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INTRODUCTION

Land degradation and overgrazing are
nowadays two main fundamental threats in
rangeland systems (Box 2002; Buss and Nuppenau
2002; Howery et al., 2000; Miller 2005; Walker and
Hodgkinson 2000). Consequently, their current
capability to produce edible forage for livestock is
less than their potential1 (Azadi 2005; Umrani 1998).
Globally, rangelands are at risk from numerous
pressures (Mitchell et al., 1999) mainly arising from
inappropriate rangeland management systems. The
science of rangeland management should develop
in order to be able to guarantee a sustainable future.
In this regard, achieving equilibrium2 in rangeland
systems is the most important challenge in
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ABSTRACT

It is widely recognized that approaching sustainability in rangeland management needs to take
many criteria into consideration which unavoidably calls for the application of multi-criteria decision
making approach. Bearing conflicting objectives in mind, which are mainly conservation and utilization,
we have introduced fuzzy multi-objectives decision making as a suitable approach when sustainability
in rangeland management is a goal. While some extensions of the approach are discussed, interactive
fuzzy multi objective linear programming, and a framework including three stages are presented to
make it more applicable. The proposed approach in this paper comprises three important advantages
for decision makers to apply: first, it is a useful tool to involve trade-offs analysis between the conflicting
objectives; second, it challenges to uncertainty of any decision in sustainable rangeland management;
and third, it considers existing alternatives under given constraints by developing new alternatives for
all possible situations.
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sustainable rangeland management (SRM) (Azadi
2005; Walker 1995).

When a rangeland is overgrazed, the
rationale and common approaches to SRM are
increasingly criticized and equilibrium in rangeland
systems gets disputed (Walker 1995). Achieving
equilibrium could yet be possible once its concept
and terminology are well-understood. The
understanding of the complex notion of equilibrium
in SRM has already been place of many debates
(Box 1995; 2002; Buss and Nuppenau 2002;
Deadman 1999; Roe 1997; Walker and Hodgkinson
2000) which embraces several other concepts
related to timely management decision (Redfearn
and Bidwell 2004). If carrying capacity1, for instance,
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is not close to the proper level related to equilibrium
rate, regardless of employed grazing systems,
objectives of equilibrium in a rangeland system will
not be met (Roe 1997).

The recent literatures on SRM call in
question for any specific measures of equilibrium,
whether the range is stocked or unstocked,
managed or mis-managed (Box 2002; Redfearn and
Bidwell 2004). The equilibrium of a given area can
then be varied according to “management decisions”
(Kenny 2004) which would (in)directly deal with
several criteria i.e., techno, eco, socio, and
economic. As a result, equilibrium in a rangeland
system is basically a Multi Objective Decision
Making (MODM) where the two main objectives are
maximizing rangelands ‘conservation’ on the one
hand, and their ‘utilization’, on the other. MODM is
especially recognized when resources attribution is
a goal (Lu et al., 2007). Optimizing the decisions
on rangeland resources will hence be the cause of
equilibrium-disequilibrium and therefore, direct
decision makers –mainly policy makers and
pastoralists- to SRM in a long-run action.

While MODM could be appreciated as a
useful technique to involve trade-offs analysis
between conflicting objectives (Hwang and Yoon
1981; Malczewski 2001) as here, conservation and
utilization, one may point to the uncertainty of any
decision-making situation which is inevitable at all
levels of human interaction with the environment.
In the broad area of applied sciences and,
particularly in rangeland systems, many processes
are never clear-cut (Azadi 2003). Indeed, in
environmental systems, a practitioner or researcher
has to cope with many forms of uncertainty,
including subjective estimation and perception
(Azadi et al., 2005; Clark and Gelfand 2006), the
complexity of modeling (Wainwright and Mulligan
2004), interaction of subsystems (Deaton and
Winebrake 2000), lack of precise values (Silvert
1997; 2000), missed data and limited information
(Srebotnjak 2007), processing data deficiencies
(Lawrence 2003), or ambiguities in natural
language.

Likewise, in rangeland management, this
uncertainty is enhanced by the fact that many policy-
makers often judge based on their personal

experience and background (Azadi et al., 2007).
As several types of uncer tainty including,
imprecision and ambiguity are inherently present
in natural systems, traditional system methodologies
like probability theory and statistics cannot
adequately model many of these systems
(Checkland 1990) often artificially imposed precision
or theoretical assumptions only result in increasing
the complexity of the model (Wang et al., 1998).

