying stimuli presented audito-

rily or audiovisually than non-brain-damaged participants. Two out of three

aphasic participants reached higher accuracy and faster reaction times in the

‘audiovisual’ than in the ‘auditory only’ condition, indicating the beneficial in-

fluence of speechreading. Within the non-brain-damaged control group, faster

reaction times were also found for the ‘audiovisual’ than the ‘auditory only’ con-

dition. This proves the notion of primary multimodal processing. Regarding

the ‘McGurk’ stimuli we found that, while the answer patterns differed slightly

between the aphasic and the non-brain-damaged participants, we could find a

difference especially in the reaction time patterns. Not only a quantitative, but

also a qualitative difference was found. While non-brain-damaged participants

reacted more slowly when they were subject to the McGurk illusion, this did

not hold for the aphasic participants. We argued that while in undisturbed

processing the listener has conscious access to the unimodal information, this

might not be true for the aphasic participants. This extra processing layer

might cause the slow-down in the group of non-brain-damaged participants.

These findings add to the understanding of multimodal speech processing in

aphasia. While previous studies found no qualitative differences in processing

(Klitsch, 2008), we refined the methodology in the current study and found

different processing patterns. These differences need to be further analyzed

to specify the exact steps of audiovisual processing in which the aphasic par-

ticipants differ from the non-brain-damaged controls. Follow-up research, for

example using event-related potentials, can answer this question. Once it is

determined at what point exactly processing is disturbed, treatment can be

developed to address the problems more specifically and more effectively.



CHAPTER 4

Event-Related Potentials

While the studies reported in the previous chapters employed offline behavioral

techniques (combined with reaction times) only, chapters 5 and 6 report studies

which make use of the neurophysiological online technique ERP (event-related

potential). ERPs are calculated from recordings of the electroencephalogram

(EEG). With the help of this technology, the brain processes involved in speech

perception will be investigated. Therefore, not only the results of processing

can be analyzed, leading to offline measures, but also information of the online

processing is gained. This can provide insights over the actual processing

steps that are impaired in aphasia. This chapter provides background of the

technique and the components relevant in the current research.

4.1 From EEG to ERP

The variations of electrical activity of the brain can be measured with a tech-

nique called electroencephalogram (EEG). This has been reported for the first

time for humans by Berger (1929). During an EEG recording, the changes in

voltage between at least two electrodes are measured. These are amplified be-

fore they can be analyzed further. The output of the amplifier shows a pattern

73
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of variation in voltage over time. The amplitude can vary between -100 and

+100 µV. The frequency ranges up to 40 Hz (Coles & Rugg, 1996). The EEG

itself does not give information about cognitive processes, however it allows to

judge the alertness of participants and serves for clinical diagnostic purposes, for

instance diagnosing epilepsy. In order to investigate cognitive processes, such

as language comprehension, the EEG needs to be linked to events, for example

stimulus presentations. Then, the so called ‘event-related potentials’ (ERP)

are measured. However, the brain produces random spontaneous background

activity next to the relevant, stimulus-related activity. In order to isolate the

stimulus-dependent activity, many stimuli of the same kind are presented and

the activities linked to them are averaged. This averaging process removes the

random activity and leaves the stimulus dependent activity, as the latter is

constant during all trials of the same kind. A sketch of the recording of ERPs

is given in Figure 4.1.

CZ

PZ

Amplifier

Ongoing EEG

S S S S S

S = Stimulus 1 sec

signal averaging

ERP

0 0.5 1 sec

5µV

-5µV

Figure 4.1: Sketch of ERP measurement, adapted from Hillyard and Kutas (1983): The
activity is recorded from the scalp followed by amplification to yield the ongoing
EEG with stimulus markers. The EEG is averaged over numerous repetitions
based on the markers, resulting in the event-related potential.

The measured activation is generated by the post-synaptic (dendritic) activ-
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ity of a substantial population of neurons, which must be synchronously active

and in a certain configuration in order to yield measurable electrical fields.

That means that the neurons must be aligned in a parallel orientation so that

their individual fields add up to one dipolar field.1 When recording ERPs, it

must therefore be kept in mind that much of the neural activity is not measured

because it occurs in configurations which are not captured. For example, the

arrangement of neurons in the Thalamus does not lead to a dipolar field and

therefore prevents Thalamic activity from being recorded. Therefore, it is

certain that some functionally important neural processes cannot be detected

using the ERP technique (Coles & Rugg, 1996). While measuring brain activity

using ERPs reveals a considerable amount of information about the temporal

domain (e.g. order of processing), it does not provide information about the

location of this activity. Even although some activity can be specific to certain

measurement areas, these do not correspond to the adjacent cortical regions, as

activations generated in one area can be detected at distant locations. Source-

localization techniques have been developed to infer the source of a recorded

activity. These will, however, not be applied in the experiments reported here

and are therefore not further discussed.

4.1.1 Electrode location

ERPs are obtained by recording the difference in voltage between two electrode

sites, a measurement and a reference site. In the experiments discussed in this

thesis, two linked reference electrodes are used (called ‘common reference’), one

of them placed on either mastoid bone. At these sites, no relevant electrical

activity is recorded. The ERP per electrode is generated by first calculating

the mean voltage of all electrodes in relation to the ‘common reference’ and

then subtracting this mean voltage from each electrode’s activity, resulting

in recordings with respect to an ‘average reference’ (Lehmann, 1987). The

placement of the electrodes on the scalp is described by the ‘10-20 system’

(Jasper, 1958). An overview of this system can be seen in Figure 4.2.

The name ‘10-20 system’ relates to the placement of the electrodes relative

to the nasion, inion and pre-auricular points of the participant. The distance

from nasion to inion is measured and divided in parts of 10, 20, 20, 20, 20 and

10 percent (from front to back). That means that the first electrode is placed

after 10 percent of the complete length from nasion to inion. The next after

1A dipolar field consists of negative and positive charges between which a current flows.
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Figure 4.2: Schematic overview of the original 10-20 system and the electrode placement.
Electrodes in gray were not part of the original description by Jasper (1958).

another 20 and so on, leaving the last one exactly 10 percent away from the

inion. Thus, a total of five electrodes is placed on the central line from nasion to

inion. The same applies to the left-right dimension, where the distance between

both pre-auricular points is divided into segments of 10, 20, 20, 20, 20 and 10

percent. Again, the first electrode is placed after 10 percent of the complete

distance from one pre-auricular point and the last one will be 10 percent away

of the other pre-auricular point. The spaces in between are accordingly filled

with electrodes, adding up to a total of 21 electrodes. The electrodes are built

in caps, so that the location of most electrodes is automatically correct, when

the border electrodes (front, back, left, right, central) are correctly placed. In

modern electrode-caps the number of electrodes has been extended to 64 and

even 128. The naming of the electrodes reflects their relative position: the

electrode name starts with a letter, indicating the front- or backness of the

electrode: FP for the most frontal (frontal pole), F for the second (frontal),

C for the central, P for the parietal and O for the most posterior (occipital)

electrode. Electrodes that are located closest to the pre-audicular points on the

central and parietal rows are labeled T, as they lie above the temporal lobe.

The second part of the electrode name is either a lowercase ‘z’ for electrodes on
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the midline, an even number for electrodes on the right scalp side or an uneven

number for the left side. So, the midpoint of both the front-back line and the

left-right line is marked ‘Cz’, while ‘Fp1’ is a frontal left electrode and ‘O2’ a

posterior right electrode.

4.2 ERP components

The ERP outcomes are often described in terms of components. This raises the

question ‘What is an ERP component?’. ERP components have been defined

in different terms. Donchin, Ritter, and McCallum (1978) pursue a functional

approach to ERP definition. According to them, a component is defined by

a combination of its polarity, latency, scalp distribution and sensitivity to

characteristic experimental manipulations. The polarity of a component can

be positive or negative. The name of a component is usually depending on the

polarity (positivity or negativity) and its place in the ordering of components.

A P3 is the third positivity in the course of ERP-measures, while an N2 is the

second negativity.2 In some cases, the name is defined by other characteristics,

for example the name ‘left anterior negativity (LAN)’ is based on the scalp

distribution and the polarity of the component. One common approach to

isolate components is to subtract waveforms obtained in different experimental

conditions. The difference between the two waveforms is the component, which

is further attributed to the cognitive process present in one condition, but not

in the other (Coles & Rugg, 1996). The components relevant to the current

research will be discussed in the following sections.

4.2.1 Mismatch negativity (MMN)

The mismatch negativity (MMN) is an ERP-component specific to the auditory

modality, which is elicited by the automatic recognition of a deviating sound.

It was first reported by Näätänen, Gaillard, and Mäntysalo (1978) who used a

dichotic stimulus presentation task, in which the participants had to attend to

one ear and ignore the stimuli presented to the other. They were asked to push

a button when they heard an occasional deviant stimulus in the sequence of

identical tones in the attended ear. The deviant stimuli at both ears (regardless

2Terminology differs, however. While some authors prefer the notation described above,
others combine the polarity with the latency in milliseconds, leading to components as P300
and N200.



78 CHAPTER 4. EVENT-RELATED POTENTIALS

if attended or ignored) led to a negativity in the ERP at 100 to 200 ms latency,

which was not recorded for the standard stimuli. Näätänen et al. (1978)

concluded that it was not necessary for the emergence of this negativity that the

participants pay attention to the stimulus. They further argued, that the MMN

can be best displayed in a difference wave, in which the wave of the standard

sounds is subtracted from the wave of the deviants. According to Näätänen

(1995) the mismatch negativity has several cortical generators: a bilateral

auditory-cortex generator and a frontal cortex generator. He further assumes

that deviant stimuli activate further auditory cortex sources and maybe also

subcortical sources.

The MMN can be recorded as a response to any discriminable auditory

change. It is not only found in experiments with tones but also with lin-

guistically more complex material, like phonemes (Aaltonen, Niemi, Nyrke, &

Tuhkanen, 1987; Sams, Aulanko, Aaltonen, & Näätänen, 1990), when presented

auditorily. It has been reported (Näätänen, Paavilainen, Alho, Reinikainen, &

Sams, 1987) that there is an influence of the inter stimulus interval (ISI) on

the occurrence of the MMN. Shorter ISIs provoke larger MMNs. Böttcher-

Gandor and Ullsperger (1992) however found an MMN even with ISIs from 6

and 10 seconds. It is often claimed that the MMN is specific for auditory input.

However, there is evidence for a visual counterpart of the MMN: a negativity

in the N2 time window with a posterior localization (Pazo-Alvarez, Cadaveira,

& Amenedo, 2003).

The MMN is usually elicited in so-called oddball tasks in which a sequence

of auditory stimuli is presented to the participants. Within this sequence one

of the stimuli occurs frequently (e.g. 90%). This is called the ‘standard’. The

stimulus (or stimuli) occurring in the remaining instances are called ‘deviant’.

While the 90-10 distribution of stimuli is the standard distribution, also other

distributions have been successfully applied. Deacon, Nousak, Pilotti, Ritter,

and Yang (1998) explored different distributions. They showed that also a

distribution with 70% standards and three deviants of 10% each did not result

in a different MMN than those of the 90-10 distribution. They concluded

that it is not the global probability of all deviants, but the probability of each

individual deviant that is important for the generation of the MMN.

A distinction has been made between passive and active oddball tasks.

In a passive oddball task, participants pay no attention to the stimuli, but

read a book, watch a silent movie or do another non-auditory task. Auditory
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Figure 4.3: Prototypical MMN to tonal stimuli. By convention, negativity is plotted upward
and positivity downward. Depicted are waveforms typically resulting from
standard and deviant stimuli. The deviant stimuli provoke a more negative
waveform than the standard stimuli, known as the MMN.

stimuli are presented to either both ears or only one ear. Sometimes, the

participants are asked to attend one ear only. In passive oddball tasks only the

mismatch negativity is elicited. Figure 4.3 displays a prototypical MMN as can

be recorded to differences in pure tone pitch.

In active oddball tasks, participants are requested to attend to the stimuli.

There are different tasks associated with the active oddball paradigm, such as

counting the number of deviant stimuli or pushing a button when encountering

one. In active oddball tasks, it is also possible to measure the MMN, but the

attentional processes are reflected as well. Therefore, the difference between

standard and deviant stimuli also elicits a N2b (negativity around 200 ms) and

a P3 (positivity around 300 ms) (Näätänen, Simpson, & Loveless, 1982). The

two attention-related components, N2b and P3, will be discussed in more detail

in the following section.

It can be argued that motor activation influences the signal in those active

oddball tasks that require pushing a button. It is the case that only for

detected deviants a button is pushed and thus motor action is carried out.

Sams, Paavilainen, Alho, and Näätänen (1985), however, showed that there

is no influence of the additional motor action. They conducted a study in

which two active oddball designs were compared: in the first set-up, deviant

stimuli had to be counted (no motoric interference) and in the second, buttons
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were pushed upon encounter of a deviant stimulus. The MMN and the P3

did not differ between both conditions. The additional motor action did not

alter the results. Therefore effects found between standards and deviants in

the button-push set-up are not influenced by motor activity but rely solely on

the frequency of occurrence.

4.2.2 Attention related ERP components

As mentioned above, active oddball tasks elicit more components than their

passive counterparts. When processing an attended deviant stimulus the MMN

is followed by another negativity, the N2b (Näätänen et al., 1982). This com-

ponent is elicited by conscious discrimination tasks and shows an overlapping

distribution with the MMN. Unlike the MMN, the N2b is not only sensitive

to auditory, but also to visual deviants, if they are attended. The latency is

somewhat later for the N2b than the MMN, generally peaking around 200-

250ms. Novak, Ritter, and Vaughan Jr. (1992) report a MMN for pitch

contrasts after 139ms, followed by the N2b 204ms after stimulus onset. The

MMN and the N2b also differ slightly in their distribution: the MMN is largest

in the frontal electrodes while N2b is largest centrally (Novak et al., 1992).

The N2b is often followed by a large positive component, the P3 (Courchesne,

Hillyard, & Galambos, 1975). Although this association is quite strong, the

N2b can also occur without a P3, for example when discrimination was not

successful (Sams et al., 1985).

The P3 follows the N2b and has a latency of 300 to 600ms. Novak et al.

(1992) reported the P3 latency to be 342ms for the pitch contrast referred

to above. The P3 has a broad distribution, but it is largest at the parietal

electrodes. The P3, just like the N2b, is only elicited when the stimuli are

attended and occurs with both visual and auditory deviants. The amplitude of

the P3 is related to target probability: the smaller the probability to encounter

a deviant stimulus, the larger the amplitude (Duncan-Johnson & Donchin,

1977). The amplitude is also dependent on the effort devoted to the task.

Isreal, Chesney, Wickens, and Donchin (1980) therefore suggested that the P3

reflects the resources allocated to the task. However, the P3 amplitude is

smaller when equivocation (uncertainty about perception) increases, meaning

that the less sure the participants are about a deviant, the smaller the P3

becomes. According to Johnson (1984, 1986), the P3 amplitude is influenced by

probability (P), equivocation (E), and resource allocation (R) in the following
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manner:

P3 amplitude = E × (P +R)

The P3 is generated after stimulus categorization. Therefore the latency is

increased by manipulations that postpone stimulus categorization, such as

perceptual degradation of the stimuli (Luck, 2005). But the latency is not

dependent on post-categorization processes. Once the stimulus has been cate-

gorized, the latency is not influenced anymore (Kutas, McCarthy, & Donchin,

1977). Figure 4.4 shows the waveforms resulting from an active oddball task

with pitch difference, as described by Näätänen et al. (1978). A task like this

results in the three components described above: the MMN, the N2b and the

P3. Figure 4.4 also shows that the difference between the standards and the

deviants is important, not the absolute positivity or negativity.3
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Figure 4.4: Prototypical sequence of MMN, N2b and P3 in an active oddball task (with
pitch contrasts) as described by Näätänen et al. (1978). Depicted are waveforms
resulting from standard and deviant stimuli. The components elicited by the
deviant stimuli (MMN, N2b and P3) are marked in the figure.

3Note that the N2b has a positive absolute potential, however the deviant waveform is
more negative than the standard one.
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4.3 Phoneme processing in ERP studies

There are a number of aspects of phonological processing, which have been

addressed with oddball studies. With an active oddball design, Lawson and

Gaillard (1981) showed that the the peak latency and amplitude of mismatch

responses were influenced by the number of phonetic features differing between

standard and deviant. The N2 was found to be a good indication of phonetic

distance: the larger the distance, the shorter the latency and the higher the

amplitude of the N2.

Oddball designs have also been used to analyze processing differences of

voice onset time and place of articulation. Several studies reported a relation-

ship between the amplitude and/or latency of the MMN and the size of the

difference, but no effect of categorical processing has been found. This means

that the MMN changed continuously and did not show a larger effect at a

category border (Sams et al., 1990; Kraus, McGee, Sharma, Carrell, & Nicol,

1992; Sharma, Kraus, McGee, Carrell, & Nicol, 1993; Maiste, Wiens, Hunt,

Scherg, & Picton, 1995). Sharma and Dorman (1999) were, however, able to

find a category effect for a voice onset time continuum.

The MMN has also been used to investigate effects of innateness of phono-

logical contrasts: participants process native and nonnative contrasts differ-

ently (Dehaene-Lambertz, 1997; Rivera-Gaxiola, Csibra, Johnson, & Karmiloff-

Smith, 2000; Tsui, 2000; Kirmse et al., 2008), even when the participants are

advanced learners of a language, mastering the contrast in question (Peltola et

al., 2003). More details can be found in an extensive review of studies using

MMN paradigms to investigate phonological processing, but also non-speech

auditory processing and processing on higher language levels by Näätänen,

Paavilainen, Rinne, and Alho (2007)

4.3.1 Studies on audiovisual processing

Möttönen, Krause, Tiippana, and Sams (2002) conducted a magnetic encepha-

lographic (MEG) study with audiovisual stimuli, which were either congruent

or incongruent (where visual perception was supposed to influence auditory

processing). The incongruent stimuli differed only in the visual part from the

standard. In MEG, this kind of paradigm evokes a so-called ‘mismatch field’

(MMF), which is comparable to the MMN in ERP studies. Both congruent and

incongruent deviants elicited an MMF. However, this MMF to the congruent
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deviants had a larger peak amplitude than the MMF to incongruent deviants.

The MMF to the incongruent deviants, which differed only visually from the

standards, had a shorter latency than that elicited in a purely visual condition

without auditory input. This suggests that the interaction between auditory

and visual information accelerates the detection of deviants.

The McGurk effect, which comprises a specific auditory incongruity, has

also been studied with the ERP paradigm (e.g. Colin et al., 2002; Colin,

Radeau, Soquet, & Deltenre, 2004; Saint-Amour et al., 2007). Colin et al.

(2002) assessed the existence of an MMN evoked by McGurk percepts. The

participants were eight adults without language problems. The experiment was

carried out in three conditions of stimulus presentation: ‘auditory only’, ‘visual

only’ (only seeing the speaker’s articulatory movements) and ‘audiovisual’. In

the ‘auditory only’ and the ‘visual only’ conditions, the stimuli were formed

by the syllables /bi/ and /gi/. One of these syllables formed the frequently

occurring standard stimulus, while the other served as a deviant. Both syllables

were used equally often in both functions. The audiovisual standard stimuli

were syllables /bi/ or /gi/ with matching auditory and visual information.

The deviant stimuli in this condition were formed out of the same auditory

syllable as the standard but combined with different visual information (the

other syllable). Thus, in the deviant condition, speech and lips did not match,

eliciting a McGurk percept. Participants were not paying attention to the

stimuli but had to perform a tactile discrimination task while listening. An

MMN was found in the ‘auditory only’ condition and in the ‘audiovisual’

condition at the frontal midline electrode Fz. In the ‘visual only’ condition

no MMN was found (neither at Fz nor at the occipital midline electrode Oz).

In a follow-up study, Colin et al. (2004) extended their earlier (2002) results

to syllables with voiceless consonants. The design was similar. As in the

previous study, MMNs at Fz were evoked in both the ‘auditory only’ and

the ‘audiovisual’ (McGurk) condition. The authors concluded that there is

an MMN for voiced as well as voiceless consonants in the ‘auditory only’ and

the McGurk condition. As the visual mismatch within the McGurk condition

was not expected to elicit a MMN, the authors concluded that the auditory

perception of the participants was altered and therefore perceived as deviant

although the auditory part of the stimulus was not different from the standard.

Saint-Amour et al. (2007) used an oddball design to investigate the later-

alization of the McGurk-MMN. Eleven participants took part in this study.
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The experiment was carried out in two conditions: ‘visual only’ and ‘audio-

visual’. All participants reported effects influenced by speechreading in the

latter condition. The deviant stimuli were the auditory syllable /ba/ and the

visual syllable /va/, which lead to the perception of /va/.4 The standard

stimuli were made of an audiovisual congruent /ba/. There was no MMN for

the visual stimuli, but deviant and standard elicited different wave forms in

occipital, parietal and central regions. The visual activity was subtracted from

the audiovisual activity in order to avoid an overlay of it with the activity in

the McGurk condition. After a further subtraction of the standard-wave form

from the deviant-wave form, a typical MMN-like wave form was found at Fz.

No MMN was found in the occipital regions.

4.4 MMN and Aphasia

Speech perception in aphasia has also been addressed using oddball designs.

Aaltonen, Tuomainen, Laine, and Niemi (1993) investigated the abilities of

four aphasic participants to discriminate vowels. Two of them suffered from

posterior left hemisphere lesions and two from anterior left hemisphere lesions.

The stimuli were made up of vowels (/i/ and /y/) and tonal sounds, presented

in an oddball design. The participants were not attending the stimuli, but

watching a silent movie. The two participants with anterior lesions showed

MMNs both for the vowels and for the tonal stimuli. For the two participants

with posterior lesions, a different picture was found. They also demonstrated

MMNs for the tonal stimuli but not for the vowels. The authors give two

possible explanations for this pattern: either speech-specific mechanisms were

disturbed or the posterior region (where the patients had lesions) could be

necessary for the generation of an MMN for all complex sound stimuli.

