

University of Groningen

System-wide molecular evidence for phenotypic buffering in Arabidopsis

Fu, Jingyuan; Keurentjes, Joost J. B.; Bouwmeester, Harro; America, Twan; Verstappen, Francel W. A.; Ward, Jane L.; Beale, Michael H.; de Vos, Ric C. H.; Dijkstra, Martijn; Scheltema, Richard A.

Published in: Nature Genetics

DOI: 10.1038/ng.308

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Fu, J., Keurentjes, J. J. B., Bouwmeester, H., America, T., Verstappen, F. W. A., Ward, J. L., ... Jansen, R. C. (2009). System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics, 41(2), 166-167. DOI: 10.1038/ng.308

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

System-wide molecular evidence for phenotypic buffering in Arabidopsis

Jingyuan Fu^{1,2,9}, Joost J.B. Keurentjes^{3-5,9}, Harro Bouwmeester⁴⁻⁶, Twan America^{5,6}, Francel W.A. Verstappen⁴⁻⁶, Jane L. Ward⁷, Michael H. Beale⁷, Ric C.H. de Vos^{5,6}, Martijn Dijkstra¹, Richard A. Scheltema¹, Frank Johannes¹, Maarten Koornneef^{3,8}, Dick Vreugdenhil⁴, Rainer Breitling¹ and Ritsert C. Jansen^{1,2}

¹Groningen Bioinformatics Centre, University of Groningen, The Netherlands.

²Department of Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands.

³Laboratory of Genetics, Wageningen University, The Netherlands.

⁴Laboratory of Plant Physiology, Wageningen University, The Netherlands.

⁵Centre for Biosystems Genomics, Wageningen, The Netherlands.

⁶Plant Research International, Wageningen, The Netherlands.

⁷Rothamsted Research, National Centre for Plant and Microbial Metabolomics, Harpenden, Herts, UK.

⁸Max Planck Institute for Plant Breeding Research, Cologne, Germany.

⁹These authors contributed equally to this work.

Correspondence should be addressed to R.C.J. (r.c.jansen@rug.nl).

Table of contents

Supplementary Tables:	3
Supplementary Table 1: All 139 phenotypic (morphological, physiological, pathological) and 98 biochemical traits collected from the literature	3
Supplementary Figures	18
Supplementary Figure 1: Hotspots and other QTLs Supplementary Figure 2: Phenotypic trait categories Supplementary Figure 3: Further analysis of trait data collected from literature Supplementary Figure 4: The genetic map Supplementary Figure 5: Traits mapping to QTL hotspots: QTL likelihood profiles	18 20 21 22 23
Supplementary Methods	30
 Plant growth conditions and harvesting New molecular data we have generated on all RILs Molecular data we have previously generated on all RILs Phenotypic data collected on the same RILs	30 30 33 33 34

Supplementary Tables:

Supplementary Table 1: All 139 phenotypic (morphological, physiological, pathological) and 98 biochemical traits collected from the literature.

No.	Trait ID	Trait Category	Description	Ref
1	LDVer-FT	flowering time	Flowering time under long daylight conditions	1
			and after vernalization treatment	
2	LDVer-RLN	rosette number	Rosette leaf number under long daylight	1
			conditions and after vernalization treatment	
3	LDVer-CLN	cauline number	Cauline leaf number under long daylight	1
			conditions and after vernalization treatment	
4	LDVer-TLN	leaf number	Total leaf number under long daylight	1
			conditions and after vernalization treatment	
5	LD-FT	flowering time	Flowering time under long daylight conditions	1
			(without vernalization)	
6	LD-RLN	rosette number	Rosette leaf number under long daylight	1
			conditions (without vernalization)	
7	LD-CLN	cauline number	Cauline leaf number under long daylight	1
			conditions (without vernalization)	
8	LD-TLN	leaf number	Total leaf number under long daylight	1
			conditions (without vernalization)	
9	SD-FT	flowering time	Flowering time under short daylight conditions	1
10	SD-RLN	rosette number	Rosette leaf number under short daylight	1
			conditions	
11	SD-CLN	cauline number	Cauline leaf number under short daylight	1
			conditions	
12	SD-TLN	leaf number	Total leaf number under short daylight	1
			conditions	
13	SL	seed length	Seed length (in mm)	2
14	SW	seed weight	Seed weight (mg per 100 seeds)	2
15	FL	fruit length	Fruit length (in mm)	2
16	OL	ovary length	Ovary length (in mm)	2
17	ON	ovule number	Ovule number per fruit	2
18	SN	seed number	Seed number per fruit	2

19	Unf	ovule number	Unfertilized ovule number per fruit	2
20	TLN	leaf number	Total leaf number	2
21	LLL	leaf length	Largest leaf length (in mm)	2
22	PH	plant height	Plant height (in cm)	2
23	SSN	shoot number	Side shoot number	2
24	FN	fruit number	Fruit number in the main stem	2
25	Sw	seed weight	Seed weight of 100 seeds (in milligram)	3
26	Sucrose	sugar content	Mean sucrose content in micrograms per	3
			seed milligram	
27	Raffinose	sugar content	Mean raffinose content in micrograms per	3
			seed milligram	
28	Stachyose	sugar content	Mean stachyose content in micrograms per	3
			seed milligram	
29	CD0d	germination	Mean germination percentage after 0 days of	3
			CD treatment	
30	CD4d	germination	Mean germination percentage after 4 days of	3
			CD treatment	
31	CD4/0d	germination	Fraction of the mean germination percentage	3
			after 4 days of CD treatment in relation to the	
			mean germination percentage after 0 days of	
			CD treatment	
32	pCD0d	germination	Probit of the mean germination percentage	3
			after 0 days CD treatment	
33	pCD4d	germination	Probit of the mean germination percentage	3
			after 4 days CD treatment	
34	pCD4/0d	germination	Probit of the fraction of mean germination	3
			percentage after 4 days of CD treatment in	
			relation to the mean germination percentage	
			after 0 days of CD treatment	
35	germ4y	germination	Mean germination percentage after 4 years of	3
			seed storage	
36	pgerm4y	germination	Probit of germination percentage after 4 years	3
			of seed storage	
37	White	hypocotyl length	Mean hypocotyl length of seedlings grown	4
			under white light	
38	Blue	hypocotyl length	Mean hypocotyl length of seedlings grown	4
			under blue light	