As Lai and Hwang (1995) previously
discussed, fuzzy multi objective models can help
decision-makers by considering existing alternatives
under given constraints, and by developing new
alternatives for all possible situations. They believe
that the effectiveness of a decision makers’
performance in a decision process can be improved
as a result of the high quality of analytic fuzzy
numbers. Here, in the complex context of SRM,
decisions should be made based on imprecise
information (Batabyal and Godfrey 2002; Umrani
1998). Since a decision in the area of SRM is usually
vague, it can be best modeled based on fuzzy set
theory (Petrovic-Lazarevic and Abraham 2003). This
paper aims to introduce an extended version of
Fuzzy MODM to approach sustainability in
rangeland management.

Origin and backgrounds
Rangeland management concerns an

interdisciplinary approach (Aenis and Nagel 2000;
Azadi et al., 2003). Determination of optimum land
use to approach sustainability involves analysis of
data from both hard sciences1 (e.g. soil science) to
soft sciences2 (e.g. social science) and earlier asked
for creating inter-disciplinary (Shaner et al., 1982)
while recently calls for trans-disciplinary approaches
(Chartrand 2006). All these paradigmatic changes
(Kuhn 1962) have been adopted by separate
schools (Sands 1986) who often claim to use
inimitable methodology (if don’t sharply declare
unique epistemology and especially, ontology)3

which takes various criteria into their analyses. All
the criteria are however, not equally important; every
criterion can therefore be contributing towards SRM
at a different degree (Azadi et al., 2005). In addition,
SRM involves major decisions at various levels, most
importantly determining stocking rate4, vegetation
density, topography, estimating right rate of stocking
for each class of pasture, agreement between
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(either homogenous or heterogeneous) experts
(Azadi et al., 2007). The present popular methods
in assessing SRM commonly include techno-socio-
economic criteria (both qualitative and quantitative).
Those (Azadi et al., 2003; Azadi 2005; Box 2002;
Buss and Nuppenau 2002; Howery et al., 2000;
Miller 2005; Walker and Hodgkinson 2000) who tried
to include all the three major dimensions of SRM,
have neglected to include ranking and ratings,
weighted summation, requirement matching etc in
their estimations. Here the weights are arbitrarily
chosen, and are aggregated using simple Boolean
overlay methods. Although these methods are
simple and straightforward, they suffer from solid
mathematical foundations. Furthermore, the multi-
criteria SRM was previously assessed spatial
homogeneity over the area under study (e.g. Box
1995; 2002; Buss and Nuppenau 2002; Deadman
1999; Hiernaux 1996; Hodgkinson 1996; Howery
et al., 2000; Kopp 2004; Walker and Hodgkinson
2000). This is often unrealistic if the study of land
suitability in general, or SRM in particular, are the
goals. In complex systems, as Malczewski (1999)
discussed, the decisions should be made using
criteria which vary across in space. To deal with the
spatial decision making in this context, MCE1 and
GIS2 can also be integrated (Jankowski 1995).
Broadly used MCE methods in the (range)land
sustainability analysis are ranking and rating. The
techniques however, suffer from a strong theoretical
foundation for determining the weights as they
assign the weights rather arbitrarily. More
specifically, they pass over any comparison among
the criteria and indicators. Likewise, the outcomes
of  such  analyses  are  aggregated  using  (simple)
Boolean  superimpose  or  weighted  aggregation
(Cornelissen 2001) which ends up in strict (black
and white) decisions.

In so doing, the ranking and rating
techniques are criticized as not properly reflecting
the decision maker’s views nor having enough
rational support behind the approach (Stuth and
Lyons 1993). According to ‘Principle of
Incompatibility’, “as the complexity of a system
increases, human ability to make precious and
relevant (meaningful) statements about its behavior
diminishes until a threshold is reached beyond which
the precision and the relevance become mutually
exclusive characteristics” (Zadeh 1973: 29). It is

therefore, that fuzzy statements are the excellent
bearers of meaning and relevance. Zadeh used this
principle for extending the applicability of his fuzzy
sets theory and fuzzy logic to the analysis of
complex systems. It is now realized that complex
real-world problems require intelligent systems that
combine knowledge, techniques, and
methodologies from various sources. These
intelligent systems are supposed to do better in
changing environments, and to explain how they
make decisions or take actions (Jang et al., 1997).
Ecological studies are known to be complex in
nature (Silvert 1997) and therefore fuzzy logic
seems to be an appropriate technique to solve the
dichotomy that is inherent in sustainability of natural
resources (Andriantiatsaholiniaina 2001;
Cornelissen et al., 2001; Dunn et al., 1995; Marks
et al., 1995) including rangeland management
(Azadi 2003; 2005; Azadi et al., 2005; Azadi et al.,
2007)

