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Abstract. Game theoretical concepts in evolutionary biology have been
criticized by populations geneticists, because they neglect such crucial aspects
as the mating system or the mode of inheritance. In fact, the dynamics of
natural selection does not necessarily lead to a fitness maximum or an ESS if
genetic constraints are taken into account. Yet, it may be premature to
conclude that game theoretical concepts do not have a dynamical justifica-
tion. The new paradigm of long-term evolution postulates that genetic con-
straints, which may be dominant in a short-term perspective, will in the long
run disappear in the face of the ongoing influx of mutations. Two basic results
(see Hammerstein; this issue) seem to reconcile the dynamical approach of
long-term population genetics with the static approach of evolutionary game
theory: (1) only populations at local fitness optima (Nash strategies) can be
long-term stable; and (2) in monomorphic populations, evolutionary stability
is necessary and sufficient to ensure long-term dynamic stability. The present
paper has a double purpose. On the one hand, it is demonstrated by fairly
general arguments that the scope of the results mentioned above extends to
non-linear frequency dependent selection, to multiple loci, and to quite gen-
eral mating systems. On the other hand, some limitations of the theory of
long-term evolution will also be stressed: (1) there is little hope for a game
theoretical characterization of stability in polymorphic populations; (2) many
interesting systems do not admit long-term stable equilibria; and (3) even if
a long-term stable equilibrium exists, it is not at all clear whether and how it is
attainable by a series of gene substitution events.

Key words: Frequency dependent selection — ESS — Nash equilibrium — Game
dynamics — Mendelian population — Multilocus model — External stability —
Phenotypic stability — Optimization
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1 Introduction

The theory of long-term evolution, developed by Eshel, Matessi, Hammer-
stein and others, has attracted considerable attention since it seems to recon-
cile two apparently incompatible approaches towards natural selection. The
population genetical approach bases its evolutionary predictions on a dynam-
ical model of the selection process. This approach is ‘‘genetic’’ since detailed
assumptions on mating, reproduction, and inheritance have to be made in
order to specify a dynamical selection model. In contrast, the predictions of
evolutionary ecology are usually based on a notion of ‘‘adaptedness’’ and
hence on one or the other (game theoretical) optimality principle. This second,
static approach is ‘‘phenotypic’’ in that it focuses on fitness differences and
neglects the details of mating and reproduction. The two complementary
approaches are widely used but, unfortunately, they may lead to different and
even contradictory predictions. It is now well established (e.g. Moran 1964;
Akin 1979; Karlin and Lessard 1986) that natural selection is often not an
optimizing process and that stable evolutionary equilibria do often not
correspond to fitness maxima or evolutionarily stable strategies. These results
may seem counterintuitive at first sight, but they merely reflect the fact that
natural selection does not only depend on phenotypic fitness differences but
also on the genetic transmission of these differences from one generation to
the next. As a consequence, information which has been built up during
selection at the phenotypic level may be destroyed by the reshuffling processes
of Mendelian genetics.

The fact that selection at the pheotypic level may be dominated by
constraints at the genetic level has led many population geneticists to con-
clude that a full genetic specification is required for a proper understanding of
selection. Evolutionary ecologists have difficulties to accept this standpoint
since virtually nothing is known about the genetic basis of most evolutionarily
interesting traits. For them, the paradigm of long-term evolution provides new
hope that a purely phenotypic characterization of selection is still feasible. In
other words, the claim that the two approaches towards natural selection are
inconsistent may be premature. Proponents of the new paradigm concede that
genetic constraints are often decisive for the outcome of selection in a short-
term perspective. They argue, however, that these constraints will be al-
leviated in the long run by newly arising mutations whose evolutionary
success is less governed by genetic constraints than by their phenotypic
properties. As a consequence, they expect that the discrepancy between
dynamic stability and fitness optimality will vanish in a long-term evolution-
ary perspective.

The present paper aims at a generalisation and a critical evaluation of two
results which may be viewed as the cornerstones of the theory of long-term
evolution (see Hammerstein, this issue). For linear frequency dependent selec-
tion at two loci in a randomly mating population, Hammerstein and Selten
(1994) showed that only local fitness optima (‘‘Nash strategies’’) can be
long-term stable (Theorem 1) and that, in monomorphic populations,
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evolutionary stability is necessary and sufficient for long-term dynamic stabil-
ity (Theorem 2). Here, I shall demonstrate that the scope of these results can be
extended to non-linear frequency dependence, to multiple loci, and to some
forms of nonrandom mating. By means of a simple example, I shall point to
a gap in the proof of Hammerstein and Selten’s Theorem 2. I have not been
able to close this gap completely, and instead I derive a slightly weaker version
of this result. The new proofs given here try to avoid technical detail and to
make the arguments as transparent as possible. I hope that this will shed some
new light on the scope and the limitations of the paradigm of long-term
evolution.