In a single case study, Sharma, Kraus, Carrell, and Thompson (1994)

reported a similar pattern for an aphasic participant with a unilateral cortical

lesion due to left hemisphere frontal-temporal-parietal craniotomy. He showed

a normal MMN to pure tone pitch contrasts, but phonemic (place of articula-

tion) contrasts did not elicit an MMN. These MMN results also reflected the

behavioral performance in pitch and phoneme discrimination tasks.

4This is not the classical McGurk effect, but rather an effect of visual information
dominating the auditory information. Nonetheless, it has been referred to as McGurk effect
as well.
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Auther, Wertz, Miller, and Kirshner (2000) related the MMN responses

in aphasic adults to their comprehension abilities and site of lesion. In their

study, 17 aphasic participants suffering from left hemisphere lesions took part.

Their language comprehension level was evaluated by the Western Aphasia

Battery (Kertesz, 1982). Groups were formed according to the results in

the auditory subtest and the token test. Four of the participants in the

group with good comprehension were classified as having Broca’s aphasia,

three anomic aphasia and two conduction aphasia. Two participants with

good comprehension had suffered anterior lesions, one a posterior lesion and

the remaining six both anterior and posterior lesions. In the group with

poor comprehension, four participants were classified as having global, three

Wernicke’s and one Broca’s aphasia. Three of them had suffered posterior

lesions, one an anterior lesion and four of them a combination of posterior

and anterior lesions. The experiment was conducted with an oddball design,

involving the presentation of the syllables /ga/ and /da/ where /ga/ was the

standard and presented 90% of the time. The authors found an MMN occurring

in 89% of the participants with good auditory comprehension and only in 25% of

the participants with poor auditory comprehension. Again, this was related to

the site of the lesion. Good comprehension (and presence of MMN) was related

to lesions that spared the temporal lobe. This correlation was, however, not

perfect, as there was one participant with a temporal lobe lesion who showed

an MMN. These results support the earlier findings of the same group (Wertz

et al., 1998) that only 54% of the aphasic participants show an MMN to speech

stimuli (compared to 100% of the non-brain-damaged control participants) and

that the duration of an MMN is correlated to the comprehension abilities (as

measured with behavioral tasks).

In an extensive study, Csépe et al. (2001) analyzed MMN data of four

aphasic participants, two of these participants suffering from Broca’s aphasia

and two of Wernicke’s aphasia. One participant with either syndrome had

experienced a bilateral brain damage, the other an unilateral. Also, four

age-, gender-, and education-matched non-brain-damaged participants took

part in this study. The MMN was recorded for three conditions: contrasts

in pure tone pitch, vowels and consonant-vowel-syllables. For each condition

two deviant stimuli were created, which each occurred in 15% of all stimuli.

Therefore the standard was presented in 70% of all stimuli. In the pure tone

condition the standard was a tone of 1000 Hz, while the deviants were tones
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of 1050 respectively 1200 Hz. The standard vowel was an /e:/, the deviants

were /i:/ and /ø:/, resulting in a difference in one phonetic dimension (height

or rounding) between the standard and each deviant vowel. In the syllable

condition, the standard /ba:/ was contrasted with the deviants /ga:/ and /pa:/,

again exhibiting a difference in only one feature: place of articulation or voicing.

The authors reported that the pure tone MMN did not distinguish between non-

brain-damaged and aphasic participants. Furthermore, consonant contrasts

appeared to be more vulnerable than vowel contrasts. For two of the aphasic

participants (the Broca’s patient with unilateral lesion and the Wernicke’s

patient with bilateral lesion), there was a noticeable difference between the

MMNs to voicing and place of articulation contrasts: it was not present for

voicing, while it was found, though abnormal, for place of articulation. The

phoneme processing anomalies (as reflected by the MMN) correlated with

results of a nonword discrimination task, but not with the results of a word

discrimination task.

Jacobs and Schneider (2003) described a case of pure word deafness. The

aim of their study was to determine whether their patient was suffering from

pure word deafness or whether his problems had to be located at a pre-linguistic

level. One of the measures used to assess the problems and abilities of their

participant was an MMN study, as it is an objective tool providing information

of the discrimination abilities of the participant. It was found that the partic-

ipant showed an MMN for pitch difference (even on linguistic material), but

he did not exhibit an MMN when the change was phonetic (/da/ vs. /ga/).

In combination with the results of a wide range of other tests, the authors

concluded that their participant suffered from pure word deafness.

As can be seen from the previously described studies, problems in language

comprehension can be reflected by MMN, showing no or decreased (in dura-

tion) MMNs for phonetic differences while results did not differ from normal

performance for non-linguistic (pure tone) changes.

4.5 ERP studies in the current thesis

None of the components discussed above is specific to language processing.

Nonetheless, they all have been found to react to language related differences

as well. Therefore, the active oddball technique is a very appropriate tool

to assess phoneme processing in non-brain-damaged and aphasic participants.
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As described above, the oddball design has been applied to aphasia studies.

However, several questions remain. It is not yet clear whether the conscious and

the automatic processing of phonemic differences show comparable impairments

in aphasia. An active oddball design can reveal whether there is a difference

between the automatic brain response (measured with the MMN) and the

conscious processing (measured with button presses). Furthermore, the studies

investigating the influence of speechreading concentrated on undisturbed pro-

cessing. It is, however, interesting to address aphasic processing as well, as it

has been shown that aphasic listeners benefit from speechreading (see chapters

1-3). These issues will be addressed in the following two chapters. The investi-

gated topics will be introduced in detail in the respective chapters. Chapter 5

will report a study conducted with non-brain-damaged listeners. This will serve

to verify and extend previous findings on auditory and audiovisual processing

and the data will also function for comparison to the aphasic data, that are

reported in chapter 6.
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CHAPTER 5

Brain Correlates of Phonemic Processing and Audiovisual

Integration in Non-Brain-Damaged Participants

5.1 Introduction

Language comprehension involves various processing steps, of which the anal-

ysis and identification of phonemes forms the first that is specific for lan-

guage. Processing of phonemes, therefore, provides the basis of language

comprehension. Often when investigating these early phonemic processes,

only auditory processes are considered, while there is also an influence of

visual information. The articulatory movements of the speaker, when visible,

facilitate comprehension (see e.g. Sumby & Pollack, 1954; Reisberg et al.,

1987). In the current study, we investigate both auditory and audiovisual

processing. One of the central aims of this study is to examine the brain

activity related to audiovisual processing of different phonemic contrasts. This

will be done by using event-related potential (ERP) measures. We focus not

only on the pre-attentive discrimination process, but also on activity related to

conscious mismatch detection. Before going into more detail on the research

questions and the applied methods, we provide a background on audiovisual

89
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speech processing and discuss studies using the ERP paradigm.

Language processing has been described in terms of different models. One

of these is the TRACE model (McClelland & Elman, 1986). In this interactive

activation model of speech perception, several levels of processing are assumed:

a feature level, a phoneme level, and a word level. The three levels are fully

interconnected. Units within one level are connected via lateral inhibition.

Across levels, excitation takes places both bottom-up and top-down. In a

model like this, distances between phonemes are defined on the basis of the

feature values that differentiate them. The phoneme /p/ is, for example, closer

to the phoneme /t/ than to the phoneme /k/ as the values on the features

‘diffuse’ and ‘burst’ are much more similar for the first two.

However, speech is not only perceived auditorily but also visually (speech-

reading). Evidence for the importance of multimodal processing comes e.g.

from a study by Sumby and Pollack (1954), investigating speech perception

in noise. Resistance to noise was much higher when speech was presented

audiovisually rather than auditorily. More evidence in favor of multimodality in

speech perception was added by the findings of McGurk and MacDonald (1976).

Participants were presented with non-matching auditory and visual information

and had to report their perception. Instead of answering with the auditory

(/pa/) or the visual (/ka/) component of the stimulus, they frequently reported

a fusion: /ta/. Information gained through speechreading was combined with

the auditory information to form a percept, even though there was no necessity

(e.g. due to background noise) or instruction to depend on visual information.

This phenomenon is known as the ‘McGurk effect’.

Campbell (1988, 1990) extended the TRACE model to incorporate audio-

visual perception. The feature level has the same acoustic features as the

original model, but was extended to include the visually perceived features

‘mouth opening’ and ‘lip-shape’. All features can inhibit each other, regardless

of their input modality. Thus, the activation pattern of ‘lip-shape’ can inhibit

certain values of ‘diffuse’.

5.1.1 Event-related potentials (ERPs)

Speech perception can be investigated online with event-related potentials

(ERPs), studying neurophysiological activation patterns. Brain reactions to

phonemic distinctions and differences between auditory and audiovisual pro-

cessing can be investigated with an oddball design. In such a design, a sequence



5.1. INTRODUCTION 91

of stimuli is presented to the participants. Within this sequence, one of the

stimuli, the ‘standard’, occurs frequently (e.g. 90%). The stimuli occurring

in the remaining instances are called ‘deviant’. While the 90-10 distribution

of stimuli is the standard distribution, also other ratios have been successfully

applied (Deacon et al., 1998). A response to the deviants shows that listen-

ers perceive a difference and can be used to investigate what differences are

perceptible during phonemic processing.

The mismatch negativity (MMN) is an ERP-component which is elicited

by the automatic recognition of a deviating sound (Näätänen et al., 1978).

It peaks between 100 and 200ms after the stimulus onset and is largest at

frontal electrodes. It is not only found in experiments with tones, but also

with linguistic materials, like phonemes (Aaltonen et al., 1987; Sams et al.,

1990), when presented auditorily. It is often claimed that the MMN is specific

for auditory input. But there is also evidence for a visual counterpart of the

MMN: a negativity in the N2 time window. However, this negativity has a

more posterior scalp distribution, suggesting that the effects are generated by

different areas in the brain (Pazo-Alvarez et al., 2003).

In active oddball tasks, participants are requested to attend to the stimuli.

When processing an attended deviant stimulus, the MMN is followed by another

negativity, the N2b (Näätänen et al., 1982). This component is elicited by

conscious discrimination tasks and shows an overlapping distribution with

the MMN. The N2b is sensitive to auditory and visual deviants, if they are

attended. The peak latency is around 200-250ms. The N2b also differs from

the MMN in the distribution: the MMN is largest at the frontal electrodes

while N2b is largest centrally (Novak et al., 1992). Often the MMN and the

N2b are referred to together as the N2 (Luck, 2005).

The P3 follows the N2b with a latency of 300 to 600ms (Courchesne et al.,

1975). It has a broad distribution, but is largest at the parietal electrodes. The

P3, just like the N2b, is only elicited when the stimuli are attended and occurs

with both visual and auditory deviants. The amplitude of the P3 is related

to the stimulus probability (Duncan-Johnson & Donchin, 1977), the resources

allocated to the task (Isreal et al., 1980) and the uncertainty (equivocation) of

the participants (Johnson, 1984, 1986). The contribution of probability (P),

equivocation (E), and resource allocation (R) to the overall P3 amplitude was

formalized by Johnson (1984, 1986) in the following manner:

P3 amplitude = E × (P +R)
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None of the components discussed above is specific to language processing.

Nonetheless, they all have been found to react to phonemic differences as well.

Thus, the active oddball technique is an appropriate tool to assess phoneme

processing.

Phoneme processing in ERP studies

Phonological processing has been addressed with oddball studies. Lawson and

Gaillard (1981) showed with an active oddball design that the peak latency and

amplitude of mismatch responses were influenced by the number of phonetic

dimensions differing between standard and deviant. The N2 was found to be a

good indication of phonetic distance: the larger the distance, the shorter the

latency and the higher the amplitude of the N2. In this study, distinctions of

different sizes (different number of dimensions) were investigated, but contrasts

within one dimension were not looked at.

Processing differences of voice onset time and place of articulation have

also been analyzed in oddball designs. Several studies reported a relationship

between the amplitude and/or latency of the MMN and the magnitude of the

difference between standard and deviant on a ‘place of articulation’ continuum,

but no effect of categorical perception has been found. The MMN changed

continuously between different exemplars of the same phoneme and did not

show a larger effect at a phoneme border (Sams et al., 1990; Kraus et al., 1992;

Sharma et al., 1993; Maiste et al., 1995). Sharma and Dorman (1999) were,

however, able to find a category effect for a ‘voice onset time’ continuum.

Investigations of audiovisual processing have concentrated on the McGurk

effect and were done with passive oddball designs. Möttönen et al. (2002)

conducted a magnetic encephalographic (MEG) study with congruent and

incongruent audiovisual stimuli. The incongruent stimuli differed only in the

visual part from the standard. In MEG, this kind of paradigm evokes a so-called

‘mismatch field’ (MMF), which is comparable to the MMN in ERP studies.

Both congruent and incongruent deviants elicited an MMF which had a larger

amplitude for congruent than for incongruent deviants. The latency was shorter

for the audiovisual incongruent deviants than for purely visual stimuli without

auditory input. This suggests that the interaction between auditory and visual

information accelerates the detection of deviants.

Studies investigating the McGurk effect with the ERP paradigm aimed to

prove that the visual information alters auditory perception (e.g. Colin et

al., 2002, 2004; Saint-Amour et al., 2007). Colin et al. (2002, 2004) found
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that an MMN was evoked for both auditory and McGurk stimuli, although

the McGurk stimuli were auditorily identical to the standard. As the visual

mismatch within the McGurk condition was not expected to elicit an MMN,

the authors concluded that the auditory perception of the participants was

altered and therefore perceived as deviant although the auditory part of the

stimulus was not different from the standard.

Similar results were found by Saint-Amour et al. (2007) in an oddball study

with visual and audiovisual stimuli. The deviant stimuli were the visual syllable

/va/ and the incongruent audiovisual syllable /ba/[va] (auditory /ba/ dubbed

on visual syllable /va/), which lead to the perception of /va/. The standard

stimulus was the syllable /ba/ (either visual or audiovisual congruent). There

was no mismatch response for the visual stimuli, but ongoing visual activity for

standards and deviants. The visual activity was subtracted from the audiovi-

sual activity in order to avoid an overlay of the response to the visual processing

in the McGurk condition. A typical MMN was found at Fz. However, since

there was no direct comparison with the auditory MMN, it is not clear whether

the effects are in fact identical.

Most of the studies reported above were carried out with passive oddball

tasks and focused on automatic processes. In the current study, we will extend

the paradigm to an active oddball design, in order to investigate also conscious

processing. This will provide valuable additional information, such as the

response times and the accuracy rates per stimulus type. Furthermore, false

alarms (for the standards) and misses (for the deviants) can be excluded from

the analysis.

With the design adapted in the way described above, we aim to address the

following issues:

(1) We will investigate whether the amplitude of any of the ERP responses

to a phonemic deviant depends on the size of the mismatch, as has been

reported for the processing of tones. The difference between standard and

deviant will be within the dimension ‘place of articulation’, regarding the

features ‘diffuse’, ‘acute’ and ‘burst’, as they were defined in the TRACE

model (McClelland & Elman, 1986).

(2) Furthermore, we will study the integration of auditory and visual informa-

tion. With the use of both congruent and McGurk type deviants, we will

investigate whether the activity related to the integration of incongruent
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audiovisual information is similar to the activity for audiovisual integration

of congruent stimuli.

(3) Finally, we want to find out whether brain responses represent the in-

tegration of auditory and visual information by looking at audiovisual

processing of congruent information. We will evaluate whether the response

to audiovisual processing is more than a mere addition of the brain waves

to auditory and visual processing.

5.2 Methods

In order to address the issues stated above, an active oddball experiment

was carried out in four different variants: ‘pure tones’, ‘auditory syllables’,

‘visual syllables’ (videos of articulatory movements), and ‘audiovisual syllables’.

Participants were asked to identify infrequent deviant stimuli in a series of

repeating standard stimuli.

5.2.1 Participants

Thirteen native speakers of Dutch (nine female) participated in this study after

giving their informed consent. None of them reported neurological, language or

hearing disorders. Vision was normal or corrected to normal in all individuals.

All participants were right-handed. The mean age was 59 years (range 45-69).

5.2.2 Materials

In the first three sub-experiments a sequence of standard stimuli and two

deviant stimuli was presented. There were 800 repetitions of the standard

stimulus (80% of all stimuli) and 100 repetitions of each deviant (each 10%

of all stimuli). In the audiovisual sub-experiment, a McGurk type deviant

was added. Therefore, there were three deviants, each of which occurred 100

times (6.66% of all stimuli). The standard was repeated 1200 times, forming

80% of stimuli. This way the proportion of standards and deviants, as well

as the number of items for each deviant type, were kept constant across sub-

experiments.

The stimuli in the ‘tones’ sub-experiment were generated with the computer

program Praat (Boersma & Weenink, 2009). The standard stimulus was a pure
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tone of 1000Hz, the deviant stimuli were pure tones of 1050Hz (near deviant)

and 1200Hz (distant deviant). They were presented auditorily while displaying

a white screen with a fixation cross in the middle to minimize eye movements

during trials.

The stimuli in the remaining three sub-experiments were the standard /pa/

and the deviants /ta/ (near) and /ka/ (distant) as these syllables differ in only

one dimension (‘place of articulation’) and are the ones involved in the McGurk

effect. As described above, /pa/ and /ta/ are distinguished by the features

‘acute’ and ‘burst’, while the distinction between /pa/ and /ka/ is based

on differences in ‘acute’, ‘burst’ and ‘diffuse’. Overall, the distance between

the latter two is larger. In the audiovisual sub-experiment, an audiovisual

incongruent syllable, eliciting the McGurk effect (auditory /pa/ dubbed on

visual /ka/) was added.

The syllables were spoken by a male native speaker of Dutch, who was

video-recorded in a quiet room with daylight. Additionally, a light diffuser was

used to avoid shading on the face for optimal visual information. The recorded

image included the lower part of the speaker’s face (from the lower part of the

nose), the neck and the shoulders. For recording, a video camera and separate

cardioid microphone were used. The video was then digitized into avi-files at

a sampling rate of 48 kHz with 32-bit-stereo quantization. All stimuli were

then edited with Adobe Premiere to form video files with a duration of 800ms

each. As recording was done with 25 frames per second (i.e. the duration of

one frame is 40ms), each file consisted of 20 frames. The video showed the

speaker in rest (with a closed mouth) for 6 frames (240ms) in the beginning of

each video (baseline for movement). The initial preparatory movements of the

mouth lead the sound onset by 200ms, on average (range: 180-220ms).

In the ‘auditory syllables’ sub-experiment, the stimuli were presented with

a white screen with a fixation cross replacing the speakers face. In the ‘visual

only’ sub-experiment, the videos were played without sound, showing only the

articulatory movements of the speaker. In the ‘audiovisual’ sub-experiment,

both sound and articulatory movements were presented. The sound and artic-

ulatory movements were congruent for the standard and two of the deviants

and were incongruent for the McGurk deviant.
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5.2.3 Procedure

The experiment was set up as an active oddball task. Standard and deviant

stimuli were presented in a semi-randomized order: each deviant was preceded

by at least three and maximally five standards. Stimuli were presented with a

stimulus onset asynchrony of 1500ms. Participants were instructed to pay close

attention and press a button whenever they detected a deviating syllable. They

were told that the first stimulus was a standard which would occur frequently.

In a short practice trial, the procedure was illustrated. Response times and the

number of correct detections were recorded. Furthermore, it was automatically

recorded if the onset of the video was delayed, which occurred rarely, when the

presentation program could not access the rather large video files in time.

All sub-experiments were split into four blocks to ensure that continuous

recording time did not exceed 10 minutes, because it has been shown that the

MMN decreases due to habituation after 10 minutes (McGee et al., 2001). Also,

the participants needed to pay attention to the stimuli, which made regular

breaks necessary.

Testing was carried out on two different days. Two blocks of each sub-

experiment were presented per day. All participants started with the two blocks

of the ‘tones’ sub-experiment. The order of the other sub-experiments was

balanced between participants and recording days.

The volume of the stimuli was kept constant for all participants at 65dB.

The screen refresh rate and the triggers sent to the EEG for segmentation were

measured and compared with an oscilloscope. There was alignment between

the refresh rate and the triggers, ensuring synchrony of the video onset with

the trigger.

5.2.4 EEG recording and analysis

A 64-electrode elastic cap (Electro-Cap International) with tin electrodes was

used to record the EEG. Reference electrodes were placed on both mastoid

bones. A ground electrode, placed on the sternum, served as common reference.

Bipolar horizontal and vertical electrooculograms (EOG) were recorded and

used to correct for eye movements.

The mean impedance over all participants of the different electrodes varied

from 2KΩ to 6.5KΩ. The impedance of individual electrodes per participant

was kept below 10KΩ, with a few exceptions. The highest impedance of
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an electrode included in the analysis was 17KΩ, for one electrode of one

participant. EEG and EOG signals were recorded with Brain Vision Recorder

(Brain Products GmbH) and sampled at 250Hz.

The analysis of the EEG data was done with Brain Vision Analyzer 1.05

(Brain Products GmbH). In a first step, both recordings of one participant were

combined to one dataset. The reference during recording was an average of all

electrodes; the data were re-referenced off-line with the two mastoid electrodes

as reference. The data were furthermore filtered with a low cut-off point of

0.1Hz and a high cut-off point of 50Hz. Ocular correction for blinks was carried

out using the Gratton-Coles method. Semi-automatic artifact rejection was

applied with the following automatic parameters: maximum voltage change

on a single step was 50µV, maximum difference in values within 200ms was

200µV and the maximal amplitude was 200µV. All segments were inspected

and additional irregularities were marked as artifacts. So as not to include

more standards than deviants in the statistical comparison, only standards

directly preceding a deviant were included in the analysis. These were also

the standards which were most prototypical, as they are always preceded by

at least two other standards. Trials with a delay in video presentation were

excluded from the analysis, as were trials where the participants made errors

(i.e. missed a deviant or responded to a standard). For all analyses, a baseline

was set from 200ms before stimulus onset until the onset itself. Individual

averages were calculated and served as a basis for the grand averages. An

additional high cut-off filter of 10Hz was applied to the grand averages for use

in figures only.