39	Red	hypocotyl length	Mean hypocotyl length of seedlings grown	4
			under red light	
40	Far-red	hypocotyl length	Mean hypocotyl length of seedlings grown	4
			under far-red light	
41	Dark	hypocotyl length	Mean hypocotyl length of seedlings grown in	4
			darkness	
42	Ga	hypocotyl length	Mean hypocotyl length of seedlings grown	4
			under white light with gibberellin	
43	Brz	hypocotyl length	Mean hypocotyl length of seedlings grown in	4
			darkness and with brassinazole	
44	sgewicht	seed weight	Seed weight (in mg)	5
45	sphytate	phytate/phosphate	Phytate content in milligrams per gram seed	5
		content		
46	sphosphate	phytate/phosphate	Phosphate content in milligrams per gram	5
		content	seed	
47	IPhosphate	phytate/phosphate	Phosphate content in micrograms per gram	5
		content	leaf (fresh weight)	
48	IPhytate	phytate/phosphate	Phytate content in micrograms per gram leaf	5
		content	(fresh weight)	
49	ldtof	flowering time	Time to flower (bolting) under long daylight	6
			condition	
50	ldrln	rosette number	Rosette leaf number under long daylight	6
			condition	
51	ldrd	rosette dismeter	Rosette diameter under long daylight	6
			condition	
52	ldph	plant height	Plant height (cm) under long daylight	6
			condition	
53	ldtm	maturation time	Time to maturate under long daylight	6
			condition	
54	ldlr	reproductive length	Length of reproductive phase under long	6
			daylight condition	
55	ldtea	axil number	Total number elongated axils under long	6
			daylight condition	
56	ldnec	cauline number	Cauline leaves at maturity under long daylight	6
			condition	
57	ldnmf	flower number	Number of main axis fruits/flowers at maturity	6
			under long daylight condition	

58	ldtim	inflorescence	Total number inflorescence meristems under	6
00		number	long davlight condition	Ŭ
59	ldtaf	flower number	Number of axilliar fruits/flowers at maturity	6
			under long daylight condition	
60	ldtef	flower number	Total number early flowers under long	6
			daylight condition	
61	ldtf	flower number	Total number of flowers under long daylight condition	6
62	sdtof	flowering time	Time to flower (bolting) under short daylight condition	7
63	sdrln	rosette number	Rosette Leaf number under short daylight condition	7
64	sdrd	rosette diameter	Rosette diameter under short daylight	7
65	sdph	plant height	Plant height (cm) under short daylight condition	7
66	sdtm	maturation time	Time to maturate under short daylight condition	7
67	sdlr	reproductive length	Length of reproductive phase under short davlight condition	7
68	sdtea	axil number	Total number elongated axils under short davlight condition	7
69	sdnec	cauline number	Cauline leaves at maturity under short daylight condition	7
70	sdnmf	flower number	Number of main axis fruits/flowers at maturity under short daylight condition	7
71	sdtim	inflorescence number	Total number inflorescence meristems under short daylight condition	7
72	sdtaf	flower number	Number of axilliar fruits/flowers at maturity under short daylight condition	7
73	sdtef	flower number	Total number of early flowers under short daylight condition	7
74	sdtf	flower number	Total number of flowers under short daylight condition	7
75	T.ni_A	insect resistance	Levels of feeding damage of Trichoplusia ni (Area mm ²)	8
76	P.XylA	insect resistance	Levels of feeding damage of Plutella	8

			Xylostella (Area mm ²)	
77	Leaf Size_A	insect resistance	Leaf size for insect experiment (Area mm ²)	8
78	P.Xyl_R	insect resistance	Ranking of feeding damage of Plutella xylostella	8
79	P.Xyl_percent	insect resistance	Percent of leaves resistant to Plutella xylostella	8
80	Extract	PGM activity	Phosphoglucomutase activity in total plant extracts (nmol.s-1.gDW-1)	9
81	PGM_Cot	PGM activity	Rank of phosphoglucomutase activity in cotyledons	9
82	PGM_Apex	PGM activity	Rank of phosphoglucomutase activity in apex	9
83	PGM_Hypoc	PGM activity	Rank of phosphoglucomutase activity in hypocotyl	9
84	PGM_Roots	PGM activity	Rank of phosphoglucomutase activity in roots	9
85	PGM_Rootneck	PGM activity	Rank of phosphoglucomutase activity in root neck	9
86	PGM_Roottip	PGM activity	Rank of phosphoglucomutase activity in root tip	9
87	Roothairs	PGM activity	Rank of phosphoglucomutase activity in root hairs	9
88	GermAV1	germination	Average percentage of germination 1 week after harvest	10
89	GermAV3	germination	Average percentage of germination 3 weeks after harvest	10
90	GermAV6	germination	Average percentage of germination 6 weeks after harvest	10
91	GermAV10	germination	Average percentage of germination 10 weeks after harvest	10
92	GermAV15	germination	Average percentage of germination 15 weeks after harvest	10
93	GermAV21	germination	Average percentage of germination 21 weeks after harvest	10
94	DSDS50	germination	Days of storage for 50% germination	10
95	HypOsc	hypocotyl length	Hypocotyl length in darkness	11
96	HypRLp	hypocotyl length	Hypocotyl length after far-red light pulse	11
97	HypRp	hypocotyl length	Hypocotyl length after red light pulse	11