2 The phenotypic approach to frequency-dependent selection

The phenotypic approach to selection is a (game theoretical) optimization
approach which is based on three ingredients (e.g. Parker and Maynard Smith
1990). First, optimality theory requires a clearcut description of all traits that
are phenotypically feasible. The resulting phenotype set (or strategy set)
characterizes the phenotypic constraints on adaptive evolution. Second, a fit-
ness function (or: payoff function) is needed which relates the ‘‘adaptedness’’ of
a phenotypic trait to characteristics of the base population or the environ-
ment. Finally, an optimization criterion is required which singles out ‘‘well-
adapted’’ phenotypic traits as primary candidates for the outcome of an
adaptive selection process.

In the context of evolutionary game theory, phenotypic traits correspond
to the (mixed) strategies of an evolutinary game. A mixed strategy (denoted by
bold-faced letters such as p, q, or Q) is a probability distribution over a finite
set p

1
, . . . , p

/
of pure strategies. If selection is frequency dependent, the fitness

of an individual, F (q, pN ), will not only depend on its own strategy q but also on
the population strategy pN , i.e. on the average strategy of the population. We
shall assume that the fitness function F is continuously differentiable. For
most fitness concepts, it is plausible to assume that the fitness of a mixed
strategy q is the expected value of the fitness values of the pure strategies used
by q:

F(q, pN )"
n
+
i/1

q
i
· F(p

i
, pN ) . (1)

Let us therefore suppose that the fitness function F is linear in its first
component. Many applications of evolutionary game theory (see, e.g.,
Maynard Smith 1982) consider pairwise contests with random matching of
opponents. In such a case, F is given by a payoff matrix A, F (q, pN )"q · ApN ,
and, as a consequence, F is also linear in its second component. We shall refer
to linear frequency dependent selection if F is linear in both components
(Technically speaking, the term ‘‘affine’’ is more adequate, but the term
‘‘linear’’ is generally used; see Taylor 1996).
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The phenotypic approach founds its evolutionary predictions on a de-
tailed analysis of the fitness function F. In classical game theory, a payoff
function F is in the first place investigated with respect to Nash equilibrium
strategies. A strategy p* is a Nash strategy if no alternative strategy has
a higher payoff against p* then p* itself:

F (p*, p*)7F (q, p* ) (2)

for all q. In classical game theory, the Nash solution concept is based on strict
rationality requirements which have of course no place in evolutionary game
theory. The solution concept of evolutionary game theory is based on the idea
that the stability of a wild-type population requires that the resident strategy
has a fitness advantage over invading mutant strategies. Consider a mutant
strategy q which enters a monomorphic population of p*-strategists with
a small frequency e. p* will be immune against invasion by q if the p*-
strategists have a fitness advantage in the resulting dimorphic population with
population strategy pe"(1!e)p*#eq. p* is called an evolutionarily stable
strategy (ESS) if it is immune against invasion by any alternative strategy q.
Formally, p* is an ESS if

F (p*, (1!e)p*#eq)'F(q, (1!e)p*#eq) (3)

for all q9p* and all sufficiently small e, say for all e(E. In the literature,
some equivalent and some alternative definitions of an ESS can be found (see,
e.g., Lessard 1990). I prefer the present form since it best reflects the basic
intuition behind the ESS concept.

Let me close this section with a few remarks. First, every ESS is a Nash
strategy (let e approach zero in (3)). Hence, an ESS prescribes ‘‘quasi-
rational’’ behaviour even though no rationality assumptions are made in
evolutionary game theory (see, e.g., Parker and Hammerstein 1985).
On the other hand, the ESS condition is much more stringent than the
Nash condition. While every evolutionary game has at least one Nash
strategy, many games do not have an ESS. Second, all considerations on
frequency dependent selection also apply to frequency independent
selection. In the latter case, the fitness of a strategy q does not depend on the
population strategy pN , i.e. pN appears as a dummy variable in the fitness
function F(q, pN ). Now, a Nash strategy and an ESS correspond to a weak and
a strict maximum of the fitness function, respectively. Third, the term evolu-
tionary ‘‘stability’’ is quite misleading. The ESS concept is not a stability
concept but a (game theoretical) optimality concept which is based on fitness
comparisons between strategies. Simple example show that an ESS is not
necessarily stable with respect to the dynamics of natural selection (e.g.,
Weissing 1991; Cressman 1992). The notion of ‘‘stability against invading
mutants’’ may be intuitively appealing but it has no clearcut dynamical
justification. Stability concepts always have to refer to an underlying dynam-
ics, and dynamical considerations are lacking in the phenotypic approach to
natural selection.
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3 Viability selection in a multilocus context