In the ‘tones’ and ‘auditory syllables’ sub-experiments, the onset was the

beginning of the sound. The time windows investigated were from 120 to

160ms after sound onset for the MMN, between 200 and 240ms for the N2b

and from 360 to 400ms. For the ‘visual only’ sub-experiments the same intervals

were used, but taking the onset of visual differences as starting point. In the

‘audiovisual’ sub-experiment, the target onset (0) is the auditory onset which

lags behind the visual onset by 200ms. The intervals were chosen with reference

to the auditory onset and are equivalent to those reported above. With regard

to the visual onset they are between 320-360, 400-440 and 560-600ms.

For all analyses, nine regions of interest (ROIs) were defined to evaluate

for scalp distribution (frontality and laterality, each with three levels). Each
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ROI consisted of two electrodes1 for which sufficient data were available after

removing stimuli with a video onset delay, incorrect answers and artifacts.

Electrodes in the left and right ROIs were mirrored (see Figure 5.1).

Figure 5.1: Position of the electrodes used in the current study. Electrodes marked in gray
were used in the analyses. Regions of interest are indicated by dotted lines for the
factors frontality (frontal, central, occipital) and laterality (left, midline, right).

For each time window, three-way repeated measures ANOVAs (3x3x3) were

carried out with the factors frontality (frontal, central, occipital), laterality

(left, midline, right) and stimulus type (standard, deviant1, deviant2). The

scalp distribution factors were only of interest if they interact with the fac-

tor stimulus type, so significant effects limited to these two factors will not

be reported. Whenever a main effect of stimulus type was found, pairwise

comparisons were carried out to determine which of the three types led to the

effect. While the test statistics and the significance value were calculated based

on degrees of freedom corrected for sphericity (Greenhouse-Geisser correction),

the uncorrected degrees are provided in this paper, for the sake of readability.

The behavioral results were analyzed with regard to the number of correct

answers per sub-experiment and stimulus type and the response times when

1Two electrodes per region of interest were selected because in midline regions maximally
three electrodes were available, with FPz being of rather poor quality, for a number of
participants. Therefore, in the other regions also only two electrodes were chosen. These
were the ones with best quality and, if possible, most ‘prototypicality’ for the region, for
example the most central for the central ROI (C3 rather than FC3 or CP3).
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detecting a deviant. Repeated measures ANOVAs with the factor ‘stimulus

type’ (standard, deviant1, deviant2, McGurk) were carried out with regard to

accuracy. Post-hoc pairwise comparisons were carried out when the ANOVA

yielded significant results. For the response times, repeated measures ANOVAs

with three levels of ‘stimulus type’ (deviant1, deviant2, McGurk) were carried

out, which were followed-up by pairwise comparisons if significant.

5.3 Results

5.3.1 Behavioral results

Both the accuracy and the response times were recorded for the detection of

the different deviants. For the standard, only accuracy can be reported, as the

correct response was to not push a button. Participants showed hardly any

false alarms, but missed some of the deviants. An overview of the behavioral

results is given in Table 5.1.

Table 5.1: Percentage correct and mean reaction times for the different sub-experiments and
stimuli. For McGurk stimuli, button pushes were counted as correct answers.

Condition

Standard Deviant 1 Deviant 2 McGurk deviant
(/pa/ (/ka/ or 1050Hz)

(/ta/ or 1200Hz) (/pa/[ka])
or 1000Hz)
% correct % correct RT % correct RT % correct RT

Tones 99.9% 94.3% 530ms 99.3% 450ms - -
Auditory Syll. 99.9% 74.7% 912ms 80.6% 909ms - -
Visual Syll. 99.9% 93.0% 701ms 96.9% 669ms - -
Audiovisual Syll. 99.9% 92.1% 784ms 96.1% 743ms 86.8% 782ms

The accuracy of the reactions of the participants differed per stimulus

type in the auditory (F(2,24)=15.312, p<0.001), the visual (F(2,24)=5.756,

p<0.05) and the audiovisual sub-experiments (F(3,36)=11.998, p<0.01), but

not for the tones sub-experiment (F(2,24)=1.605, p=0.229). Pairwise compar-

isons revealed that there are more errors for both kinds of deviant than for

the standards in the auditory sub-experiment (p<0.01, for both comparisons:

standard – deviant /ka/ and standard – deviant /pa/). The accuracy did

not differ significantly between deviant types (p=0.074). In the visual sub-

experiment, the pairwise comparisons showed a different pattern: the accuracy

for the standard is higher than for the deviant /ka/ (p<0.01), but does not

differ significantly from the deviant /ta/ (p=0.067). The number of correct



100 CHAPTER 5. BRAIN CORRELATES OF PHONEMIC PROCESSING

responses for the deviant /ka/ is also significantly lower than for the deviant

/ta/ (p<0.01). In the audiovisual sub-experiment, all pairwise comparisons are

significant on at least the 0.05 level. Accuracy is the highest for standards,

followed by the deviant /ta/, then the deviant /ka/ and is lowest for the

McGurk stimuli (when button pushes are counted as correct answer).

The deviants differed significantly from each other with regard to the

response times in the tones sub-experiment (F(1,12)=32.414, p<0.001) and

the visual sub-experiment (F(1,12)=16.951, p<0.001). The factor stimulus

type also influenced the response time in the audiovisual sub-experiment

(F(2,24)=13.731, p<0.01): reactions to deviant 2 (/ta/) were faster than to

both deviant 1 (/ka/, p<0.01) and the McGurk stimulus (p<0.01). The latter

two stimulus types did not differ from each other (p=0.811). In the auditory

sub-experiment, there was no difference in the response times to the deviant

stimuli (F(1,12)=1.066, p=0.322).

5.3.2 Pure tones

Figure 5.2 depicts the activity recorded in the ‘tones’ sub-experiment. In the

first time window both deviants evoked a more negative response than the

standard at the frontal and central electrodes. The effect is strongest at frontal

electrodes (see left panel of Figure 5.2. In the second time window, both

deviants elicited a more negative response than the standard at the central

electrode (see middle panel). In the third time window, both deviants show a

positivity at posterior electrodes, which is stronger for the more distant deviant.

MMN

N2b

Standard (1000 Hz)      , Deviant (1050 Hz)      , Deviant (1200 Hz)

P3

Fz Cz Oz
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Figure 5.2: ERP of the three stimuli in the tones condition. Displayed is the activity at the
three electrodes Fz, Cz and Oz. The intervals chosen for statistical analyses are
marked in the figure.
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MMN (120 to 160ms): A significant effect of stimulus type was found

(F(2,24)=25.674, p<0.001). Pairwise analyses revealed that both deviants

differed from the standard ( p<0.001, for both comparisons), but not from each

other (p=0.126). Furthermore an interaction of stimulus type and frontality

was found (F(4,48)=11.769, p<0.001): the effect is the strongest for frontal

electrodes.

N2b (200 to 240ms): In this time range, no main effect of stimulus

type was found (F(2,24)=0.833, p=0.445). There was, however, an interaction

between stimulus type and frontality (F(4,48)=8.176, p<0.01). This interaction

implied an effect of stimulus type limited to central electrodes. When analyzing

the central electrodes in a two-factor repeated measures analysis (stimulus

type by laterality), a main effect for stimulus type was found (F(2,24)=4.913,

p<0.05): both deviants differed from the standard (p<0.05, for both compar-

isons), but not from each other (p=.242).

P3 (360 to 400ms): A significant main effect of stimulus type

(F(2,24)=16.072, p<0.001) was found: there were significant differences

between the standard and the more distant deviant (1200Hz, p<0.001)

and between both deviants (p<0.01). Furthermore, there was a three-way

interaction between laterality, frontality and stimulus type (F(8,96)=3.658,

p<0.05). While the effect for stimulus type appeared to be largest in the midline

occipital region, there is clearly also an positive upswing visible at central

electrodes which partially overlapped with the N2b negativity. In the occipital

region, there was a significant main effect for stimulus type (F(2,24)=16.097,

p<0.001). Also, all three pairwise comparisons were significant (p<0.01, for

all three comparisons), indicating differences between the standard and both

deviants and between the deviants.

5.3.3 Auditory syllables

Figure 5.3 depicts the ERP activity for the auditory syllables. In the first

time window, no clear effect can be seen. In the second time window, there

is a negativity for both deviants in the frontal and central electrodes (left and

middle panels), which starts around 250ms for the frontal and around 200ms for

the central electrode. In the third time window, a positivity for both deviants

can be seen at all three locations, which appears larger for deviant /ta/ than

deviant /ka/ at frontal and central electrodes.

MMN (120 to160ms): No main effect of stimulus type was found
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Figure 5.3: ERP of the three stimuli in the auditory syllables condition. Displayed is the
activity at the three electrodes Fz, Cz and Oz. The intervals chosen for statistical
analyses are marked in the figure.

(F(2,24)=0.730, p=0.474).

N2b (200 to 240ms): The brain activity depended on the stimulus

type (F(2,24)=9.680, p<0.01). There was also an interaction of stimulus type

and frontality (F(4,48)=4.124, p<0.05): the effect is the strongest for central

electrodes. Post-hoc pairwise comparisons of the main effect revealed that both

deviants differed from the standard (standard - /ka/: p<0.05; standard - /ta/:

p<0.01), but not from each other (p=0.161).

P3 (360 to 400ms): We found a main effect of stimulus type

(F(2,24)=34.716, p<0.001): both deviants differed from the standard (standard

- /ka/: p<0.001; standard - /ta/: p<0.001). The effect was larger for the

deviant /ta/ than the deviant /ka/ (p<0.01). Furthermore, we found an

interaction of stimulus type and frontality (F(4,48)=4.313, p<0.05): the effect

is the strongest in frontal electrodes.

5.3.4 Visual syllables

Figure 5.4 depicts the activity related to the visual syllables. Throughout

the time windows, both deviants elicit far more positive waveforms than the

standard. Furthermore, the deviants also differ from each other: in the second

and third time window, the deviant /ta/ elicits a larger positivity than the

deviant /ka/. The figure also illustrates how early the positivity starts and

how long it lasts. This underlines the major effect that deviancy had in this

sub-experiment. Note that unlike the previous sub-experiments, there is a

clear event-related response during the baseline period related to visual input.
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This is due to the fact that the measurement was time-locked to the onset

of articulatory movement. The video, however, started earlier, showing the

speaker in rest for 240ms before articulatory movements set in, evoking an

event-related response to the visual input. Since the movement is part of the

same visual event, it did not evoke such clear early components as the initial

part of the event.

Standard /pa/        , Deviant /ta/       , Deviant /ka/
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Figure 5.4: ERP of the three stimuli in the visual syllables condition. Displayed is the activity
at the three electrodes Fz, Cz and Oz. The intervals chosen for statistical analyses
are marked in the figure.

MMN (120 to 160ms): In the MMN-time window, a main effect of

stimulus type was found (F(2,24)=8.119, p<0.01): both deviants differed from

the standard (deviant /ka/: p<0.01, deviant /ta/: p<0.05). Furthermore,

there was a three-way interaction between frontality, laterality and stimulus

type (F(8,96)=6.605, p<0.01), indicating that this difference was largest at left

frontal electrodes.

N2b (200 to 240ms): A main effect of stimulus type (F(2,24)=27.43,

p<0.001) and an interaction of stimulus type with laterality (F(4,48)=5.735,

p<0.01) as well as the three-way interaction between laterality, frontality and

stimulus type (F(8,96)=4.664, p<0.01) were found. The post-hoc pairwise

comparison of the main effect revealed that both deviants differed from the

standard (standard vs. /ka/: p<0.01; standard vs. /ta/: p<0.001). They

also differed from each other (p<0.05). The effect appeared largest at midline

electrodes.

P3 (360 to 400ms): There was a significant main effect for stimulus type

(F(2,24)=53.293, p<0.001). The interaction between stimulus type and later-

ality (F(4,48)=12.533, p<0.001) and the three-way interaction (F(8,96)=6.111,
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p<0.01) were also significant. They showed that the effect was strongest

occipitally around the midline. The post-hoc pairwise comparison of stimulus

type revealed that both deviants differed from the standard (p<0.001 for both

comparisons). The two deviants also differed significantly from each other

(p<0.01).

5.3.5 Audiovisual syllables

As can be seen from the visual sub-experiment, visual mismatches have an

effect in an active oddball task. The visual input leads the auditory by 200ms.

Therefore, in the time window where the visual deviance elicits a P3, the

auditory deviance elicits a negativity. This had to be taken into account

in the analysis of this sub-experiment. Therefore, the activity of the visual

stimuli was subtracted from the audiovisual stimuli (hereafter called ‘corrected

audiovisual’), to remove the visual mismatch effect. For the McGurk deviant

(visual /ka/, auditory /pa/), the activity of the visual deviant /ka/ was sub-

tracted. The remaining activity should then be due to the auditory part /pa/

or additional audiovisual integration activity. The reported intervals are based

on the onset of the auditory difference.

McGurk stimuli

For the evaluation of the McGurk effect, the comparisons were carried out with

three-way repeated measures ANOVAs with the factors frontality (3 levels),

laterality (3 levels), and stimulus type (4 levels: standard, deviant /ka/, deviant

/ta/, and McGurk deviant).

Fz Cz Oz

Standard /pa/[pa]            , Deviant /ka/[ka]           , Deviant /ta/[ta]           , McGurk deviant /pa/[ka]
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Figure 5.5: Difference waves (audiovisual - visual) for all four stimuli. Displayed is the
activity at the three electrodes Fz, Cz and Oz. The intervals chosen for statistical
analyses are marked in the figure.
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In Figure 5.5, the waves of all four stimuli are depicted. The McGurk

stimulus showed a more negative waveform than the standard at all three

electrode locations, which started in the first and the second time window at

occipital electrodes. In the third time window, this negativity was also found at

the other electrode locations. Furthermore, the McGurk stimulus was then also

more negative than the other two deviants, while they appeared quite equal in

the earlier time windows.

MMN (120 to 160ms): There was no main effect of stimulus type

(F(3,36)=1.469, p=0.25), but an interaction of stimulus type and frontality

(F(6,72)=4.677, p<0.05). Separate two-way ANOVAs for each instance of

frontality revealed a significant main effect of stimulus type at the occipital elec-

trodes (F(3,36)=4.191, p<0.05), a trend at frontal electrodes (F(3,36)=2.817,

p=0.065) and no significant difference at central electrodes (F(3,36)=1.838,

p=0.175). Pairwise comparisons showed that the McGurk stimulus differed

from the standard at the occipital electrodes (p<0.01), despite being auditorily

identical. Moreover, the congruent deviant /ka/ also elicited a more negative

response than the standard (p<0.05).

N2b (200 to 240ms): There was a main effect of stimulus type

(F(3,36)=6.908, p<0.01): the response evoked by the McGurk stimulus differed

from the responses evoked by the standard (p<0.01) or deviant /ta/ (p<0.05).

Also, the deviant /ka/ showed a significantly more negative reaction than

the standard (p<0.01). An interaction between stimulus type and frontality

(F(6,72)=4.303, p<0.05) indicated that effect was strongest in the central and

the occipital regions and less so in the frontal region. Also, an interaction

between stimulus type and laterality was found (F(6,72)=3.958, p<0.01):

the difference between McGurk and standard stimuli was largest around the

midline.

P3 (360 to 400ms): Between 360 and 400ms, we found a main effect

of stimulus type (F(3,36)=5.878, p<0.01): the McGurk stimulus differed from

each of the other three stimuli: the standard (p<0.01), deviant /ka/ (p<0.01)

and deviant /ta/ (p<0.01). The two deviants differed neither from the standard

nor from each other (deviant /ka/ - standard: p=0.536, deviant /ta/ - standard:

0.592, /ka/ - /ta/: 0.782). A significant interaction between stimulus type and

frontality (F(6,72)=8.485, p<0.001) indicated that the difference between the

McGurk stimulus and the other stimuli is located in the central and occipital

regions.



106 CHAPTER 5. BRAIN CORRELATES OF PHONEMIC PROCESSING

Comparison of auditory and audiovisual processing

The main interest in this sub-experiment was to investigate whether activation

can be found that is additional to the activation from the separate auditory

and visual inputs. Therefore, a further subtraction was applied: For both

the auditory and the corrected audiovisual activity the difference between

deviant and standard was calculated. These difference waves made it possible

to compare the auditory part of the audiovisual deviance response to the pure

auditory deviance response.

Figure 5.6 depicts the difference waves for both presentation modalities for

each deviant. For the deviant /ka/, it can be seen that the negativity starts

earlier for the ‘corrected audiovisual’ stimuli than for the auditory and that the

positivity is larger for the auditory difference. For the deviant /ta/ too, the

‘corrected audiovisual’ negativity has an earlier onset than the auditory nega-

tivity and the positivity is larger in the auditory modality than in the ‘corrected

audiovisual’ modality. This time-shift in the negativity cannot easily be directly

caught when analyzing individual time windows, but only becomes apparent in

visual inspection. The two presentation modalities were statistically compared

in order to support the findings from visual inspection.
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Figure 5.6: Difference waves (deviant-standard) for both deviants in the conditions with
auditory presentation and the subtraction of visual presentation from audiovisual
presentation. Displayed is the activity at the three electrodes Fz, Cz and Oz. The
intervals chosen for statistical analyses are marked in the figure.
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The time windows analyzed in this sub-experiment refer to the onset of the

auditory difference, which is 200ms later than the visual difference. A four-

way ANOVA with the factors presentation modality (2: corrected audiovisual

and auditory), frontality (3), laterality (3), and deviant (2: deviant /ta/ and

deviant /ka/) was carried out to investigate whether there were differences in

the brain responses.

120 to 160ms: No main effect for modality (‘corrected audiovisual’ versus

auditory) was found (F(1,12)=0.428, p=0.525). There was, however, an inter-

action of modality and frontality (F(2,24)=12.229, p<0.001). Separate three-

way ANOVAs for each level of frontality revealed that there was no main effect

of modality at either frontal (F(1,12)=1.709, p=0.216), central (F(1,12)=1.027,

p=0.331) or occipital electrodes (F(1,12)=3.812, p=0.075).

200 to 240ms: No main effect of modality was found (F(1,12)<1). There

were, however, interactions between modality and frontality (F(2,24)=7.559,

p<0.01) and between modality and deviant (F(1,12)=10.94, p<0.01) When

looking only at the deviant /ka/, no main effect of modality was found

(F(1,12)=1.63, p=0.226), but again the interaction between modality and

frontality emerged (F(2,24)=7.458, p<0.01). For the other deviant, /ta/, no

main effect of modality (F(1,12)=0.856, p=0.373) and no significant interaction

of modality with frontality were found (F(2,24)=2.927, p=0.094). Three-

way ANOVAs for each level of frontality showed that no main effect of

modality could be found for any level (frontal: F(1,12)=3.123, p=0.103; central:

F(1,21)=0.072, p=0.793; occipital: F(1,12)=2.507, p=0.139).

360 to 400s: In this time window, there was a significant main effect

of modality (F(1,12)=35.38, p<0.001). Furthermore, we found a significant

interaction with deviant type (F(1,12)=5.277, p<0.05), indicating that the

difference between the presentation modalities was larger for the deviant /ta/

than for the deviant /ka/.

5.3.6 Summary of results

Several analyses have been carried out to address the issues raised above. This

summary provides the results with regard to each sub-experiment.

Tones: For the pure tones, the accuracy was equally high for the standard

and both deviants. Participants reacted more quickly to the more distant

deviant than to the less distant deviant. In the ERP, we found an MMN,

which was strongest at frontal electrodes, an N2b (at central electrodes) and a
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P3 (strongest at occipital electrodes) for both deviants.

Auditory syllables: For the auditory syllables, participants showed a

higher accuracy for the standards than for either type of deviant. Responses to

the deviants differed neither in accuracy nor in response time from each other.

No ERP influence of stimulus type was found in the MMN time-window. In

the period between 200 and 240ms, a significant negativity was found for the

deviants (especially at central electrodes). Also, a P3 was found, which was

larger for the less distant deviant /ta/ than for the deviant /ka/.

Visual syllables: In the visual sub-experiment, the accuracy was higher

for the standards and deviant /ta/ than for the deviant /ka/. Also, the response

time was shorter for deviant /ta/ than for deviant /ka/. The brain response

to the deviant syllables was more positive than the response to the standard

syllables throughout the different time-windows. The effect had a broad scalp

distribution, but was largest occipitally. The deviant /ta/ evoked a more

positive response than the deviant /ka/ in the time slots between 200 and

240 and between 360 and 400ms.

McGurk syllables: In the audiovisual sub-experiment, the accuracy was

highest for the standards, followed by the deviant /ta/, the deviant /ka/ and

was lowest for the McGurk deviant when the correct answer is regarded as

pushing a button. Also, response times were shortest for deviant /ta/. Deviant

/ka/ and the McGurk deviant evoked equally fast responses. Responses to the

incongruent McGurk syllables were significantly more negative than to the

congruent standards at occipital electrodes in all three time-windows. After

correction for visual activity, the McGurk stimulus elicited also more negative

responses than the deviants which were deviant in both the visual and auditory

modalities (/ka/ and /ta/) between 360 and 400ms.

Audiovisual versus auditory syllables: The comparison of the brain

responses between the auditory part of the audiovisual syllables (after

correcting for the deviance response to visual syllables) and the pure auditory

syllables revealed that there was a difference between the two presentation

modalities, specifically in the latest time-window (360-400ms), with a larger

positivity for the auditory only syllables. Also the scalp distribution of the

positivity differs between both modalities. While the positivity is limited to

frontal electrodes for the corrected audiovisual syllables, it can be found across

the scalp for the auditory syllables.
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5.4 Discussion

In this section, we will discuss the results reported above. First, we will discuss

the results of the ‘tones’ sub-experiment, which served as a control for the

interpretation of the other results. After that we will address three issues:

(1) the degree of deviance in phonemic contrasts, (2) the brain correlates of

the McGurk effect, and (3) the effect of audiovisual integration on phonemic

processing.

5.4.1 Processing of pure tones

For the pure tones, the participants had no problems detecting both deviants.

The more distant deviant (1200Hz) was however detected faster than the less

distant one (1050Hz). This decrease in reaction time might reflect a higher

certainty about the decision, caused by the larger physical difference.

