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Bischoff, and Ritsert C. Jansen

Abstract

Liquid Chromatography - Mass Spectrometry (LC-MS) is a powerful method for sensitive de-
tection and quantification of proteins and peptides in complex biological fluids like serum. LC-MS
produces complex data sets, consisting of some hundreds of millions of data points per sample at
a resolution of 0.1 amu in the m/z domain and 7000 data points in the time domain. However,
the detection of the lower abundance proteins from this data is hampered by the presence of arte-
facts, such as high frequency noise and spikes. Moreover, not all of the tens of thousands of
the chromatograms produced per sample are relevant for the pursuit of the biomarkers. Thus in
analysing the LC-MS data, two critical pre-processing issues arise. Which of the thousands of
the: 1. chromatograms per sample are relevant for the detection of the biomarkers?, and 2. sig-
nals per chromatogram are truly compound-related? Each of these issues involves assessing the
significance (deviation from noise) of multiple observations and the issue of multiple comparisons
arises. Current methods disregard the multiplicity and provide no concrete threshold for signifi-
cance. However, with such procedures, the probability of one or more false-positives is high as
the number of tests to be performed is large, and must be controlled. Realizing that the cut-offs
for declaring a chromatogram (or a signal) to be compound-related can hugely influence which
proteins are detected, it seems natural to define thresholds that are neither arbitrary nor subjective.
We suggest the choice of thresholds guided by the critical aim of controlling the False Discovery
Rate (FDR) in multiple hypotheses testing for significance over a large set of features produced
per sample. This involves the use of the regression diagnostics to characterize the signals of a
chromatogram (e.g. as outliers or influential) and to suggest suitable tests statistics for the mul-
tiple testing procedures (MTP) for discriminating noise and spikes from true signals. The role of
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the Generalized Linear Models (GLM) in this MTP is investigated. The method is applied to LC-
MS datasets from trypsin-digested serum spiked with varying levels of horse heart cytochrome C
(cytoc).

KEYWORDS: liquid chromatography, mass spectrometry, chromatogram, diagnostics, general-
ized linear models, proteins, biomarkers, noise, spikes, compound-related peaks, outliers, influen-
tial observations, false discovery rate, family-wise error rate, multiple testing



1   Introduction 
 
1.1   LC-MS data and pre-processing methods 
 
LC-MS is one of the widely used analytical methods for the analysis and 
comparison of complex protein and peptide mixtures. It has the advantage of 
combining the high separation efficiency of high performance liquid 
chromatography (HPLC) with the selectivity of mass spectrometry. 
Chromatography is a process in which a chemical mixture carried by a liquid or 
gas is separated into components as a result of differential distribution of the 
solutes as they flow around or over a stationary liquid or solid phase. A 
chromatogram is a time-based graphic record (as of concentration of eluted 
materials) of a chromatographic separation. Mass spectrometer is an instrument 
that separates ions according to their molecular masses, also called the mass to 
charge ratio and denoted by m/z. 

The aim of the LC-MS experiment that produced the datasets studied in this 
manuscript was to detect and quantify proteins and peptides in the serum of 
cervical cancer patients. This will be achieved by exploring differences in 
proteomic composition of serum from these patients before and after treatment for 
cervical cancer. However, the presence of highly abundant proteins e.g. Human 
Serum Albumin (HSA) and Immunoglobulin G (IgG) often masks those of lower 
abundance, hindering their identification and quantification. An analytical method 
for enhancing the detection of those proteins is the depletion of high-abundance 
proteins from a sample followed by trypsin (an enzyme that catalyzes the 
hydrolysis of proteins to form smaller polypeptide units, put simply, it is an 
enzyme that acts to degrade proteins) digestion and LC-MS (Govorukhina, et al., 
2006). Still, this method does not eliminate the artefacts such as high frequency 
noise and spikes in chromatograms that also make it difficult to detect the 
proteins, especially those of lower abundance. This raises the question of which of 
the thousands ( 7000≈ ) of the observed signals are truly compound-related, which 
highlights the first multiplicity issue. 

The LC-MS of a sample (by sample we mean a biological sample i.e. a 
specimen) yields a collection of (time, m/z, intensity) measurements, each 
indicating that at a particular (retention) time, an ion with a particular m/z was 
detected with a particular intensity. In this space, the observations over a fixed 
m/z form the chromatogram. The mass is given in atomic mass units (amu, also 
known as Daltons). For small molecules and most ion sources, z = 1± . For 
proteins z can be large, up to +50 or higher. At a resolution of 0.1 amu in the m/z 
domain, an LC-MS run of a sample produces about 14000 mass spectra (the 
pattern of the relative abundances of ions of different atomic masses within a 
sample) and a chromatographic run time of 2 hours (≈7000 retention times). 
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However, in different runs, measurements will not necessarily occur at the same 
time or measure exactly the same m/z. To make measurements directly 
comparable, the common practice is to round (bin) the m/z and time 
measurements to user-specified levels. The m/z is often rounded to the nearest 
unit (Windig, et al., 1996; Wiener, et al., 2004) and the time to the nearest 0.05 
minutes (3 seconds) (Wiener, et al., 2004), which puts the intensities on a 
time×m/z plane, which is a subset of ℝ 2 .  

Chromatograms (sometimes called the m/z traces) give information about the 
elution of compounds, represented by peaks across retention time. Some of these 
peaks represent possible peptides or proteins (or eluting compounds or analytes) 
characterizing a phenomenon, while others are spikes and noise (categorized in 
this manuscript into two groups as high solvent-based (e.g. Fig. 1 (b)) and 
frequency (e.g. Fig. 2 (a)) noise) that do not contain compound-related 
information. The compound-related peaks are characterized with broader bases 
(e.g. Fig. 1 (a)), while the spikes have narrower bases (e.g. Fig. 1 (c)). In this 
paper, the word peak will be used to refer to a compound-related peak. High 
quality chromatograms have distinct peaks and bases that contain minimal 
background noise. The noise level may also be used to categorize chromatograms. 
A chromatogram that is dominated by solvent-based noise has signals of 
“constant” magnitudes over the entire retention time range and exhibits no peaks, 
and thus contains no compound-related information. The solvent-based noise is 
generally due to mobile phase components that give a signal at each time point 
over the entire retention time range, while random noise is due to the electrospray 
ionisation (ESI) interface connecting HPLC and MS. A chromatogram may be 
contaminated by a complex combination of these artefacts. While many denoising 
procedures reduce this complexity they do not totally eliminate it. Thus a number 
of the chromatograms may still exhibit no informative peaks or may contain 
uncertain compound information even after noise filtering. Examples of such m/z 
traces include, those contaminated with the solvent-based noise (e.g. Fig. 1 (b)) 
and those with isolated random noise, expressed at low levels (e.g. Fig. 3 (a), (b) 
and (d)). Consequently, there is a need to detect and omit the least informative 
m/z traces from the ultimate data analyses and the question arises of which of the 
thousands ( 1400≈ ) of these chromatograms truly contain compounds that may 
be used in the biomarkers discovery. This issue yet again highlights another 
multiplicity problem associated with the pre-processing of the LC-MS data, that 
of detecting the relevant chromatograms.  

In this report, we address the two critical pre-processing issues that are vital 
for reliable peak detection. Which of the thousands of the:  

1. chromatograms per sample are relevant for the detection  of the 
biomarkers?, and  

2. signals per chromatogram are truly compound-related? 
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Each of these issues involves assessing the significance (deviation from noise) 
of multiple observations and the issue of multiple comparisons arise. Current 
methods (e.g. Windig, et al., 1996; Windig, et al., 2001; Gaspari, et al., 2001) 
disregard the multiplicity issue and provide no concrete threshold for significance. 
However, with such procedures, the probability of one or more false-positives is 
high as the number of features to be assessed is large. This means that the 
probability that some chromatograms will be declared as compound-related by 
chance alone cannot be neglected and needs to be controlled. Moreover, the 
preferred methods of eliminating spikes such as the moving median involve 
fictitious and arbitrary use of the user defined windows sizes. We deduced that 
depending on the window size chosen; this method could also significantly alter 
the intensities of the compound-related signals, which hugely lowers its worth. 
Realizing that the cut-offs for declaring a chromatogram (or a signal) to be 
compound-related can hugely influence which proteins are detected, it seems 
natural to define thresholds that are neither arbitrary nor subjective. We suggest 
the choice of thresholds guided by the critical aim of controlling the False 
Discovery Rate (FDR) in multiple hypotheses testing for significance over a large 
set of features produced per sample. This involves the use of the GLM regression 
diagnostic methods such as the leave-one-out and the case-perturbation (Cook & 
Weisberg, 1982; Cook, 1986; Williams, 1987) to characterize the signals of a 
chromatogram (e.g. as outliers (noise) or influential (compound-related)) and 
chromatograms (as noisy (outliers) or compound-related), which then suggests 
suitable test statistics for discriminating noise and spikes from true signals using 
the MTP. MTPs allow one to assess simultaneously, the significance of the results 
of a family of hypotheses tests. They focus on the specificity by controlling type I 
(false positive) error rates such as family-wise error rates (Dudoit, et al., 2004), 
false discovery rates (FDR) (Benjamini & Hochberg, 1995) and the false positive 
proportion (Lehmann & Romano, 2005). The method is applied to LC-MS 
datasets from trypsin-digested serum spiked with varying levels of horse heart 
cytochrome C (cytoc). 

The MTPs are routinely applied to control the number of false positive results 
in the microarray studies.  However, the application of these methods to detect 
compound contents of chromatograms is complex, unique and poses further 
challenges. Assessing the compound contents of a chromatogram involves 
comparing the raw signals with their smoothed counterparts using simple linear 
regression (two-sample t-test) and entails using thousands of observed signals 
( 7000≈ ) over the entire retention time range (equivalent to using sample of size 

7000≈  in microarrays) compared to the usually small sample sizes (e.g. 20 but 
often even less) in microarrays. Thus whereas the use of p-values (as a basis for 
FDR control) make perfect sense in microarrays and the MTPs are applied to 
these values directly, they may be highly misleading in our LC-MS application 
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because of the large sample sizes involved.  When sample size is large, the values 
of test statistics can be extremely large, giving rise to very small p-values, which 
have to be standardized so that they can be used in the usual way (Good, 1992). 
Thus we avoid using the conventional FDR controlling procedures, but adopt an 
alternative approach, the empirical Bayes method, in which each chromatogram is 
assigned a posterior probability that it is non-compound-related using the 
distribution of appropriate test statistics (Efron & Tibshirani, 2002; Liao, et al., 
2004).  