Natural selection takes place whenever there are phenotypic differences in
mortality and reproduction. But selection per se will have no evolutionary
consequences unless the phenotypic differences have a genetic basis. Unfortu-
nately, the genetic basis of most evolutionarily ‘‘interesting’’ traits is com-
pletely unknown. This ignorance forms the major justification for the
phenotypic approach to natural selection which avoids all genetic assump-
tions and instead focuses on interactions at the phenotypic level. In contrast,
genetic selection models directly address the dynamics of genotype frequency
change. A genetic model is inherently more complex than a corresponding
phenotypic model. In fact, genotype frequencies are not only affected by
selection but also by other factors such as the mating structure or recombina-
tion patterns.

Consider a dipolid Mendelian population where the genetic trait in ques-
tion is affected by a number of autosomal loci A, B, C, . . . . In the present
paper, we shall focus on one of these loci, say A. The alleles at this locus will be
indicated by indices such as i and j. The genetic constitution at the other loci
will be indicated by a and b. If in total m loci are involved, a and b are
multi-indices involving m!1 components. A diploid genotype will be charac-
terized by a pair (ij, ab) with an obvious interpretation. In the three-locus
context, for example, the pair (13, ab) with a"(2, 2) and b"(4, 3) corres-
ponds to the genotype A

1
B
2
C

2
D A

3
B
4
C

3
.

Let X
ij, ab denote the frequency of genotype (ij, ab,) at the zygote stage and

let w
ij, ab denote the fitness ("viability) of this genotype. As usual, it will be

assumed that the fitness parameters are position independent, i.e. that
w
ij, ab does not depend on the order of the components in (ij, ab). In particular,

this implies w
ij, ab"w

ji, ab . The X
ij, ab should be understood as ordered fre-

quencies, i.e. we distinguish between the frequencies of (ij, ab ) and ( ji, ab) and
assume X

ij, ab"X
ji, ab . Viability selection leads to a shift of genotype frequen-

cies from X
ij, ab at the zygote stage to

XI
ij, ab"X

ij, ab ·
w
ij, ab

wN
(4)

at the adult stage. Here, wN denotes the mean fitness ("mean viability) of the
population:

wN "+
ij

+
a,b

X
ij, abwij, ab . (5)

After viability selection, mating and reproduction takes place which in-
volves the reshuffling of gametic types (i, a) due to recombination. Let

X
ia
"+

j

+
b

X
ij, ab (6)

denote the frequency of gametic type (i, a) in the parent generation and let
X@

ia
denote the corresponding frequency in the offspring generation (both
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evaluated at zygote stage). In the two-locus case, X@
ia

is given by

X@
ia
"+

j

+
b

[(1!r)XI
ij, ab#rXI

ji, ab] , (7)

where we have assumed random mating, no fertility differences between
matings, Mendelian segregation and recombination between A and B with
frequency r (see, e.g., Eshel and Feldman 1984). In the multi-locus context, the
gamete type dynamics looks more complicated since many recombination
patterns are possible (see, e.g., Liberman 1988; Matessi and Di Pasquale 1996).
Fortunately, we may, for our purposes, get rid of the details of the genetic
reshuffling process. In fact, we shall concentrate on the marginal allele frequen-
cies at the focus locus A:

x
i
"+

a

X
ia
"+

j

+
a,b

X
ij, ab . (8)

In the two-locus context, we obtain

x@
i
"+

a

X@
ia
"(1!r) ·+

j

+
a,b

XI
ij, ab#r · +

j

+
a,b

XI
ji, ab"+

j

+
a,b

XI
ij, ab"xJ

i
.

In other words, the marginal allele frequency at the zygote stage of the
offspring generation, x@

i
, is identical with the marginal allele frequency xJ

i
of the

parent generation after selection. This example illustrates a general principle.
The genetic reshuffling processes of Mendelian reproduction lead to a re-
association of alleles within and between loci, but the allele frequencies are not
affected by these processes. This principle holds under a wide range of
circumstances and it forms the basis of the analysis to follow. In particular, it
extends to the multilocus context if we assume random mating, Mendelian
inheritance and the absence of fertility selection. Even most systems of non-
random mating, like inbreeding, do not lead to deviations from this principle
(see, e.g., Crow and Kimura 1970). Hence, we get quite in general:

x@
i
"xJ

i
"+

j

+
a,b

XI
ij, ab"

1

wN ·
+
j

+
a,b

X
ij, abwij, ab . (9)