Foundations of fuzzy logic
Some basic foundations of fuzzy logic is

discussed in our previous works (Azadi et al., 2005;
Azadi et al., 2007). Here, we review the minimal
information needed to end-up with the extension of
Fuzzy MODM.

Crisp models
In quantitative sciences where

mathematical models are used for analyzing real-
world phenomena, (stochastic) variables are
introduced having a ‘well-defined’ meaning. During
their scientific work, the corresponding scientists
apply mathematical tools from calculus, from the
theory of differential equations, from discrete
mathematics, from (vector) algebra, from numerical
methods, from (complex) function theory, and more
(van den Berg 2004). The resulting models offer an
‘idealized’ world, an ‘objective and structured reality’
with, hopefully, rather general validity. Uncertainty
is usually described in probabilistic and statistical
terms like probabilities on crisp events (i.e. events
that do occur or do not occur at all), expected values,
statistical tests (that are either rejected or not
rejected), interval estimations, et cetera
(Zimmermann 1996). Propositions within these
approaches are usually supposed to be either true
or false (and sometimes unknown). In line with this
way of working as applied in physics, chemistry,
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econometrics, and other ‘hard sciences’, the first
knowledge-based systems developed in the
community of Artificial Intelligence were founded
on the ‘physical symbol system hypothesis’
expressing that symbols (and only symbols) can
represent states of the world and statements about
the world. Again, the only ‘epistemological
commitments’ allowed for these statements are
either true, false or unknown. The physical symbol
system hypothesis has still to be proven (van den
Berg 2004).

Boolean vs. Fuzzy
Three hundred years B.C., the Greek

philosopher, Aristotle came up with binary logic
(0,1), which is now the principle foundation of
Mathematics. It came down to one law: A or not A,
either this or not this. For example, a typical rose is
either red or not red. It cannot be red and not red.
Every statement or sentence is true or false or has
the truth-value 1 or 0. This is Aristotle’s law of
bivalence and was philosophically correct for over
two thousand years (Kosko 1993).

Two centuries before Aristotle, Buddha,
had the belief which contradicted the black-and-
white world of worlds, which went beyond the
bivalent cocoon and see the world as it is, filled
with contradictions, with things and not things. He
stated that a rose, could be to a certain degree
completely red, but at the same time could also be
at a certain degree not red. Meaning that it can be
red and not red at the same time. Conventional
(Boolean) logic states that a glass can be full or not
full of water. However, suppose one were to fill the
glass only halfway. Then the glass can be half-full
and half-not-full. Clearly, this disproves Aristotle’s
law of bivalence. This concept of certain degree or
multivalence is the fundamental concept, which
propelled Zadeh at the University of California in
1965 to introduce fuzzy logic. The essential
characteristics of fuzzy logic founded by him are as
follows (Abdul Aziz 1996):
´ In fuzzy logic, exact reasoning is viewed as

a limiting case of approximate reasoning,
´ In fuzzy logic everything is a matter of

degree,
´ Any logical system can be fuzzified,
´ In fuzzy logic, knowledge is interpreted as a

collection of elastic or, equivalently, fuzzy

constraint on a collection of variables, and
´ Inference is viewed as a process of

propagation of elastic constraints.

The third statement hence, defines
Boolean logic as a subset of Fuzzy logic.

Towards soft computing
It is clear from history that the hard

sciences have been and still are quite successful in
many areas. Based on this success, they have
obtained a strong and predominant position and
many scientists working in this field seem to believe
that their approach of crisp, two-valued logical,
precise mathematical modeling where uncertainty
is modeled within a probabilistic, statistical
framework, is the one and only true, applicable
approach (van den Berg 2004).