There are many features exhibited by mass chromatograms that motivate the 
use of regression diagnostics in detecting them. A chromatogram with high 
background  noise (high background is used here to mean dominance by solvent-
based noise) has a signal (of roughly uniform intensity) over the entire time range 
leading to it having a higher mean signal value relative to the observed signals 
than the high-quality ones. This means that the signal to mean-signal ratio is 
lower for all signals in those chromatograms, but is high for peaks in high-quality 
chromatograms. With respect to this criterion, a chromatogram with high 
background noise may be considered as an “outlier”   in m -dimensional space. At 
individual chromatogram level, the intensities of the signals of the spikes and 
compound-related peaks are large compared to those of the main cluster of 
signals, noise, that are expressed at background levels. This suggests that these 
features could be outlier (and/or influential) signals of a chromatogram.  In this 
work, it is shown that these chromatographic features may be detected using 
diagnostic tools derived from the GLM (with possibly identity or gamma links) in 
which the signals of a raw chromatogram play the role of independent variables 
and those of their smoothed and perturbed versions, the predictor variables. The 
noisy signals turn out to be those observations that are not well fitted by the 
model. 

Finally, the issue of run-to-run retention time variation has been identified as a 
significant impediment of LC-MS data analysis. Therefore, time warping is an 
essential pre-processing step in the analysis of LC-MS datasets, undertaken to 
align the compound-related features of chromatograms with same m/z values 
drawn from different LC-MS runs (see e.g. Nielsen, et al., 1998; Bylund, et al., 
2002; Johnson, et al., 2003). These algorithms assume that the corresponding 
chromatograms have similar landmark profiles across the retention time with 
possibly small shifts in positions that may be corrected by time warping. 
However, artefacts such as high frequency noise and spikes often mask some 
landmark features, making the matching process complex. We develop methods 
for discriminating peaks from noise that may lead to more effective matching of 
the chromatographic features.  
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In Section 2, we review chemometric methods for ranking chromatograms 
according to their compound contents that partially motivated our work and spell 
out their failures. We then propose a GLM that describes the relationship between 
the raw chromatogram and its smoothed version and set up the null hypotheses for 
the MTPs in Section 3.  In Section 4, we derive the test statistics for assessing the 
compound contents of chromatograms. In Section 5, the signals of a 
chromatogram are characterized and test statistics for detecting them proposed. 
We derive a link function for the GLM in Section 6 and introduce the 
corresponding test statistics. The multiple testing procedures for controlling the 
false positives are described in Section 7. Some computation results are presented 
in Section 8 and concluding remarks are discussed in Section 9.  
 
2 Chemometric methods for detecting qualities of chromatograms  
 
The noise inherent in the LC-MS data makes it difficult to identify the 
components present. Each LC-MS run produces thousands of chromatograms 
with varying noise contents. The high quality chromatograms have dominant 
distinctive peaks and have bases that are less contaminated with background 
noise. The other category of chromatograms are dominated by high frequency 
noise and spikes that mask the compound-related information, especially those of 
the lower abundance compounds.  Another cohort of chromatograms is dominated 
by the solvent-based noise (e.g. Fig. 1 (b)). They exhibit no compound-related 
peaks and are thus irrelevant to the biomarkers discovery effort. In some cases, 
the random noise can be detected and discriminated from the compound-related 
signals. Because of the complexity in the composition of a chromatogram and the 
fact that not all chromatograms produced from an LC-MS run are compound-
related, some attention has been devoted to the developing of the methods for 
selecting which chromatograms may be used in the biomarkers discovery (see e.g. 
Windig, et al., 1996; Windig, et al., 2001; Gaspari, et al., 2001). But 
unfortunately, none of these authors have considered the multiplicity nature of 
this problem. In this section, we review some popularly used chemometric 
methods for discriminating the compound-related chromatograms from those 
dominated by noise.  
 
2.1   The Component Detection Algorithm (CODA) 
 
To obtain data with improved signal-to-noise ratio the raw data is often filtered 
using smoothing algorithms, e.g. the moving average. The high quality 
chromatograms have low noise and background and are not so affected by the 
filtering process. The converse is true of the noisy chromatograms. Consequently, 
a first step in developing algorithms for detecting the quality (the noise level) of a 
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chromatogram is the choice of a similarity measure )d(,  that quantifies the 
deviations of the raw chromatogram from its smoothed version.  

Let *
kc be the smoothed version of the raw chromatogram kc of the k th m/z 

channel using a moving average method with window size w. Suppose ku  is a 
vector with elements )cc(u *

k
*
jkjk −= , where )1wn/(cc

j
*
jk

*
k +−= ∑  is the 

mean of the smoothed ion currents, then ku  is a smoothed and mean- 
subtracted version of kc . CODA (Windig, et al., 1996) utilizes a similarity  
index defined by 

kk
j

jkjkkk uc/uc),uc(d ∑= ,                  

where ∑= 2
jkk uu is the Euclidean length of ku , for example. Thus ),uc(d kk  

is essentially the cosine of the angle between kc  and ku ,  i.e. 1),uc(d0 kk ≤≤ . 

 
         Figure 1. Chromatogram: (a) of high quality (b) dominated with solvent-based noise  
        (c) with dominant spike (d) that is compound-related with high noise levels (e) that  
        is compound-related with a baseline contaminated with solvent-based noise. 
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The value 0),uc(d kk =  corresponds to no common peaks between the raw 
chromatogram and its smoothed version, while 1),uc(d kk =  represents total 
similarity between the two spectra. The similarity thresholds are usually user 
defined, thus their choices can be quite arbitrary. It may be recognized that ku  is 
in a sense just a perturbation of the raw chromatogram kc . Thus, simply put, 
CODA compares a raw chromatogram with its perturbed version, with the 
perturbation done to reduce the noise level (smoothing) and to pinpoint 
chromatograms dominated by solvent-based noise (mean subtraction). 
 
2.2   Other algorithms for assessing quality of chromatograms 
 
Another popularly used algorithm for m/z traces selection is the so-called Impress 
Quality (IQ) algorithm (Gaspari, et al., 2001). It is an employs an entropy-based 
measure of similarity. Taguchi’s signal-to-noise ration method (Taguchi, 1986; 
Massart, et al., 1997; p. 799) is also popularly used. For LC-MS data, we 
established that Taguchi’s method has poor performance, while it is not clear how 
the solvent-based noise is dealt with in the IQ algorithm.  

Although these methods provide experimentalists with some criteria for 
ranking chromatograms according to their compound content, they are inadequate 
in three ways: 
 

1. The quality thresholds are user defined, thus the chromatogram choices 
can be quite arbitrary. 

2. These algorithms do not adequately provide means of discriminating the 
lower abundance proteins from spikes and noise. 

3. None of these methods account for the multiplicity nature of the 
chromatogram selection procedure or of peak detection and the results are 
thus prone to include uncontrolled numbers of false positives. 

 
We suggest methods to account for these oversights guided by the critical aim 

of controlling the FDRs in multiple hypotheses testing for significance over a 
large set of features produced per sample. To facilitate the quality detection 
process, noise and spikes are first detected and screened from the chromatograms 
using the Family Wise Error Rate (FWER) MTPs such as the Bonferoni, and the 
Holm’s methods (Dudoit, et al., 2004) to control for the false detections of the 
spikes and noise from the chromatograms. The empirical Bayes criterion (Efron & 
Tibshirani, 2002) is then used to control for the number of chromatograms that are 
falsely declared to be compound-related. The main advantage of using the new 
method is that standard statistical quantities for setting up thresholds such as F-
statistic (and/or their corresponding p-values) and coefficients of determination, et 
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cetra, may be used as chromatogram quality selection criterion, which enables 
one to take the multiplicity nature of the selection process into account.  
 
3   Detecting features on chromatograms  
 
Several features of the m/z traces (chromatograms) that result from an LC-MS run 
make it difficult to identify the components present and hence to evaluate the 
differences in proteomic composition of samples describing different conditions. 
Fig. 2 displays a chromatogram with m/z = 303 from different runs of LC-MS of 
serum sample from a patient with cervical cancer, spiked with different levels of 
cytoc (so that each of the chromatograms (a), (c), (e) (g) and (j) depicts a profile 
for a different level of cytoc). For this m/z trace the experimenter knows that the 
cytoc peak elutes at the retention time 86≈  minutes. However, we see that at 
lower concentrations of cytoc, this peak is of lower abundance and is masked by 
high levels of noise and spikes that makes it indistinguishable from these artifacts. 
To facilitate the inter-sample comparisons of these m/z traces, it is imperative to 
first screen out the noise so as to unmask the hidden (lower abundance) peaks, a 
process that involves the vetting of the thousands of signals for compound-related 
information. If done on a per signal basis, the probability of one or more false-
positives is high as the number of features to be assessed is large and must be 
controlled. We propose a method for setting up cut-offs for rejections driven by 
the crucial aim of controlling the number of signals that are falsely declared to be 
compound-related. An application of the step-down FWER MTPs, resulted in the 
transformation of the noisy chromatograms in Fig. 2 (a), (c), (e) (g) and (i) into 
the compound-related m/z traces depicted by fig. 2 (b), (d), (f), (h), (j), and thus 
unmasked the lower abundance cytoc peaks. This extols the sensitivity of the new 
method in detecting noise and its specificity in identifying the compound-related 
signals. The virtue of this method is that it does not involve the use of the 
fictitious window-sizes or subjective peak widths or arbitrary intensity 
thresholding, as do the conventional filtering methods.  The test statistics for the 
ensuing MTPs are functions of the diagnostic tools from the GLM with the raw 
signals as response variables and their smoothed versions as predictor variables.  
How the GLM arises is explained below.  
 
3.1   The model 
 
Chromatograms contain various forms of noise, both of instrumental and 
chemical origin in addition to genuine compound-related information. The 
chemical noise results from a number of sources, such as components in the LC 
mobile phase or the sample that give rise to a significant background signal. Thus 
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reduction of noise is especially important for biological samples, where matrix 
components may be much more concentrated than the analytes of interest.  

To obtain data with improved signal-to-noise ratio the raw data is often 
filtered using smoothing algorithms, e.g. moving average. Consequently, a major 
issue in the development of the algorithms for assessing compound contents of a 
chromatogram is the choice of a similarity measure that quantifies the deviation of 
a raw chromatogram from its smoothed counterpart. The popularly used measures 
include the angle between the vectors of the signals of a raw chromatogram and 
those of its smoothed counterpart (Windig, et al., 1996; Massart, 1997; Windig, et 
al., 2001) and the entropy-based measures (Gaspari, et al., 2001). However, some 
non-informative chromatograms e.g. those dominated by the solvent-based noise 
are classified as compound-related by these measures. This led to the use of 
modified version of the angles between two vectors that instead measures the 
deviations of the raw m/z traces to their smoothed and mean subtracted versions 
(i.e. a perturbed version of the angle between two vectors), the so-called CODA to 
filter these artefacts. This was motivated by the simple fact that the signals of a 
solvent-based noise dominated chromatogram are somewhat uniformly distributed 
in the entire retention time range, which means that its mean-signal value is large 
relative to the intensities of its entire signals, unlike those of the other types of 
chromatograms. Thus a mean subtraction heavily penalizes signals of a solvent-
based noise dominated chromatograms leading to poor correlation with its 
smoothed and perturbed counterpart. Although these measures give criteria for 
ranking chromatograms according to their compound contents, they do not 
provide thresholds for selecting these features. We propose novel thresholds for 
selecting relevant chromatograms guided by the crucial aim of controlling the 
number of m/z traces incorrectly declared as compound-related using MTPs. This 
requires the use of test statistics with known distributional properties. Thus 
instead of using arbitrarily modified statistics, we propose the use of diagnostics 
derived from a regression of the signals of a raw chromatogram on their perturbed 
versions.  
 