98	HypRLc	hypocotyl length	Hypocotyl length in continuous far-red light	11
99	HypVLFR	hypocotyl length	VLFR response of hypocotyl length	11
100	HypLFR	hypocotyl length	LFR response of hypocotyl length	11
101	HypHIR	hypocotyl length	HIR response of hypocotyl length	11
102	CotRLp	cotyledon	Cotyledon unfolding after far-red light pulse	11
		unfolding		
103	CotRp	cotyledon	Cotyledon unfolding after red light pulse	11
		unfolding		
104	CotRLc	cotyledon	Cotyledon unfolding in continuous far-red light	11
		unfolding		
105	CotVLFR	cotyledon	VLFR response of cotyledon unfolding	11
		unfolding		
106	CotLFR	cotyledon	LFR response of cotyledon unfolding	11
		unfolding		
107	CotHIR	cotyledon	HIR response of cotyledon unfolding	11
		unfolding		
108	Survival-LD	cold resistance	Percentage of plants that survive at –8 $^{\circ}$ C in	12
			long daylight photoperiod	
109	ArcSin Survival-	cold resistance	Angular transformation of mean freezing	12
	LD		tolerance in long daylight	
110	Survival-SD	cold resistance	Percentage of plants that survive at –8 $^{\circ}$ C in	12
			short daylight photoperiod	
111	ArcSin Survival-	cold resistance	Angular transformation of mean freezing	12
	SD		tolerance in short day	
112	Period	leaf move	Period of leaf movement	13
113	Oil (%)	oil content	Seed oil content	14
114	Oil16:0	oil content	Fatty acid 16:0 content	14
115	Oil18:0	oil content	Fatty acid 18:0 content	14
116	Oil18:1	oil content	Fatty acid 18:1 content	14
117	Oil18:2	oil content	Fatty acid 18:2 content	14
118	Oil18:3	oil content	Fatty acid 18:3 content	14
119	Oil20:1	oil content	Fatty acid 20:1 content	14
120	Per12oC	leaf move	Period of leaf movement at 12 °C	15
121	Amp12oC	leaf move	Amplitude of leave movement at 12℃	15
122	Per22oC	leaf move	Period of leaf movement at 22℃	15
123	Amp22oC	leaf move	Amplitude of leaf movement at 22 ℃	15
124	Per27oC	leaf move	Period of leaf movement at 27 °C	15

125	Amp27oC	leaf move	Amplitude of leaf movement at 27 °C	15
126	Root	root length	Root length of 7-day old seedlings	16
127	Hypocotyl	hypocotyl length	Hypocotyl length of 7-day old seedlings	16
128	Inv soluble	invertase activity	Soluble invertase activity	16
129	Inv insoluble	invertase activity	Insoluble invertase activity	16
130	Inv_Cot	invertase activity	Invertase activity in cotyledons (staining)	16
131	Inv_Apex	invertase activity	Invertase activity in apex (staining)	16
132	Inv_Hypoc	invertase activity	Invertase activity in hypocotyl (staining)	16
133	Inv_upHypoc	invertase activity	Invertase activity in upper part hypocotyl	16
			(staining)	
134	Inv_lowHypoc	invertase activity	Invertase activity in lower part hypocotyl	16
			(staining)	
135	Inv_upRoot	invertase activity	Invertase activity in upper part root (staining)	16
136	Inv_midRoot	invertase activity	Invertase activity in middle part root (staining)	16
137	Inv_lowRoot	invertase activity	Invertase activity in lower part root (staining)	16
138	Inv_Root	invertase activity	Average invertase activity in roots (staining)	16
139	Inv_Rootneck	invertase activity	Invertase activity in root neck (staining)	16
140	Inv_Roottip	invertase activity	Invertase activity in root tip (staining)	16
141	Inv_upHairs	invertase activity	Invertase activity in root hairs of upper part	16
			root (staining)	
142	Inv_midHairs	invertase activity	Invertase activity in root hairs of middle part	16
			root (staining)	
143	Inv_lowHairs	invertase activity	Invertase activity in root hairs of lower part	16
			root (staining)	
144	Inv_Hairs	invertase activity	Average invertase activity in root hairs	16
			(staining)	
145	FT	flowering time	Flowering time	17
146	Inf_ML	inflorescence	Main inflorescence length at first silique	17
		length		
147	Inf_TL	inflorescence	Total length of the main inflorescence	17
		length		
148	BB_N	branch number	Basal branch number	17
149	Inf_MN	branch number	Main inflorescence branch number	17
150	Branch_TN	branch number	Total branch number	17
151	DTF-LA	flowering time	Days to flowering, autumn-winter, low density	18
152	DTF-HA	flowering time	Days to flowering, autumn-winter, high	18
			density	

153	DTF-LS	flowering time	Days to flowering, spring, low density	18
154	DTF-HS	flowering time	Days to flowering, spring, high density	18
155	TLN-LA	leaf number	Total leaf number, autumn-winter, low density	18
156	TLN-HA	leaf number	Total leaf number, autumn-winter, high	18
			density	
157	TLN-LS	leaf number	Total leaf number, spring, low density	18
158	TLN-HS	leaf number	Total leaf number, spring, high density	18
159	LL6-LN	leaf length	Longevity of the 6th leaf of non-fertilized	19
			plants	
160	B-LN	flowering time	Days to bolting of non-fertilized plants	19
161	TLN-LN	rosette number	Rosette leaf number of non-fertilized plants	19
162	RL-LN	rosette length	Post-bolting rosette longevity of non-fertilized	19
			plants	
163	DW-LN	mass weight	Above-ground dry weight of senesced non-	19
			fertilized plants	
164	LL6-HN	leaf length	Longevity of the 6 th leaf of fertilized plants	19
165	B-HN	flowering time	Days to bolting of fertilized plants	19
166	TLN-HN	rosette number	Rosette leaf number of fertilized plants	19
167	RL-HN	rosette length	Post-bolting rosette longevity of fertilized	19
			plants	
168	DW-HN	mass weight	Above-ground dry weight of senesced	19
			fertilized plants	
169	Cen Sat	satellite repeat	Centromeric satellite repeats	20
170	Al tol.	root length	Root length in the AI test solution/root length	21
			in the control	
171	FM	mass weight	Weight of fresh matter	22
172	DM	mass weight	Weight of dry matter	22
173	DMC	mass weight	Dry matter content per unit fresh weight	22
174	NO3FM	Ni60	Nitrate concentration relative to the weight of	22
			fresh matter	
175	KFM	K39	Potassium concentration relative to the weight	23
			of fresh matter	
176	KDM	K39	Potassium concentration relative to the weight	23
			of dry matter	
177	CAB2Luc_LD	CAB2 activity	Timing of peak CAB2LUC+ reporter activity	24
			after a 12 h light and 12 h dark cycle	
178	CAB2Luc_LLD	CAB2 activity	Timing of peak CAB2LUC+ reporter activity	24

after a 21 h light and 3 h da	rk cycle
-------------------------------	----------