Summarizing, we have derived

Result 1. ºnder random mating, Mendelian inheritance and selection acting
only on viability differences, the dynamics of allele frequency change at a specific
locus A is given by the recurrence equation

x@
i
"x

i
·
w

i
wN

. (10)

In this equation, the parameters w
i
and wN denote the marginal fitness of allele i:

w
i
"

1

x
i

·+
j

+
a,b

X
ij, abwij, ab (11)
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and the mean fitness of the population:

wN "+
ij

+
a,b

X
ij, abwij, ab"+

i

x
i
w

i
. (12)

In particular, allele i will increase in frequency if and only if its marginal fitness is
larger than the mean fitness of the population:

x@
i
'x

i
8w

i
'wN . (13)

Equation (10) closely resembles the discrete replicator dynamics for selection
in an asexual population (e.g. Weissing 1991) and the Haldane-Fisher-Wright
model for selection at a single autosomal locus (e.g. Crow and Kimura 1970).
Notice, however, that in contrast to these other models the (marginal) allele
frequencies per se do not fully specify the allele frequency dynamics. In fact,
the genotype frequencies, X

ij, ab are required for a full specification of eqn (10).
Nevertheless, relation (13) remains crucial for judging the invasion chances of
a rare mutant.

4 Maynard Smith meets Mendel: the multilocus game dynamics

Let us now integrate the two approaches outlined above. Consider an evolu-
tionary game with a fixed number of pure strategies and a fixed fitness
function F (q, pN ). To add genetics to this game, we assume that the mixed
strategy of an individual is the expression of its genotype at m autosomal loci.
In other words, the genotype (ij, ab) corresponds to a mixed strategy Q

ij, ab ,
where we assume that Q

ij, ab"Q
ji, ab . The population strategy is then given by

pN "+
ij

+
a,b

X
ij, abQ

ij, ab . (14)

If we assume that individual fitness ("viability) is determined by the outcome
of the underlying game, the fitness of genotype (ij, ab) is given by

w
ij, ab"F (Q

ij, ab , pN ) . (15)

Some authors interpret payoffs F (Q
ij, ab , pN ) in terms of changes in fitness.

According to this interpretation, total fitness is given by w
ij, ab"

F(Q
ij, ab , pN )#w

0
, where the ‘‘basis fitness’’ w

0
is a positive constant. All results

in this paper remain true if we switch to this interpretation.
We can now define the marginal strategy q

i
of allele i:

q
i
"

1

x
i

·+
j

+
a,b

X
ij, abQ

ij, ab . (16)

This is the mean strategy of all individuals harbouring allele i at locus A. Since
the fitness function is linear in its first component, the marginal fitness of allele
i is given by

w
i
"F(q

i
, pN ) , (17)
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while the mean fitness can be written as

wN "F(pN , pN ) . (18)

Hence, in the present context, Result 1 can be formulated as

Result 2. Allele i will increase in frequency if and only if its marginal strategy
yields a higher payoff than the population strategy:

x@
i
'x

i
8F(q

i
, pN )'F(pN , pN ) . (19)

This result shows that dynamic properties of the allele frequency dynamics
can be derived from the fitness function of the underlying game. In this
respect, Result 2 provides a crucial link between the phenotypic and the
genetic approach to natural selection.

5 Complete external stability and the Nash property

Genetic selection models have the useful property that the stability of an
equilibrium can be judged on the basis of two complementary stability
concepts. Internal stability refers to stability with respect to perturbations of
the equilibrium which only involve gametic types already present at equilib-
rium. In contrast, external stability considers the stability of an equilibrium
with respect to ‘‘new’’ types that are not represented in equilibrium with
positive frequency. In non-degenerate cases, an equilibrium is stable if and
only if it is internally stable and externally stable.

Let us first focus on the external stability of an equilibrium. We shall only
consider stability against single mutants, i.e. against gametic types that differ
in one allele at one locus, say locus A, from the gametic types of the resident
population (for stability against multiple mutants see Matessi and Di Pas-
quale 1996). Assume that, at equilibrium, n!1 alleles are present at locus
A and that a new allele, n, enters the population with low frequency. The
equilibrium is (neutrally) externally stable against n if, for each e'0 and
a small enough starting frequency (depending on e), the marginal frequency of
n, x

n
, remains smaller than e. In view of Result 2, the question of external

stability against allele n boils down to a fitness comparison between the
marginal strategy of the mutant allele, qn , and the population strategy at
equilibrium, pN "p*. This is, however, not completely straightforward: the
marginal strategy of the mutant allele is not constant but dependent on the
genetic background of this allele which changes over time (qn depends on the
genotype frequencies X