3.1.1   The chromatogram smoothing method 
 
Because we propose to derive our results from the regression of the raw signals on 
their smoothed counterparts as a means of detecting noise, the first critical 
question is which smoothing method is preferable. A suitable smoothing 
procedure must effectively remove the noise, while preserving the key 
characteristics of the compound-related peaks. A number of methods have been 
used including, moving average, moving median and even polynomial smoothers 
such as Savitzky-Golay method (Windig, et al., 1996; Massart, 1997; Windig, et 
al., 2001; Listgarten & Emili, 2005). Moving median appears to be a top 
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preference. However, we deduced that it also significantly alters the intensities of 
the compound-related signals, which hugely lowers its worth. On the other hand, 
the moving average method reduces the noise contents of a chromatogram but it 
does not totally eliminate the spikes and high frequency noise. However, it does 
not alter the compound-related intensities much, this being the reason for its 

 
Figure 2: profile plots of signals from m/z = 303. (a) and (c) raw chromatogram from 
two replicates of  the serum. (e), (g) and (i) are replicates of same serum with different 
levels of spikeins of Cytochrom C (10, 50 & 61 pm). The green circles are various 
artefacts detected in the first run of outliers detection algorithm using the Bonferroni 
MTP. Their corresponding versions after pre-processing using the MTP procedures 
proposed in this manuscript are shown in Figures 2 (b), (d), (f), (h) and (j), respectively. 
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Figure 2: (b), (d), (f), (h) and (j) profile plots of signals from m/z = 303 (corresponding 
to the plots of raw chromatograms shown in Fig. 2: (a), (c), (e), (g) and (i), respectively) 
after they are preprocessed using repeated runs of single outlier detection algorithm. The 
red dots are the compound-related peaks that may be used to compare the samples with 
spikein and the ones without. Note the time shifts in the location of the corresponding 
peaks from different runs or conditions (e.g. peaks marked by red circles). The MQIs are 
the r-squared values from various regressions. 
 
preference by Windig, et al. (1996) and Windig, et al. (2001). The polynomial 
smoothers, e.g. the Savitzky-Golay method can be used, but the daunting task is 
the choice of appropriate window-sizes. Thus in this report the moving average is 
our method of choice but we reinforce it with the regression diagnostic tools such 
as residuals and use the MTPs to set the rejection regions for detecting and 
removing the high frequency noise and spikes that eludes the moving average 
method. An advantage of our method is that window-size choices that are central 
to many methods that are solely dependent on smoothing criterion for noise 
reduction are of modest concern here.  
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3.1.2   The regression model and hypotheses of interest 
 
Our problem is two-fold: For each chromatogram, we want to detect those signals 
for which we have high confidence that they are truly compound-related using the 
MTP. Secondly, for each run of LC-MS, we want to choose those chromatograms 
for which we have high confidence that they are truly compound-related, i.e. they 
are not dominated by noise. MTPs consist of a number of steps including, 
choosing appropriate parameters of interest (e.g. the mean difference in intensities 
between the raw chromatogram and its smoothed version), specifying the null 
hypothesis that relates this parameter to the question of interest (e.g. mean 
difference = 0), specifying the test statistic for which the null distribution is 
known (e.g. two-sample t-statistic), performing a test on each signal over the 
entire retention time or performing a test on each chromatogram over the m/z 
range, choosing an appropriate experimentwise error rate to control (e.g. the 
number of false positives or Type I errors) and choosing a method to control this 
rate (e.g. Bonferroni) (Birkner, et al., 2006). In this report all these requirements 
will be derived from the regression of the raw chromatogram on its smoothed 
version as derived below. This suggests that the candidate test statistics for the 
MTP are the residuals (or some functions of them) or the estimates of the 
regression parameters as derived below.  But first, we set up the null hypotheses 
to be tested. 

Let *
ic  be the denoised version of the raw chromatogram ic  of the i th m/z 

channel. Then a measure of noise is defined by the “residuals”, *
iii cce −= . In 

general ie  may be measured by distances of the type 
)β(ce ijijij μ−= ,                                                             (2) 

where ),c(h)(μ *
ijij ββ =  is a function describing suitable relationship between 

the raw data and its smoothed version. Thus the model for evaluating the noise 
level of a chromatogram is 

ijijij e)(μc += β ,                                                             (3) 
so that if it is assumed that 0]e[E ij = , ∞<< )Var(e0 ij  and 0),eCov(e ikij =  for 

kj ≠ , then ijc  are independent with ijij ]E[c μ= . To model this relationship, we 
adopt the GLM approach (McCullagh & Nelder, 1989) in which it is assumed that 

),c(η))(μ(g *
ijij ββ = , where ∈= )β,β( 1i0iβ ℝ 2  is a 2-dimensional vector of 

unknown regression parameters that must be estimated, *
ij1i0i

*
ij cββ),c(η +=β  is 

a linear predictor and g(.)  is a link function describing the relationship between 
*
ijc  and ijμ . Suitable link functions for the current problem are derived in Section 

6.  
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Determining if a chromatogram of m/z channel i  is compound-related 
involves simultaneous tests of hypotheses 0β:H 1i0i = , , ... , n2, 1i = , about the 
regression parameters, while detecting whether the j th ion current ijc  of this m/z 
channel is compound-related is a multiple testing problem whose test statistic is 
the j th component of that for testing the hypothesis i0H , which is the sum of the 
test statistics for individual ion currents over the entire retention time. More 
specific and suitable form of the test statistics for screening individual ion 
currents are dictated by their characteristics, for example if they are outliers, then 
the test statistics are functions of the corresponding residuals defined by 

  )β̂(ce ijijij μ−= ,                                                              (4) 

where  β̂  are estimates of the regression parameters that are necessarily efficient, 

e.g. the maximum likelihood (ML) estimates. The parameter 1iβ̂  measures the 
association between the raw chromatogram and its smoothed counterpart. Two 
approaches for obtaining such estimates are the likelihood and the quasi-
likelihood approaches.  
 
3.2   The parameter estimation  
 
In the likelihood approach, it is assumed that the intensities (ion currents) of a 
chromatogram, ijc , are independently and identically distributed with density 
functions belonging to the exponential family of the form 

⎭
⎬
⎫

⎩
⎨
⎧

+
−

= ),c(h
)(bc

exp),;f(c ij
jjij

ij φ
φ

θθ
φθ , 

where as in McCullagh and Nelder (1989), jθ  is a canonical parameter and φ  is a 
dispersion parameter and (.)b , (.)h  are known functions satisfying,  

)('b]E[c jijij θμ ==  and variance φμφθ )(V)("bv)c(Var ijjijij === , and 
)(V ijμ  is some function of ijμ .  

Let β̂  be the ML estimate of the parameter T
10 )β,β( ιιβ = . Now suppose 

that { }( )βP , represents a P computed at β . Then the elements of the vector β̂  
may be obtained through the iterative procedure 

{ }( )(r)
0ii0i

)1(r
0i βδ/λβ =+  and { }( )(r)

1ii1i
)1(r

1i βδ/λβ =+ ,                (5) 

where ( )4i3i2i1i0i αααα −=λ , ( )3i2i5i4i1i ααααλ −= , { }( )2
3i5i1ii ααα −=δ ,   

∑
=

=
m

1j
ij

2*
ij1i c γα , ∑

=

=
m

1j
ijj2i z γα , ∑

=

=
m

1j
ij

*
ij3i c γα , ∑

=

=
m

1j
ijj

*
ij4i zc γα , ∑

=

=
m

1j

)r(
ij5i γα ,   
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∂
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f
∂

∂
= , and 

ij

ij
ij

*
ij1i0iij η

μ
ecββz

∂

∂
++=                                                           (5.1) 

is the so-called working variable in GLM terminology. This algorithm is faster 
and hence more efficient than the traditional GLM algorithms that invert the 
matrix ii

T
i XWXD =  at each iteration, where iX  is an 2n×  matrix whose first 

column is 1, a vector of 1’s and whose second column is *
ic  and iW  is a diagonal 

matrix with elements ijγ . The elements of β̂  are then (r)
0ir0i βlimβ̂ ∞→=  and 

(r)
1ir1i βlimβ̂ ∞→= , respectively.  

 
Figure 3. Profile plots of signals from a chromatogram with (m/z = 1496). (a) and (c) are 
plots of replicates of raw chromatogram from serum of a cervical cancer patient. (e), (g) 
and (i) are replicates of same serum with different levels of spikeins of cytoc (10, 50 & 
61 pmol). In this example, the cytoc peaks are expected to appear at around 108 minutes. 
Their corresponding versions after pre-processing using the tools proposed in this 
manuscript are displayed in Figures 2 (b), (d), (f), (h) and (k), respectively. 
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Figure 3. (b), (d), (f), (h) and (k) are the corresponding pre-processed versions of 
chromatograms displayed in Figures 3 (a), (c), (e), (g) and (i), respectively. The red dots 
are the cytoc-related peaks detected after screening out noise using MTP. The MQIs are 
the r-squared values from various regressions.  
 

In the absence of sufficient information to construct the likelihood for the 
intensities, the theory of quasi-likelihood (McCullagh & Nelder, 1989, p. 323) 
enables us to draw inference about the associations between the raw 
chromatogram and its smoothed version. The Quasi-score equations are 
equivalent to the normal equations in the weighted least squares approach, in 
which the weights are ijγ  (Dobson, 1990; p. 13). 

 
4   Test statistics for assessing compound contents of signals and 
chromatograms  
 
It is well known that not all the chromatograms obtained from a single run of LC-
MS are relevant for the purpose of biomarkers discovery (see e.g. Fig. 1 (b), Fig. 
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3 (b), (d) and (h)) and consequently, significant attention has been devoted to the 
development of the methods for selecting the relevant mass traces (also known as 
the high quality chromatograms) (Windig, et al., 1996; Windig, et al., 2001 and 
Gaspari, et al. 2001). This process involves vetting thousands of chromatograms 
for compound-related information and the issue of multiplicity arises. We want to 
use the MTPs to discriminate compound-related chromatograms from noise. A 
first step in such procedures is the determination of appropriate test statistics for 
the individual hypotheses, followed by the choice of the false discoveries or type I 
error control method that combines them into a simultaneous tests procedure (see 
e.g. Lehmann and Romano, 2005). 