The ERP findings in the ‘tones’ sub-experiment resemble the classical find-

ings of for example Sams et al. (1985) for active oddball designs, which also

determined the choice of time windows. The effects in the current study are

not necessarily limited to the time windows used in the analysis, but these were

considered most prototypical. In order to compare the measurements in the

other sub-experiments to those taken for the ‘tones’, the choice of time windows

was consistent throughout all sub-experiments. For the ‘tones’, the three

components which were expected were found: the MMN, especially at frontal

electrodes, the N2b at central electrodes and a large P3 at occipital electrodes,

which was more pronounced for the more distant deviant. Participants showed

faster responses indicating a higher certainty for the more distant deviant.

The larger P3 amplitude for this deviant can thus be explained by the higher

certainty (cf. Johnson, 1984, 1986). The factor probability, which Johnson also

mentions as affecting the amplitude of the P3, is equal for both deviants in the

current set-up. The third factor ‘resource allocation’ might play a role as well,

predicting a difference in amplitude opposite to the recorded one.

This sub-experiment served as a control measure to test the setup of the

experiment. Since we were able to find all expected components, we can

conclude that the parameters for our recording and analysis are suitable for the

planned analyses in the experimental sub-experiments. Moreover, the results

of this sub-experiment indicate that the participants did not suffer from any

auditory problems, understood the task and responded as expected.
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5.4.2 Influence of degree of deviance in phoneme

processing

The first speech-related sub-experiment was the ‘auditory syllable’ sub-

experiment. Previous ERP research on phoneme processing concentrated on

automatic, unconscious processing, using passive oddball designs (Sams et al.,

1990; Kraus et al., 1992; Sharma et al., 1993; Sharma & Dorman, 1999) and

does therefore not add to the understanding of attention-related processes.

Lawson and Gaillard (1981) conducted an active oddball study, however they

used rather large contrasts between standard and deviant. In the current study,

we chose stimuli that differed in only one dimension (‘place of articulation’), but

to different degrees. The deviants, /ka/ and /ta/, were presented together with

the standard, /pa/. Based on the TRACE model (McClelland & Elman, 1986),

it was postulated that the difference between /pa/ and /ta/ is smaller than the

difference between /pa/ and /ka/, when considering the overall difference of

the three features ‘acute’, ‘burst’ and ‘diffuse’. The phonemes /p/, /t/, and

/k/ differ, for example, in their burst qualities: /p/ has a fairly faint burst that

is scattered over a wide frequency range. The burst of /t/ is in a rather high

frequency range and somewhat more intense than the one of /p/. The burst

related to /k/ is in a middle frequency range and most intense. It is also longer

than that of /t/, which in turn is longer than that of /p/ (Ladefoged, 2001).

Therefore, /p/ and /t/ are closer to each other regarding the burst qualities

than /k/ and /p/. This is not reflected in the behavioral results: there was no

difference in accuracy nor in response times between the two deviants.

No MMN was found in this sub-experiment. In the designated time window,

there was no difference between the deviants and the standard. However, there

was a significant difference between 200 and 240ms (the N2b time window).

Since this negativity started somewhat earlier than the time window we ana-

lyzed, it is most likely that it is a non-differentiated N2, consisting of both MMN

and N2b influences. Sams et al. (1990) also found an N2 for phonemic contrasts

in an active oddball design with no distinction into frontal early MMN and

central later N2b. We found no difference in the responses to the two deviants

in the first two time windows. Thus, in the phase of automatic processing, both

contrasts are processed equivalently. When comparing differences in one and

two dimensions, Lawson and Gaillard (1981), however, found an influence on

the N2 amplitude: the amplitude was higher for a difference in two phonemic

dimension than for a difference in one. In the current study the two contrasts
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were within the same phonetic dimension, ‘place of articulation’.

A large P3 caused by attention-related processes involved in difference

detection was found. The amplitude was larger for the deviant /ta/ than

for the deviant /ka/. As explained above, the distance between /pa/ and /ta/

is smaller than that between /pa/ and /ka/. This means that the smaller

difference elicited the larger amplitude, unlike in the ‘tones’ sub-experiment.

As for the ‘tones’ sub-experiment, the probability of both deviants was

equal. However, in this sub-experiment also the equivocation did not differ,

as the response times were almost identical. Therefore, only the third factor

mentioned in Johnson’s formula (1984, 1986), which was called ‘resource alloca-

tion’ distinguishes the two deviants. This means that the contrast needing most

resources elicits the highest amplitude and that is in this case the deviant /ta/.

‘Resource allocation’ is a rather unspecific term that does not explain which

neuropsychological process actually causes the influence on the amplitude. In

this case, the ‘resource’ in question can probably best be described as the

attention necessary to detect different types of deviants.

In the visual sub-experiment, the deviants elicited more positive responses

than the standard in all three time windows with no sign of a mismatch

negativity as in the auditory modality. The onset of this positivity is rather

early, starting in what is considered to be the pre-attentive time window for

auditory processing.

The ERP response in the P3 time window showed a positivity which was

larger for /ta/ than for /ka/. Behaviorally, there is a difference between both

deviants as well: the accuracy was higher and the reaction time shorter for

the deviant /ta/ than for the deviant /ka/, indicating a higher certainty. This

is comparable to what was found for the tones: the stimulus with the higher

uncertainty evokes the larger component. It differs, however, from the results

for auditory syllables, where no behavioral difference between the deviants was

found.

5.4.3 Audiovisual processing

When studying audiovisual processing, not only brain responses to the auditory

and the visual information are recorded but also activity related to the integra-

tion of both. These effects were studied in the audiovisual sub-experiment. In

order to investigate the process of integration, we looked at McGurk stimuli and

compared them to audiovisual congruent stimuli. Furthermore, we compared
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the correlates of audiovisual perception to those of auditory perception to

determine whether the beneficial effect of audiovisual speech is represented

in neural activity as well.

The behavioral results of the audiovisual sub-experiment show that /ta/

was detected as a deviant more easily than /ka/. The accuracy was lower and

the response time was longer for the latter. This resembles the findings in

the visual sub-experiment rather than the auditory results, in which both were

equally detectable, and probably reflects the contribution of visual information.

The onset of the visual difference and the auditory difference were 200ms

apart. Therefore, visual cues were picked-up earlier and the components evoked

by the visual mismatch can overlay those related to the auditory mismatch

detection. In an active design, due to the invested attention, a positivity

related to the visual difference is expected. This is what we found and reported

above for the visual syllables. Because the onset of the auditory difference is

200ms later than the onset of the visual difference, any auditory negativity

might be covered by the large visual positivity. Therefore, we subtracted

the visual activity from the audiovisual and then compared the remaining

auditory response to the auditory syllables. Therefore, in the discussions below

‘audiovisual’ refers to the audiovisual activity after subtraction of the visual

activity.

Brain correlates of the McGurk effect

The McGurk effect is a special case of audiovisual integration, as even though

the auditory and the visual input do not match integration takes place. Earlier

studies using the ERP paradigm concentrated on showing that the McGurk

effect can elicit an MMN (Colin et al., 2002, 2004; Saint-Amour et al., 2007).

As the MMN is regarded to react only to auditory mismatch detection, the

authors assumed that the auditory perception is altered by the misleading

visual information. However, these studies were all carried out with a passive

oddball design, providing no information about the actual perception of the

participants and limiting the analysis to components related to automatic

processing.

In the current study we extended the paradigm and compared the com-

ponents elicited by McGurk stimuli to those elicited by congruent audiovisual

stimuli. Only the McGurk stimuli, which participants perceived as deviant

(indicated by pushing a button), were included in the analysis. It is therefore

clear that the participants did not perceive the auditory part of the McGurk
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syllable. They could either have an altered auditory perception or have reacted

to the visual difference. As explained above, we subtracted the activity recorded

for the visual syllables from the activity of the audiovisual syllables. For

the McGurk stimuli, this means that the visual activity of the deviant /ka/

was subtracted from the measured audiovisual activity. Therefore, only the

auditory part, which did not differ from the standard, was taken into the

analysis.

The McGurk stimuli elicited a more negative wave than the standard stimuli

in all analyzed time windows. In the latest time window, this activity was more

negative than that related to congruent audiovisual deviants. The difference

with the standards is noteworthy because standards and McGurk items did not

differ auditorily. The only differences were in the visual part and in the result

of audiovisual integration. As the visual activity had been subtracted, the stan-

dard and the McGurk items were actually physically the same. The response

differed, however, substantially. As audiovisual processing was necessary for

all stimulus types in this sub-experiment, the additional activation must be

specifically caused by the integration of non-matching information. Möttönen

et al. (2002) also found a difference between congruent and incongruent de-

viants in their (passive oddball) MEG study, which was limited to the right

hemisphere. Processing of incongruent stimuli might be more complicated than

processing of congruent stimuli: for congruent stimuli, both auditory and visual

information contribute to the identification of the correct phoneme. For the

incongruent stimuli, however, contradictory information is received, demanding

more effort to select the matching phoneme and increase uncertainty about the

given response.

Effects of audiovisual integration

In order to measure the effect of integration on processing, difference waves

between the deviants and standards were calculated for the corrected audio-

visual and for the auditory activity. As the audiovisual brain responses were

corrected for the visual activity, any difference between the two presentation

modalities should be due to the integration effects.

As shown in Figure 5.6, the observed negativity has an earlier onset for

the ‘corrected audiovisual’ than the ‘auditory’ stimuli. Möttönen et al. (2002)

found comparable results in an MEG study, in which they reported a shortened

latency for audiovisual differences (compared to visual differences). This is

another indication that audiovisual information facilitates processing. There
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is a faster response to the mismatch detection, when both auditory and visual

information are present than when only the auditory information is provided.

The direct influence of the visual information on the activity had been sub-

tracted from the wave. Therefore, the remaining effects were due to audiovisual

integration processes. The activity for the audiovisual stimuli is thus more than

a mere addition of auditory and visual activation.

The positivity in the P3 time window was much larger for the purely

auditory stimuli than for the ‘corrected audiovisual’ stimuli. This could reflect

the difference in required ‘resources’ (such as attention): for the processing of

audiovisual differences less attention is required. Therefore the amplitude of

the P3 is smaller. This implies that the integration of audiovisual information

does not come with a ‘cost’, but rather eases processing, resulting in a smaller

P3 amplitude. Another possible explanation is based on the fact that the visual

information leads the auditory by 200ms. Hence, the mismatch is first detected

visually eliciting a P3. Once this has happened, there is no necessity to do any

further mismatch processing based on the auditory input. Therefore, no P3

related to the auditory part of the input is recorded. Furthermore, the smaller

P3 amplitude could be due to an overlay of a negativity related to integration.

This would, however, imply that integration is a rather late process. This does

not seem to be the case, as the effects seem to occur earlier in the audiovisual

modality.

5.5 Conclusions

In this paper we addressed three main issues. We investigated whether the

components representing automatic and conscious processing differed between

two distinct contrasts (/pa/ vs. /ta/ and /pa/ vs. /ka/) as they do for

tones, which we used as a control measure here. This was not the case for

the components related to automatic processing, but it was true for the P3,

representing conscious mismatch detection. We concluded that the smaller

the difference is, the more attention is needed to detect the deviant and the

larger the amplitude becomes. Since this was only tested with one contrasts,

some caution needs to be paid in drawing conclusions. It is recommendable to

investigate more contrasts to confirm these findings.

The second issue we addressed was whether the processing of McGurk

stimuli differed from the processing of congruent audiovisual material. The
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McGurk stimuli elicited a more negative waveform than congruent standards

and deviants, which cannot be explained by physical differences. More difficult

integration is, therefore, the most likely explanation for this additional activity.

Finally, we addressed the effect of audiovisual integration. We investigated

whether audiovisual processing provoked responses differing from those of a

summation of auditory and visual processing. A comparison of activity due to

auditory stimuli and activity due to audiovisual activity (after subtracting the

visual activity) showed activation patterns differed, with a diminished P3 and

a shorter latency for the audiovisual stimuli. This indicates that audiovisual

integration facilitates processing.

The current study emphasized the influence of audiovisual processing on

comprehension. While it was known from behavioral studies that additional

visual information facilitates (Sumby & Pollack, 1954; Reisberg et al., 1987) and

influences (McGurk & MacDonald, 1976) comprehension, the present results

from electrophysiological measures strengthen the claim that for audiovisual

processing the whole is more than the sum of its parts.
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CHAPTER 6

Using ERP measurements to investigate speech

perception in aphasia — a reliable approach?

6.1 Introduction

The previous chapter focused on the brain reactions of healthy speakers when

perceiving audiovisual speech. In the current chapter it is first investigated

whether the same experiment as described in chapter 5 for non-brain-damaged

participants can be successfully carried out with aphasic participants. If this

is the case, their results will be compared to those of the non-brain-damaged

participants.

Chapter 4 provided an overview of the different ERP components elicited in

oddball tasks and discussed studies investigating the McGurk effect with this

paradigm. In chapter 5, a more detailed background on research into phonemic

processing and audiovisual integration with ERPs was provided. Oddball

paradigms were also used to investigate aphasic phonemic processing (Aaltonen

et al., 1993; Wertz et al., 1998; Sharma et al., 1994; Auther et al., 2000; Csépe et

al., 2001; Jacobs & Schneider, 2003, see also chapter 4). All of these studies used

passive oddball designs and concentrated on the mismatch negativity (MMN)

117
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component to investigate automatic, pre-conscious processing. It was found

that the MMN was intact for processing of pure tones, while it was diminished

or absent for phonemic stimuli (Aaltonen et al., 1993; Sharma et al., 1994;

Csépe et al., 2001; Jacobs & Schneider, 2003). Wertz et al. (1998) and Auther

et al. (2000) found a correlation between the amplitude of the MMN and the

results of the comprehension parts of the Western Aphasia Battery (Kertesz,

1982). None of these studies, however, combined the ERP recordings with a

task, in order to differentiate correct and incorrect reactions. Furthermore,

the use of passive designs limited the analysis to the MMN, precluding from

the evaluation of attention-related processing, as can be captured by the P3

component. So far, audiovisual integration has only been examined with the

use of ERPs in non-brain-damaged speakers, but not for aphasic participants.

As an active oddball task has not been carried out with aphasic participants

before, it will first be investigated whether the chosen design yields reliable

results. In order to do so, a condition with ‘pure tones’ will be carried out

as a pilot task. The participants have no deficits in the processing of pure

tones, therefore their results should be comparable to those of the non-brain-

damaged participants in chapter 5. If this baseline condition is successful,

several issues will be addressed: it will be investigated whether the apha-

sic participants show brain responses comparable to those reported for the

non-brain-damaged control participants when processing phonemic differences.

Both pre-conscious (MMN) and attention-related (N2b and P3) components

will be studied. Furthermore, audiovisual integration will be addressed. The

current study will investigate whether there is also specific activity related to

the integration of auditory and visual information, as has been found for non-

brain-damaged participants. Another aim of this study is to analyze which

levels of processing are affected by the brain damage. If the deficit leads to a

diminished or absent MMN for the undetected deviants, processing is already

deficient at an automatic level.

6.2 Methods

An active oddball design has been chosen to address these issues, as it provides

information about the accuracy of the participants. Therefore, brain reactions

in response to detected and undetected deviants can be compared. The proce-

dure will be as described in chapter 5 for the non-brain-damaged participants.
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A short summary of the design can be found below.

6.2.1 Participants

All three participants were native speakers of Dutch, right-handed, and re-

ported normal hearing. Vision was normal or corrected to normal. The

aphasic participants were tested by their speech and language therapists with

the Aachen Aphasia Test (AAT) for Dutch (Graetz et al., 1992). Subsequently,

they were tested with two subtests of the PALPA test battery (Bastiaanse et

al., 1995): auditory discrimination of nonwords and auditory discrimination

of words.1 Furthermore, two of the aphasic participants (WB and TB) also

took part in the discrimination experiment described in chapter 2. WB also

participated in the identification task described in chapter 3. The general

description of the aphasic participants and the results on the described tests

are presented below.

WB

WB is a 59 year old male who worked as a sales director until he had a left

hemisphere ischaemic CVA at age 45, 166 month prior to testing. He was

diagnosed with Wernicke’s aphasia. He had 37 errors on the Token Test and

his scores for repetition, written speech, naming, and language comprehension

were 66/150, 58/90, 100/120, and 94/120 respectively. WB had problems both

in the auditory word and nonword discrimination tasks: he scored 56/72 correct

on the nonword discrimination task and 65/72 on the word discrimination.

In the discrimination experiment, WB exhibited problems in nonword dis-

crimination especially for small differences (in one phonetic dimension), which

were most profound for voicing, but also affected distinctions in place of ar-

ticulation. He was overall better when speechreading was possible than with

pure auditory stimulus presentation. In the nonword identification task, he

performed worse and answered slower when only auditory information was

provided instead of audiovisual. In the McGurk trials he chose the McGurk

answer in 50% of the trials.

TB

TB is a 48 year old female, who has done promotional work next to being a

housewife. She had an ischaemic CVA in the area of the left arteria cerebri

1A short explanation of the subparts of the AAT and the PALPA was given in chapter 3,
57
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media 26 months prior to testing. She suffered from a paresis of the right

arm and was diagnosed with global aphasia on the basis of the AAT. She

had 33 errors on the Token Test and her scores for repetition, written speech,

naming, and language comprehension were 71/150, 0/90, 0/120, and 53/120,

respectively. The speech and language therapist furthermore diagnosed apraxia

of speech. TB made two errors (70/72 correct) in the discrimination of words

and four errors (68/72 correct) in the discrimination of nonwords.

TB also participated in the discrimination study. She had problems with

distinctions on one phonetic dimension, affecting especially the dimensions voic-

ing and place of articulation. Her scores improved, when stimulus presentation

was audiovisual rather than auditory only.

DM

DM is a 67 year old male who worked as a radio officer until his retirement.

He had an ischaemic CVA in the area of the left arteria cerebri media eleven

months prior to testing. He suffered from a right-sided facial paresis and a

mild hemiparesis of the right arm and leg. Based on subparts of the AAT,

the speech and language therapist diagnosed a moderate mixed aphasia. He

had 41 errors on the Token Test and his scores for repetition, written speech,

naming, and language comprehension were 81/150, 51/90, 66/120, and 83/120

respectively. Discrimination of words was not impaired (71/72), but DM had

problems in discriminating nonwords (56/72).

As DM was recruited for this study only, he was not included in the

analysis of the experiments discussed in the previous chapters. Nonetheless,

both the discrimination and the identification experiment were carried out.

However, no reaction time data are available for him. His performance on the

discrimination task was impaired for contrasts in one dimension, showing errors

only to differences in voicing. On the identification task he showed a rather low

number of McGurk type answers (6.9%), with a clear preference to report the

visual part of the stimulus. His performance for stimuli presented auditorily

and audiovisually was equally impaired (70% correct). His accuracy for visual

stimuli was slightly better (80% correct), which resembles the performance of

the healthy listeners (cf. chapter 3). His visual performance and his preference

for the visual information in incongruent trials did, however, not lead to good

audiovisual integration, as he did not benefit from the additional information

from audiovisual stimulus presentation.

The three aphasic participants were all in a chronic phase of aphasia.
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They showed mild or moderate impairments in the discrimination and the

identification of phonemes. While WB and TB benefited from speechreading,

this was not the case for DM.

6.2.2 Materials and procedure

The materials of the current study were the same as described in chapter 5.

They consisted of pure tones of 1000, 1050, and 1200Hz in the ‘pure tones’

condition, the syllables /pa/, /ka/, and /ta/ in the remaining three conditions,

as well as an additional McGurk syllable (auditory /pa/ dubbed on visual /ka/)

in the ‘audiovisual condition’.

The procedure was also the same as in the experiment with the non-brain-

damaged participants, described in chapter 5. An active oddball task was

presented: participants had to detect deviant stimuli in a sequence of repeating

‘standard’ stimuli. This task was presented in four conditions: ‘pure tones’,

‘auditory syllables’, ‘visual syllables’, and ‘audiovisual syllables’. The ‘pure

tones’ condition was carried out as a pilot condition, in order to test the

applicability of the design to an aphasic population.

6.2.3 Analysis

Due to the small number of participants and their diverging behavioral perfor-

mance, the analysis was performed for each aphasic participant individually.

The behavioral performance was analyzed with regard to the accuracy and the

reaction times per stimulus type and condition and then compared to the results

of the group of non-brain-damaged participants. Accuracy or reaction times

that differed two standard deviations or more from the non-brain-damaged

participants were considered deviant. The EEG was recorded and preprocessed

as described in chapter 5. The statistic analysis of the ERP was carried out

for each participant individually. Therefore, individual trials rather than grand

averages formed the basis of the analyses. Repeated measures ANOVAs were

carried out with the factors stimulus type (standard, deviant 1, deviant 2,

and, where applicable, ignored deviant), frontality (frontal, central, occipital)

and laterality (left, midline, right) for three time windows (MMN: 120-160ms,

N2b: 200-240ms, and P3: 360-400ms). For the comparison of audiovisual and

auditory stimuli, the same subtraction of visual activity as explained in chapter

5 was carried out. The results of interactions are only mentioned when they
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were significant. The test statistics and the significance level were determined

based on the values corrected for sphericity (Greenhouse-Geisser correction).

However, for readability, the degrees of freedom that are reported here, are the

uncorrected ones.

For each participant, the number of included trials was chosen based on the

availability of good quality trials. Conditions with fewer than 24 usable trials

were excluded from the analysis. As the repeated measures design requires an

equal number of trials for all conditions, the following procedure was applied

to select trials: for each participant the lowest number of usable trials was

established (yet at least 24). This was multiplied by two to determine the

number of trials to include (thus, at least 48). In conditions with more usable

trials, trials were selected on a random basis. If there were fewer than 24 trials,

the condition was excluded. In conditions with more trials than the minimum,

but fewer than twice the minimum, the missing values were replaced by the

average of the condition. Finally, the order of all trials per condition was

randomized before statistic comparison. An overview of the number of valid

trials per stimulus type is given in the appendix (Table E.1.1).

6.3 Results

The results of the group of non-brain-damaged participants are given for com-

parison in the relevant sections. A more detailed description and discussion of

these results can be found in chapter 5.