For several reasons, however, like
‘irrelevance’ and ‘complexity’, one may doubt
whether hard computing is always the right tool.
Considering ‘Principle of Incompatibility’, we try to
answer the following series of questions related to
problems with increasing complexity. They may
convince you of the validity of Zadeh’s principle: (1)
How sustainable is a rangeland? (2) Which
measures are important in SRM? (3) How much is
the stocking rate of a sustainable rangeland? (4)
How much is its vegetation density? (5) How much
annual rainfall is needed in a sustainable rangeland?
(6) How many pastoralists’ families can live in the
world of Artificial Intelligence, similar lessons have
been learned. While, implementing systems based
on ideas like the above-mentioned physical symbol
hypothesis, problems arose related to the modeling
of the likeliness of a certain conclusion and to the
lack of robustness and flexibility. Apparently, the tools
as made available by the hard sciences also have
their limitations when trying to apply ‘intelligent
techniques’. In several cases, it has been shown
that alternative approaches with fuzzy or other
‘vague’ ingredients work better. Successful fuzzy
modeling projects exist since 1975 on topics like
automatic control, printed character recognition,
target selection for marketing purposes, financial
modeling, SD, and more (van den Berg 2004).

Linguistic variables
Fuzzy logic enables the modeling of expert
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knowledge. The key notion to do so is that of a
linguistic variable (instead of a quantitative variable)
which takes linguistic values (instead of numerical
ones). For example, if stocking rate (SR) in a
rangeland is interpreted as linguistic variable, then
its linguistic values could be one from the so-called
term-set T(SR) = {low, medium, high} where each

term in T(SR) is characterized by a fuzzy set in the
universe of discourse, here, e.g., U = [0, 5]. We
might interpret low as a “stocking rate of less than
approximately 1.5 aum/ha”, medium as a “stocking
rate close to 2 aum/ha”, and high as a “stocking
rate of roughly more than 2.5 aum/ha” where the
class boundaries are fuzzy. These linguistic values
are characterized by fuzzy sets whose membership

Fig. 1. Diagrammatic representation of the linguistic variable stocking rate in a rangeland having
linguistic values low, medium, and high defined by a corresponding membership function

functions are shown in Fig. 1.

Knowledge representation by fuzzy IF-Then
rules

Fuzzy logic is a scientific tool that permits
simulation of the dynamics of a system without a
detailed mathematical description. In an expert-
driven approach, knowledge is represented by fuzzy
IF-THEN linguistic rules having the general form

, is  THEN  is  AND   is  AND  is  If 2211 ByAxAxAx mm

 where  x1, … , xm  are linguistic input
variables with linguistic values A1, … , Am

respectively and where y is the linguistic output
variable with linguistic value B.

To illuminate we consider animal unit and
vegetation density as the principal factors for having
equilibrium. Then the relevant fuzzy rules could be:
´ If amount of animal unit is low and vegetation

density is poor Then equilibrium is medium.
´ If amount of animal unit is medium and

vegetation density is poor Then equilibrium
is weak.

´ If amount of animal unit is high and
vegetation density is poor Then equilibrium
is very weak.

Architecture of fuzzy systems
Fuzzy Inference Systems or, shortly, Fuzzy

Systems (FSs) usually implement a crisp input-

Fig. 2: Building blocks of a Fuzzy Inference System (FIS)
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output (IO) mapping consisting of basically four
units, namely
´ A Fuzzifier transforming crisp inputs into
the fuzzy domain,
´ A Rule Base of fuzzy IF-THEN rules,
´ An Inference Engine implementing fuzzy
reasoning by combining the fuzzified input with the
rules of the Rule Base,
´ A Defuzzifier transforming the fuzzy output
of the Inference Engine to a crisp value (Fig. 2).

In some practical systems, the Fuzzifier
or the Defuzzifier may be absent namely in cases
where fuzzy input data are available or the fuzzy
system output can be interpreted directly in linguistic
terms. Corresponding “approximate reasoning
techniques” are available (see, e.g. Jang et al.,
1997).

Fuzzy reasoning
Probably, the hardest part to understand

is the precise way fuzzy reasoning can be
implemented. An extensive discussion of this topic
is outside the scope of this dissertation so we limit
ourselves here to present just the basic idea.
Classical logic is our starting point using the classical
reasoning pattern ‘modus ponens’:

Given fact “x is A” and rule “IF x is A, THEN
y is B”, we conclude “y is B”.

“Applying fuzzy reasoning, classical modus
ponens can be generalized to an ‘approximate
reasoning’ scheme of type.”

Given fact “x is A’ “ and rule “IF x is A,
THEN y is B”, we conclude that “y is B’ “.