A compound-related chromatogram has low noise levels and is not 
significantly altered when smoothed.  Thus these m/z traces may be detected by 
evaluating the significance of the regression parameter 1iβ  introduced in the 
model defined in Equation (3). In general, tests of the hypotheses 0β:H 1i0i =  
provide information regarding the quality (noise level) of a mass chromatogram, 
with a rejection, 0β 1i ≠ , indicating the chromatogram of the m/z channel i 
contain relevant compounds. If there were only a small number of tests to be 
done, then standard techniques from McCullagh and Nelder (1989) that involves 
testing each hypothesis individually may be used to detect chromatograms that 
deviate from noise. However, as there are thousands of m/z traces to be tested, the 
chance of one or more false diagnosis is large and must be controlled. However, 
these procedures utilize test statistics for individual hypotheses, that must be 
derived to pave way for simultaneous testing of 0iH , i=1, 2, ..., n. Testing each 
hypothesis 0iH  is equivalent to comparing two GLMs with link functions 

0i
*
ij β),c(η =β  and *

ij1i0i
*
ij cββ),c(η +=β , respectively. Suppose that 0iD  and 

1iD  are the respective deviances corresponding to these functions, i.e. for 

example, ∑
=

=
m

1j

2
ij0i dD , where 2

ijd  is the likelihood ratio test statistic for testing a 

null hypothesis with a corresponding link function ,β),c(η ij
*
ij =β  , m...,1j = , 

that is different for every ion current, against an alternative with 0i
*
ij β),c(η =β  

for all j . Then a test statistic for each hypothesis is the change in the deviance, 

1i0ii DDΔD −= . iΔD , may be interpreted as a measure of the quality of a 
chromatogram with mass channel i . If it is assumed that the ion currents (signals) 
of this chromatogram are independent, then the null distribution iΔD  is 2

1χ . The 
values of iΔD  greater than the upper tail α%100×  point of the 2

1χ  distribution 
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would lead to a rejection of 0iH  and the conclusion that the chromatogram of the 
m/z channel i contain relevant compounds.  

Let ( ) i5i
2*

ir
*
ir3i1iirir /αcc2ααγh δ+−= , then asymptotically, 

)ĥ1(v̂ˆ)ê(Var ijijijij −==ϑ , where the hats indicate evaluation of the variables at 

β̂ . Then irh  is the r th diagonal element of the matrix 
2/1

i
T
i

1
i

T
ii

2/1
ii WX)WX(XXWH −= , where 2Hraceth

r ir ==∑ . Then the noise 
level associated with the signal at the jth time point of the mass channel r  may be 
evaluated by the standardized Pearson residuals (see e.g. Williams, 1987), 

{ }1/2
ijijij

ˆ/êr̂ ϑ=                                                                         (6) 
which is a scaled version of  (2). This statistic will be large for the noisy or spiky 
chromatograms as demonstrated shortly. Define ir

'
ir mhh = , and then following 

Hoaglin and Welsch (1978) the r th ion current will be a point of high-leverage if 
4h'

ir > .  For LC-MS data, points of high leverage are likely to be spikes. 
The studentized residuals may be combined into an overall goodness-of-fit 

statistic for testing 0H  resulting into the Pearson statistic defined by 

∑
=

−=
m

1j

2
ijij

2 r̂)ĥ1(X ϕ ,                                                            (7) 

where in our case, asymptotically, 2
2mφχ~2X − , m  being the number of retention 

times over which the ion currents are sampled. For normal distribution, this is just 
the residual sum of squares, which is also equivalent to the deviance for this 
model (McCullagh & Nelder, 1989, p. 34). Obviously 2X  is another candidate 
statistic for the MTPs. 

Another way to test the hypotheses 0iH  is to compare the saturated model 
with the proposed GLM using log-likelihood ratio statistic or the deviance. For 
every mass channel, a saturated model is a GLM in which each of the m  ion 
currents has a distinct linear component *

ij1i0ij cββη += , say, so that this model 
has m  parameters. Suppose that )φ,μ;c(f ijij  is the density function of the ion 

current at the jth retention time, ijc , then the deviance is defined by ∑
=

=
m

1j

2
iji dD , 

where { })φ,μ̂;c(f/)φ,c;c(flog2φd ijijijij
2
ij = . Large values of iD  suggest that 

the raw chromatogram is compound-related, thus iD  is yet another candidate test 
statistic in the MTP. The significance of the deviance may be evaluated by 
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comparing iD  with the quantiles of 2
2mχ − . The scaled deviance residuals 

(Williams, 1987),  
{ } )ĥ1(/dêsignr̂ ijijij

D
ij −= ϕ ,                                               (8) 

may be used to evaluate the compound content of the ion current at the jth time 
point.  
 
5   Characterizing signals of a chromatogram  
 
Although the residuals such as those defined by Eq. (6) and (8) are in general 
useful in diagnosing the compound information in a signal, some specific noise 
types such as outliers require special statistics that involve the transformation of 
these residuals in order to efficiently be detected. Thus the question of which 
statistics to use in discriminating compound-related signals from noise will 
depend on the characteristics of the spurious signals in a chromatogram. 
Therefore to make informed decision of the appropriate test statistic for the 
MTPs, we need to carefully characterize the signals of a chromatogram. We need 
to answer questions such as: are there signals that wildly deviate from their 
smoothed versions e.g. outliers and high-frequency noise? If there are no 
deviations, are the signals compound-related or are they solvent-based noise?  

For each chromatogram, we see two pools of observations:  
(1) High intensities: exhibited by spikes, high frequency noise and compound-

related signals.  
(2) Low intensities: exhibited by the bulk of the observations that is expressed 

at background levels. 
The fact that spikes, high frequency noise and compound-related signals have 
large (extreme) intensities relative to the bulk of the signals that are expressed at 
background levels hints that these signals could be categorized as either outliers 
or influential observations or simply some observations that may not fit the GLM 
well. The latter can be detected using residuals of the types defined by Eq. (6) and 
(8), while the former requires special transformations of these residuals to be 
detected, as will be seen later. We use scatter plots of the raw signals versus their 
smoothed versions as an aid in characterizing spikes and peaks.   

Fig. 4 (a) is a scatterplot of the high quality chromatogram, with m/z = 1236, 
versus its smoothed version corrected by “mean subtraction” to segregate the 
solvent-based noise and 4 (b) is similar plot for the same chromatogram after pre-
processing using the MTP. In this chromatogram, the only dominant feature is the 
compound-related peak. In both cases the raw chromatogram is strongly linearly 
related with its smoothed version. The tip of the compound-related peak is 
marked by a green dot that does not show significant deviation from the trend line 
suggested by the scatterplot. However, the signals of the peak have high 
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intensities that are clustered on the upper part of the trend line, while the signals 
expressed at the background levels tend to cluster near the origin. This suggests 
that the inclusion of a compound-related signal can increase the precision of the 
estimates of the intercepts, 1iβ , implying that they are definitely not outliers but 
are possibly influential observations (see Cook & Weisberg, 1982, for the 
definition of influential observations). Fig. 4 (c) is a scatterplot of the spike-
contaminated chromatogram (Fig. 4 (ii)). The green dots are the signals of the 
spikes that clearly deviate from the trend line suggested by the scatterplot, 
implicating them to be outliers. Fig. 4 (d) is the scatterplot of the chromatogram 
displayed in Fig. 4 (iii), obtained by detecting and deleting spikes and high 
frequency noise from the chromatogram in Fig. 4 (ii) with the aid of MTPs. There 
is an improved fit between this chromatogram and its smoothed and perturbed 
counterpart ( 2R  value of 0.80, that is now larger than FDR suggested threshold of 
0.71, compared to the original value of 0.65). The green dots in Fig. 4 (d) 
correspond to the signals of the compound-related peaks seen in Fig. 4 (iii) that 
have been unmasked by deleting the spikes.  
 
5.1   Test statistics for detecting noise, spikes and compound-related signals  
         in a  chromatogram 
 
We have seen that spikes and high frequency noise may be characterized as 
outliers, while compound-related signals could be possibly classified as influential 
observations. This suggests that candidate test statistics for segregating spikes and 
high frequency noise from compound-related signals are those for detecting 
outliers in a GLM, while the tools for detecting influential observations may be 
used to detect the compound-related signals. The usual strategy is to monitor 
changes in some aspect of the fit of the model (e.g. the ML estimates) caused by 
deleting an observation (leave-one-out strategy), i.e. changes in these statistics by 
refitting the model when the case of interest is omitted. The extreme observations 
results in the largest changes. Thus the relevant test statistics for the MTP for 
discriminating noise from compound-related signals are those for detecting 
outliers. These test statistics are derived as follows. 

Let )ir(β̂  denote the ML estimate of β  when fitting the GLM model with the 

r th ion current excluded. Then )ir(β̂  may be obtained by fitting the mean shift 
outlier model (Williams, 1987) 

rir
*
ij1i0i

*
ij λucββ),c(η ++=β ,                                                (9) 

where 1uir = , if jr =  and 0uir = , otherwise. Then the possibility that the r th  
ion current of the i th mass channel is outlier (spike) may be evaluated by testing 
the null hypothesis 0λ:H rr0 =  against the alternative hypothesis, 0λ:H rr1 ≠ . 
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This requires computation of )ir(β̂ , the full iterate estimates of β , which may be 

approximated by its one-step estimate, 1
)ir(β̂ .  

 
Figure 4. The profile plots of: (i) the high quality m/z trace, (ii) m/z trace characterized 
by a single dominant spike, (iii) m/z trace obtained from (ii) after screening with 
diagnostic tools for outlying and influential observations. The MQIs are the r-squared 
values from various regressions. These chromatograms are used to characterize the 
signals of chromatograms and to derive the null distributions of chromatograms that are 
then used to derive test statistics for MTPs. How they are used for these purposes are 
explained by Figures 4 (a), (b) and (c) below. 

20

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 23

http://www.bepress.com/sagmb/vol6/iss1/art23



 
Figure 4. (a) scatterplot of the high quality m/z trace, Fig 4  (i), against its smoothed and 
perturbed version. The green dot is the maximum intensity of this mass trace. (b) A 
scatterplot of (i) after removing artefacts using tools for outliers detection. (c) scatterplot 
of the high quality m/z trace, Fig. 4 (ii), characterized by a single dominant spike, against 
its smoothed and perturbed version. (d) A scatter plot of m/z trace in Fig 4 (iii), obtained 
from m/z trace in Fig 4 (ii) after screening with diagnostic tools for outlying and 
influential observations. The blue, yellow, red and green dots are the intensities of peaks 
of m/z trace in Fig. 4 (iii). The bracketed numbers are the r-squared values from various 
regressions. 
 