6.3.1 Results in the tones condition

The ‘pure tones’ condition served as a baseline condition in order to establish

whether the paradigm is applicable to aphasic participants. The behavioral

results of all three aphasic participants and the mean of the non-brain-damaged

participants are provided in Table 6.1.

Behavioral results

WB’s accuracy did not differ from the non-brain-damaged participants for the

standard stimuli and the 1200Hz deviant. His performance for the 1050Hz

deviant differed more than two standard deviations from the control group. The

accuracy of neither TB nor DM differed from that of the non-brain-damaged
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Table 6.1: Percentages correct and mean reaction times for the different stimuli in the tones
condition for the three aphasic participants. For comparison, the mean and
the standard deviation of the results of non-brain-damaged participants are also
provided. Performances differing more than two standard deviations from the
mean of the non-brain-damaged controls are marked with an asterisk.

Condition
Standard Deviant Deviant
(1000Hz) (1050Hz) (1200Hz)
% correct % correct RT % correct RT

WB 98.1% 56%* 597ms 97% 472ms
TB 99.8% 100% 396ms 100% 345ms
DM 100% 99% 427ms 100% 369ms

Controls: mean 99.9% 94.3% 530ms 99.3% 450ms
SD 0.12% 14.4% 75ms 1.37% 76ms

controls. The reaction times of all three participants were inside the limit of

two standard deviations from the mean of the control participants.

ERP results

For the non-brain-damaged participants, an MMN was found for both deviants,

which was strongest at frontal electrodes. Furthermore, both deviants elicited

an N2b (only at central electrodes) and a P3 (strongest at occipital electrodes).

For WB, the brain responses to the different stimulus types did not

differ significantly from each other in the time windows of 120-160ms

(F(3,141)=1.534, p=0.214) and 200-240ms (F(3,141)=2.011, p=0.147). In the

third time window (360-400ms), there was a significant main effect of stimulus

type (F(3,141)=4.079, p<0.05). ‘Ignored deviants’ elicited significantly

more negative results than the standard (p<0.01) and the 1200Hz deviant

(p<0.001). Interactions with laterality (F(6,282)=2.568, p<0.05) and frontality

(F(6,282)=2.759, p<0.05) indicated that this effect was largest in midline and

right hemisphere electrodes and in the frontal region (at least for the difference

with the standard stimuli). In summary, WB did not show any expected effects

of mismatch detection in either time window.

For TB, there was no significant main effect for stimulus type in the time

window of 120-160ms (F(2,242)=1.915, p=0.155). However, there was an inter-

action of stimulus type and frontality (F(4,484)=4.208, p<0.01) and stimulus

type and laterality (F(4,484)=3.527, p<0.05). Separate repeated measures

ANOVAs for each instance of frontality revealed that, for occipital electrodes,



124 CHAPTER 6. RELIABILITY OF ERP MEASURES IN APHASIA

there was a main effect of stimulus type (F(2,242)=5.269, p<0.01): the 1050Hz

deviant elicited more negative responses than the standard (p<0.01) and the

1200Hz deviant (p<0.05). Furthermore there was a significant effect of stimu-

lus type at midline electrodes (F(2,242)=3.128, p=0.05): the 1050Hz deviant

evoked a more negative response than the standard (p<0.05) and the 1200Hz

deviant (p<0.05). In the second time window (200-240ms), there was a main

effect of stimulus type (F(2,242)=7.606, p<0.01): both the standard and the

1050Hz deviant elicited a more negative response than the 1200Hz deviant

(p<0.05 and p<0.001, respectively). Between 360 and 400ms, there was no

main effect of stimulus type (F(2,242)=2.286, p=0.111), but interactions be-

tween stimulus type and frontality (F(4,484)=6.381, p<0.01) and stimulus type

and laterality (F(4,484)=3.097, p<0.05). Separate repeated measures ANOVAs

were carried out for each instance of frontality and each instance of laterality. In

the occipital region, there was a main effect of stimulus type (F(2,242)=6.437,

p<0.01): the 1200Hz deviant elicited a more positive response than both the

standard (p<0.01) and the 1050Hz deviant (p<0.01). For neither instance

of laterality significant main effects of stimulus type were found. In summary,

TB showed a negativity in the MMN time window, with a different distribution

than the non-brain-damaged participants. She furthermore showed a positivity

in the second time window (where a negativity was expected). In the P3

time window, she showed a P3 comparable to that of the non-brain-damaged

participants for the more distant deviant, but not for the 1050Hz deviant.

For DM, there was no effect of stimulus type in the first time window (120-

160ms: F(2,338)=0.713, p=0.472). Between 200 and 240ms, a main effect of

stimulus type was found (F(2,338)=4.948, p<0.01): the 1200Hz deviant elicited

a more positive reaction than the standard (p<0.01) and the 1050Hz deviant

(p<0.05). Interactions with frontality (F(4,676)=6.527, p<0.001) and laterality

(F(4,676)=10.688, p<0.001) indicated that this effect was strongest at frontal

electrodes and less strong at right hemisphere electrodes. In the time window

of 360-400ms, there was a main effect of stimulus type (F(2,338)=12.010,

p<0.001). The 1050Hz deviant elicited less positive reactions than the

standard (p<0.01) and the 1200Hz deviant (p<0.001). There was also an

interaction with frontality (F(4,676)=29.439, p<0.001). The patterns differed

for each instance of frontality. For the frontal electrodes, the same pattern

as for the main effect was found (F(2,338)=7.833, p<0.01). At the central

electrodes, a hierarchy of positivity was found: responses to the 1200Hz deviant
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Figure 6.1: Brain activity of the three aphasic participants in the tones condition.

were most positive, followed by the standard and finally the 1050Hz deviant

(F(2,338)=17.295, p<0.001; pairwise comparisons: standard versus deviant

/ka/: p<0.01, standard versus deviant/ta/: p<0.05 and deviant /ka/ versus

deviant /ta/: p<0.001). Also for the occipital electrodes, an effect of stimulus

type was found (F(2,338)=23.471, p<0.001): the 1200Hz deviant evoked more

positive responses than both the standard (p<0.001) and the 1050Hz deviant

(p<0.001). In summary, DM did not show an effect in the MMN time window.

In the second time window, a positivity was found, while a negativity was

expected. In the P3 time window, he showed a P3 comparable to that of the

non-brain-damaged participants, however limited to the more distant deviant.

As depicted in Figure 6.1, these results differed from those of the non-

brain-damaged participants: in the MMN time window no effects were found

for WB and DM. TB showed a negativity for the 1050Hz deviant only, which

had, however, a different distribution than that of the non-brain-damaged
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Figure 6.2: Brain activity of three randomly chosen non-brain-damaged participants in the
tones condition.

controls. Between 200 and 240ms, WB did not show any effect, while TB

and DM exhibited a positivity for the 1200Hz deviant, a pattern opposite to

that of the control participants. In the P3 time window, TB and DM showed

a positivity for the 1200Hz deviant, but not for the 1050Hz deviant. The non-

brain-damaged participants had a similar effect although it was present for

both deviants. For WB, no effect was found.

For illustration purposes, the activation patterns of the three aphasic par-

ticipants and three randomly chosen2 participants are given in Figures 6.1 and

6.2, above. It can be seen that the patterns of individual non-brain-damaged

2Per condition, three participants were randomly selected, using the L’Ecuyer portable
combined random number generator (L’Ecuyer, 1988).



6.3. RESULTS 127

participants generally resemble the pattern of the group. This was not the case

for either of the aphasic participants. For WB, it can be seen that there were

no systematic differences between stimulus types. TB did show the P3, but in

the MMN time window the standard is actually less negative than the deviants.

For DM, also a small P3 was found, but no MMN: the standard actually lied in

between the two deviants at the frontal electrodes in the relevant time window.

As the activity patterns in the ‘pure tones’ condition were not comparable

to those of the control group, it was concluded that the current design does not

allow for a statistic analysis of the results of the aphasic participants. For the

remainder of this chapter, a more descriptive overview of the outcomes of the

other conditions will be provided. The graphs will be presented for illustration

purposes and visually inspected.3

6.3.2 Auditory syllables

For the auditory syllables, visual inspection of the graphs in Figure 6.3 revealed

that none of the aphasic participants showed a pattern comparable to the

control group. Only DM showed a positivity that resembled the P3 of the

control group. However, he did not show any negativity in the earlier time

windows. The individual results of three randomly chosen non-brain-damaged

participants are more comparable to the group pattern. All three had a clear

P3 and also the N2 pattern were found for participants 7 and 13. Participant

10 also showed a negativity, which was somewhat later than that of the group.

3For those who are interested in the statistical analysis, despite the outcome of the pilot
‘tones’ condition, the results are provided in appendix E.2.



128 CHAPTER 6. RELIABILITY OF ERP MEASURES IN APHASIA

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

P 7Standard /pa/        , D
eviant /ka/       ,D

eviant /ta/

500
-200

-810

µV

m
s

Fz

P 10

P 13

Cz
O

z

(a
)

N
o
n

-b
ra

in
-d

a
m

a
g
ed

p
a
rticip

a
n
ts

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

500
-200

-810

µV

m
s

W
B

M
issed D

eviants 
Standard /pa/        , D

eviant /ka/       ,D
eviant /ta/       ,

TBD
M

Fz
Cz

O
z

(b
)

A
p

h
a
sic

p
a
rticip

a
n
ts

Figure 6.3: Brain activity for auditory syllables.
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Figure 6.4: Brain activity for visual syllables.
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6.3.3 Visual syllables

The three non-brain-damaged participants showed a large positivity across

electrodes and time windows, as it was seen in the group results. Neither of the

aphasic participants showed this pattern. They rather had a more traditional

P3, restricted to central and occipital electrodes and beginning at 300ms (see

Figure 6.4).

6.3.4 Comparison of audiovisual and auditory syllables

Visual inspection of the graphs presented in Figure 6.5 showed that, for the

non-brain-damaged participants, the positivity was larger for auditory syllables

and the negativity starts earlier for audiovisual syllables (for participant 1

and 3, after subtraction of the visual activity), resembling the group pattern.

The larger positivity was also found for the aphasic participants TB and DM,

but not for WB. The negativity was not identified for either of the aphasic

participants.

6.3.5 McGurk stimuli and congruent audiovisual syllables

The group of non-brain-damaged participants showed more negative responses

to the incongruent McGurk syllables than to the congruent standards at oc-

cipital electrodes in all three time-windows. The McGurk stimulus elicited

also more negative responses than both congruent deviants (/ka/ and /ta/)

between 360 and 400ms. In Figure 6.6 it can be seen that for the participants

7 and 12 the group pattern regarding the standard was found individually.

The difference with the deviants was only evident for participant 12. WB also

showed a large negativity for the McGurk stimulus throughout all time win-

dows. The negativity seemed larger than for the standards and both congruent

deviants. For DM, the McGurk stimulus elicited a more negative reaction

than the standard, but no difference between the McGurk stimulus and the

congruent deviants was found. No analysis was made for the aphasic participant

TB, as not enough data was available for her.
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Figure 6.5: Comparison of brain activity for auditory and audiovisual syllables: presented are
the difference waves (deviant minus standard) for both deviants in the auditory
and the audiovisual condition (after subtraction of the visual activity).
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Figure 6.6: Brain activity for McGurk stimuli and audiovisual syllables. The waves depicted
represent the audiovisual condition after subtraction of the visual activity. No
graph is provided for participant TB, as there were not enough data available.
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6.4 Discussion

This study aimed to investigate the processing of speech in the brains of

aphasic participants. The setup was previously used in a study with non-

brain-damaged participants, in which it proved its validity (see chapter 5). In

order to determine the applicability of the paradigm to aphasic participants, the

condition with ‘pure tones’ was analyzed as a baseline measure. Behaviorally,

the aphasic participants did not exhibit problems in this condition, except for

WB, who had problems in detecting the less distinct deviant.

However, the measured activity patterns of the ERP differed largely from

that of the control group. These results indicate that the neural processing

of participants with brain damage is difficult to compare with ERPs to those

of participants without brain damage. The absence of a clear MMN, N2b,

and, for WB, also the P3 in the ‘tones’ condition were not due to the fact

that single cases were analyzed, as can be seen when inspecting the graphs

for individual non-brain-damaged participants. The generation of the recorded

brain activity may partly depend on lesioned areas although the lesion did

not influence the behavioral performance. As the baseline condition showed

that the paradigm did not elicit comparable results for non-brain-damaged

and aphasic participants, the conditions related to auditory and audiovisual

speech perception will not be further discussed. The graphs showing the brain

activity have been presented above for illustration purposes.

The current study, therefore, was not able to to contribute knowledge to the

issues related to speech perception. However, this study shows that carrying

out measures of brain activity with patients with brain damage can be heavily

influenced by their lesions. While other authors were more successful with a

paradigm lacking a behavioral task, the addition of a task in the current study

made the interpretation of the data almost impossible. It must, therefore,

be concluded that the lesions of the participants alter the activity related

to a task of which the performance itself is not influenced by the lesion. In

future research, it should be carefully considered whether the use of the ERP

methodology in an active oddball task is appropriate for aphasic participants.
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CHAPTER 7

Discussion and Conclusion

7.1 Discussion

In the prolegomenon of this thesis, three main issues were raised which were

addressed throughout the subsequent chapters. In the following sections, each

of these issues is discussed, taking the results of the four experimental chapters

into account.

The role of phonemes and phonetic features in processing

The first issue addressed regarded the perception of phonemes, the processing of

contrasts between them and the role phonetic features play. The results of the

discrimination study in chapter 2 and the ERP study in chapter 5 contribute

to this issue.

Previous research has shown that the discrimination performance of aphasic

listeners depends on the number of phonetic dimensions distinguishing two

phonemes (Blumstein et al., 1977; Blumstein, 1994). It also is important in

which dimension the phonemes differ (Saffran et al., 1976; Blumstein et al.,

1977; Caplan & Aydelott-Utman, 1994; Csépe et al., 2001). These findings were

confirmed for Dutch aphasic listeners in the current discrimination experiment,

135
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described in chapter 2. The closer two phonemes were to each other, the more

difficulties the aphasic participants had in discriminating them. Specifically

the dimension ‘voicing’ caused problems. This lead to the conclusion that the

unit of processing must be smaller than phonemes. In the ERP study with

non-brain-damaged participants, two contrasts in the same dimension (place of

articulation) were further compared. Although the distinctions between /pa/

and /ka/ on the one hand and /pa/ and /ta/ on the other hand are both

formed by one dimension (place of articulation), models of speech perception

still distinguish between those contrasts by making use of non-binary features,

which represent the degree of similarity (e.g. McClelland & Elman, 1986). In

non-brain-damaged participants, both contrasts evoked a P3, an ERP compo-

nent elicited by the recognition of a task-relevant deviance. The amplitude of

the component differed, however, between both contrasts and was larger for

the deviant /ta/, which is phonetically closer to the standard than the deviant

/ka/ is. Therefore, even different contrasts within the same phonetic dimension

are processed differently, implying that yet smaller entities play a role in

speech perception. In the discussion related to the TRACE model, the issue of

degrees of difference will be further discussed.This thesis, thus, showed that sub-

phonemic entities play a role in speech perception. Even the differentiation into

the three phonetic dimensions ‘place of articulation’, ‘manner of articulation’

and, ‘voicing’ is not sufficient to explain the neurophysiological evidence from

the ERP study.

The influence of speechreading on perception

The second issue addressed was an investigation to the benefits from speech-

reading for both non-brain-damaged and aphasic listeners. Generally, in all ex-

periments carried out, audiovisual input showed advantages compared to pure

auditory input, confirming previous findings (Sumby & Pollack, 1954; Reisberg

et al., 1987; Shindo et al., 1991). For the aphasic participants, higher accuracies

were found in all three tasks: the discrimination task, the identification task

and the oddball task in the ERP study. Also, their reaction times decreased

in the identification task when materials were presented audiovisually rather

than auditorily. In the discrimination study, it was investigated whether this

advantage is based on a specific phonetic dimension. This was not the case. The

summation of small effects for each dimension lead to the general improvement

that was found. An effect of speechreading was also found for the non-brain-

damaged participants: while their accuracy was at ceiling for both modalities,
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their reaction times were shorter for audiovisual than for auditory stimulus

presentation in the identification task.

While both non-brain-damaged and aphasic participants benefited from

speechreading, there were also differences between both groups: when

perceiving a McGurk illusion, that means when integrating incongruent

auditory and visual information, the reaction time of non-brain-damaged

participants was longer than when not perceiving the illusion with the same

kind of input. This is not the case for the aphasic participants. Nonetheless,

they also integrate the two modalities. This was shown by the answer patterns,

which were comparable to those of the non-brain-damaged participants. Two

possible explanations were given for the influence of integration on the

processing speed. The first is based on experiments by Soto-Faraco and Alsius

(2007, 2009): participants in their studies reported awareness of the mismatch

for the same stimuli for which they experienced the McGurk effect. That means

that they access both unimodal and multimodal information, which is not the

case for stimuli where no McGurk effect is experienced. If it is assumed that the

aphasic participants do not have conscious access to the unimodal information

before integration, that explains why they do not show increased reaction times

for McGurk percepts. The other explanation is based on the TRACE model

of speech perception and its extension for audiovisual material (McClelland

& Elman, 1986; Campbell, 1988, 1990). In this model, it is assumed that

different values for one feature inhibit each other. The incongruent McGurk

stimuli activate different instances of features which leads to inhibition between

them. This can cause the slow-down for the non-brain-damaged participants.

It has been previously claimed that aphasic listeners have a deficit of inhibition

at the lexical level (Wiener et al., 2004; Janse, 2006; Yee et al., 2008). If this

deficit also exists at the feature level, no slow-down is expected.

The advantage of audiovisual processing over auditory processing was also

shown by the results of the ERP study with non-brain-damaged participants.

A comparison between the brain activities related to the auditory part of the

audiovisual syllables (after subtraction of the visual activity) and the auditory

syllables showed a difference in the amplitude of the P3 component. This

indicates that the brain activity related to audiovisual processing is more than

an addition of the auditory and the visual activity. The smaller amplitude

of the P3 can be explained by the decreased amount of attention needed

when both auditory and visual information are accessible. Thus, the difference
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between the two input modalities resembles the increased ease of processing

when information is presented audiovisually.

The advantage of speechreading was, therefore, shown behaviorally for both

aphasic and non-brain-damaged listeners. Furthermore, this advantage was also

reflected in the neurophysiological data.

An evaluation of the TRACE model for the current data

The final point investigated in this thesis was the validity of the TRACE

model of speech perception and its extension to audiovisual speech (McClelland

& Elman, 1986; Campbell, 1988, 1990) for the current data. The model

assumes seven phonetic features, such as ‘power’, ‘diffuse’, and ‘vocalic’. The

feature level has been extended by two visual features (derived from seen

speech): ‘mouth opening’, and ‘lip-shape’. While both features differentiate

between different places of articulation, it is not clear whether different manners

of articulation can also be distinguished by seen speech. The perception of

‘voicing’ can only be described on the basis of the acoustic features of the

model.

In the discrimination study, however, it was found that not only differences

in place of articulation were more easily perceived with speechreading possible,

but that all contrasts contributed to the general improvement that was found.

This cannot be explained in terms of the model as postulated by Campbell

(1988, 1990). The two features for ‘seen speech’ cannot grasp the difference

between phonemes with only a distinction in voicing. For this, the model

needs to be extended by an additional feature for seen speech that is capable of

detecting a distinction in voicing. A further detailed investigation is necessary

to determine in which visual aspects voiced and voiceless phonemes differ.

Speechreading was not limited to the lips or the face in the current experiments.

Also, the neck and shoulders were visible, which is the reason why the term

speechreading was chosen rather than lipreading. The voice-onset time is

an important factor to discriminate between voiced and voiceless phonemes;

it is likely that the movement of the larynx, which was visible, played an

important role. This assumption needs to be confirmed by a study investigating

the movement of the larynx in detail for different phonemes and phoneme

combinations. This could be achieved by comparing the performance in a

lipreading task and a speechreading task, where in the first only the mouth is

shown, while in the second, the face and the neck are visible. In a lipreading

task, the perception of ‘voicing’ might not differ from pure auditory perception.
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In the identification task, an advantage of audiovisual perception over au-

ditory perception has also been found. The aphasic participants showed both

slower and less accurate reactions when only the auditory input was available

than when speechreading was also possible. This can be explained in terms

of the TRACE model as follows: for auditory stimulus presentation, only the

seven acoustic features add activation for the identification of a phoneme. If the

aphasic participants have trouble in extracting all features correctly from the

incoming sound stream, the correct phoneme may not get sufficient activation

to reach threshold, or at least it reaches threshold later. Additional visual

information, which is extracted correctly, can provide the necessary activation

to correctly identify a phoneme.

A second finding of this study was that, for McGurk stimuli, non-brain-

damaged participants experienced a slow-down when they were actually subject

to the McGurk effect, compared to the McGurk stimuli for which they perceived

either the auditory or the visual part of the input. This slow-down was

explained by a mutual inhibition of different values of a feature which could be

diminished for the aphasic participants, as discussed above.

Predictions based on the TRACE model (McClelland & Elman, 1986) were

also made for the outcome of the ERP study. While both the contrasts between

/pa/ and /ta/ on the one hand and /pa/ and /ka/ on the other are generally

defined as a difference in one phonetic dimension, that is place of articulation,

the TRACE model provides more detail. The difference between /pa/, /ta/,

and /ka/ is based on three of the acoustic features: ‘diffuse’, ‘burst’, and ‘acute’.

While /p/ and /t/ have identical values for the feature ‘diffuse’, they differ

slightly regarding ‘burst’ and substantially regarding ‘acute’. The difference

between /p/ and /k/ is overall larger, as these two phonemes also differ with

regard to ‘diffuse’ (see Table 7.1 for the exact values).

Table 7.1: Values for the three relevant features distinguishing /p/, /t/, and /k/ as used in
the TRACE model (McClelland & Elman, 1986).