Here, the assumption made is that the
closer A’ to A, the closer will B’ be to B. It turns out
that especial combinations of operations on fuzzy
sets like ‘max-min’ and ‘max-product’ composition
can fulfill this requirement. The complete fuzzy
reasoning in a FS can be set up as follows:
1. The fuzzification module calculates the so-

called ‘firing rate’ (or degree of fulfillment) of
each rule by taking into account the similarity
between the actual input A’ defined by
membership function m

A’(x) (and in case of
a crisp input xp defined by the value mA(xp)

and the input A of each rule defined by
membership function mA(x).

2. Using the fir ing-rates calculated, the
inference engine determines the fuzzy output
B’ for each rule, defined by membership
function mB’(y).

3. The inference engine combines all fuzzy
outputs B’ into one overall fuzzy output
defined by membership function m(y).

4. The defuzzification module calculates the
crisp output yp using a defuzzification
operation like ‘centroïd of gravity (area)’.

For a treatment in depth on FSs, its
construction and corresponding reasoning schemes
(including the most popular systems like Mamdani
(Mamdani and Gaines 1981) and Tagaki-Sugeno
Fuzzy Models (Tagaki and Sugeno 1985), we refer
to the above-mentioned textbooks.

Foundations of Multi Criteria Decision Making
Multi Criteria Decision Making (MCDM) is

a well-known branch of decision making
(Malczewski 1999). The range of the MCDM
approaches are previously from simple technical
application problems to currently more complicated
eco-socio-economic problems (Lu et al., 2007). It
is a branch of a general class of operations research
models which deal with decision problems under
the presence of a number of decision criteria
(Petrovic-Lazarevic and Abraham 2003). Decision
making is a set of systematic procedures for
analyzing complex decision problems. These
procedures include dividing the decision problems
into smaller and more understandable parts;
analyzing each part; and integrating the parts in a
logical manner to produce a meaningful solution
(Grünig, and Kühn 2005). The  process  of  MCDM
is  always  confused  by  decision  makers, because
there is always a  trade-off  between  all  criteria.
MCDM system can usually help decision makers
quantify and evaluate each criterion and rank all
alternatives. In general, MCDM approches involve
six components (Keeney and Raiffa 1976; Pitz and
McKillip 1984):
´ A goal or a set of goals the decision maker

wants to achieve (e.g. in SRM. how to
approach equilibrium holding utilization and
conservation),

´ The decision maker or a group of decision
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makers involved in the decision making
process with their preferences with respect
to the proposed criteria (e.g. in SRM,
homogenous and heterogeneous experts/
decision makers having different beliefs how
to approach SRM),

´ A set of proposed criteria (e.g. in SRM,
different techno-socio-economic criteria),

´ The set of decision alternatives (e.g. in SRM,
in/decreasing carrying capacity1),

´ The set of uncontrollable (independent)
variables or states of nature (e.g. in SRM
facing drought),

´ The set of outcomes or consequences
associated with each alternative attribute pair
(e.g. in SRM, rangeland degradation/revival).

MODM and MADM
Two basic approaches to MCDM problems

can be distinguished: Multiple Attribute Decision
Making (MADM) and Multiple Objective Decision
Making (MODM) (Climaco 1997; Pohekar and
Ramachandran 2004).The distinction between
MADM and MODM is related to the evaluation
criteria which are the standards of judgments (or
rules) on which the alternatives are ranked
according to their desirability (Lu et al., 2007). The
key feature of the MCDM framework, whether under
MODM or MADM, is that tradeoffs among the
various objectives are explicitly analyzed (Hwang
and Yoon 1981).

MADM problems require that choices are
being made among alternatives described by their
attributes. It is therefore, a useful technique to
choose the best among different alternatives. The
set of attributes is given explicitly and multi-attribute
problems have a finite set of feasible alternatives
(Table 1). Here in SRM, MADM can be usable when
(e.g.) pastoralists would like to know the best
specie(s) of livestock who can survive in an optional
pasture.

Unlike MADM, MODM problems explicitly
deal with the relationship of attributes of alternatives
to higher level objectives. MODM involves designing
the alternatives and searching for the best decisions
among an infinite or very large set of feasible
alternatives. Each alternative is defined implicitly in
terms of the decision variables and evaluated by

means of objective functions (Malczewski 1997)
which can here be considered as (e.g.) utilization
and conservation functions.