Lemma 1. Let irir

2
iir ω̂/)ĥ1(δ̂τ −= , then the elements of 1

)ir(β̂  are 

 { }ir3i1iirir0i
1

)r(0i τ̂/)α̂α̂c(r̂β̂β̂ −−=   and { }ir3iir5iir1i
1

)r(1i τ̂/)α̂cα̂(r̂β̂β̂ −−=        (10) 

21

Nyangoma et al.: Discriminating Compound-Related Peaks from Noise in LC-MS Data

Published by The Berkeley Electronic Press, 2007



5.1.1    Changes in deviance as test statistics to detect spikes 
 
For the linear regression models, many of these expressions simplify, for example 

*
ij1i0iij

*
ij cββμ),c(η +==β , and consequently, )c(Var/1ω ijij = . Using the one-

step estimates it can be shown that the statistic ( ) 2
irir

2D
irir

1
i(r) r̂hr̂)-h1(ΔD +=  may 

be used to rank the signals according to their impact on the estimation and hence 
may be used to detect the dominant features like spikes or the compound related 

peaks. Let ∑
≠

=
m

rj

2
iji(r) d~D  be the deviance for the GLM model with the linear 

predictor *
ij1i0i

*
ij cββ),c(η +=β , with the r th ion current omitted and evaluated 

at 1

(ir)β̂  instead of β̂ . Then i(r)D  is the deviance of the GLM model 

rir
*
ij1i0i

*
ij λucββ),c(η ++=β . It can be shown that 1

i(r)ΔD , is the one-step 
approximation to the second-order Taylor series expansion of the change in 
deviance i(r)1ii(r) DDΔD −=  (see e.g. Nyangoma, et al., 2006), where 1iD  is the 

deviance for the GLM model *
ij1i0i

*
ij cββ),c(η +=β . i(r)ΔD  is the likelihood 

ratio statistic for testing r0H . If it is assumed that the ion currents follow a normal 
distribution and since a chromatogram consists of a large number of ion currents, 

1
i(r)ΔD  is exactly distributed as 2

1χ . In this case, 1
i(r)ΔD  is an appropriate test 

statistic for detecting spikes in a chromatogram using the MTPs. 
 
5.1.2   Changes in parameter estimates as test statistics to detect compounds and  
           Spikes 
 
The changes in parameter estimates when a case is deleted may also be used to 
characterize the signals of a chromatogram. More importantly, large changes in 
intercepts of the linear fit of the raw chromatograms to their smoothed versions, 
i.e. large values of 1

)ir(00 β̂β̂ − , would imply that the rth case is an outlier. 
Deletion of such a case is also accompanied by large change in a goodness-of-fit 
statistic, e.g. the deviance. Thus 1

)ir(00 β̂β̂ −  is another candidate test statistic for 

detecting spikes in a MTP. However, the changes in slopes 1
(ir)11 β̂β̂ −  are usually 

small for such observations. McCullagh and Nelder (1989, p. 403) draw similar 
conclusions for normal distributions. This fact was established for our data, for 
example when outliers in Fig. 2 (g) are deleted we obtain results represented by 
Fig. 2 (h), in which, the deletions resulted in over two-fold changes in intercept, 
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while there was little change in slopes. In addition, there was a substantial 
improvement in the goodness-of-fit statistic (increase in r-squared of about 8%). 

The relationship between the signals of the compound-related peaks and its 
smoothed counterpart are consistent with the linear trend suggested by the main 
cluster of the data that are expressed at background (noise) levels. However, the 
noise and the compound-related signals are still distinct in these linear plots, for 
example the noise are clustered at the lower end of the line of best fit, while the 
compound-related are spread out towards the upper end. This suggests that the 
inclusion of a compound-related peak will improve the accuracy of the slope ( 1β̂ ) 
of the line of the best fit to the data. This means that ion currents whose omission 
results in large changes in slopes, i.e. large values of 1

)ir(11 β̂β̂ − , would most 

likely be compound-related. This suggests that the change in slope 1
)ir(11 β̂β̂ −  is a 

candidate test statistic for compound-related signal in a MTP. 
 
5.1.3   Influence curves and Cook’s distance as statistics for detecting compounds  
           and spikes 
 
The above ideas lead to consideration of many other statistics for detecting 
compound-related peaks. Key among them, are Cook’s distance defined by 

)h/2(1r̂hD ij
2

ijijij −=  (Cook, 1977; Cook and Weisberg, 1982; p. 117) and the 
sample influence curves.  
                     
 Lemma 2. Let ijijij ˆˆˆ τωπ =  and m be the number of retention times.  Then the sample 

influence curve for the “intercept” is an 1m×  vector with the j th element defined by 
( ){ } ijij3iij1iij

I
ijSIC π̂/r̂α̂cα̂γ̂)1(m −−= ,                                           (11) 

while that for the “slope” is an 1m×  vector with the j th element defined by 
( ){ } ijij3i5iijij

G
ijSIC π̂/r̂α̂-α̂cγ̂)1(m −= .                                          (12) 

 
The distributions of these statistics are discussed in Cook and Weisberg (1982). 
 
5.2   Test statistics for detecting solvent-based noise 
 
We have so far suggested per-signal test statistics for detecting the high frequency 
noise, spikes and compound-related signals. However, we have not discussed how 
to detect or deal with artefacts such as the solvent-based noise that is also a 
common feature of the LC-MS data. A chromatogram that is dominated by the 
solvent-based noise has a signal (of roughly uniform intensity) over (almost) the 
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entire retention time range and thus it has a larger mean signal value relative to 
(all) its signals than a high-quality or a spiky chromatogram. The same effect is 
incurred by other chromatograms whose signals are mainly random noise 
expressed at low levels (e.g. Fig. 4 (b)). Thus a regression of the signals of such a 
chromatogram on its smoothed and perturbed (by subtracting (adding) from (to) 
them a quantity that is some function of their mean or median) versions, results in 
large residuals for all its observations. Such a perturbation will have insignificant 
effect on the other types of chromatograms. This suggests that a measure of 
location of signals of a chromatogram may be used to characterize the type of 
noise dominating it.  

The foregoing implies that the diagnostic tools from a regression of the raw 
signals of an m/z trace on its smoothed and perturbed version may be used to 
sensitively detect spikes, random and solvent-based noise in a single step. Thus in 
this paper we essentially compare the raw chromatograms, not to their smoothed 
versions (as so far implied), but to their smoothed and perturbed counterparts. 

 
Figure 5. retention time index plots of influence statistics: (a) Sample influence curve 
(SIC) for change in intercept (b) SIC for change in slope (c)  Cook’s distance, for (m/z = 
303, shown in Fig. 2 (iii)). These may be compared to plots for the high quality m/z = 
1236 (Fig. 2 (i)) displayed in Fig. 5 (d), (e) and (f), below.  
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Figure 5. retention time index plots of influence statistics: (d) SIC for change in intercept 
(e) SIC for change in slope (f)  Cook’s distance, for the high quality m/z = 1236, shown 
in Fig. 2 (i)). 
 
This makes sense because the mean-subtraction proposed here does not affect the 
statistics for detecting high frequency noise, spikes and compound-related signals 
and likewise, the moving average filtering does not affect the detection of solvent-
based noise.  However, it is important to point out that as opposed to the CODA 
method, direct mean or median subtraction is not useful in a regression setup. 
Thus we suggest modifications of this procedure that are relevant in the regression 
regime. 

With respect to the size of the mean or median relative to the observed 
intensities, we argue that a solvent-based noise dominated chromatogram may be 
considered as an “outlier”   in m -dimensional space. To distinguish these m/z 
traces by their solvent-based noise contents, we exploit the local characteristics of 
individual chromatograms (multivariate observations in m -dimensional space) 
e.g. their means and medians. We note that the current methods for detecting a 
single outlier in a multivariate sample (e.g. Wilk’s, 1963, criterion) would 
measure the deviation of each chromatogram from an overall (global) mean over 
all the chromatograms. With the inherent iter-chromatogram variabilities in 
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intensities, using such global measures to detect outlying chromatograms would 
mischaracterize the chromatograms through the borrowed incompatible 
information. Our approach thus extends the use of the usual regression diagnostics 
to identifying the peculiarities of points in m -dimensional spaces. 
 
5.2.1    The perturbation 
 
To be able to detect the elusive solvent-based noise in m/z channel i , we fit a 
GLM with the observed ion currents as independent variables but with the matrix 
of explanatory variables given by  

iiii AWX)ω(X +=                                                       (13) 
where iX  is an 2m×  matrix, whose first column is a vector of 1’s and its second 
column is a vector of the smoothed currents of m/z channel i , *

ijc . iA  is a 22×  
diagonal matrix with diagonal elements iM , a constant that may be proportional 
to the total ion current for the m/z channel i  (e.g. mean ion current), iW  is an 

2m× matrix of weights, whose element in the r th row and first column is 
0ω 1r = , while the element in the r th row and second column is r2r δω = , a 

constant reflecting the contribution of the r th signal to the total ion current, and 
1δ1 r ≤≤− .  This transformation is equivalent to a simultaneous perturbation of 

the elements in the second column of iX  to 

j
*
ijij ωcx += ,                                                             (14) 

where ijj Mδω =  and m...,,1i = .  A special case of this scheme in which 

1j −=δ  for all j  and m/cM
j iji ∑= , the mean ion current for the m/z channel 

i , leads to comparing the raw chromatogram with its smoothed and mean 
subtracted version as used in CODA (Windig, et al., 1996; Windig, et al., 2001). 
This scheme inflicts a constant penalty on all ion currents irrespective of their 
contribution to the total ion current and is thus rather conservative.  Equation (14) 
represents the simultaneous perturbation of the explanatory variables, a technique 
popularly used to detect outlying or influential observations in linear regression 
(Cook, 1986). The value 0j =ω  is interpreted as the null perturbation. This 
method may be used to characterize m-dimensional observations in addition to 
evaluating the influence of individual cases, which makes it different from that of 
Williams (1987), who studied the effect of deleting individual cases from data 
that can be modelled as GLM.  

To detect solvent-based noise using GLM, we found it suitable to use a 
scheme in which jδ  is defined by  
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⎪⎩

⎪
⎨
⎧ >−

=
− otherwise,

Mc,1

iM
ijc

iij

jδ                              (15) 

where choices of iM  may include the mean, median or mean of the lowest and 
highest 10% of the ion currents for the m/z channel i . This is equivalent to 
perturbing a smoothed chromatogram using a mixture scheme involving mean (or 
median) subtraction from intensities that are greater than the mean and setting the 
rest of the differences to zero.  Our proposed scheme allows a more meaningful 
penalty (that is somewhat proportional to the contribution to the total ion current) 
to be investigated. 

Because the proposed perturbation scheme has insignificant effect on the 
detection of other features of a chromatogram other than the solvent-based noise, 
one could use the diagnostics from the fit of a GLM regression of the raw m/z 
trace on its smoothed and perturbed counterpart defined by   

)(e)ω(μc ijijij ω+= .                                                 (16) 
where it is assumed that ij1i0iijij xβ)())ω(g(μ +== βωη  to simultaneously detect 
all types of artefacts, including spikes, high frequency noise, solvent-based noise 
and even the  compound-related signals. A chromatogram with high level of 
solvent-based noise will have a large iM  value and thus will be heavily penalized 
by perturbation leading to poor fit of model (16) and the converse is true of a high 
quality m/z trace. The change in parameter estimate when the smoothed 
chromatogram is perturbed may be used to detect the solvent-based noise.  
 
Theorem 1.  