Phoneme Diffuse Acute Burst

/p/ 7 2 8
/t/ 7 7 6
/k/ 2 3 4
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This theoretically assumed distinction in the degree of difference is repre-

sented in the measured ERP activity of the non-brain-damaged participants:

the difference between /ka/ and /pa/ elicited a higher amplitude of the P3

component than the difference between /ta/ and /ka/. The amplitude of the

P3 is influenced by three factors: equivocation, probability, and resource allo-

cation. The probability between the deviants did not differ and the behavioral

results showed that also the equivocation was equal. This higher amplitude

must, therefore, have been elicited by a difference in resource allocation, that

is the attention invested to detect the deviant. More attention is needed to

detect smaller differences. The prediction based on the model was that the

difference between /pa/ and /ta/ is smaller than that between /pa/ and /ka/.

The deviant /ta/ also elicited a higher amplitude than the deviant /ka/, so that

the theoretical predications are supported by the neurophysiological findings.

7.2 Conclusion

In this thesis, three main issues were discussed based on the results of four

experimental studies. First, an investigation of the role of phonemes and

phonetic features in speech perception was discussed. It was known previously

that processing of phonemes depended on phonetic features. Blumstein et

al. (1977); Blumstein (1994) showed that aphasic listeners perform better

with distinctions in more phonetic dimensions. There were varying outcomes

concerning the question which dimension is most difficult to perceive (Saffran

et al., 1976; Blumstein et al., 1977; Caplan & Aydelott-Utman, 1994; Csépe et

al., 2001). The discrimination experiment described in chapter 2 shows that,

also for Dutch, the number of dimensions differing influences the performance.

Furthermore, it was found that Dutch participants with a disorder in speech

perception have the most problems in detecting a distinction in ‘voicing’.

The ERP experiment with non-brain-damaged participants also added to

the understanding of the role of phonetic features in speech perception. Even

stimulus pairs differing in the same dimension (‘place of articulation’) elicit

distinct activation patterns in the ERP. The amplitude of the P3, indicating the

attention invested in the task, depended on the size of the difference. Therefore

the current findings imply that entities even smaller than ‘phonetic dimension’

play a role in the neural processes related to speech perception.

The second issue that was addressed concerned the influence of speechread-
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ing on perception. While the beneficial effects of speechreading on perception

have been described before (Sumby & Pollack, 1954; McGurk & MacDonald,

1976; Reisberg et al., 1987), the studies reported in this thesis add to the

understanding of these influences. It has been assumed that speechreading

is limited to the phonetic dimension ‘place of articulation’ (Campbell, 1988,

1990). The results of discrimination experiment show that the overall beneficial

influence of speechreading cannot be attributed to a single phonetic dimension,

but rather all three dimensions contribute to the improvement.

In the identification experiment, it was shown that also non-brain-damaged

participants benefit from speechreading. While their accuracy was at ceiling

for both auditory and audiovisual stimulus presentation, their reaction times

decreased when speechreading was possible. An investigation of the reaction

times for McGurk percepts showed, that the integration of non-matching audi-

tory and visual information lead to a processing slow-down. This is, however,

only true for the non-brain-damaged participants. For the aphasic participants,

no slow-down was found. This lack of slow-down was explained in terms of

an inhibition deficit on the feature level of the TRACE model. A second

explanation was based on the findings by Soto-Faraco and Alsius (2007, 2009)

that non-brain-damaged participants access both unimodal and multimodal

information when processing incongruent audiovisual speech. If this is not the

case for aphasic listeners, no slow-down is expected.

More evidence for the influence of speechreading was provided in the ERP

study, reported in chapter 5. In this experiment with non-brain-damaged

listeners, it was found that the activity evoked by audiovisual syllables is not

a mere addition of the activities from auditory and visual processing. After

a subtraction of the visual activation pattern from the audiovisual, there was

still a difference to the purely auditory activation, especially regarding the

amplitude of the P3. The P3 amplitude was smaller for audiovisual stimulus

presentation, indicating that less attention is needed when both auditory and

visual input are available than when the speaker can only be heard.

Finally, the predictions made on the basis of the TRACE model (McClelland

& Elman, 1986) and its extension to audiovisual speech (Campbell, 1988, 1990)

were evaluated with regard to the outcomes of the current studies. It was found

in the discrimination study that the beneficial influence of speechreading is not

limited to the dimension ‘place of articulation’. The visual features of the model

are, however, only capable of detecting visual information from that dimension.
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An extension of the model to include other visual features, such as the larynx

configuration, is, therefore, necessary.

The other findings of the studies reported in this thesis can be readily

explained in the terms of the TRACE model. The influence of speechreading

that was found in the two behavioral studies was attributed to the additional

visual features that are extracted for audiovisual speech. With this additional

information the threshold for the detection of the correct phoneme is reached

more easily and faster, leading to an increase in accuracy for the aphasic

participants and decreased reaction times for both non-brain-damaged and

aphasic listeners.

Furthermore, the TRACE model was used to explain the slow-down of

reaction times that non-brain-damaged participants showed in the identification

experiment whenever they gave a McGurk answer. The perception of non-

matching auditory and visual information was assumed to lead to a mutual

inhibition of the activation levels of features, delaying phoneme recognition.

Finally, also the finding from the ERP study with non-brain-damaged par-

ticipants that two different contrasts of the same phonetic dimension elicited

different brain reactions was explained in terms of the TRACE model. Because

the features in this model are not based on binary values, but on different

degrees of activation, the distance between two phonemes could be predicted

more accurately. The neurophysiological findings supported those predictions.

In summary, the findings presented in this thesis show that the perception

of speech depends on entities smaller than phonemes and phonetic dimen-

sions. Furthermore, it was shown that speechreading aids perception: aphasic

participants improved in the discrimination and identification tasks and both

aphasic and non-brain-damaged listeners showed decreased reaction times with

speechreading possible. The outcome of the ERP experiment with non-brain-

damaged participants show that also in neurophysiological terms audiovisual

speech perception is more than an addition of auditory and visual perception.

The TRACE model of speech perception (McClelland & Elman, 1986)

accounts for the finding that entities smaller than phonetic dimensions are

processed by representing phonetic features by various activation levels, rather

than by a binary value. The extension for audiovisual speech perception by

Campbell (1988, 1990) also allows for an explanation of the beneficial effect

of speechreading on perception. Furthermore, the processing slow-down in

non-brain-damaged listeners and the lack of it in aphasic listeners when being
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subject to the McGurk effect, were explained in terms of the model. The model

can, however, not account for the fact that the influence of speechreading in

the discrimination task was not limited to the dimension ‘place of articulation’.

Therefore, an extension of the visual features is necessary.

Next to addressing the three issues raised in the prolegomenon and discussed

in the previous sections, the findings from this thesis also lead to clinical

implications. These are presented in the following section.

7.3 Clinical Implications

The clinical implications of the research described in this thesis are based on

the findings from the two behavioral experiments reported in chapters 2 and 3.

In the discrimination study, it was found that the problems of aphasic partici-

pants in speech perception are more severe when small distinctions need to be

differentiated. The phonetic dimension ‘voicing’ causes the most problems.

The PALPA diagnostics battery (Kay et al., 1992) and its Dutch translation

(Bastiaanse et al., 1995) diagnose a disorder in speech sound discrimination

with both a word and a nonword discrimination task. The pairs are differ-

entiated by one phonetic dimension only. No information is gained about

the processing abilities concerning larger differences. The findings from the

discrimination experiment in this thesis, however, indicate that the deficit may

be limited to the detection of differences in one dimension, but can also can

affect larger differences. As this is essential when determining the appropriate

treatment level, Morris et al. (1996) introduced a ‘maximal pair’ screening:

a discrimination task, which test differences in one, two or three phonetic

dimensions. An adoption for German was developed by Hessler (2007).

While these screenings tell more about the severity of the deficit, they

do not tell which phonetic dimension is affected. The outcomes from the

discrimination experiment show that the deficit can be specific to one phonetic

dimension. It, therefore, needs to be tested for each individual which dimen-

sions are affected by the impairment in order to address those specifically in

treatment. The Dutch version of the PALPA (Bastiaanse et al., 1995) compares

all three dimensions. It does not, however, compare all three dimensions in the

same syllable position. The dimensions ‘place of articulation’ and ‘manner

of articulation’ are tested in final position or metathesis and the dimension

‘voicing’ in initial, thus more salient position. Therefore, it is difficult to
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compare the results of all three dimensions. Therefore, new screenings need

to be developed which can also detect problems with ‘voicing’ reliably.

Another outcome of the discrimination and the identification experiments

was that speechreading aids perception in most aphasic listeners. This influ-

ence is not tested with the diagnostic batteries mentioned above, but should

be assessed as well. The utilization of speechreading has been a successful

treatment method (Gielewski, 1989; Morris et al., 1996; Grayson et al., 1997;

Hessler & Stadie, 2008). The finding that the beneficial influence is not limited

to the dimension ‘place of articulation’ (see chapter 2) stresses the importance

of utilizing speechreading in treatment. In the discrimination and the identifi-

cation task it became, however, evident that not all participants benefited from

speechreading. For these participants, a treatment based on speechreading is

not appropriate unless their speechreading and audiovisual integration skills

are trained first.

Morris et al. (1996) and Hessler and Stadie (2008) reported successful

treatment studies based on the utilization of speechreading. In both stud-

ies, several tasks were applied, such as phoneme-grapheme matching, syllable

discrimination and word-picture matching. Depending on the task, words

or nonwords were used. During treatment, the difference within pairs or

between target and distractor was gradually decreased from three dimensions to

one dimension. Materials were initially presented allowing for speechreading.

This information was no longer available when the participant mastered the

task. In the tasks using nonwords, such as the syllable discrimination task,

distinctions in all three dimensions were equally common. This was the case to

ensure that treatment for all dimensions was balanced. No attention was paid

to the question which dimensions were actually affected by the impairment.

Treatment could have been even more efficient if only problematic dimensions

would have been addressed.

In summary, the clinical implications of the research studies reported in this

thesis are that an individual profile needs to be established when diagnosing the

deficit. It needs to be known how severe the deficit is (i.e. whether also larger

differences are affected), whether the deficit is specific to a certain dimension,

and whether the participant benefits from speechreading. Once this is known,

treatment can address the specific deficit of an individual, increasing the effect

of a treatment based on methods as reported in Morris et al. (1996) and Hessler

and Stadie (2008).



Summary

In this thesis, the auditory and audiovisual processing of phonemes in non-

brain-damaged and aphasic listeners was investigated. In the prolegomenon,

three main issues were raised, which were addressed in the four experimental

chapters: (1) the role of phonetic features in processing, (2) the influence of

speechreading on speech perception, and (3) an evaluation of the validity of

the TRACE model of speech perception (McClelland & Elman, 1986) and its

extension for audiovisual perception (Campbell, 1988, 1990).

Chapter 1 provided a theoretical background of auditory and audiovisual

speech perception. Two models of auditory processing were introduced: the

Logogen model (e.g. Morton, 1969; Howard & Franklin, 1988) and the TRACE

model (McClelland & Elman, 1986). While the first served to identify the

deficits of the aphasic listeners, the second formed the theoretical basis of the

research studies. Furthermore, different models of audiovisual processing have

been discussed, amongst which an extension of the TRACE model to audiovi-

sual processing (Campbell, 1988, 1990). Literature was reviewed, which shows

that aphasic listeners have deficits in speech sound discrimination that depend

on the size of the difference: the more phonetic dimensions differ, the fewer

errors they make. Studies differ in their findings regarding which dimension is

most difficult to perceive: ‘place of articulation’ or ‘voicing’. There is, however,

agreement on the fact that speechreading influences comprehension. Not only

do aphasic listeners benefit from speechreading, but also non-brain-damaged
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listeners benefit under adverse conditions, such as noise (Sumby & Pollack,

1954) or demanding contents (Reisberg et al., 1987). Even when speech is

clear and easy to understand, visual information influences the perception:

McGurk and MacDonald (1976) found out that presentation of non-matching

auditory and visual information for a speech sound (for example auditory /p/,

visual /k/) often leads to the perception of an intermediate speech sound (for

example /t/), which unites features of both input types. This is called the

‘McGurk effect’.

Chapter 2 was the first experimental chapter. It discussed a study on audi-

tory and audiovisual perception of different phonetic dimensions by non-brain-

damaged and aphasic listeners. A nonword discrimination experiment was

carried out in different presentation conditions (auditory versus audiovisual)

and for different stimulus types. It was found that the performance of the

aphasic participants improved with the magnitude of the difference between

stimuli: the more features differed, the higher the accuracy became. The

aphasic participants had most problems detecting differences in the dimension

‘voicing’. This was true for both auditory and audiovisual stimulus presenta-

tion. Overall, the accuracy of the aphasic listeners was higher in the audiovisual

than in the auditory condition. This beneficial influence of speechreading was

not caused by any specific phonetic dimension, rather all three dimensions

contributed to the improved accuracy.

In chapter 3, a study on audiovisual perception and the McGurk effect

in non-brain-damaged and aphasic participants was presented. A nonword

identification task was carried out and reaction times were recorded. It was

found that the aphasic participants were generally slower and less accurate than

non-brain-damaged participants in identifying stimuli presented auditorily or

audiovisually. Two of the three aphasic participants clearly benefited from

speechreading, showing a higher accuracy and faster reaction times with audio-

visual stimulus presentation than with only auditory information. The group of

non-brain-damaged participants also showed decreased reaction times for the

audiovisual condition compared to the auditory condition. For the McGurk

stimuli, various answer patterns were found amongst the non-brain-damaged

and the aphasic participants. The reaction time patterns, however, showed

a clear difference in processing: while the non-brain-damaged participants

reacted slower when they were subject to the McGurk illusion, this did not hold

for either of the aphasic participants. Therefore, not only a quantitative, but
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also a qualitative difference of audiovisual processing was found between the two

groups. This difference could be explained in two ways. The first explanation

was based on results from Soto-Faraco and Alsius (2007, 2009), who claim that

McGurk stimuli are processed unimodally (separately for the auditory and

the visual modality) before integration takes place, which would account for

a slow-down in reaction times. If the aphasic participants do not have access

to the unimodal information first, that would explain the absence of the slow-

down. The second explanation was based on the inhibition mechanism assumed

in the TRACE model (McClelland & Elman, 1986; Campbell, 1988, 1990):

due to contradictory information from auditory and visual speech, different

instances of a feature are activated and inhibit each other. Therefore reaching

the threshold for selecting the correct phoneme is delayed. The lack of the

slow-down for the aphasic participants can be explained if they lack inhibition

at feature level. A diminished inhibition was reported in studies focusing on

the lexical level (Wiener et al., 2004; Janse, 2006; Yee et al., 2008).

Chapter 4 formed an introduction to the event-related potential (ERP)

methodology. In this chapter an overview of the recording of ERPs was pro-

vided and previous findings relevant to the current research studies were dis-

cussed. Three components, which were of relevance to the planned studies, were

introduced: the mismatch negativity (MMN), the N2b, and the P3. The MMN

is a component that is elicited by an auditory deviant stimulus in a sequence of

repeating ‘standard’ stimuli. The MMN represents automatic processing and is

recorded even when the participants do not pay attention to the stimuli. Two

other components have been discussed, the N2b and the P3, which both react

to the conscious, task-relevant detection of a mismatch. The amplitude of the

P3 is influenced by the probability of the deviant stimulus, the certainty of the

participant and the resources that were allocated to detect it, such as attention

(Johnson, 1984, 1986).

In chapter 5, an ERP study with non-brain-damaged participants was de-

scribed. An active oddball task was carried out in four presentation modalities

(tones, auditory syllables, visual syllables, and audiovisual syllables). For the

pure tones, the participants showed the expected pattern of MMN, N2b, and P3

for two different deviants. The fact that the baseline condition was in line with

the literature was taken as evidence for the validity of the current setup. In

the auditory sub-experiment, the two deviants /ta/ and /ka/ were inserted in

the sequence of standard stimuli (/pa/). Neither of the deviants elicited a clear
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MMN or N2b, but rather an N2 was found, which was difficult to differentiate

into its parts. A clear P3 was found for both deviants. The amplitude was

larger for the for the deviant /ta/, which is theoretically assumed to be less

distant to /pa/ than /ka/ is. This increased P3 has been attributed to the larger

amount of attention needed to detect the difference. Furthermore, audiovisual

and auditory processing have been compared. After a subtraction of the visual

activity from the audiovisual activity, any differences found were assumed to

be due to the integration of auditory and visual information. In the P3 time

window, the auditory syllables evoked a larger P3 amplitude than the auditory

part of the audiovisual syllables. This reflects the fact, that for audiovisual

stimuli, processing is eased, requiring less resources to detect a difference

between stimuli. For the McGurk stimuli, a difference to both congruent

deviants and standards was found. As the visual activity was subtracted from

the stimuli, there was no physical difference between the standard and the

McGurk stimuli. Therefore, it was concluded that the difference in activation

patterns is due to the more difficult integration of incongruent stimuli.

Chapter 6 described the investigation of the possibility to carry out the same

ERP study, as described before, with aphasic participants. Unfortunately,

only three aphasic participants could be included in this study. Therefore,

their data were not analyzed as a group, but rather investigated in a single

case approach. No clear results could be obtained. In the tones condition,

which should not differ between aphasic and non-brain-damaged participants,

large differences were found. This lead to the conclusion that the generation

of the MMN, N2b, and P3 was corrupted by the brain damage although the

behavioral performance was not influenced. Therefore, the absence of com-

ponents in the experimental conditions could not be interpreted as related to

their perception deficits. Thus, the data of the sub-experiments with auditory,

visual, and audiovisual syllables were not analyzed and discussed with regard

to the issues raised in the prolegomenon. Also, the visual inspection of the

patterns of the aphasic participants lead to outcomes different from those of

three randomly chosen non-brain-damaged participants. While the latter show

patterns generally consistent with those of the group, this was not the case

for the aphasic participants. The conclusion of this study was, therefore, that

carrying out ERP research with participants with brain damage is difficult, as

their anatomical lesion might influence the generation of components elicited

by tasks of which the performance is not influenced by the deficit.
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The final chapter consisted of a discussion of the three issues raised in

the prolegomenon, a general conclusion and a short description of the clinical

impact of the current findings. With regard to the main issues addressed in

this thesis, it was found that the perception of speech depends on entities

smaller than phonemes and phonetic dimensions. Secondly, it was concluded

on the basis of the two behavioral studies and the ERP experiment with non-

brain-damaged participants that speechreading improves the performance of

the participants and that the influence of speechreading on perception is also

represented in neurophysiological measures. The evaluation of the TRACE

model of speech perception (McClelland & Elman, 1986; Campbell, 1988, 1990)

revealed that almost all findings could be explained in terms of the model.

The influence of speechreading on other dimensions than ‘place of articulation’

can, however, not be accounted for by the model in its current form. An

extension of the visual features is necessary. Furthermore, the findings reported

in this thesis show that a deficit in speech sound discrimination can affect the

phonetic dimensions differently. This implies that it is important to establish

an individual profile of an aphasic listener during diagnostics, which serves as

a basis for choosing an appropriate treatment.
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Dit proefschrift beschrijft de auditieve en audiovisuele verwerking van fonemen

door mensen met en zonder hersenbeschadiging. In het ‘prolegomenon’ worden

drie hoofdpunten gëıntroduceerd, die in de vier experimentele hoofdstukken

onderzocht worden: (1) de rol van fonetische kenmerken bij de verwerking, (2)

de invloed van liplezen1 op taalbegrip en (3) een evaluatie van de validiteit van

het TRACE-model (McClelland & Elman, 1986) en de uitbreiding ervan naar

audiovisuele verwerking (Campbell, 1988, 1990).

Hoofdstuk 1 geeft een theoretische achtergrond van auditieve en

audiovisuele spraakwaarneming. Twee taalverwerkingsmodellen worden

voorgesteld: het multimodale Logogen model (e.g. Morton, 1969; Howard

& Franklin, 1988) en het TRACE-model (McClelland & Elman, 1986), dat

zich beperkt tot spraakwaarneming. Het eerste model wordt gebruikt om

de taal- en spraakproblemen van proefpersonen met verworven hersenletsel

(afasie) die aan dit onderzoek deelnamen in kaart te brengen. Het tweede model

vormt de theoretische basis voor de wetenschappelijke studies. Verder worden

verschillende modellen van audiovisuele verwerking bediscussieerd, waaronder

onder meer een uitbreiding van het TRACE-model (Campbell, 1988, 1990). Uit

1In dit proefschrift wordt de Engelse term ‘speechreading’ gebruikt, om duidelijk te maken
dat niet alleen de bewegingen van de lip een rol spelen, maar ook andere aspecten van
taalproductie zichtbaar zijn, bijvoorbeeld de beweging van de larynx. In de Nederlandse
samenvatting wordt echter de term ‘liplezen’ gebruikt, omdat dit de meest gangbare term is.
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voorgaande studies is gebleken dat de mate waarin afatische luisteraars moeite

hebben met spraakklankdiscriminate, afhangt van de grootte van het verschil

tussen klanken: hoe meer fonetische dimensies verschillen, des te minder maken

de proefpersonen met afasie fouten (Blumstein et al., 1977; Blumstein, 1994).

Tot op heden bestaat er nog geen consensus over de kwestie welke dimensie het

moeilijkst waarneembaar is: plaats van articulatie of stemhebbendheid. Men is

het er echter over eens dat liplezen taalbegrip begunstigt. Niet alleen afatische

luisteraars profiteren van liplezen, ook luisteraars zonder hersenbeschadiging

hebben er profijt van indien omstandigheden niet optimaal zijn, zoals bij

achtergrondgeluid (Sumby & Pollack, 1954) of moeilijke inhoud (Reisberg et

al., 1987). Zelfs als spraak helder en goed te begrijpen is, bëınvloedt de visuele

informatie de waarneming. McGurk en MacDonald (1976) kwamen erachter

dat als klanken worden aangeboden die auditief en visueel niet overeenkomen

(bijvoorbeeld /p/ auditief en /k/ visueel), er regelmatig een klank wordt

waargenomen (bijvoorbeeld /t/) die tussen de gehoorde en geziene klank in

ligt en kenmerken van beide verenigt. Dit wordt het ‘McGurk-effect’ genoemd.