179	CAB2Luc_SD	CAB2 activity	Timing of peak CAB2LUC+ reporter activity after a 3 h light and 21 h dark cycle	24
180	Luc-LD	Luc expression	Expression of LUCIFERASE at long day cycle of 12 h light and 12 h dark	24
181	Luc_SD	Luc expression	Expression of LUCIFERASE responding to transform from long day of 12 h light and 12 h	24
182	Luc_LLD_SD	Luc expression	Expression of LUCIFERASE responding to transform from very long day of 21 h light and 3 h dark to short day of 3 h light and 21 h dark	24
183	protein 12S	protein content	Alpha-subunits of 12S globulin cruciferin B (CRB) seed storage protein	25
184	Anthocyanin	anthocyanin content	Anthocyanin accumulation in seedlings grown on excess sucrose	26
185	Glu sens	sugar sensitivity	Glucose sensitivity, % of green seedlings grown on excess of glucose	27
186	Cross-overs	cross-over	Frequency of crossover breakpoints	28
187	Kalium	K39	Potassium (K) content in seeds	29
188	Natrium	Na23	Sodium (Na) content in seeds	29
189	Calcium	Ca43	Calcium (Ca) content in seeds	29
190	Magnesium	Mg25	Magnesium (Mg) content in seeds	29
191	Iron	Fe56	Iron (Fe) content in seeds	29
192	Manganese	Mn55	Manganese (Mn) content in seeds	29
193	Zinc	Zn66	Zinc (Zn) content in seeds	29
194	C13	C13	Carbon isotope ratio relative to the V-PDB standard (RPDB)	30
195	Li7+Fe	Li7	Li7 concentration in shoot under Fe sufficient conditions	31
196	B11+Fe	B11	B11 concentration in shoot under Fe sufficient conditions	31
197	Na23+Fe	Na23	Na23 concentration in shoot under Fe sufficient conditions	31
198	Mg25+Fe	Mg25	Mg25 concentration in shoot under Fe sufficient conditions	31
199	P31+Fe	P31	P31 concentration in shoot under Fe sufficient conditions	31

200	K39+Fe	K39	K39 concentration in shoot under Fe sufficient	31
			conditions	
201	Ca43+Fe	Ca43	Ca43 concentration in shoot under Fe	31
			sufficient conditions	
202	Mn55+Fe	Mn55	Mn55 concentration in shoot under Fe	31
			sufficient conditions	
203	Fe56+Fe	Fe56	Fe56 concentration in shoot under Fe	31
			sufficient conditions	
204	Co59+Fe	Co59	Co59 concentration in shoot under Fe	31
			sufficient conditions	
205	Ni60+Fe	Ni60	Ni60 concentration in shoot under Fe	31
			sufficient conditions	
206	Cu65+Fe	Cu65	Cu65 concentration in shoot under Fe	31
			sufficient conditions	
207	Zn66+Fe	Zn66	Zn66 concentration in shoot under Fe	31
			sufficient conditions	
208	As75+Fe	As75	As75 concentration in shoot under Fe	31
			sufficient conditions	
209	Se77+Fe	Se77	Se77 concentration in shoot under Fe	31
			sufficient conditions	
210	Mo95+Fe	Mo95	Mo95 concentration in shoot under Fe	31
			sufficient conditions	
211	Cd111+Fe	Cd111	Cd111 concentration in shoot under Fe	31
			sufficient conditions	
212	Li7-Fe	Li7	Li7 concentration in shoot under Fe deficient	31
			conditions	
213	B11-Fe	B11	B11 concentration in shoot under Fe deficient	31
			conditions	
214	Na23-Fe	Na23	Na23 concentration in shoot under Fe	31
			deficient conditions	
215	Mg25-Fe	Mg25	Mg25 concentration in shoot under Fe	31
			deficient conditions	
216	P31-Fe	P31	P31 concentration in shoot under Fe deficient	31
			conditions	
217	K39-Fe	K39	K39 concentration in shoot under Fe deficient	31
			conditions	
218	Ca43-Fe	Ca43	Ca43 concentration in shoot under Fe	31

			deficient conditions	
219	Mn55-Fe	Mn55	Mn55 concentration in shoot under Fe	31
			deficient conditions	
220	Fe56-Fe	Fe56	Fe56 concentration in shoot under Fe	31
			deficient conditions	
221	Co59-Fe	Co59	Co59 concentration in shoot under Fe	31
			deficient conditions	
222	Ni60-Fe	Ni60	Ni60 concentration in shoot under Fe deficient	31
			conditions	
223	Cu65-Fe	Cu65	Cu65 concentration in shoot under Fe	31
			deficient conditions	
224	Zn66-Fe	Zn66	Zn66 concentration in shoot under Fe	31
			deficient conditions	
225	As75-Fe	As75	As75 concentration in shoot under Fe	31
			deficient conditions	
226	Se77-Fe	Se77	Se77 concentration in shoot under Fe	31
			deficient conditions	
227	Mo95-Fe	Mo95	Mo95 concentration in shoot under Fe	31
			deficient conditions	
228	Cd111-Fe	Cd111	Cd111 concentration in shoot under Fe	31
			deficient conditions	
229	Cs_Gsoil	Cs uptake	Cs uptake from soil per gram shoot fresh	32
			weight	
230	FW_soil	shoot weight	Shoot fresh weight	32
231	Cs_Psoil	Cs uptake	Cs uptake from soil per plant (Cs content x	32
			shoot fresh weight)	
232	Cs_Gagar	Cs uptake	Cs uptake from agar per gram shoot fresh	33
			weight	
233	FW_agar	shoot weight	Shoot fresh weight	33
234	Cs_Pagar	Cs uptake	Cs uptake from agar per plant (Cs content x	33
			FW)	
235	SYMP	symptom	Symptom development after inoculation with	34
		development	PPV-Rankovic (pICPPVnk)	
236	ACC	virus accumulation	Virus accumulation after inoculation with	34
			PPV-Rankovic (pICPPVnk)	
237	PPV-PS	symptom	Symptom development after inoculation with	35
		development	PPV-PS	