Suppose that ωW  is an mm ×  diagonal matrix with elements 
2

)(ij/)(ij)(
1

iv)(iw ⎟
⎠
⎞

⎜
⎝
⎛

∂∂
−

= ωηωμωω  

and suppose ia  is an 1m ×  vector with jth element  
ij

ij
ij

ij

ij
ij1ijij e

)(
)(

)(ea
η

μ

ωη

ωμ
ωβω

∂

∂
−

∂

∂
+= and let 

( )
ii

T
i

1
ii

T
ii ẑŴX)XŴX(XIb̂ −−= ω  be an 1m ×  vector, where iX  is an 2m ×  matrix, whose first 

column is a vector of 1’s and whose second column is a vector of the smoothed currents 
of m/z channel i , *

ijc , ωX  is its perturbed counterpart with  perturbed ion currents, ijx ’s,  

in its second column and iẑ  is a vector of working variables (defined in Eq. (5.1)) and  iW  
is a matrix of weights, associated with the unperturbed GLM model. Let ωα̂  and ωθ̂  be 
respectively, the parameter estimates obtained by regressing ia  and ib  on the columns of 

ωX with respect to the weights ωW . Then if 1ˆ
ωβ  is the one-step parameter estimate of ωβ

~ , 
the ML estimate under the perturbed model, then the change in parameter estimates due 
to the perturbation is approximately ωωω θαββ ˆˆˆ~ 1

+=− . 
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Proof. The proof of this theorem follows by noting that the working variable 
under the perturbed model may be expressed as ijijij az)(z +=ω  and that 

( ) ii
T
i

1

i
T
i ẑŴXXŴXˆ −

=β . □ 
 

It may be seen that if ω  is an 1m× vector with rth element rirλu and 1uir =  if 
jr = , and zero otherwise, where rλ  is a parameter not depending on β , then 

ββ ˆˆ 1
ω −  is the statistic for investigating the effect of deleting an observation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Profile plots of m/z = 303 (a) with dominant spike that masks detection of 
compound-related peaks (b) shows same mass trace after deleting dominant spike (c) 
shows chromatogram in (b) after screening high levels of noise and spikes. 
 
6   Choosing a link function and the test statistics 
 
So far we have proposed in a rather general way how to construct the test 
statistics for the MTPs for our two-dimensional signal profiling. The form of the 
relevant statistics is actually dictated by the nature of the link function for the 
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GLM. In this section, we discuss the possible forms of the link function for the 
problem of discriminating noise from compound-related signals and 
chromatograms. 
 
6.1    The link functions and related diagnostic tools 
 
We use the method of McCullagh & Nelder (1989; p. 401), who suggest an 
informal method for defining the link function that involves examining the plot of 
the estimated adjusted dependent variable iẑ  against the estimated linear 
predictor, iη̂ .  If we assume a normal model for the LC-MS, then ii cẑ = , the 
vector of raw chromatograms, while ii ˆˆ μη = , is the predicted value from the 
regression of ic  on the column space of its smoothed and perturbed version. In 
this case, the informal check translates to a scatter plot of ic  versus iμ̂ . Since we 
have only a single independent variable, ix , the informal check for linearity is the 
scatter plot of ic  versus ix .  Figures 4 (a), (b), (c) and (d) are scatterplots of the 
raw chromatograms against their smoothed and perturbed versions. We see that 
the chromatograms that contain compound-related peaks (e.g. 4 (a) and (d)) are 
highly linearly correlated ( 2R values of 0.997 and 0.80) with their smoothed and 
perturbed versions. On the other hand, chromatograms with high levels of noise or 
other artefacts (e.g. 4 (c)) have poor linear correlations (e.g. 2R = 0.65) with their 
perturbed and smoothed versions. This suggests that the appropriate link function 
for the GLM that models the relationship between the compound-related raw 
chromatogram and its smoothed counterpart may be the identity link, which is the 
null model in this case. Departures from this model describe various forms of 
noise. 

The departure from linearity observed in Fig. 4 (c) is due to the outlying 
artefacts (spikes) shown by Fig. 4 (ii).  The appropriate model is then the simple 
linear regression model  

ijijij e)(μc += θ                                                         (17) 

where ij1i0iij xββμ += . Thus it is sensible to assume that the errors are 

identically and independently distributed as normal, i.e. ),0(N~e 2
ij σ .  

The scatter plots of ic  against ix  do not show a pronounced increase in 
variance, so there is a remote chance of considering gamma errors or the inverse 
link (Crawley, 2003; p. 662). A formal method for defining the link functions 
involves adding 2

iη̂ , an extra covariate and assessing the fall in deviance 
(Hinkley, 1985).  
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6.1.1    Test statistics for detecting noise and compounds  
 
The use of identity link function leads to consideration of several statistics for 
detecting compound-related signals and artefacts. Key among them, are Cook’s 
distance defined by )h1(2/hD ij

2
ijijij −= ε  (Cook, 1977, 1982; p. 117) and the 

sample influence curves )h1(/εx)X)(X1(mSIC ijijj
1

i
T
iij −−= −  (Cook & 

Weisberg, 1982; p. 110), where we now define iX  as a 2m×  matrix, with the 
first column having elements 1 and ijx ’s in the second column, ijh  is the jth 

diagonal element of the hat matrix T
i

1
i

T
iii X)X(XXH −=  and irε  is the 

studentized residual from the regression defined by (17). The elements of the 
sample influence curve for the intercept of the simple linear regression model may 
be used to assess if the j th ion current of the mass channel i  is a spike (an 
outlier), while that of slope can be used to assess whether j th ion current is 
compound-related. 

Spike or random noise can be detected by single outlier statistic 

 
2/1

2
ir

irr ε2m
3mεt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
−

=                                               (18) 

(see Cook & Weisberg, 1982, p. 20), where irε  is the studentized residual. rt  
follows a student t-distribution with 2m −  degrees of freedom.  
 
6.1.2   Test statistics for detecting compound-related chromatograms 
 
Note also that under the identity link, 2

ijij σv)c(Var == , introducing a nuisance 
parameter in estimation and hence the deviance is not fully determined. In this 
case, the test statistic for testing the null hypothesis 0β:H i1i0 =  is the ratio of 
the deviances s

1iii D/ΔDF = , where )2m/(DD 1i
s
1i −=  is the unbiased estimate 

for 2σ=ϕ . Large values of iF , typically greater than )(F )2,m-1( α , the α%100×  
point of the F distribution with 1  and 2m −  degrees of freedom, indicate that the 
chromatogram of m/z channel i  is compound-related. Here 0i

2
T DS σ=  and 

1i
2

R DS σ=  are the total and the residual sums of squares, respectively and 

TR S/S=ρ  is the proportion of the total variation not explained by the linear 
model (LM). Note that TS  and RS  may be interpreted as the squared Euclidean 
lengths of the vector of residuals from the GLMs under 0iH  and 1iH , 
respectively. In particular TS  is just the sum of the squared deviations of the raw 
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observations from their mean. Then another candidate test statistic is 
0ii

2 D/D1R Δρ =−= , the proportion of the total variation explained. It is 
interpreted as the square of the correlation between the raw chromatogram and its 
smoothed version. For noisy chromatograms the residuals are large leading to 
small values of 2

iR . Note that this statistic for testing 0iH  may be used to 
measure of the quality of the chromatogram and we call the mass chromatogram 
quality index (MQI). 
 
6.2   The software 
 
All test statistics derived in this paper are easily implemented in the R statistical 
package (Ihaka & Gentleman, 1996); in fact they are by-products of the lm object. 
The codes are available from the corresponding author on request. 
 
7   Multiple Testing Procedures and thresholds for noise detection 
 
In the previous section, we derived several test statistics for profiling the 
individual signals of a chromatogram as well as the individual chromatograms for 
compound-related information. Because each of these issues involves assessing 
the significance (deviation from noise) of multiple observations, we need a 
method to combine these individual tests into a simultaneous test procedure that 
take into account the multiplicity nature of these problems. Disregarding such 
characteristics increases the probability of one or more false rejections (Type I 
errors) because of the large numbers of tests to be done in each case.  In this 
section we assess the MTPs that may provide efficient rejection regions for each 
of the test statistics for individual null hypotheses that control Type I error rates. 
Type I error is committed by rejecting a true null hypothesis.  
       There are several Type I error rates: 1) the family-wise error rate (FWER), 
which controls the probability of rejecting more than one false positive 
(Holm,1979; Lehmann & Romano, 2005) ; 2) tail probability of the proportion of 
false positives, which controls the proportion of false positives to total rejections 
(TPPFP) (van der Laan, et al., 2004); 3) false discovery proportion (FDP) 
(Lehmann & Romano, 2005), which controls the proportion of false positives to 
total rejections; 4) false discovery rate (FDR) (Benjamini & Hochberg, 1995), 
which controls the [ ]FDPE . These MTPs are routinely applied to control the 
number of false positive results in the microarray studies.  However, FWER has 
been criticised for being too conservative, especially for many biological 
applications. Despite this criticism, we found the FWER methods, especially the 
step-down procedures, quite efficient in detecting dominant chromatographic 
features such as spikes and high frequency noise. Of special interest are the more 

31

Nyangoma et al.: Discriminating Compound-Related Peaks from Noise in LC-MS Data

Published by The Berkeley Electronic Press, 2007



general −k FWER, the probability of rejecting at least k  true null hypotheses. By 
using such error rates with 1k > , one is willing to tolerate one or more false 
rejections, provided the number of false rejections is controlled. The control of the 
−k FWER requires that α≤− FWERk . 

  

 
 

 
 
Figure 7. Heatmaps of the goodness-of-fit statistic (r-squared) (a) before and (b) after 
pre-processing 
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7.1   Detecting spikes and high frequency noise 
 
To detect spikes and high frequency noise in m/z channel i , we use step-down 
MTPs, i.e. we consider the hypotheses successively, from the most significant to  
 
  Table 1: Mass Quality Index: before and after screening noise 
 
     m/z  = 330           raw m/z         screened m/z 
 

no-spike               0.73   0.80 
no-spike               0.81   0.81 

      CytC10                  0.75  0.82 
      CytC50                  0.69  0.74 
      CytC61                  0.89  0.93 
 
 
the least significant, with further tests depending on the outcomes of earlier ones. 
At step 2m...,,2,1,0k −=  we computed the statistics 

k2m,...,2,1r,
εk2m

k3mεt
2/1

2
ir

irr −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−−
−−

=         (19) 

and used the step-down rejection rule ),k2m(ttmax ir α−−> , 
where )k3m(2/k −−=αα  to declare the largest signal over the range of 
retention times (still undeclared significant) a spike or random noise. This 
resulted, for example, in the filtering of the noisy chromatogram in Fig. 2 (a) to 
produce the compound-related m/z trace shown in Fig. 2 (b). In this 
chromatogram, a cytoc protein was spiked at around 86 minutes, and this is 
clearly discriminated from noise by this method (see this peak in Fig. 2 (b)). The 
other possible criterion for choosing a t-value cut-off is provided by the control of 
FDP (Lehmann & Romano, 2005). Suppose we want αγ ≤> ]FDP[P , where 

)1,0(∈γ  then Lehmann and Romano (2005) proposes a step-down procedure 
with ⎣ ⎦ ⎣ ⎦ )k1ks/()1k(k −+++= γαγα , where ⎣ ⎦x  is the greatest integer less 
than or equal to x , and s is the number of tests. For two-sided tests such as those 
considered here, an appropriate threshold is 2/k

,

k αα = . 
 