nj, ab ; see (16)). Eshel and Feldman (1984) and Liber-
man (1988) showed that this problem can be overcome: The linearisation of
the selection dynamics at equilibrium has a simple, dominant eigenvalue. The
normalized eigenvector corresponding to this eigenvalue yields a mixed strat-
egy q̂

n
which may be viewed as the characteristic strategy of the mutant allele

near equilibrium. In fact, the invasion chances of a mutant allele can be judged
on basis of its characteristic strategy:
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Result 3 (Liberman 1988). Consider an equilibrium of the multilocus game
dynamics with population strategy p*. A newly arising allele n at locus A will
successfully invade and thereby destabilize the resident population if
F(qL

n
, p*)'F (p*, p*), i.e. if the characteristic strategy qL

n
of the mutant allele is

superior in fitness at equilibrium. In contrast, the resident equilibrium is ex-
ternally stable against n if qL

n
yields a lower fitness than the resident strategy p*,

i.e. if F(qL
n
, p*)(F (p*, p*).

In principle, Result 3 allows to assess the external stability of an equilibrium
against a specific mutant allele. The practical applicability of this result is,
however limited by the fact that the fitness comparison between qL

n
and p* is

not a purely phenotypic criterion. In fact, the characteristic strategy qL
n
of the

mutant allele comprises all kinds of genetic constraints acting upon the
mutant. Detailed genetic information is required to calculate qL

n
since it

strongly depends on the association of allele n with the genetic background
provided by alleles at the same locus and at other loci. Accordingly, there is
little hope to arrive at a purely phenotypic characterization of external
stability if we follow the ‘‘standard’’ approach of population genetics and focus
on the invasion chances of a specific mutant allele. However, in evolutionary
time, an equilibrium is challenged repeatedly by a whole range of alternative
alleles. Among others, IIan Eshel, Carlo Matessi, and Peter Hammerstein (see
their contributions in this issue) have championed the view that evolutionary
theory should focus less on the invasion chances of a specific mutation but
rather on external stability against any conceivable mutant allele. Let us call
an equilibrium completely externally stable if it is (neutrally) externally stable
against any feasible single mutant n, i.e. against any conceivable combination
of strategies Q

nj, ab . Complete external stability is a restrictive stability concept
that does not leave room for equilibria which are only externally stable due to
specific genetic constraints. As a consequence, we obtain at least a partial
phenotypic characterization of complete external stability.

Result 4. ¹he population strategy p* of a completely externally stable
equilibrium is a Nash strategy.

Proof. The proof of this important result is almost trivial. We have to show
that an equilibrium can be destabilized by the invasion of a mutant allele if its
population strategy p* is not a Nash strategy. If p* is not a Nash strategy, an
alternative strategy q with a higher fitness can be found: F (q, p*)'F (p*, p*).
Consider a mutant allele n at locus A which is ‘‘dominant’’ in the sense that it
induces strategy q irrespective of its genetic background (i.e. Q

nj, ab"q for all
j, a, and b). The marginal strategy of n is, of course, again q: q

n
"q. This

implies F (q
n
, pN )'F(pN , pN ) in a neighbourhood of p*. In view of Result 2, allele

n will increase in frequency until this neighbourhood of p* is left. Hence, the
equilibrium is externally unstable against n. K

Let me close this section with a few remarks. First, Result 4 reflects the fact
that complete external stability requires stability against a huge set of alterna-
tives. All kinds of mutations (including dominant ones with an adequate
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strategy) are considered feasible, and the role of genetic constraints is mar-
ginalized. It depends on the biological context whether this is indeed a reason-
able assumption. Second, Result 4 provides a necessary condition for com-
plete external stability which is by far not sufficient. It is easy to construct
examples of a Nash strategy p* where the underlying equilibrium can be
invaded by any mutant with a different strategy (e.g. Weissing 1991). Third,
consider an equilibrium whose population strategy p* is not a Nash strategy.
We have shown that this equilibrium can be invaded by any mutant coding
for a ‘‘better response’’ strategy q. The set of ‘‘better response’’ strategies is
convex, it contains at least one pure strategy, and it contains strategies from
each neighbourhood of p* (e.g. Weissing 1991). As a consequence, the equilib-
rium can be destabilized by mutants whose strategy deviates only slightly
from the population strategy. Fourth, the fact that a population can be
successfully invaded if p* is not a Nash strategy does not imply that a success-
ful mutant will shift the population closer to a Nash strategy or an ESS. If p* is
already close to an ESS, only those mutants can invade whose marginal
strategy is ‘‘in the approximate direction’’ of the ESS (Eshel and Feldman
1984). Unfortunately, this does not guarantee that the population strategy
after a successful invasion is closer to the ESS than the original one. In fact,
there is no clearcut relationship between the properties of successful mutants
and the properties of a Nash strategy or an ESS. It is, for instance, easy to
construct an evolutionary game with a unique ESS where a resident popula-
tion can be destablized by a variety of mutants, but not by mutants represent-
ing the ESS strategy.