References

- 1. Alonso-Blanco, C., El-Assal, S.E., Coupland, G., & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. *Genetics* **149**, 749-764 (1998).
- Alonso-Blanco, C., Blankestijn-de, V.H., Hanhart, C.J., & Koornneef, M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U. S. A* 96, 4710-4717 (1999).
- 3. Bentsink,L. et al. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. *Plant Physiol* **124**, 1595-1604 (2000).
- 4. Borevitz, J.O. et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. *Genetics* **160**, 683-696 (2002).
- 5. Bentsink,L., Yuan,K., Koornneef,M., & Vreugdenhil,D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. *Theor. Appl. Genet.* **106**, 1234-1243 (2003).
- Ungerer, M.C., Halldorsdottir, S.S., Modliszewski, J.L., Mackay, T.F., & Purugganan, M.D. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. *Genetics* 160, 1133-1151 (2002).
- 7. Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., & Mackay, T.F. Genotypeenvironment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. *Genetics* **165**, 353-365 (2003).
- 8. Kliebenstein, D., Pedersen, D., Barker, B., & Mitchell-Olds, T. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. *Genetics* **161**, 325-332 (2002).
- 9. Sergeeva,L.I. et al. Histochemical analysis reveals organ-specific quantitative trait loci for enzyme activities in Arabidopsis. *Plant Physiol* **134**, 237-245 (2004).

- Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de, V.H., & Koornneef, M. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. *Genetics* 164, 711-729 (2003).
- 11. Botto, J.F., onso-Blanco, C., Garzaron, I., Sanchez, R.A., & Casal, J.J. The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. *Plant Physiol* **133**, 1547-1556 (2003).
- 12. Alonso-Blanco, C. et al. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. *Plant Physiol* **139**, 1304-1312 (2005).
- 13. Swarup,K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. *Plant J.* **20**, 67-77 (1999).
- 14. Hobbs, D.H., Flintham, J.E., & Hills, M.J. Genetic control of storage oil synthesis in seeds of Arabidopsis. *Plant Physiol* **136**, 3341-3349 (2004).
- 15. Edwards,K.D., Lynn,J.R., Gyula,P., Nagy,F., & Millar,A.J. Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. *Genetics* **170**, 387-310 (2005).
- Sergeeva,L.I. et al. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. *Proc. Natl. Acad. Sci. U. S. A* 103, 2994-2999 (2006).
- 17. Keurentjes, J.J. et al. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. *Genetics* **175**, 891-905 (2007).
- Botto, J.F. & Coluccio, M.P. Seasonal and plant-density dependency for quantitative trait loci affecting flowering time in multiple populations of Arabidopsis thaliana. *Plant Cell Environ.* **30**, 1465-1479 (2007).
- 19. Luquez, V.M. et al. Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana. *J. Exp. Bot.* **57**, 1363-1372 (2006).

- 20. Ito,H., Miura,A., Takashima,K., & Kakutani,T. Ecotype-specific and chromosomespecific expansion of variant centromeric satellites in Arabidopsis thaliana. *Mol. Genet. Genomics* **277**, 23-30 (2007).
- Kobayashi,Y., Fututa,Y., Ohno,T., Hara,T., & Koyama,H. Quantitative trait loci controlling aluminium tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands). *Plant Cell Environ.* 28, 1516-1524 (2005).
- 22. Harada,H., Kuromori,T., Hirayama,T., Shinozaki,K., & Leigh,R.A. Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. *J. Exp. Bot.* **55**, 2005-2014 (2004).
- 23. Harada, H. & Leigh, R.A. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. *J. Exp. Bot.* **57**, 953-960 (2006).
- 24. Darrah, C. et al. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. *Plant Physiol* **131**, 1464-1474 (2006).
- 25. Hou,A. et al. Two naturally occurring deletion mutants of 12S seed storage proteins in Arabidopsis thaliana. *Planta* **222**, 512-520 (2005).
- Teng,S., Keurentjes,J., Bentsink,L., Koornneef,M., & Smeekens,S. Sucrosespecific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. *Plant Physiol* 139, 1831-1852 (2005).
- Teng,S., Rognoni,S., Bentsink,L., & Smeekens,S. The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway and enhances sugar sensitivity by stimulating ABI4 expression. *Plant J.* 55, 372-381 (2008).
- Esch,E., Szymaniak,J.M., Yates,H., Pawlowski,W.P., & Buckler,E.S. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. *Genetics* 177, 1851-1858 (2007).

- Vreugdenhil, D., Aarts, M.G.M., Koornneef, M., Nelissen, H., & Ernst, W.H.O. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. *Plant Cell Environ.* 27, 828-839 (2004).
- 30. Juenger, T. et al. Identification and characterization of QTL underlying wholeplant physiology in Arabidopsis thaliana: d13C, stomatal conductance, and transpiration efficiency. *Plant Cell Environ* **28**, 687-708 (2005).
- 31. Baxter, I. et al. Purdue ionomics information management system. An integrated functional genomics platform. *Plant Physiol* **143**, 600-611 (2007).
- 32. White, P.J. et al. Selecting plants to minimise radiocaesium in the food chain. *Plant and Soil* **249**, 177-186 (2003).
- 33. Payne,K.A. et al. Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. *New Phytologist* **162**, 535-548 (2004).
- 34. Sicard,O. et al. Identification of quantitative trait loci controlling symptom development during viral infection in Arabidopsis thaliana. *Molecular Plant-Microbe Interactions* **21**, 198-207 (2008).
- 35. Decroocq,V. et al. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. *Molecular Plant-Microbe Interactions* **19**, 541-549 (2006).