7.2   Detecting compound-related chromatograms 
 
After filtering noise from a chromatogram, our second problem is to evaluate the 
utility of each of the resulting chromatograms in the pursuit of biomarkers, a 
problem similar to the chromatogram profiling proposed by Windig, et al. (1996). 
The application of MTPs to detect noisy chromatograms is complex, unique and 
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poses further challenges compared to the applications in microarrays. 
Investigating the compound content of a chromatogram involves comparing 
thousands of its observed signals ( 7000≈ ) with their smoothed counterparts 
using simple linear regression (or two-sample t-test), and thus entails the usage of 
extremely large “sample” sizes compared to the usually small sample sizes (e.g. 
10 and often even less) used to detect the significance of genes in microarray data 
sets. Large sample sizes inflate the values of the test statistics, resulting in 
extremely small p-values, which must be standardized before being used in the 
usual way (Good, 1992). Thus whereas the use of p-values make sense in 
microarrays and the MTPs are directly applicable on these quantities, they may be 
highly misleading in this LC-MS application and hence the MTPs that utilize p-
values are not directly applicable in this case. The use of the rule of thumb of 
correcting the p-values for the large-sample-size-effect (Good, 1992) did not yield 
p-values of magnitudes amenable to the analyses by the conventional FDR 
methods. Hence we adopt an alternative approach that instead utilizes the 
distribution of the test statistics, an empirical Bayes approach (Efron & 
Tibshirani, 2002; Liao, et al., 2004), in which each chromatogram is assigned a 
posterior probability that it is compound-related given that the test statistic takes a 
specific value, also known as the local FDR. This method is closely related to the 
Benjamini-Hochberg FDR method (Efron & Tibshirani, 2002).  

Let ia  be 1 if the i th chromatogram is compound-related (i.e. if the 
alternative hypothesis is true or 0β 1i ≠ ) and 0, when 0β 1i =  (i.e. when 

0β:H 1i0i =  is true) and let iR  be the square-root of the coefficient of 
determination from the regression of the raw chromatogram on its smoothed and 
perturbed version, , ... , n2, 1i = , where n  is the number of chromatograms to be 
profiled (tests to be performed). Let 0f  be the density of iR  given 0ai =  and 1f  
be the corresponding density when 1ai = . Then the density of iR  is a finite 
mixture 

),r(f)1(),r(f),r(f 1i100i00i θπθπθ −+= ,                       (20) 
where ]0a[P i0 ==π  is the expected proportion of true 0iH . When the square 
roots of the co-efficient of determinations from the regression of the raw 
chromatogram on its smoothed and perturbed counterpart are used as test 
statistics, it was found that for rRi = , ),,r()r(f 000 σμφ= , the density of a 

),(N 00 σμ  distribution and ),,r()r(f 111 σμφ= , for example, in one run of 
LC-MS we found that these statistics were fitted by two normal distributions 

)11.0,71.0(N 00 ≈≈ σμ , )06.0,90.0(N 11 ≈≈ σμ  with 38.00 ≈π  shown in 
Fig. 8 (a). These estimates were computed using the R statistical package (Ihaka 
& Gentleman, 1996) function, optim, with the method L-BFGS-B. This procedure 
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requires careful choices of the starting values. The local FDR is the posterior 
probability of 0iH  being true given rri =  and is given by 

),,r()1(),,r(
),,r(

)r(FDR
110000

000

σμφπσμφπ
σμφπ

−+
=                (21) 

This statistic was used to classify chromatograms as being noise or compound-
related. For values, 1r0 ≤≤ , the resulting FDRs are depicted by the curve shown 
in Fig. 8 (b), that suggests a conservative threshold of 71.0R =  (or 

5041.0R2 = ). If however, one is willing to tolerate, for example, only 20% of the 
false discoveries then 84.0R ≈  (or 71.0R2 ≈ ). This agrees with what we have 
observed in practice, i.e. 71.0R2 ≥  provides adequate evidence that an m/z trace 
is compound-related. Thus we recommend an FDR threshold of 71.0R2 = . The 
definition of this FDR-based threshold is novel as it allays the arbitrariness with 
which compound content of a chromatogram are declared using current methods 
such as CODA. For example, using CODA, we used a highly conservative 
threshold of 98.0r ≈  (for the same data analysed in this paper), which resulted in 
the use of only 45 (see Govorukhina, et al., 2006), compared to 1139 out of 1401 
m/z traces if an FDR threshold of  71.0R2 ≈  is used. 

We also considered mixture modelling of the Fisher normal transformed 
correlations  

r))-r)/(1+log((15.0zi = , 
but we found the model just presented easier to interpret. 
 
8   Applications 
 
In search for biomarkers for a particular condition, one explores differences in 
proteomic composition of samples from different conditions, for example before 
and after treatment for cervical cancer. The aim is usually to detect the proteins 
that are up or down regulated or conserved between the conditions. A major 
challenge in pursuit of this objective is that chromatograms from different 
samples are often of different qualities, containing varying levels of noise that 
mask the detection of common markers. For high quality chromatograms, e.g. Fig. 
3 (i), it is easy to obtain accurate markers to be used for comparison. In this case, 
the application of the so-called one-dimensional peak picking algorithms, e.g. 
those used to analyze SELDI-TOF data sets (e.g. Li, et al., 2005) would give 
reliable list markers. However, lower quality chromatograms must be pre-
processed to screen out the spikes and noise to enable detection of markers with 
confidence.  To demonstrate this problem, we use the profile plots of a 
chromatogram with m/z = 303 drawn from LC-MS datasets from different 
samples of trypsin digested human serum from a cervical cancer patient. Figure 2 
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(a) and (c) show two replicates of the same sample, while (e), (g) and (i) are 
samples from the same patient spiked with varying levels of cytoc, being 10 
picomole (pmol), 50 pmol and 61 pmol, respectively. The purpose of adding 
cytoc into serum was to have internal standards to evaluate the ability of the 
proposed methods to reliably detect this added protein. In these datasets, the 
properties (e.g. the retention times) at which related compounds elute are known. 
For example, the experimentalist knows that the cytoc peak elutes at around 86 
minutes for the chromatogram with m/z = 303, meaning that an important marker 
for comparison of the spiked and nonspiked samples must be around this time. 
However, the raw chromatograms for both conditions are riddled with many 
artefacts making cytoc peaks for lower concentrations indistinguishable from 
noise. The chromatograms in Fig. 2 (a), (c) and (e) are dominated by spikes and 
high noise levels, which mask the distinction of cytoc peaks. In Fig. 2 (g), a single 
spike has completely masked the compound-related peaks, while the spikes in 
Fig. 2 (i) make it difficult to locate the compound-related peaks. Green circles 
indicate some selected artefacts in the raw chromatograms. Clearly, there is a 
need to screen out noise so that compound-related peaks may be located with 
certainty. Having detected and removed the noise that mask detection of 
compounds, some of the resulting chromatograms e.g. those dominated with 
solvent-based noise (Fig. 1 (b)) and low levels of random noise (Fig. 3 (b), (d) and 
(h)) still exhibit no compound-related information. Such chromatograms are 
irrelevant for the purposes of biomarkers discovery and must be detected and 
removed to reduce the dimensionality of the data. We use the MTPs that control 
the FWER stated in the previous section to set thresholds for selecting the 
relevant features in a chromatogram, as well as the empirical Bayes-based MTP to 
detect m/z traces that contain no compound-related information. 

We applied the step-down FWER MTPs on the test statistics (diagnostic tools 
for outlier detection, Eq. (19)) drawn from the linear regression of raw 
chromatogram on its smoothed version, to set thresholds for detecting the 
artefacts on a chromatogram. Fig. 4 (ii) is a profile plot of an m/z trace with m/z = 
330 from a sample spiked with 25 pmol of cytoc. The scatterplot of this m/z trace 
against its smoothed and perturbed version, shown in Fig. 4 (c) indicates that the 
signals of the spike depicted by green dots are outliers. This artefact masks the 
detection of multiple outliers that characterize this chromatogram, which in turn 
masks the compound-related peaks. Fig. 6 (a) depicts the raw m/z trace shown in 
Fig. 2 (a), while Fig. 6 (b) is its version when the dominant spike is deleted.  The 
fall in MQI value from 0.69 to 0.68 demonstrates that deleting the dominant spike 
in this case unmasks the effects of the other contaminants. The screening of the 
dominant artefacts results in the quality improved m/z trace (with MQI = 0.74 
compared to 0.69), shown by Fig. 6 (c). This value is greater than the FDR-
defined threshold, indicating that this chromatogram contains compound-related 
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information. To detect the multiple outliers that characterize this m/z trace, we 
used a step-down MTP for controlling the FWER that involves the successive use 
of the single-step procedures for outlier detection (see Cook & Weisberg, 1982, p. 
20).  

Another important formal tool for detecting outlying signals is the changes in 
intercepts of the linear fit of the raw chromatograms to their smoothed versions. 
For example deletion of outliers in m/z traces represented in Fig. 2 (g) (resulting 
into m/z trace in 2 (h)) resulted in over two-fold changes in the value of the 
intercept, with only a small change (3%) in the value of slope. Deletion of 
outlying cases is often accompanied by large change in a goodness-of-fit statistic, 
e.g. the deviance. For example, there was a substantial improvement in the 
goodness-of-fit statistic (increase in r-squared of about 10%) for the m/z trace 
represented in Fig. 2 (b). This means that both the changes in the parameter 
estimates and the goodness-of-fit are potentially important test statistics that may 
be used in the MTP for simultaneous detection of artefacts provided their null 
distributions could be defined.  

An important value of the new pre-processing method is that it can detect and 
remove artefacts and hence unmask compounds in a chromatogram. Table 1 gives 
the value of r-squared (MQI) of the m/z traces shown in Fig. 2 before and after 
screening the noise. We see substantial increases in the goodness-of-fit (r-
squared) when outliers are deleted, signalling improved evidence of compound-
related content. In similar vein, Table 2 shows the MQI values for chromatograms 
with m/z = 303, 483, 604, 748, 1496. These m/z traces were chosen because they 
were spiked with proteins of known properties that we wish to discriminate from 
artefacts. Overall, the new method results in the increases in the MQI values in 
many m/z traces, irrespective of whether the samples are spiked with cytoc or not. 
These MQI values strongly exceed the FDR-determined threshold of 0.71, 
indicating improved evidence of compound-related features in these m/z traces. 
This demonstrates the efficacy of the new method in discriminating compounds 
from noise. This means that compounds can be detected with increased 
confidence after noise filtering using our method. As expected, high 
concentrations of cytoc (61 pmol and 126 pmol) tend to have higher MQI values 
because of the well-formed cytoc peaks than at lower concentrations. To further 
assess the efficacy of the new method, we use the heatmaps to visualize 
differences in patterns of MQI results in Table 2.  Fig. 7 (a) and (b) are heatmaps 
of MQI values before and after pre-processing. The heatmap in Fig. 7 (a) 
identifies two similar clusters of treatments, that is the high concentrations of 
cytoc in one group and its lower concentrations confounded with the unspiked 
replicates, in the other. There is better separation between the spiked and 
nonspiked chromatograms after pre-processing by our method. Fig. 7 (b) 
identifies three clusters, that is, the high concentrations of cytoc, the low 
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concentrations (10 pmol) and the nonspiked replicates. Note that pre-processing 
of chromatograms leads to correct groupings, lumping together replicates 4 and 3, 
replicates 2 and 1 and separating cytoc-spiked samples. We note that improved 
quality leads to efficient detection of compound-related peaks.    