6 Phenotypic attractivity and long-term stability

According to the paradigm of long-term evolution, an evolutionary equilib-
rium can only be considered long-term stable if it combines the properties of
internal stability ("short-term stability) and complete external stability
("stability against the ongoing influx of new mutant strategies). One might
be inclined to use the term ‘‘stability’’ in the sense of ‘‘asymptotic stability’’ (e.g.
Hofbauer and Sigmund 1988), i.e. to require that the selection dynamics drives
the system back to equilibrium after any sufficiently small perturbation.
However, this requirement is too strict in the context of evolutionary game
theory. In fact, an equilibrium with a mixed population strategy pN can never be
asymptotically stable against all kinds of perturbations. Consider such an
equilibrium and an invasion attempt by a rare mutant allele n that induces the
same marginal strategy (q

n
"pN ). In view of Result 2, this allele is not selected

against and a new equilibrium is attained that incorporates the mutant allele.
Hence, at the genetic level the population is not driven back to its original
state. At the phenotypic level, however, nothing has changed since the popula-
tion strategy has remained constant. More generally, each genetic equilibrium
forms part of a manifold of equilibria which all induce the same population
strategy. All one can hope for is that this manifold is attractive, i.e. that, after
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any small (internal or external) perturbation, the population strategy of the
perturbed population is driven back to the population strategy of the resident
population. Let us call a genetic equilibrium phenotypically attractive (Weiss-
ing 1983) if it has this property. An equilibrium will be called long-term stable if
it is (1) internally stable, (2) completely externally stable, and (3) phenotypi-
cally attractive.

We have already seen (Result 4) that the population strategy of a long-
term stable equilibrium is a Nash strategy. For the special case of a single gene
locus and two pure strategies, Eshel (1982) and Lessard (1984) have shown
that the genetic concept of long-term stability is closely related to the
phenotypic concept of an ESS. In our terminology, their main conclusion can
be framed as

Result 5 (Lessard 1984). In the context of a single locus and two pure strategies,
a genetic equilibrium is long-term stable if and only if its population strategy is
an ESS.

Result 5 shows that at least for a restricted class of models a full phenotypic
characterization of long-term stability can be achieved. Therefore the seminal
papers of Eshel (1982) and Lessard (1984) may be viewed as the starting point
of the theory of long-term evolution. One should realize, however, that the
proof of Result 5 rests on the one-dimensionality of the strategy space and the
fact that one-locus systems are ‘‘well-behaved’’ when compared to multi-
locus systems (they are ‘‘locally adaptive’’, i.e. Fisher’s Fundamental Theorem
of Natural Selection holds for these systems in the context of frequency-
independent selection). Accordingly, it would be premature to conclude that
a full phenotypic characterization of long-term stability is within reach.

In fact, I have little hope that it will ever be possible to arrive at
a phenotypic characterization of internal stability (the ‘‘short-term compon-
ent’’ of long-term stability). This is exemplified by a simple observation:
Phenotypic optimality concepts like the Nash equilibrium concept or the ESS
concept are not affected if the fitness function is changed by adding a constant.
On the other hand, adding a constant to the fitness function changes the
strength of selection and — in the context of three or more pure strategies —
such a change may affect the internal stability properties of an equilibrium (see
Weissing 1991 for a class of examples). Hence, phenotypic concepts will
probably never be fully congruent with internal stability and we have to be
content with the characterization of long-term stability for those equilibrium
points where internal stability does not present a problem. Such equilibria will
be considered in the following section.

7 Long-term stability of monomorphic populations

The question of internal stability does not arise for a genetic mono-
morphism, i.e. for a genetic state where only a single allele is present at each
locus. Internal stability is also automatically obtained for a phenotypic
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monomorphism, i.e. for a (polymorphic) genetic state where all resident geno-
types induce the same strategy (Q

ij, ab"pN for all i, j, a and b; Hammerstein and
Selten 1994). At a phenotypic monomorphism, all frequency distributions of
resident gametic types are phenotypically equivalent (Weissing 1983) since they
induce the same population strategy. As a consequence, all ‘‘internal’’ per-
turbations of a phenotypic monomorphism are selectively neutral (see Result
2), and the monomorphism is (neutrally) internally stable.