Supplementary Figures

Supplementary Figure 1: Hotspots and other QTLs

The distribution of the number of traits that map to each of the six hotspots (pink and blue balls) and/or to the other genome regions (grey ball) is shown. A blue ball indicates that the hotspot was not significant, while a pink ball indicates the hotspot was significant at the given level. Dark lines between two balls report the number of traits that mapped to the two corresponding hotspot loci (in which case the trait has two or more QTLs). Grey lines report the number of traits that mapped to one or more hotspots and to another genome region.

Most transcripts and proteins map to one QTL only. Many metabolites map to two QTLs and patterns of connectivity emerge, e.g. many metabolites possess one hotspot mQTL and one other non-hotspot mQTL, which suggests that the whole metabolome has a correlated structure rather than that most hotspot mQTLs were observed for a selected set of metabolites only. Metabolic and phenotypic traits can also map to multiple hotspots, e.g. 33 phenotypic traits map to CRY2 and one of the other hotspots, which suggests that different subordinate network components became connected.

Together, these six hot spots influence 16%, 25%, 55% and 77% of 4,832, 253, 7,158 and 116 transcript, protein, metabolite and phenotypic traits with QTLs, respectively, when a window of 5 cM around the hot spot is used to account for imperfect mapping resolution in the QTL analysis; 13%, 15%, 50% and 69% when using a 2 cM window.

Supplementary Figure 2: Phenotypic trait categories

The phenotypic traits collected from the literature (**Supplementary Table 1**) could be partly redundant, because occasionally very similar traits have been measured multiple times, although under different conditions, at different stages, or by different groups. We grouped the 139 traits into 35 distinct phenotypic trait categories. 33 phenotypic trait categories have traits with QTLs (116 traits in total). 31 phenotypic trait categories (94%) have at least one trait with a QTL in a window of 5 cM around a hotspot (blue cells). See **Supplementary Fig. 3** for further analysis.

Supplementary Figure 3: Further analysis of trait data collected from literature

(a) Phenotypic traits. The 139 phenotypic traits (Supplementary Table 1) were grouped into 35 distinct categories (Supplementary Figure 2). We here show the heat maps with and without categorization. If multiple traits belong to the same category and map to the same locus, we counted it as a single QTL for this category. Clearly, the two phQTL distributions are almost identical and not affected much by potential redundancy within phenotypic trait categories. Consequently, the system-wide effects of the six hotspots are also almost identical. The number of phenotypic traits with a hotspot QTL is: 89 out of 116 traits with a QTL (77%). The number of trait categories with a hotspot QTL is: 31 out of 33 categories with a QTL (94%).

(b) **Biochemical traits.** The 98 biochemical traits collected from the literature predominantly consisted of 49 traits for 19 distinct ions, and 28 traits for 3 distinct proteins only. Therefore we here show the heat maps with and without categorization for the larger collection of ions only. The number of ion traits with a hotspot QTL, is: 22 out of 32 traits with a QTL (69%). The number of ion trait categories with a hotspot QTL is: 14 out of 16 categories with a QTL (88%), using a window of 5 cM around the hotspot to account for imperfect mapping resolution in QTL analysis.

Supplementary Figure 4: The genetic map

The names and the map positions (in cM) of the 144 markers are shown. The six hotspot markers are highlighted in red.

Genetic Map 1 N. C. 85. 64. 16C ar in Ĩ ŝ 2 EC.S.S. 40,156r BH 1201 3 Br. 14Br 19. 19. OB S. S. Co. Sie Br. 13. ŝ 8 65 4 Children and Children AM. ģ Ì 5 0F3315 0¢.18q1 8× â ż

Supplementary Figure 5: Traits mapping to QTL hotspots: QTL likelihood profiles.

We detected six QTL hotspots on the genome. QTL likelihood profiles of individual molecular and phenotypic traits mapping to these hotspots can be accessed via six different figures: **Supplementary Fig. 5a** for traits that map to hotspot 1, **Supplementary Fig. 5b** for traits that map to hotspot 2, and so on. Traits that map to two or more hotspots will appear in two or more figures.

The first row in **Supplementary Fig. 5a** shows a heat map of the average QTL profile for all traits that map to hotspot 1 (located at marker 2) and that also map to marker 143 (there are 144 markers in total, but no traits map to marker 2 and marker 144). The second row refers to all traits that map to hotspot 1 and to marker 142, and so on (in this and in the five other figures). The numbers at the right-hand side of the heat map indicate the number of transcript-, protein-, metabolite- and phenotypic traits in the row. Chromosomes are indicated and the red dashed lines are the chromosome borders.

The heat maps are hyperlinked to the QTL likelihood profiles of the traits on http://gbic.biol.rug.nl/supplementary/2008/phenotypic_buffering/supFig5.htm. Clicking on a row of the heat map will open a new window showing the QTL likelihood profiles of individual traits.

Fig 5a. Traits mapping to hotspot CRY2.

Fig 5b. Traits mapping to hotspot EC.66C

Fig. 5d. Traits mapping to hotspot DF.77C

Supplementary Methods

1. Plant growth conditions and harvesting

Seeds of RILs were sown on 10 ml $\frac{1}{2}$ MS agar (2%) in Ø 6 cm Petri dishes. Per line five replicate dishes were sown on five consecutive days with a density of a few hundred seeds per Petri dish. Petri dishes were placed in a cold room at 4 °C for 7 days in the dark to promote uniform germination. Subsequently dishes were randomly placed in five blocks in a climate chamber, where each block contained one replicate dish of each line. Growing conditions were 16 h light (30 W.m⁻²) at 20 °C, 8 h dark at 15 °C and 75% relative humidity. After 6 days the lids of the Petri dishes were removed to ensure seedlings were free of condensed water on the day of harvesting. On day 7, seedlings were harvested by submerging the complete Petri dish briefly in liquid nitrogen and scraping off the aerial parts with a razor blade. Harvesting started 7 hours into the light period and all lines were harvested to make one replicate sample and from the other three dishes to make the second. Plant material was ground in liquid nitrogen and stored at -80 °C until further processing (full details see ref¹).