Hoofdstuk 2 vormt het eerste experimentele hoofdstuk. Het beschrijft een

onderzoek naar auditieve en audiovisuele waarneming van verschillende fone-

tische dimensies door luisteraars met en zonder hersenbeschadiging. De taak

was lettergrepen te discrimineren die auditief dan wel audiovisueel gepresen-

teerd werden. De lettergrepen onderscheidden zich van elkaar in verschillende

kenmerken. De prestatie van de proefpersonen met afasie hing samen met

de grootte van het verschil tussen stimuli: hoe meer kenmerken verschilden,

des te hoger was het aantal correcte reacties. De proefpersonen met afasie

hadden de meeste problemen met het herkennen van verschillen in de dimensie

‘stemhebbendheid’. Dit was het geval bij zowel auditieve als audiovisuele

stimuluspresentatie. In het algemeen was de prestatie van de proefpersonen

met afasie beter voor de audiovisuele dan voor de auditieve stimuli. Uit de

resultaten van dit experiment blijkt dat alle drie fonetische dimensies bijdragen

aan de verbeterde prestaties van de afatische proefpersonen bij audiovisuele

stimuluspresentatie.

In hoofdstuk 3 wordt een onderzoek naar audiovisuele waarneming en het

McGurk-effect bij proefpersonen met en zonder hersenbeschadiging gepresen-

teerd. Een nonwoord-identificatietaak werd uitgevoerd, waarbij ook de reac-

tietijden gemeten werden. De deelnemers met afasie antwoordden langzamer

en minder correct dan de deelnemers zonder hersenbeschadiging bij het iden-
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tificeren van stimuli die auditief of audiovisueel gepresenteerd werden. Twee

van de drie deelnemers met afasie hadden duidelijk baat bij het liplezen. Ze

lieten snellere en correctere antwoorden zien in de audiovisuele conditie dan in

de auditieve. Ook de deelnemers zonder hersenbeschadiging profiteerden van

liplezen. Hun reactietijden daalden eveneens bij audiovisuele presentatie van

de stimuli. Voor de McGurk-stimuli werden uiteenlopende antwoordpatronen

gevonden bij zowel de proefpersonen met als zonder afasie. De reactietijdpatro-

nen lieten daarentegen een duidelijk verwerkingsverschil tussen de groepen zien:

terwijl de deelnemers zonder hersenbeschadiging een vertraagde reactie lieten

zien wanneer er sprake was van een McGurk-effect, was dit niet het geval voor de

proefpersonen met afasie. Dit betekent dat er niet alleen een kwantitatief, maar

ook een kwalitatief verschil in de audiovisuele verwerking tussen beide groepen

werd gevonden. Dit verschil kan op twee manieren verklaard worden. De eerste

verklaring is gebaseerd op resultaten van Soto-Faraco en Alsius (2007, 2009),

die postuleren dat McGurk-stimuli eerst unimodaal (afzonderlijk auditief en

visueel) verwerkt worden voordat er integratie plaatsvindt, wat een vertraging

kan opleveren. Als de mensen met afasie geen toegang tot de unimodale

informatie hebben, zou dat verklaren waarom bij hen geen vertraging plaats

vindt. De tweede verklaring is gebaseerd op het inhibitiemechanisme, dat in

het TRACE-model aangenomen wordt (McClelland & Elman, 1986; Campbell,

1988, 1990): door de tegenstrijdige informatie van auditieve en visuele input,

worden verschillende waardes van een kenmerk van een klank geactiveerd, die

elkaar wederzijds inhiberen. Daardoor wordt de drempel voor het herkennen

van het correcte foneem vertraagd bereikt. Het uitblijven van deze vertraging

bij de deelnemers met afasie zou door een gebrek aan inhibitie op het niveau van

kenmerken verklaard kunnen worden. Een verminderde inhibitie werd eerder

vastgesteld in studies waarin de rol van inhibitie op het lexicale niveau werd

onderzocht (Wiener et al., 2004; Janse, 2006; Yee et al., 2008).

Hoofdstuk 4 geeft een inleiding in het gebruik van event-related poten-

tials (ERPs) tijdens de taal- en spraakverwerking. In dit hoofdstuk wordt

beschreven hoe ERPs worden gemeten en worden resultaten van voorgaande

studies besproken die relevant zijn voor het onderhavige onderzoek. Verder

worden drie componenten gëıntroduceerd die ook in de huidige studies worden

verwacht: de mismatch negativity (MMN), de N2b en de P3. De MMN is een

component die optreedt als reactie op een auditieve afwijkende stimulus in een

reeks van herhaalde ‘standaardstimuli’. De MMN representeert automatische
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verwerking en wordt ook gevonden als proefpersonen geen aandacht aan de

stimuli besteden. Daarnaast worden de N2b en de P3 besproken die beide

gerelateerd zijn aan bewuste, taakrelevante herkenning van een mismatch.

De amplitude van de P3 wordt bëınvloed door de waarschijnlijkheid van de

afwijkende stimulus, de zekerheid van de proefpersoon en de benodigde ver-

werkingscapaciteit om de mismatch te herkennen, zoals aandacht (Johnson,

1984, 1986).

In hoofdstuk 5 wordt een ERP-onderzoek bij deelnemers zonder hersen-

beschadiging beschreven. Er werd een zogenaamde ‘active oddball task’ uit-

gevoerd. Dat wil zeggen dat de proefpersonen een taak kregen waarbij een

reeks stimuli gepresenteerd werd, waarin één stimulus vaak en een ander zelden

voorkomt. De proefpersonen werden gevraagd op de uitzonderlijke stimulus

reageren. De stimuli behoorden bij deze taak tot vier verschillende types:

tonen, auditieve lettergrepen, visuele lettergrepen en audiovisuele lettergrepen.

In de conditie met de tonen werden alle verwachte componenten gevonden:

zowel de MMN, N2b als P3 kwamen naar voren bij de twee uitzonderlijke

stimuli. Omdat de resultaten in deze controleconditie overeenkwamen met

resultaten zoals die eerder voor tonen werden gevonden in de literatuur, werd

de opzet van de studie als valide beschouwd. In het experiment met auditieve

lettergrepen werden de twee uitzonderlijke lettergrepen /ta/ en /ka/ ingevoegd

in een reeks van de standaard lettergreep /pa/. Geen van deze uitzonderlijke

stimuli veroorzaakte een duidelijke MMN of N2b. In plaats daarvan werd

een N2 gevonden die moeilijk op te splitsen was in de subcomponenten MMN

en N2b. Voor beide uitzonderlijke stimuli werd een eenduidige P3 gevonden.

De amplitude was groter voor de stimulus /ta/, waarvan theoretisch geclaimd

wordt dat deze minder dan /ka/ van de standaard stimulus /pa/ verschilt.

Deze vergrote P3 werd toegekend aan de grotere hoeveelheid aandacht die

nodig is om het verschil te detecteren. Verder werden audiovisuele en audi-

tieve verwerking vergeleken. Nadat de visuele activiteit afgetrokken was van

de audiovisuele, werden alle verschillen tussen de condities toegekend aan de

integratie van informatie. In het tijdsinterval van de P3 werd gevonden dat de

auditieve lettergrepen een grotere amplitude veroorzaakten dan het auditieve

gedeelte van de audiovisuele lettergrepen. Dit weerspiegelt het feit dat de

verwerking van audiovisuele input eenvoudiger is en minder capaciteit vergt,

om een verschil tussen twee lettergrepen te herkennen dan de verwerking van

auditieve input. De activiteit gerelateerd aan de McGurk-stimuli verschilde
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van zowel congruente uitzonderlijke lettergrepen alsook van de standaardlet-

tergreep. Omdat voor de visuele activiteit gecorrigeerd werd, was er geen

fysiek verschil tussen de standaard en de McGurk-stimuli. Derhalve werd

geconcludeerd dat het verschil in activiteit door de moeizamere integratie van

incongruente stimuli veroorzaakt wordt.

Hoofdstuk 6 beschrijft een onderzoek naar de mogelijkheid om het zo-

juist beschreven onderzoek ook met proefpersonen met afasie uit te voeren.

Helaas konden slechts drie proefpersonen met afasie gëıncludeerd worden in

dit onderzoek. Om deze reden werden hun data niet als die van een groep

geanalyseerd, maar als gevalsbeschrijvingen benaderd. Uit de analyse kwamen

geen eenduidige resultaten naar voren. In de conditie met tonen, waarin

geen verschillen met de controle groep werden verwacht, werden alsnog grote

afwijkingen van het ERP-patroon gevonden. Dit leidde tot de conclusie dat

de generatie van de MMN, N2b en P3 componenten verstoord werd door het

hersenletsel, hoewel het aantal correcte reacties en de reactietijden niet afweken

van de controlegroep. Daardoor kon het ontbreken van ERP-componenten in

de experimentele condities niet toegeschreven worden aan de problemen met

spraakherkenning. De data van de deelexperimenten met auditieve, visuele

en audiovisuele lettergrepen werden daarom niet geanalyseerd met betrekking

tot de punten die in het prolegomenon genoemd werden. Ook uit een vi-

suele inspectie van de golven bleek dat de activiteit van de proefpersonen met

afasie afwijkt van die van drie willekeurig geselecteerde proefpersonen zonder

hersenbeschadiging. De individuele proefpersonen zonder hersenbeschadiging

lieten patronen zien die grotendeels overeen kwamen met het groepspatroon,

terwijl dit niet het geval was voor de individuele deelnemers met afasie. De

conclusie van deze studie is dan ook dat het uitvoeren van ERP-onderzoek

met hersenbeschadigde deelnemers niet mogelijk is, omdat hun letsel invloed

heeft op het genereren van ERP-componenten die gerelateerd zijn aan een taak

waarvan de prestatie niet bëınvloed wordt.

Het laatste hoofdstuk bestaat uit een discussie van de drie hoofdpunten

die in het prolegomenon opgeworpen werden, een algemene conclusie en een

korte beschrijving van de klinische relevantie van de beschreven resultaten.

Wat betreft de hoofdvragen kan geconcludeerd worden dat de waarneming

van spraak afhangt van eenheden die kleiner zijn dan fonemen en fonologische

dimensies. Verder werd aan de hand van de twee gedragsmatige studies en het

ERP-onderzoek met proefpersonen zonder hersenbeschadiging geconcludeerd
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dat liplezen de prestatie bevordert. Verder kan de invloed van liplezen op

de waarneming ook in neurale metingen vastgesteld worden. De evaluatie

van het TRACE-model van spraakwaarneming (McClelland & Elman, 1986;

Campbell, 1988, 1990) liet zien dat bijna alle resultaten op basis van dit model

verklaard kunnen worden. De invloed van liplezen op dimensies anders dan

‘plaats van articulatie’ kan echter niet aan de hand van het model in zijn huidige

staat verklaard worden. Hiervoor is een uitbreiding van de visuele kenmerken

in het model nodig. Ten slotte blijkt uit de resultaten van dit proefschrift

dat een probleem in de herkenning van spraakklanken de fonetische dimensies

verschillend kan aantasten. Dit impliceert dat het belangrijk is om tijdens de

diagnostiek een individueel profiel van elke afatische luisteraar te verwerven,

dat de basis vormt voor het kiezen van een geschikte behandeling.
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A Appendix to chapter 1: Auditory and
Audiovisual Speech Perception

A.1 Illustrations on models

Figure A.1.1: Example of activation pattern for the word “cup”(/k2p/) generated with a
computational implementation of TRACE, JTrace (Strauss et al., 2007). In
the top panel the activation of each feature at different time points is shown.
The degree of activation is color-coded: a darker color represents a higher level
of activation. The middle panel shows the activation of each phoneme relative
to the time: while in the beginning and end no phoneme is activated, it can be
seen that activation goes from /k/ via /2/ to /p/, with a small co-activation
for /b/. The word-level activation is shown at the bottom panel. Upon the
identification of /k/, several words starting with /k/ are co-activated, but the
overall activation is strongest for /k2p/ (indicated by the darkest color).
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B Appendix to chapter 2: Phonetic Dimensions
in Aphasic Perception

B.1 Stimuli

Table B.1.1: Pairs with identical stimuli.

Stimuli

/ba:f/ - /ba:f/ /bo:f/ - /bo:f/ /b >œyp/ - /b >œyp/ /du:p/ - /du:p/

/d
>
Eif/ - /d

>
Eif/ /d>Ouk/ - /d>Ouk/ /d>Oum/ - /d>Oum/ /d >œys/ - /d >œys/

/fe:t/ - /fe:t/ /fu:p/ - /fu:p/ /f
>
Eip/ - /f

>
Eip/ /fø:l/ - /fø:l/

/fø:p/ - /fø:p/ /f >œyp/ - /f >œyp/ /ke:m/ - /ke:m/ /k>Ouk/ - /k>Ouk/
/ky:m/ - /ky:m/ /la:p/ - /la:p/ /ly:m/ - /ly:m/ /lø:l/ - /lø:l/

/lø:p/ - /lø:p/ /ma:f/ - /ma:f/ /me:m/ - /me:m/ /my:k/ - /my:k/
/mø:l/ - /mø:l/ /m >œyp/ - /m >œyp/ /ni:x/ - /ni:x/ /no:k/ - /no:k/

/pa:f/ - /pa:f/ /pi:x/ - /pi:x/ /py:k/ - /py:k/ /p
>
Eif/ - /p

>
Eif/

/pøm/ - /pøm/ /p >œyp/ - /p >œyp/ /sa:f/ - /sa:f/ /si:x/ -/si:x/

/sy:n/ - /sy:n/ /sø:m/ - /sø:m/ /sø:p/ - /sø:p/ /s
>
Eif/ - /s

>
Eif/

/ta:f/ - /ta:f/ /ti:x/ - /ti:x/ /t>Ouf/ - /t>Ouf/ /t>Oun/ - /t>Oun/
/v>øys/ - /v>øys/ /v>Oul/ - /v>Oul/ /xi:m/ - /xi:m/ /xø:p/ - /xø:p/

/x >œys/ - /x >œys/ /x>Ouk/ - /x>Ouk/ /za:f/ - /za:f/ /za:p/ - /za:p/
/zi:m/ - /zi:m/ /zi:x/ - /zi:x/
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Table B.1.2: Pairs with different stimuli.

Condition
Stimuli

(difference in)

1 Dimension

Place
/fe:t/ - /se:t/ /fø:p/ - /sø:p/

/p
>
Eif/ - /t

>
Eif/ /py:m/ - /ty:m/

/si:x/ - /fi:x/ /ti:x/ - /pi:x/

Manner
/du:p/ - /nu:p/ /kø:p/ - /xø:p/
/k>Ouk/ - /x>Ouk/ /sa:f/ - /ta:f/

/t
>
Eif/ - /s

>
Eif/ /ti:x/ - /si:x/

Voicing
/ba:f/ - /pa:f/ /bø:m/ - /pø:m/

/d
>
Eif/ - /t

>
Eif/ /d>Ouf/ - /t>Ouf/

/p >œyp/ - /b >œyp/ /t>Oum/ - /d>Oum/

2 Dimensions

Place & Manner
/fø:l/ - /tø:l/ /k

>
Eip/ - /f

>
Eip/

/pø:m/ - /sø:m/ /t>Ouf/ - /x>Ouf/
/v >œys/ - /d >œys/ /xø:p/ - /tø:p/

Place & Voicing
/bo:f/ - /to:f/ /d>Oum/ - /p>Oum/

/fi:x/ - /zi:x/ /p
>
Eif/ - /d

>
Eif/

/za:p/ - /fa:p/ /zi:m/ - /xi:m/

Manner & Voicing
/di:x/ - /si:x/ /dy:n/ - /sy:n/

/m >œyp/ - /p >œyp/ /py:k/ - my:k/

/s
>
Eif/ - /d

>
Eif/ /zi:x/ - /ti:x/

3 Dimensions

/ba:f/ - /sa:f/ /d >œys/ - /x >œys/
/d>Ouk/ - /x>Ouk/ /f >œyp/ - /d >œyp/
/fo:k/ - /no:k/ /fœ:l/ - /lœ:l/

/ke:m/ - /me:m/ /k>Oul/ - /v>Oul/
/ky:m/ - /ly:m/ /la:p/ -/fa:p/
/lø:p/ - /xø:p/ /ni:x/ - /fi:x/
/nu:p/ - /fu:p/ /pi:x/ - zi:x/

/sø:m/ - /bø:m/ /ta:f/ - /ma:f/
/tø:l/ - /mø:l/ /za:f/ - /pa:f/
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B.2 Individual data

Table B.2.1: Individual results of the aphasic listeners for the differences in 1, 2, and 3
dimensions.1
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1W = Wernicke’s Aphasia, G = Global Aphasia, A = Anomia, M = Mixed Aphasia
A’= A’-Scores calculated according to Snodgrass et al. (1985)
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Table B.2.2: Individual results of the aphasic listeners for the different dimensions.1
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1W = Wernicke’s Aphasia, G = Global Aphasia, A = Anomia, M = Mixed Aphasia
A’= A’-Scores calculated according to Snodgrass et al.
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B.3 Statistics with A’-scores

Table B.3.1: Comparison of conditions for the aphasic group using A’- Scores.

Comparison Test used Teststatistics df p

AV vs AO vs VO Friedman Anova χ²=10.333 2 p=0.006
AV vs AO Wilcoxon Test Z=1.725 p=0.084
AV vs VO Wilcoxon Test Z=2.201 p=0.028
AO vs VO Wilcoxon Test Z=2.201 p=0.028
AV vs AO (place) Wilcoxon Test Z=0.406 p=0.684
AV vs AO (manner) Wilcoxon Test Z=2.023 p=0.043
AV vs AO (voicing) Wilcoxon Test Z=0.943 p=0.345
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Table B.3.2: Comparison of dimensions for the aphasic group using A’- Scores.

Comparison Test used Teststatistics df p

Auditory only
1 vs 2 vs 3 dimensions Friedman Anova χ²=8.667 2 p=0.013
2 vs 1 dimensions Wilcoxon Test Z=1.826 p=0.068
3 vs 1 dimensions Wilcoxon Test Z=2.201 p=0.028
3 vs 2 dimensions Wilcoxon Test Z=1.089 p=0.276
place vs manner vs voicing Friedman Anova χ²=6.700 2 p=0.035
manner vs place Wilcoxon Test Z=0.000 p=1.000
voicing vs place Wilcoxon Test Z=2.207 p=0.027
voicing vs manner Wilcoxon Test Z=1.753 p=0.080

Audiovisual
1 vs 2 vs 3 dimensions Friedman Anova χ²=11.143 2 p=0.004
2 vs 1 dimensions Wilcoxon Test Z=2.226 p=0.026
3 vs 1 dimension Wilcoxon Test Z=2.207 p=0.027
3 vs 2 dimensions Wilcoxon Test Z=1.633 p=0.102
place vs manner vs voicing Friedman Anova χ²=4.727 2 p=0.094
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C Appendix to chapter 3: Audiovisual
Processing: A McGurk Study

C.1 Pilot study

Table C.1.1: Results of the pilot study per participant. Values missing from 100% were other
responses, such as leaving out the initial phoneme.

Participant Age Gender
Answertype

McGurk Auditory Visual

1 26 female 13% 62% 15%
2 27 female 62% 10% 26%
3 28 female 23% 31% 38%
4 29 female 0% 59% 28%
5 32 female 26% 56% 8%
6 32 male 36% 31% 23%
7 33 female 0% 41% 28%
8 43 male 10% 69% 10%
9 49 female 13% 8% 54%
10 50 female 46% 21% 26%
11 53 female 3% 31% 31%
12 58 female 41% 36% 23%
13 59 male 54% 3% 27%
14 62 male 23% 8% 59%
15 63 female 5% 41% 51%
16 67 female 61% 36% 3%

average: all 44 26% 34% 28%
average: >45 years 58 31% 23% 34%
average: <45 years 31 21% 45% 22%
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Table C.1.2: Results of the pilot study per item. Values missing from 100% were other
responses, such as leaving out the initial phoneme.

Item
Answertype

McGurk Auditory Visual

/tIlm/ 25% 31% 38%
/t>Oum/ 50% 19% 31%
/ti:lp/ 13% 38% 50%
/tEnf/ 50% 19% 19%
/tAlp/ 31% 25% 0%
/tø:p/ 25% 13% 44%
/tø:lf/ 25% 44% 19%
/tIlx/ 25% 25% 44%
/tEms/ 38% 38% 0%
/tArp/ 6% 25% 19%
/ta:rm/ 38% 13% 6%
/tIrk/ 25% 56% 13%
/ty:st/ 0% 31% 69%
/ty:l/ 31% 6% 63%
/ti:x/ 50% 44% 0%
/ta:mst/ 31% 44% 0%
/tEN/ 69% 13% 0%
/tIrn/ 38% 6% 19%

/t
>
Eilf/ 50% 38% 6%

/t>Ouf/ 13% 38% 38%
/tu:m/ 0% 6% 81%
/tulk/ 38% 0% 63%
/tAnf/ 56% 19% 0%
/tø:f/ 6% 6% 50%
/ty:m/ 0% 6% 94%
/t>Oux/ 31% 19% 44%
/tIlf/ 25% 31% 31%
/t>Oun/ 44% 31% 25%
/tu:sp/ 6% 44% 50%
/t >œynk/ 50% 0% 50%
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C.2 Stimuli

Table C.2.1: Overview of stimuli used: given are the rhyme and its respective onsets per
condition together with the written answer choices that were provided.