The main difference between MODM and
MADM models can yet be explained by the MODM’s
focus on decision problems with ‘continuous’
decision space while MADM’s focus is with problems
of ‘discrete’ nature (considering stocking rate as the
most effective determinant of carrying capacity in
SRM, we are faced continuous decision space).
Furthermore, MODM models generally deal with
resources attribution (e.g. natural resource
management including rangelands), whereas
MADM models often deals with evaluating several
predefined choices and coming up with the best at
last (Lu et al., 2007).

There are several methods in each of the
two categories. Priority based, outranking, distance
based and mixed methods which are all applied to
various problems. Each method has its own
characteristics and the can be classified as
deterministic, stochastic and fuzzy (Pohekar and
Ramachandran 2004). There may also be
combinations of the above methods. Depending
upon the number of decision makers, the methods
can be classified as single or group decision making
methods. Decision making under uncertainty and
decision support systems are also prominent
decision making techniques (Gal and Hanne 1999).
MCDM techniques can be used to identify a single
most preferred option (e.g. conservation in SRM),
to rank options (e.g. first conservation, and then
utilization in SRM), to list a limited number of options
for subsequent detailed evaluation (e.g. different
climax or species of livestock in SRM), or to
distinguish acceptable from unacceptable
possibilities (e.g. zero grazing, grazing, overgrazing
in SRM). There are many MCDM approaches which
differ in how they combine and utilize the data.
MCDM approaches can be classified on the basis
of the major components of multi criteria decision
making. Malczewski (1999) made three following
layered classificationsas sketched on Fig. 3:
1. MODM versus MADM
2. individual versus group decision maker

problems, anddecisions under certainty
versus decisions under uncertainty
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As discussed in the previous sections,
equilibrium in rangeland system can better be
approached using ‘MODM’. Calling heterogeneous
‘group’ of experts (Azadi et al., 2007) in the
framework of stakeholder approach1, this ‘uncertain’
context can more comprehensively understood.
Finally, the ‘fuzzy’ nature of different SRM criteria
directs us to follow the grey area of Fig. 3 when
approaching equilibrium is the goal.

Extension of Fuzzy MODM
Models

Most MODM problems can be formulated
by multi objective linear programming (MOLP)
models. Refereeing to the imprecision and
insufficient inherent in human judgments (Silvert
1997; 2000), uncertainties may be affected and
incorporated in the parameters of an multi-objective
linear programming model, which is called a Fuzzy
MOLP (FMOLP) model. Uncertainties are also
involved in the goals of decision makers for their
multiple objectives, called fuzzy multi-objective linear
goal programming (FMOLGP). According to Lu et
al., (2007), the FMODM models extend MODM
decision functions from crisp to imprecise scope.
In this regard, they discuss about two essential
issues as follows:
1. In the proposed FMOLP model, fuzzy

parameters may appear in both objective
functions and constraints. If only objective
functions or only constraints include fuzzy
parameters, the model would still be
applicable to deal with non-fuzzy parameters,
as a real number is as a special case of a

fuzzy number. Similarly, in the proposed
FMOLGP, a goal with a real number is also
as a special case of a fuzzy goal.

2. Both FMOLP and FMOLGP models, allow
decision makers to use any form of
membership functions for describing fuzzy
parameters in objective functions and
constraints, and fuzzy goals.

METHODS

As already described, FMOLP is the most
popular form of FMODM models. To drive an optimal
solution for an FMOLP problem, as Lu et al., (2007)
described, three FMLOP methods can commonly
be used, as follows (Fig. 4):
1. FMOLP, a non-interactive method, which can

directly generate an optimal solution1,
2. FMOLGP, which integrates fuzzy sets with

goal programming to extend multi-objective
decision analysis, and

3. Interactive FMOLP (IFMOLP) method, which
has both interactive and goal features (as
projected for this proposal).

There are three issues involved in the
development of an FMODM method (see Lu et al.,
2007; p. 123-125). The first issue is about how to
express fuzzy parameters of objective functions and
constraints and fuzzy goals by membership
functions. The second one is about the presentation
of form of Pareto optimal solution1 for the FMODM
problem. And the third one is about the different
processes of solving the FMODM problem.