2. New molecular data we have generated on all RILs

2.1 2D-PAGE

For protein extraction, (liquid nitrogen) frozen Arabidopsis seedlings were ground with pestle and mortar. To 100 mg material, weighed in a 2 ml screw-cap tube, we added 1.5 ml of 10%TCA, 0.3% DTT (w/v) in acetone. Samples were homogenized in the FastPrep® system (Qbiogene, Irvine, USA) for 45 seconds at a speed of 6.5 rpm and incubated at -20° C for at least one hour, with occasional vortexing. The homogenate was centrifuged for 30 minutes at 20,800 g 4°C). The supernatant was decanted and the pellet was washed twice with 1.5ml acetone (10 mM DTT). After air-drying, the pellet was solubilized in 200 µl TUCD buffer (6 M urea, 2 M thio-urea, 2% (w/v) CHAPS and 30 mM Tris-HCl pH8,5). Protein amount was measured using the RC/DC assay (Bio-Rad) using BSA as reference. Some sample extracts with low protein concentration were concentrated and cleaned using the clean-up kit (GE Healthcare, manufacturer's protocol) and dissolved TUCD buffer to a final protein concentration of 5 ug/ul.

Proteins were labeled using the fluorescent CyDyes from the Difference Gel Electrophoresis (DIGE®) technology (GE Healthcare, Sweden) according to the manufacturer's protocol. For each sample, 50 µg of protein was labeled with 0.4 nmol Cy3 or Cy5. For internal standard, a reference sample was prepared by mixing equal protein amounts of all samples (131 in total). This mixture was labeled with Cy2. Each 2D-gel contains one sample labeled with Cy3, one labeled with Cy5 and the internal standard labeled with Cy2.

The first-dimension isoelectric focusing was performed using 24 cm immobilized pH gradient strips (GE Healthcare) with a linear pH range of 4 to 7 in an Ettan IPGPhor isoelectric focusing system. Cydye 2, 3 & 5 labeled samples (total of 150 µg protein) were diluted in 0.5% IPG buffer (pH 4-7 and pH 3-10, 1:1) and TUCD buffer to a volume of 450 µl and loaded into the strips by rehydration. The focusing was run overnight at 20°C with the following settings: 30 V for 1 h, 500 V for 1 h, from 500 V to 1000 V in 6 h, from 1000 V to 8000 V in 3 h, and finally 8000 V until a total of 60,000 Vhour was reached. After IEF the strips were equilibrated at room temperature in equilibration buffer (6 M urea, 50 mM Tris-HCl pH 8.8, 30% (v/v) glycerol, 2% (w/v) SDS containing 1% (w/v) DTT for 15 minutes and after that in the same buffer containing 2.5% (w/v) iodoacetamide for 10 minutes. The second dimension was run in the ISO-DALT system (GE healthcare) on 11% SDS-PAGE slab gels. Electrophoresis was performed at 30 V for 1 hour followed by 90 V overnight at 10°C. The gels were scanned remaining in the glass plate, using the Ettan DIGE Imager (GE Healthcare, using the manufacturer's setting for CyDye detection).

Gel images were analyzed with the Decyder software V6.5 (GE Healthcare). Automated spot detection was performed (estimated number of spots 2500). The detected spots were then filtered based on spot area (>270), spot volume (>1.1e10⁴), peak height (>80), peak slope (< 0.75) to exclude background noise and dust particles. The internal standard in each gel was used to automatically match all images to the reference (the gel with the most detected spots). The matching was checked and corrected by hand with the help of land-marking clear spots that were visible in all images and rematching the dataset.

2.2 GC-TOF-MS

Frozen and ground samples of approximately 50 mg fresh weight were weighed accurately in a 2 ml Eppendorf vial with punctured lid, and 1.4 ml cold methanol and

ribitol as internal standard were added. Samples were extracted for 20 min in a shaking water bath at 70°C. After centrifuging at 21000 g for 5 min, 500 μ L of the supernatant was transferred to a new 2 ml Eppendorf vial. A two-phase extraction method was used to separate polar and apolar compounds by adding 500 μ l water and 700 μ l chloroform². After vortexing and centrifugation at 21000 g for 5 min, 200 μ L of the polar phase was dried under vacuum. The dried extracts were derivatized by methoximation and trimethylsilylation essentially as described² using a CombiPal robot for on-line derivatization. Octadecane was added to the o-methylhydroxiaminehydrochloride in pyridine to check for accuracy of the pipetting of the robot.

Samples were injected with an Optic3 injector (ATAS) at 70°C with a gradient of 6°C/sec to 240°C using a split flow of 10 ml and a column flow of 2 ml in a GC6890N gas chromatograph (Agilent Technologies) on a ZB50 capillary column (30 m x 0.32 mm i.d., 0.25 μ m DF; Phenomenex) with a column temperature of 70°C for 2 minutes and a gradient of 10°C/min to 310°C and a final time of 3 min. The GC was coupled to a Pegasus III time-of-flight mass spectrometer (LECO) and compounds were detected at a scanning rate of 20 spectra per second (mass 50-600). MetalignTM software (www.metalign.nl) was used to extract all mass signals detected and to align these signals across the samples³.

2.3 ¹H NMR

NMR sample preparation was carried out according to the procedures described in ref^{4, 5}. NMR extractions were performed for three technical replicates of each biological sample. Freeze-dried leaf samples (15 mg) were extracted at 50^oC for 10 min with 80:20 D₂O:CD₃OD (1 ml) containing 0.05% w/v d₄-TSP. After cooling and centrifugation (15 minutes), the supernatant was transferred to a clean Eppendorf tube and heated to 90^oC for 2 min. Samples were then cooled to 8^oC for 30 min before centrifugation (10 min). 750 µl of the supernatant was transferred to a 5 mm NMR tube for ¹H NMR analysis. NMR extractions were performed for three replicates of each biological sample.