Rhyme
Onset per condition Written answer choice presented on
AO AV VO top middle bottom

/Ilm/ /t/ /k/ /p/ kilm pilm tilm
/>Oum/ /p/ /t/ /k/ koum poum toum
/i:lp/ /t/ /k/ /p/ kielp pielp tielp
/Enf/ /k/ /p/ /t/ kenf penf tenf
/Alp/ /t/ /k/ /p/ kalp palp talp
/ø:p/ /t/ /p/ /k/ keup peup teup
/ø:lf/ /k/ /p/ /t/ keulf peulf teulf
/Ilx/ /t/ /k/ /p/ kilg pilg tilg
/Ems/ /p/ /k/ /t/ kems pems tems
/Arp/ /k/ /p/ /t/ karp parp tarp
/a:rm/ /p/ /t/ /k/ kaarm paarm taarm
/Irk/ /k/ /t/ /p/ kirk pirk tirk
/y:st/ /t/ /p/ /k/ kuust puust tuust
/y:l/ /t/ /p/ /k/ kuul puul tuul
/ti:x/ /p/ /t/ /k/ kieg pieg tieg
/a:mst/ /k/ /p/ /t/ kaamst paamst taamst
/EN/ /p/ /k/ /t/ keng peng teng
/Irn/ /p/ /t/ /k/ kirn pirn tirn

/
>
Eilf/ /p/ /t/ /k/ kijlf pijlf tijlf

/>Ouf/ /t/ /p/ /k/ kouf pouf touf
/u:m/ /k/ /t/ /p/ koem poem toem
/ulk/ /k/ /t/ /p/ koelk poelk toelk
/Anf/ /p/ /k/ /t/ kanf panf tanf
/ø:f/ /k/ /t/ /p/ keuf peuf teuf
/y:m/ /p/ /k/ /t/ kuum puum tuum
/>Oux/ /t/ /k/ /p/ koug poug toug
/Ilf/ /k/ /p/ /t/ kilf pilf tilf
/>Oun/ /p/ /k/ /t/ koun poun toun
/u:sp/ /t/ /p/ /k/ koesp poesp toesp
/ >œynk/ /k/ /t/ /p/ kuink puink tuink
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Table C.2.2: Fillers used to compensate for too many /t/- responses in the McGurk condition.

Stimuli

/k >œyx/ /kErts/ /kø:x/ /p >œyp/ /pErts/ /pø:rf/
/kAls/ /ke:m/ /k>Ouk/ /p >œyx/ /pe:f/ /pø:st/
/kAlx/ /ke:x/ /k>Oul / /pAlx/ /pe:x/ /pø:x/
/kAnk/ /kIrf/ /k>Oup/ /pa:f/ /pIrf/ /p>Oup/

/k
>
Eip/ /koN/ /kurf/ /p

>
Eif/ /polt/ /purf/

/k
>
Eis/ /kø:lp/ /ku:x/ /pEkst/ /poN/ /pYN/

/kElm/ /kø:m/ /kYlm/ /pElm/ /pø:lp/ /pYrf/
/kElx/ /ko:m/ /kYN/ /pElp/ /po:lt/ /py:f/
/kEnk/ /kø:rn/ /ky:f/ /pElx/ /pø:m/ /py:k/
/kErp/ /kø:st/ /ky:s/ /pErp/ /po:m/ /py:s/



C. AUDIOVISUAL PROCESSING: A MCGURK STUDY 169

C.3 Results

Table C.3.1: Demographics and individual results of the non-brain-damaged control
participants per condition.

Parti-
Age Gender

Auditory Only Audiovisual Visual Only
cipant correct RT correct RT correct RT

C1 52 f 100% 1396ms 100% 1322ms 93% 1944ms
C2 52 m 100% 1085ms 100% 1091ms 69% 1773ms
C3 54 m 100% 1807ms 100% 1786ms 83% 2304ms
C4 52 m 100% 1789ms 100% 1657ms 70% 2682ms
C5 49 f 100% 1411ms 100% 1342ms 82% 2350ms
C6 55 f 100% 1489ms 100% 1627ms 76% 2354ms
C7 59 m 100% 1643ms 100% 1530ms 67% 2418ms
C8 64 f 100% 1398ms 100% 1315ms 77% 1920ms
C9 64 f 97% 1169ms 100% 1096ms 90% 1674ms
C10 50 m 97% 1357ms 100% 1421ms 76% 1937ms
C11 65 m 100% 1534ms 100% 1449ms 83% 2155ms
C12 49 f 100% 1392ms 100% 1374ms 80% 2142ms
C13 61 f 100% 1511ms 100% 1422ms 71% 2674ms
C14 62 m 90% 1514ms 97% 1470ms 76% 1985ms
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Table C.3.2: Individual answer patterns in the McGurk condition for the non-brain-damaged
control participants.

Participant
McGurk (/t/) Auditory (/p/) Visual (/k/)

Incidence RT Incidence RT Incidence RT

C1 31% 2806ms 14% 2260ms 55% 1823ms
C2 7% 1468ms 83% 1153ms 10% 1394ms
C3 47% 1903ms 6% 2522ms 47% 1955ms
C4 0% — 100% 1624ms 0% —
C5 10% 2553ms 10% 1626ms 80% 1722ms
C6 13% 3048ms 74% 1887ms 13% 2487ms
C7 46% 1922ms 27% 2636ms 27% 2087ms
C8 7% 1341ms 0% — 93% 1818ms
C9 13% 1136ms 30% 1125ms 57% 903ms
C10 7% 2776ms 3% 2370ms 90% 1237ms
C11 50% 1885ms 20% 2262ms 30% 2058ms
C12 43% 1564ms 54% 1406ms 3% 3617ms
C13 17% 2615ms 33% 1622ms 50% 1789ms
C14 20% 1987ms 13% 1773ms 67% 1423ms
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D Appendix to Chapter 5: Brain Correlates of
Phonemic Processing

D.1 Individual results

Table D.1.1: Individual results in the tones condition for each stimulus type. Next to the
participant number, age and gender (m=male, f=female) of the participants
are provided. Participant 4 showed a rather low recognition rate of the less
distant deviant. This could be an indication of a mild hearing disorder. He,
however, showed normal performance for the syllable tasks and was, therefore
not excluded. Also, the ERP is not influenced by his lower accuracy, as only
trials with correct answers were included in the analysis.

Participant
standard 1000Hz deviant 1050Hz deviant 1200Hz

% correct % correct RT % correct RT

1 (66,m) 99.9 % 100 % 533ms 100 % 460ms
2 (67,m) 100 % 100 % 428ms 100 % 363ms
3 (59,f) 100 % 99 % 547ms 99 % 474ms
4 (69,m) 99.6 % 45 % 522ms 100 % 429ms
5 (53,f) 100 % 100 % 426ms 100 % 348ms
6 (46,f) 100 % 100 % 578ms 100 % 549ms
7 (65,f) 100 % 100 % 543ms 100 % 491ms
8 (56,f) 100 % 94.5 % 616ms 100 % 457ms
9 (45,f) 100 % 94 % 617ms 98 % 549ms
10 (60,m) 99.8 % 100 % 383ms 100 % 288ms
11 (63,f) 100 % 97.6 % 560ms 95 % 543ms
12 (57,f) 99.9 % 100 % 501ms 100 % 465ms
13 (61,m) 100 % 96.4 % 635ms 98.8 % 436ms
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Table D.1.2: Individual results in the auditory syllables condition for each stimulus type.
Next to the participant number, age and gender (m=male, f=female) of the
participants are provided.

Participant
standard /pa/ deviant /ka/ deviant /ta/

% correct % correct RT % correct RT

1 (66,m) 100 % 73 % 961ms 73 % 960ms
2 (67,m) 99.9 % 93 % 867ms 88 % 865ms
3 (59,f) 100 % 88 % 913ms 91 % 924ms
4 (69,m) 99.9 % 93 % 868ms 94 % 858ms
5 (53,f) 100 % 85 % 878ms 79 % 855ms
6 (46,f) 100 % 76 % 922ms 86 % 931ms
7 (65,f) 99.9 % 57 % 966ms 62 % 961ms
8 (56,f) 99.9 % 94 % 907ms 95 % 900ms
9 (45,f) 99.9 % 26 % 970ms 30 % 957ms
10 (60,m) 99.8 % 99 % 811ms 97 % 817ms
11 (63,f) 100 % 49 % 926ms 83 % 939ms
12 (57,f) 100 % 67 % 922ms 85 % 916ms
13 (61,m) 100 % 71 % 949ms 85 % 939ms

Table D.1.3: Individual results in the visual syllables condition for each stimulus type.
Next to the participant number, age and gender (m=male, f=female) of the
participants are provided.

Participant
standard /pa/ deviant /ka/ deviant /ta/

% correct % correct RT % correct RT

1 (66,m) 99.9 % 94 % 721ms 100 % 655ms
2 (67,m) 99.9 % 82 % 772ms 98 % 750ms
3 (59,f) 100 % 98 % 743ms 100 % 676ms
4 (69,m) 99.9 % 96 % 614ms 99 % 628ms
5 (53,f) 100 % 96 % 621ms 100 % 560ms
6 (46,f) 100 % 100 % 678ms 100 % 666ms
7 (65,f) 99.8 % 95.2 % 773ms 100 % 733ms
8 (56,f) 100 % 100 % 577ms 100 % 568ms
9 (45,f) 99.9 % 79 % 860ms 91 % 840ms
10 (60,m) 99.5 % 97 % 526ms 100 % 494ms
11 (63,f) 100 % 75 % 885ms 72 % 866ms
12 (57,f) 100 % 97 % 660ms 100 % 582ms
13 (61,m) 99.9 % 100 % 684ms 100 % 679ms
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Table D.1.4: Individual results in the audiovisual syllables condition for each stimulus type.
Next to the participant number, age and gender (m=male, f=female) of the
participants are provided.

Participant
standard /pa/ deviant /ka/ deviant /ta/ deviant McGurk

% correct % correct RT % correct RT % correct RT

1 (66,m) 99.9 % 98 % 780ms 98 % 711ms 92 % 754ms
2 (67,m) 99.8 % 74 % 900ms 84 % 872ms 51 % 918ms
3 (59,f) 99.8 % 84 % 891ms 94 % 872ms 85 % 901ms
4 (69,m) 99.8 % 100 % 671ms 98 % 679ms 95 % 680ms
5 (53,f) 99.9 % 100 % 701ms 100 % 639ms 93.6 % 725ms
6 (46,f) 100 % 92 % 811ms 95 % 812ms 92 % 797ms
7 (65,f) 99.8 % 85 % 901ms 97 % 850ms 75 % 894ms
8 (56,f) 99.9 % 97 % 703ms 97 % 658ms 96 % 692ms
9 (45,f) 99.9 % 85.9 % 827ms 95 % 815ms 88.3 % 845ms
10 (60,m) 99.8 % 100 % 576ms 100 % 511ms 97 % 560ms
11 (63,f) 99.9 % 88 % 885ms 92 % 860ms 83 % 886ms
12 (57,f) 100 % 98 % 808ms 99 % 660ms 98 % 770ms
13 (61,m) 99.9 % 96 % 731ms 100 % 715ms 83 % 747ms
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E Appendix to chapter 6: Reliability of ERP
measures in aphasia

E.1 Number of valid trials

Table E.1.1: Number of valid (correct, artifact-free) trials. Values marked with an asterisk
represent conditions which were not included in the analysis due to too little
data. In the ‘tones’ condition the standard was a 1000Hz pure tone, deviant 1
a 1050Hz tone and deviant 2 a 1200Hz tone. In the remaining three conditions,
the standard was /pa/, deviant 1 /ka/, and deviant 2 /ta/. In the audiovisual
condition a third deviant, auditory /pa/ dubbed on a visual /ka/ was added to
elicit the McGurk illusion.

Participant Condition standard deviant1 deviant2
missed

McGurk
Used

deviants trials

WB

Tones 133 47 70 33 —

48
Auditory Syllables 93 25 24 53 —
Visual Syllables 142 58 62 23* —
Audiovisual Syllables 203 55 65 8* 34

TB

Tones 134 72 70 — —

122
Auditory Syllables 190 81 92 22* —
Visual Syllables 146 61 71 11* —
Audiovisual Syllables 289 92 90 12* 18*

DM

Tones 186 85 94 1* —

170
Auditory Syllables 191 96 98 3* —
Visual Syllables 196 88 95 9* —
Audiovisual Syllables 297 100 97 2* 95

E.2 Results of statistic analyses

WB

Auditory syllables

120–160ms: no main effect of stimulus type (F(3,141)=1.548, p=0.219)
200–240ms: no main effect of stimulus type (F(3,141)=1.131, p=0.335)
360–400ms: no main effect of stimulus type (F(3,141)=0.379, p=0.728)

Visual syllables

120–160ms: no main effect of stimulus type (F(2,94)=0.304, p=0.714)
200–240ms: no main effect of stimulus type (F(2,94)=0.162, p=0.847)
360–400ms: no main effect of stimulus type (F(2,94)=0.694, p=0.476)
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Audiovisual syllables versus auditory syllables

120–160ms: no main effect of condition (F(1,47)=0.003, p=0.959)
200–240ms: no main effect of condition (F(1,47)=0.696, p=0.408)
360–400ms: no main effect of condition (F(1,47)=0.089, p=0.767)

McGurk stimuli

120–160ms: no main effect of stimulus type (F(3,141)=0.460, p=0.676)
200–240ms: no main effect of stimulus type (F(3,141)=0.263, p=0.833)
360–400ms: no main effect of stimulus type (F(3,141)=2.278, p=0.102)

TB

Auditory syllables

120–160ms: no main effect of stimulus type (F(2,242)=0.693, p=0.496)
200–240ms:
� no main effect of stimulus type (F(2,242)=1.182, p=0.306)
� interaction of stimulus type and frontality (F(4,484)=3.647, p<0.05): trend

to main effect of stimulus type occipitally (F(2,242)=2.678, p=0.074): /ta/
more negative than /ka/ (p<0.05)

360–400ms:
� main effect of stimulus type (F(2,242)=5.236, p<0.05): standard more

positive than deviant /ta/ (p<0.01) and deviant /ka/ (p<0.05)
� interaction of stimulus type and frontality (F(4,484)=4.711, p<0.01): effect

strongest at frontal electrodes

Visual syllables

120–160ms:
� no main effect of stimulus type (F(1.785)=1.902, p=0.151)
� interaction between stimulus type and frontality (F(2.349)=3.153, p<0.05):

main effect of stimulus type occipitally (F(1.802)=7.093, p<0.01): standard
and deviant /ka/ more positive than deviant /ta/ (p<0.05, p<0.001)

� interaction between stimulus type and laterality (F(2.826)=15.192,
p<0.001): main effect of stimulus type at left hemisphere electrodes
(F(1.746)=7.838, p<0.01): deviant /ka/ more positive than /ta/ (p<0.001)
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200–240ms:
� main effect of stimulus type (F(1.869)=4.084, p<0.05): deviant /ta/ more

positive than deviant /ka/ (p<0.05).
� interaction of stimulus type and frontality (F(2.397)=5.508, p<0.01): effect

strongest for frontal electrodes
� interaction of stimulus type and laterality (F(2.762)=11.199, p<0.001):

effect smallest on right side electrodes
360–400ms:
� main effect of stimulus type (F(1.842)=35.736, p<0.001): deviant /ta/

more positive than deviant /ka/ (p<0.001), deviant /ka/ more positive
than standard (p<0.001)

� interaction of stimulus type and laterality (F(3.014)=19.556, p<0.001):
effect smallest at the right hemisphere electrodes

Audiovisual syllables versus auditory syllables

120–160ms: no main effect of condition (F(1,121)=0.554, p=0.458)
200–240ms: main effect of condition (F(1,121)=5.767, p<0.05):

corrected AV more negative than AO
360–400ms: no effect of condition (F(1,121)=2.062, p=0.154)

McGurk stimuli

There were too few correct, artifact-free responses for an evaluation.

DM

Auditory syllables

120–160ms:
� no effect of stimulus type (F(2,338)=0.270, p=0.746)
� interaction of stimulus type and frontality (F(4,676)=2.764, p<0.05): no

main effects for stimulus type in either instance of frontality (frontal:
F(2,338)=0.176, p=0.827; central: F(2,338)=0.021, p=0.973; occipital:
F(2,338)=1.515, p=0.223)

� interaction of stimulus type and laterality (F(4,676)=3.695, p<0.01):
no main effects for stimulus type in either instance of laterality (left:
F(2,338)=0.385, p=0.666; midline: F(2,338)=0.679, p=0.494; right:
F(2,338)=0.242, p=0.769)

200–240ms: main effect of stimulus type (F(2,338)=7.122, p<0.01):
standard more negative than deviants /ka/ (p<0.05) and /ta/ (p<0.01)
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360–400ms:
� main effect stimulus type (F(2,338)=5.873, p<0.01): both deviants more

positive than standard (p<0.01, for both comparisons)
� interaction of stimulus type and frontality (F(4,676)=29.37, p<0.001):

effect strongest at occipital electrodes
� interaction between stimulus type and laterality (F(4,676)=5.349, p<0.01):

effect least strong at left hemisphere electrodes

Visual syllables

120–160ms:
� main effect of stimulus type (F(2,338)=5.107, p<0.01): standard elicited

more negative responses than either deviant (/ka/: p<0.01, /ta/: p<0.05)
� interaction of stimulus type with frontality (F(4,676)=13.087, p<0.001):

effect strongest occipitally
� interaction of stimulus type and laterality (F(4,676)=6.879, p<0.001): effect

strongest at left and midline electrodes
200–240ms:
� main effect of stimulus type (F(2,338)=4.139, p<0.05): standard more

negative than deviant /ka/ (p<0.05)
� interaction of stimulus type and laterality (F(4,676)=4.237, p<0.01): effect

strongest at midline electrodes
360–400ms:
� main effect of stimulus type (F(2,338)=11.464, p<0.001): both deviants

more positive than standard (/ka/: p<0.01, /ta/: p<0.001)
� interaction of stimulus type and laterality (F(4,676)=4.135, p<0.01): effect

largest at midline electrodes
� interaction of stimulus type and frontality (F(4,676)=50.424, p=<0.001):

effect increases with posteriority of electrodes

Audiovisual syllables versus auditory syllables

120–160ms:
� no main effect of condition (F(1,169)=1.112, p=0.293)
� interaction of condition and frontality (F(2,338)=12.931, p<0.001): sepa-

rate ANOVAs per instance of frontality did not yield significant results
200–240ms:
� trend to main effect (F(1,169)=3.720, p=0.055): AV-VO more negative AO
� interaction of condition and frontality: corrected AV more negative AO at

central (F(1,169)=4.654, p<0.05) and occipital (F(1,169)=10.418, p<0.01)
electrodes
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360–400ms:
� no main effect of condition (F(1,169)=0.622, p=0.431)
� interaction of condition and frontality (F(2,338)=32.006, p<0.001): AO

more positive than AV at occipital electrodes (F(1,169)=6.653, p<0.05)

McGurk stimuli

120–160ms:
� no main effect of stimulus type (F(3,507)=0.968, p=0.4)
� interaction of stimulus type and frontality (F(6,1014)=7.553, p<0.001):

separate ANOVAs per instance of frontality did not yield significant results
200–240ms:
� no main effect of stimulus type (F(3,507)=0.328, p=0.778)
� interaction of stimulus type and frontality (F(6,1014)=15.292, p<0.001):

separate ANOVAs per instance of frontality did not yield significant results
360–400ms:
� no main effect of stimulus type (F(3,507)=1.96, p=0.131)
� interaction of stimulus type and laterality (F(6,1014)=2.627, p<0.05):

main effect of stimulus type at left hemisphere electrodes (F(3,507)=3.328,
p<0.05): McGurk stimuli more positive than standard stimuli (p<0.05);

� interaction between stimulus type and frontality (F(6,1014)=2.999,
p<0.05): separate ANOVAs per instance of frontality did not yield
significant results
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T. (2008). Modulation of the mismatch negativity (MMN) to vowel
duration changes in native speakers of Finnish and German as a result
of language experience. International Journal of Psychophysiology , 67 ,
131–143.

Klatt, D. H. (1979). Speech perception: A model of acoustic-phonetic analysis
and lexical access. Journal of Phonetics, 7 , 279–312.

Klitsch, J. (2008). Open your eyes and listen carefully. Auditory
and audiovisual speech perception and the McGurk effect in Dutch
speakers with and without aphasia (Doctoral dissertation, University of
Groningen). Groningen Dissertations in Linguistics (GRODIL), 67 .

Kraus, N., McGee, T., Sharma, A. M. A., Carrell, T., & Nicol, T. B. S. (1992).
Mismatch negativity event-related potential elicited by speech stimuli.
Ear and Hearing , 13 , 158–164. Using Smart Source Parsing
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R. (2003). Native and foreign vowel discrimination as indexed by the
mismatch negativity (MMN) response. Neuroscience Letters, 352 , 25–
28.

Reisberg, D., McLean, J., & Goldfield, A. (1987). Easy to hear, but hard to
understand: A lipreading advantage with intact auditory stimuli. In
B. Dodd & R. Campbell (Eds.), Hearing by eye: The psychology of
lipreading (pp. 97–114). London: Lawrence Erlbaum.

Rivera-Gaxiola, M., Csibra, G., Johnson, M. H., & Karmiloff-Smith, A. (2000).
Electrophysiological correlates of cross-linguistic speech perception in
native english speakers. Behavioural Brain Research, 111 , 13–23.

Robert-Ribes, J., Piquemal, M., Schwartz, J.-L., & Escudier, P. (1996).
Exploiting sensor fusion architectures and stimuli complementarity in av
speech recognition. In D. Storck & M. Hennecke (Eds.), Speechreading by
humans and machines (pp. 193–210). Berlin: Springer.

Rosen, S. M., Fourcin, A. J., & Moore, B. C. J. (1981). Voice pitch as an aid
to lipreading. Nature, 291 , 150–152.

Rosenblum, L. D. (2008). Speech perception as a multimodal phenomenon.
Current Directions in Psychological Science, 17 , 405–409.

Saffran, E., Marin, O., & Yeni-Komshian, G. (1976). An analysis of speech
perception in word deafness. Brain and Language, 3 , 209–28.

Saint-Amour, D., De Sanctis, P., Molholm, S., Ritter, W., & Foxe, J. J. (2007).
Seeing voices: High-density electrical mapping and source-analysis of the
multisensory mismatch negativity evoked during the McGurk illusion.
Neuropsychologia, 45 , 587–597.

Sams, M., Aulanko, R., Aaltonen, O., & Näätänen, R. (1990). Event-related
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59. Mónika Z. Zempléni (2006). Functional imaging of the hemispheric contribution to
language processing.

60. Maartje Schreuder (2006). Prosodic Processes in Language and Music.

61. Hidetoshi Shiraishi (2006). Topics in Nivkh Phonology.
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