In this section, we shall investigate to what extent the phenotypic concept
of evolutionary stability is able to characterize those monomorphic states
which are long-term stable, i.e. which are completely externally stable and
phenotypically attractive. We have already seen (Result 4) that the population
strategy of a completely externally stable equilibrium is a Nash strategy. For
a (phenotypic) monomorphism, this result is complemented by

Result 6. ¹he population strategy p* of a phenotypically attractive mono-
morphism is an ESS.

Proof. Recall that an ESS is characterized by the family of inequalities (3). The
linearity of the fitness function in its first component implies that p* is an ESS
if and only if

F (pe , pe)!F(q
n
, pe)'0 (20)

for q
n
9p* and all 0(e(E, where the strategies pe"pe(qn

) are of the form

pe"(1!e)p*#eq
n
. (21)

Consider now a phenotypically monomorphic equilibrium where all resident
genotypes induce the strategy p*: Q

ij, ab"p* for all i, j, a, and b. Suppose that
p* is not an ESS, i.e. suppose that an alternative strategy q

n
9p* exists such

that F (q
n
, pe )7F(pe , pe ) for small values of e. Consider a dominant mutant

allele n at locus A which induces this strategy irrespecitve of its genetic
background (Q

nj, ab"q
n
for all j, a, and b ). If this allele enters the population

with frequency x
n
, the resulting population strategy will be of the form pN "pe ,

where e(2x
n
. Hence F (q

n
, pN )7F (pN , pN ). Result 2 implies that the mutant

allele will not be selected against. Accordingly, the population strategy will
not converge to p*, the population strategy of the resident population. In
other words, the resident population is not phenotypically attractive. K

Let us now turn to the question whether evolutionary stability of the
population strategy p* is not only a necessary requirement but also sufficient
to ensure the long-term stability of a monomorphic equilibrium. Consider
therefore a phenotypic monomorphism with an evolutionarily stable popula-
tion strategy p*: Q

ij, ab"p* for all i, j, a, and b. We want to show that any rare
mutant allele n will be selected against. In view of Result 2, if is sufficient to
show that

F(pN , pN )!F (q
n
, pN )'0 (22)

for all mutant strategies q
n
9p*. Here pN denotes the mean strategy of the

population which results after introducing allele n with a small frequency x
n
.
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Notice that inequality (20) would immediately yield (22) if the population
strategy of the perturbed population were of the form pN "pe . However, pN is
typically not a convex combination of p* and q

n
. In fact, pN is given by

pN " +
ij:n

+
a,b

X
ij, ab p*#2 +

j6n

+
a,b

X
nj, abQ

nj, ab!+
a,b

X
nn, ab Q

nn, ab .

This can be rewritten as

pN "(1!2x
n
#x

nn
)p*#2x

n
q
n
!x

nn
q
nn

,

where x
nn

and q
nn

denote the marginal frequency and marginal strategy of
mutant homozygotes:

x
nn
"+

a,b

X
nn, ab and q

nn
"

1
x
nn

+
a,b

X
nn, abQ

nn, ab .

Hence, for e"2x
n
, the difference between pN and pe is of order x

nn
:

pN "pe#x
nn

(p*!q
nn
) . (23)

We shall henceforth assume that the frequency of mutant homozygotes, x
nn

, is
of order (x

n
)2, an assumption that is certainly satisfied in randomly mating

populations but which also applies to other mating systems (but not, for
example, to populations with inbreedings). Under this assumption, the differ-
ence between the left-hand sides of (20) and (22) is of order o(x

n
) and hence

becomes negligible for small mutant frequencies:

Lemma 1.

F (pN , pN )!F (q
n
, pN )"F(pe, pe )!F(q

n
, pe )#o (x

n
), where e"2x

n
. (24)

Proof. The first-order Taylor approximations of the ‘‘pure-strategy payoff ’’
functions F

i
(p) :"F (p

i
, p ) are given by

F
i
(p)"F

i
(p*)!+

j

LF
i

Lp
j

(p*) (p*
j
!p

j
)#o (Ep!p*E ) .