¹H NMR spectra were acquired under automation at 300°K on an Avance Spectrometer (Bruker, Coventry, UK) operating at 600.0528 MHz, equipped with a 5 mm Selective Inverse Probe. Spectra were collected using a water suppression pulse sequence with a relaxation delay of 5 s. Each spectrum was acquired using 128 scans of 64,000 data points with a spectral width of 7309.99 Hz. Spectra were automatically Fourier transformed using an exponential window with a line broadening value of 0.5 Hz.

Phasing and baseline correction were carried out within the instrument software. ¹H chemical shifts were referenced to d_4 -TSP at $\delta 0.00$.

¹H NMR spectra were automatically reduced, using Amix (Analysis of MIXtures software, Bruker Biospin, Coventry, UK), to ASCII files containing integrated regions or "buckets" of equal width (0.01 ppm). Spectral intensities were scaled to the d₄-TSP region ($\delta 0.05$ to -0.05). The ASCII file was imported into Excel for the addition of sample details. The regions for unsuppressed water ($\delta 4.865-4.775$), d₄-MeOH ($\delta 3.335-3.285$) and d₄-TSP ($\delta 0.05$ to -0.05) were removed.

Identification of individual metabolites was achieved by comparing to authentic standards whose spectra were collected under the same experimental conditions.

3. Molecular data we have previously generated on all RILs

3.1 mRNA-microarrays

Total RNA of each line was isolated from two biological replicates by using phenolchloroform extraction. Genome-wide gene expression analysis was carried out using two-color microarrays provide by the Galbraith laboratory (University of Arizona, Tucson, AZ) with Qiagen Operon (Valencia, CA/Alameda, CA) Arabidopsis genome oligo set Version 2.10.2.). For details see ref⁶.

3.2 HPLC-QTOF-MS

Frozen and ground samples of approximately 100 mg were weighed in 2.2 ml Eppendorf tubes. Aqueous-methanol extracts were prepared from each RIL and separated using an Alliance 2795 HT system (Waters Corporation) equipped with a Luna C₁₈-reversed phase column (150 x 2.1 mm, 3 μ m; Phenomenex, CA). Compounds eluting from the column were detected on-line, first by a Waters 996 photodiode array detector at 200-600 nm and then by a Q-TOF Ultima MS (Waters) with Electron Spray Ionization (ESI) source. Ions were detected in negative mode in the range of m/z 100 to 1500, using a scan time of 900 msec and an inter-scan delay of 100 msec. For details see ref¹.

4. Phenotypic data collected on the same RILs

We defined *phenotypic trait* as the observable morphological, physiological, pathological or biochemical characteristics of an organism as determined by traditional *low-throughput* measurement technologies. Alternative definitions are possible, for example,

excluding molecular traits such as ion content or enzyme activities. Such reassignments did not have a major impact on our results.

We have collected all publicly available phenotypic and biochemical data on the Ler \times Cvi recombinant inbred population from the literature. **Supplementary Table 1** lists all the phenotypic and biochemical traits and gives the corresponding literature reference. Traits can be clustered into more general categories, such as flowering and germination (physiological). **Supplementary Fig. 2** and **Supplementary Fig. 3** show our analysis results for categorized traits.

5. Statistical analysis

5.1 QTL mapping

We performed QTL mapping using two-part multiple-QTL models⁷ for transcript, protein, metabolite and phenotypic trait data. The overall false discovery rate (FDR) was set to 0.05. Traits can map to one or more QTLs, and for each QTL the most significant marker was stored for QTL hotspot analysis (see below).

5.2 QTL hotspot analysis

We computed significance thresholds for (i) detection of QTLs hotspots per level, and (ii) detection of hotspots that appear across multiple levels ('system-wide QTL hotspots').

QTL hotspots per level. We used QTL and permutation analysis to compute significance thresholds for detection of QTL hotspots. Redundancy in the biomolecular or phenotypic profiling can lead to correlated traits. In the absence of a common genetic basis, such correlation may still inflate the number of false QTLs at particular loci if trait data are permuted. We therefore permuted marker data to maintain the correlation structure in the trait data. This gives appropriate significance thresholds for detection of QTL hotspots⁸. For each of 250 permutations we analyzed all > 40,000 traits to map QTLs, stored the most significant marker for each QTL, counted the number of significant QTLs over all traits for each marker, stored the maximum value along the genome, and used them to derive significant thresholds for hotspot detection per level (*P* value=0.05).

System-wide QTL hotspots. We used the observed QTL hotspots and permutation analysis to compute significance thresholds for detection of QTL hotspots that appear at multiple levels. Using the results from the QTL analysis per level, we ranked the markers per level from the one with the highest to that with the lowest number of traits mapping to it. We used a rank-product test⁹ to find markers that rank significantly high at multiple levels. For each of 5,000 permutations we computed the *P*-values for the rank-product test at each of the 144 markers, and used them to derive a threshold for hotspot detection at a false discovery rate (FDR) of 5%. QTL hotspots with significant rank-test results (suggesting significant downstream effects) are indicated with arrows above the heat maps (**Fig. 1** in main paper).

References

- 1. Keurentjes, J.J. et al. The genetics of plant metabolism. *Nat. Genet.* **38**, 842-849 (2006).
- Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. *Nat. Protoc.* 1, 387-396 (2006).
- Tikunov,Y. et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. *Plant Physiol* 139, 1125-1137 (2005).
- 4. Baker, J.M. et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. *Plant Biotechnol. J.* **4**, 381-392 (2006).
- Ward, J.L., Harris, C., Lewis, J., & Beale, M.H. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. *Phytochemistry* 62, 949-957 (2003).
- Keurentjes, J.J. et al. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. *Proc. Natl. Acad. Sci. U. S. A* 104, 1708-1713 (2007).

- Fu,J., Swertz,M.A., Keurentjes,J.J., & Jansen,R.C. MetaNetwork: a computational protocol for the genetic study of metabolic networks. *Nat. Protoc.* 2, 685-694 (2007).
- 8. de Koning, D.J. & Haley, C.S. Genetical genomics in humans and model organisms. *Trends Genet.* **21**, 377-381 (2005).
- 9. Breitling, R., Armengaud, P., Amtmann, A., & Herzyk, P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. *FEBS Lett.* **573**, 83-92 (2004).