Fig. 3. Classification of MCDM (Adapted from Malczewski 1999)
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For the first issue, as shown by Azadi et
al., 2007 in a field study, fuzzy values of parameters
are often generated by some (homo/
heterogeneous) experts and therefore have different
figures of data distributions. Some of them may be
suitable to be described in a triangular form of
membership functions, and some may be more
suitable to be expressed in other forms such as a
trapezoidal one.

The second issue involves the expression
of a solution and corresponded objective values for
the FMODM problem. If an FMDOM method is to
provide us with useful assistance, its output, an
optimal solution with optimal objective values, must
be of sufficient quality and in a suitable form for the
decision we are concerned to make (e.g. tuning
Stocking Rate to optimize carrying capacity in SRM).
The third issue is about the process of finding an
optimal solution (here in SRM, optimal solution
should include some degrees of both utilization and

Fig. 4: Classification of FMODM1 (Adapted from Malczewski 1999)
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Fig. 5: The proposed framework
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conservation). This issue involves understanding the
preferences of some decision makers involved the
solution process of an MODM problem. It has been
found that there are obvious different priorities for
decision makers for the process of finding an optimal
solution (Azadi et al., 2007) for an FMODM problem.
Some decision makers expect to have a method
that can fast generate an optimal solution for a given
FMODM problem without any extra data providing
from them. While others have goals for their decision
objectives in their FMODM problem and therefore,
prefer a method that can find an optimal solution,
which can maximize to meet these goals (e.g. in
SRM, maximizing both utilization and conservation).
Finally, with the support of software, some decision
makers desire to have a chance to explore more
alternative solutions in an interactive fashion with
the aim of meeting the goals by finding a satisfying
solution. They may then desire to be allowed to
continuing revise their goals or change the weights
of objective functions, so that to get new optimal
solutions.

Proposed framework
It’s been expected that the proposed

framework effectively integrates a series of
techniques and concepts to help decision makers
to obtain a comprehensive and more ‘sustainable’
results in the field. The framework entails three
stages as shown in Fig. 5:

Stage I
In Stage I, a decision group of SRM is set

up and an FMODM problem including its variables,
objectives, and constraints are determined. Each
expert can define his/her expectations or weights
to the predefined objectives of SRM, which are used
to generate individual solutions to the FMODM
problem.

Stage II
The expert, in Stage II, obtains an optimal

solution by using a suitable FMODM method (i.e.
here IFMOLP) under their goals and preferences
among several methods that are available. They then
state their solutions and aspiration levels for each
objective – i.e., conservation and utilization- into the
group.

Stage III
Finally, in Stage III, these individual

solutions are as alternatives to form group’s solution
for the problem. The decision group members
exchange their ideas, express their preferences and
judgments on the alternatives, and identify desirable
solutions. Each expert is given a weight, if it needs,
and a utility group aggregation method is then used
to determine the ‘best’ alternative, a compromise
solution in general, to the FMODM problem through
aggregation of individual solutions and their weights
(to generate the group solution, each expert’s

Table 1: Comparison of MODM and MADM Approaches
(Adapted from: Hwang and Yoon 1981; Starr and Zeleny 1977)

Items MODM MADM

Deal with Resource(s) trait Evaluation/choice
Nature of decision Continuous Discrete
Alternatives Non-predefined Predefined
Criteria defined by Objectives Attributes
Objectives defined Explicitly Implicitly
Attributes defined Implicitly Explicitly
Constraints defined Explicitly Implicitly
Alternatives defined Implicitly Explicitly
Number of alternatives Infinite (large) Finite (small)
Decision maker’s control Significant Limited
Decision modeling paradigm Process-oriented Outcome-oriented
Problem solving by Optimizing programming Ranking
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individual solution may be given an equal or non-
equal priority).

CONCLUSION

The proposed approach in this paper
comprises three important advantages for decision
makers to apply:  first, it is a useful tool to involve
trade-offs analysis between conflicting objectives
including conservation and utilization; second, it
challenges to uncertainty of any decision in SRM;
and third, it considers existing alternatives under
given constraints by developing new alternatives for

all possible situations. The approach, therefore, has
the potential to become a practical tool to policy-
makers and scientists. At last, it is important to note
that we are aware that the proposed framework is
built theoretically and should be considered as the
first step. It has to be strongly validated in the field,
as a several case studies in which we have a plan
to apply for one. However, the existing flexibility in
the second stage of the framework is one of its
advantages in which provides a new useful tool for
decision makers to adjust their decisions based
upon other possible solution(s).
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