A good pre-processing tool must effectively detect and remove artefacts from 
a chromatogram but must not alter the intensity of the compound-related signals.  
Fig. 4 (i) depicts a high quality chromatogram. It has a dominant compound-
related peak and is noise free. The scatterplot of this chromatogram against its 
smoothed version (Fig. 4 (a)) reveal that both the compound-related signals and 
the signals of the main cluster of observations that are expressed at background 
levels describe a linear trend, indicating that these signals are not significantly 
affected by smoothing. An application of this algorithm to this high quality 
chromatogram exhibits similar results, indicating that it does not alter the MQI 
(see the scatterplot in Fig. 4 (b)) or the compound-related information. However, 
pre-processing a chromatogram (e.g. Fig. 4 (ii)) that is riddled by artefacts, results 
in an m/z trace given in Fig. 4 (iii), which exhibits clear compound-related peaks 
and marked increase in MQI (from 0.65 to 0.80; see Table 1). This indicates that 
this algorithm effectively detects and removes noise and thus unmasks compound-
related information. 

After the pre-processing step, an important succeeding step is the 
determination of the compound-related peaks. Although the relationship between 
the signals of the compound-related peaks of a raw chromatogram and its 
smoothed counterpart are consistent with the linear trend suggested by the main 
cluster of the raw data that are expressed at background (noise) levels versus their 
smoothed versions, the latter are still distinct from the former in this linear 
relationship, for example the noise are clustered at the lower end of the line of the 
best fit, while compound-related peaks are concentrated in the upper end of this 
line. This suggests that the inclusion of a compound-related peak will improve the 
accuracy of the slope ( 1iβ̂ ) of the line of the best fit to the data. This means that 
ion currents whose omission results in the large changes in slopes, i.e. large 
values of 1

)r(1i1i β̂β̂ − , would most likely be compound-related. To test the null 
hypothesis that rth ion current of the ith m/z channel is compound-related, one 
may use the elegant MTP e.g. the bootstrap method (van der Laan, et al., 2004) to 
estimate the test statistic null distribution using appropriate resampled variables 

)β̂β̂(n 1
)r(1i1 − . However, since this step is undertaken after a rigorous MTP 

pre-processing is performed to eliminate spikes and random noise (expressed at 
high levels) and thus unmasking the compound-related peaks, we feel that another 
MTP step may not be necessary and that the use of statistics that rank signals 
based on the magnitude of the changes in slopes of the line of best fit (influence), 
e.g. the sample influence curves and the Cook’s distance, may just do. The 
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Cook’s distance combines information from both the intercept and the slope into a 
single measure of influence, while the sample influence curves provide separate 
information for these parameters. We applied three measures of changes in 
parameter estimates when a signal is deleted, to chromatograms in Fig. 4 (i) and 
Fig. 4 (iii).  Figure 5 (a), (b) and (c) show the influence curve for the intercept, the 
influence curve for the slope and the Cook’s distance, respectively for 
chromatogram shown in Fig. 4 (ii). Both the slope and the Cook’s distance have 
high values corresponding to (compound-related) peaks, indicating that the 
compound-related signals are influential. The intercept also shows clear peaks but 
with high values, at times not corresponding to the compound-related peaks. This 
shows that intercept may not be a preferable measure for detecting compound-
related peaks. The same conclusions can be drawn for the high quality 
chromatogram (Fig. 4 (i)). Its influence curve for the intercept, the influence 
curve for the slope and the Cook’s distance, are given by Figure 5 (d), (e) and (f), 
respectively. Again, both the slope and Cook’s distance give clearer separation of 
compound-related peaks from noise, than does the intercept. All this confirm our 
conjecture that compound-related peaks are influential. Few top ranked signals 
represent compound-related peaks. A gain empirical Bayes-based FDR may be 
used to set a threshold for rejection. 

Note the time shifts in the positions of markers (e.g. those shown by red points 
in Fig. 2 (b), (d), (f), (h), and (j)). This is a well-known instrumental problem with 
LC-MS data. It can be corrected using time warping algorithms e.g. Correlation 
Time Warping (COW) (Nielsen, Carstensen & Smedsgaard, 1998) may be used as 
well. For our dataset, we found that the time shift could be corrected by a linear 
search in the neighbourhoods within 3.2 minutes of points on the target 
chromatograms corresponding to the peaks on the reference chromatogram. 

A chromatogram dominated by solvent-based noise (e.g. a raw chromatogram 
m/z = 536 shown in Fig. 1 (b)) has no well-defined peaks thus contain no 
compound-related information. The simultaneous perturbation proposed in 
Section 5 (Eq. (13)) heavily penalizes this m/z trace, resulting in lack of evidence 
of compound-related information ( =2R  0.602, see Table 3) in it. This 
demonstrates the ability of the new method in discriminating compound-related 
chromatograms from those with high background noise and may be used as a 
dimension reduction tool. 
 
9   Discussion 
 

We presented here a novel algorithm to integrate the critical issues of setting 
thresholds for discriminating compound-related peaks and chromatograms from 
high frequency noise, spikes and solvent-based noise in LC – MS data sets and  
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Fig. 8. (a) a mixture of normals fit to the square-roots of the coefficients of 
determinations of 1401 chromatograms. (b) local FDRs associated with each of these 
chromatograms. 
 
the control of FDR. This presents a new approach for diagnosing and dealing with 
artefacts in LC-MS datasets. In the process we introduced new ways of 
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characterizing the signals of a chromatogram, namely (a) that spikes and high 
levels of noise appear as univariate outliers relative to the linear trend suggested 
by the bulk of signals that are expressed at background levels and those that are 
compound-related, (b) the chromatograms dominated by solvent-based noise are 
multivariate outliers and (c) the compound-related peaks are influential 
observations. It has been recognised for the first time that the detection of these 
features involves complex multiple hypotheses testing processes with additional 
challenges compared to those encountered in microarray studies. In particular, the 
problem of detecting which of the thousands of chromatograms should be used in 
biomarkers discovery, involves the use of thousands of data points (“large sample 
size”) compared to the use of the usually smaller sample sizes in microarray 
studies, and poses the new challenge of how to standardize the p-values so that 
they may be interpreted and analysed using the conventional FDRs control 
methods. It is found out that the methods of FDR controls that do not involve the 
direct use of the p-values such as the empirical Bayes method are easier to adapt 
and avoids the problem of having to find a suitable standardizing strategy for the 
p-values.  

We have proposed a regression framework for constructing test statistics for 
the hypotheses about the compound contents of signals and chromatograms. It 
turns out that a number of the usual linear regression diagnostics may be used to 
judge the compound contents of these features. Key among them, are the outlier 
statistic based on the externally studentized residuals (Cook & Weisberg, 1982, p. 
20) and the sample influence curve. The simultaneous detection and deletion of 
the artefacts using the MTP is shown to result in chromatograms with improved 
qualities and hence compelling evidence of compound-related information. This 
means that using our method as a pre-processing technique, one is able to detect 
the compound-related signals with higher degree of confidence and precision. 
This can highly improve the efficiency of the retention time alignment 
procedures, which must be done, especially if the intent is to compare samples 
from different conditions. The compound-related signals have been shown to be 
influential and a number of formal and informal techniques have been proposed to 
detect them. 

Both the Cook’s distance, a measure that combines information from both the 
intercept and slope of a simple linear regression model, and the slope component 
of the sample influence curve have been shown to accurately detect these signals 
by assigning them higher ranks. It has been demonstrated that the local 
characteristics of chromatograms e.g. their means and medians are indispensable 
tools for characterizing the compound contents of m/z traces. 
      The new method accounts for the multiplicity nature of both the peak 
detection and the chromatogram selection procedures in the analysis of LC-MS 
data. The use of the MTPs enabled us to give concrete thresholds for detecting 
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compound-related information guided by the crucial aim of controlling FDRs. 
This allays the arbitrariness with which these thresholds are currently obtained. 

 
 
Fig. 9. (a) a high-quality chromatogram from serum spiked with 61 pmol. of cytoc. (b) 
the same chromatogram contaminated at the upper end with noise that is a mixture of 
uniform, normal and exponential distributions to create a high background noise. 
 

Perhaps the utmost achievement of our work is the demonstration that 
regression diagnostics are indispensable tools for unraveling the compound 
information of chromatograms.  

We described our approach in terms of LC-MS technology. However, our 
method is quite general and applies to many forms of instrumentation such time-
of-flight spectrometry. 

Finally, it is important to note that when chromatographic peaks are present 
with a significant contribution of the solvent system, especially during gradient 
analyses, which results in elevated baselines, the MQI values can be lower (see 
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e.g.  Fig.  9 (b)   that   shows   a   contaminated   version   of the   high-quality 
chromatogram in Fig. 9 (a)). In such cases, we recommend that a preprocessing 
 
  Table 2: The MQI for chromatograms with same m/z value before and after they are   
                spiked. 
 
      m/z                             Non spiked (replicates)                         Spiked with cytochrome C (pmol) 
                             
                                  1                  2                   3                   4               10                  50                61                126    
                                                                      
      303              0.73 (0.80)    0.81(0.81)    0.71(0.80)    0.72(0.79)        0.75(0.82)     0.69(0.74)   0.89(0.93)    0.96(0.91) 
 
      483              0.86(0.87)     0.84(0.87)    0.83(0.88)    0.83(0.88)        0.84(0.88)     0.85(0.89)   0.91(0.87)    0.99(0.99) 
 
      604              0.79(0.81)     0.86(0.88)    0.77(0.83)    0.80(0.83)        0.80(0.82)     0.83(0.86)   0.80(0.87)    0.79(0.88) 
 
      748              0.86(0.89)     0.89(0.91)    0.88(0.91)    0.89(0.92)        0.89(0.93)     0.89(0.92)   0.89(0.90)    0.87(0.89) 
 
    1496              0.67(0.52)     0.63(0.51)    0.70(0.60)    0.71(0.64)        0.71(0.74)    0.65(0.53)   0.98(0.98)     0.99(0.99) 
 
 
   Table 3: MQI values for chromatograms shown in Fig. 1 
     
             m/z                      R-squared (rank)                
                                                                          
            217                         0.941 (102) 
            473                         0.998     (2) 
            493                         0.818 (266) 
            536                         0.602 (592) 
            654                         0.704 (494) 
 
step of baseline subtraction be performed before the use of the methods discussed 
in this paper. There are a number of useful baseline-correction methods including 
those based on local regression methods such as loess (see e.g. Li et al., 2005). 
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