As a consequence,

F(p, p )!F(q
n
, p)"F (p, p* )!F (q

n
, p*)!(p!q

n
) ·A(p*!p)

#o (Ep!p*E ) ,

where A denotes the Jacobian matrix

A"A
LF

i
Lp

j

(p*)B
i, j

. (25)

Inserting pN and pe for p and neglecting higher order terms, we obtain

F (pN , pN )!F (q
n
, pN )"(1!2x

n
)[F(p*, p*)!F (q

n
, p*)]

!2x
n
(p*!q

n
) · A(p*!q

n
)#o (x

n
) , (26)
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and

F (pe , pe)!F(q
n
, pe )"(1!e)[F(p*, p*)!F (q

n
, p*)]

!e(p*!q
n
) · A(p*!q

n
)#o (e) . (27)

This immediately implies (24). K

At an ESS, the left-hand side of (27) is positive for all q
n
9p* and small

enough e. Let us call an ESS regular, if already the linear approximation is
positive for all q

n
9p* and small enough e:

(1!e)[F(p*, q*)!F(q
n
, p*)]!e (p*!q

n
) ·A (p*!q

n
)'0 . (28)

Regularity is a mild requirement and I am not aware of a biological example
involving a non-regular ESS. In case of a linear fitness function, the Jacobian
A corresponds to the payoff matrix, and it is easy to see that (28) is always
satisfied for an ESS p*. Hence, all ESSs of the linear games considered by
Hammerstein and Selten (1994) are regular. More generally, an ESS is regular
whenever the quadratic form induced by the matrix A is non-degenerate, i.e. if
det(A#AT)90 (see, e.g., Weissing 1983). Actually, regularity may hold
under even weaker conditions (Bomze and Pötscher 1989), but the determi-
nant criterion is easy to check and it shows that regularity is a generic
condition.

At a regular ESS, either F (p*, p*)!F (q
n
, p* ) is positive or

(p*!q
n
) · A(p*!q

n
) is negative. Since both terms do not depend on the

mutant frequency, the left-hand side of (26) will become positive for small
enough x

n
. Hence, we obtain

Lemma 2. Consider a phenotypic monomorphism with population strategy p*. If
p* is a regular ESS, for each alternative strategy q

n
9p* an ‘‘invasion barrier’’

D(q
n
)'0 can be found such that all mutant alleles with marginal strategy q

n
and

marginal frequency 0(x
n
(D(q

n
) have a smaller than average fitness:

F (q
n
, pN )(F(pN , pN ) . (29)

¹he invasion barrier can be chosen in such a way that D (q
n
) depends

continuously on q
n
.

In the context of linear frequency dependence, Hammerstein and Selten (1994)
claim that Lemma 2 directly implies the external stability and phenotypic
attractivity of a phenotypically monomorphic ESS population. This claim
may be premature. Hammerstein and Selten’s conclusion would be correct if
the marginal strategy q

n
of a mutant allele would not change in time. For

a mutant allele with a fixed strategy q
n
9p* and a small initial frequency

x
n
(D (q

n
), Lemma 2 does indeed imply that the mutant is indefinitely selected

against and that its frequency will monotonically decline to zero. In general,
however, the marginal strategy of a mutant allele changes in the course of
selection and there is a priori no guarantee that x

n
(t)(D (q

n
(t)) for all times.
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Hammerstein and Selten’s claim could still be justified if a uniform invasion
barrier D

.*/
'0 would exist, i.e. if the set of invasion barriers [D(q

n
) D q

n
9p*]

would be bounded below by a positive number. However, even in the most
simple scenarios, the invasion barrier of mutant strategies may become arbit-
rarily small:

Consider the linear fitness function F (q, pN )"q · ApN that is given by the
payoff matrix

A"A
0

1

1

0B .

It is easy to see that p*"(0.5, 0.5) is the unique ESS of this evolutionary
game. Suppose that p* is the population strategy of a genetic or a pheno-
typic monomorphism. Consider a mutant allele n which induces the pure
strategy q

nn
"(0, 1) in homozygous condition and the mixed strategy

q
)%5

"(0.5#j, 0.5!j) in heterozyous condition (06j60.5). If we assume
that the genotypes are in Hardy-Weinberg proportions, the marginal mutant
strategy and the population strategy of the perturbed population are of the
form

q
n
"(0.5#k, 0.5!k ) where k"(1!x

n
)j!0.5x

n
,

pN "(0.5#l, 0.5!l) where l"2x
n
(1!x

n
)j!0.5(x

n
)2 .

The fitness difference between mutant strategy and population strategy is
given by

F (q
n
, pN )!F(pN , pN )"2l(l!k )"!2x

n
(1!x

n
)[2(1!x

n
)j!0.5x

n
]

][(1!2x
n
)j!0.5x

n
] .

Now it is easy to derive when the mutant allele has a selective advantage (see
Fig. 1):

F (q
n
, pN )'F (pN , pN )8

2j
4j#1

(x
n
(

4j
4j#1

.

Accordingly the invasion barrier of the marginal mutant strategy is (for j'0)
given by:

D (q
n
)"

2j
4j#1

. (30)

Notice that the invasion barrier of a mutant strategy is negatively related to
the parameter j. In fact, the invasion barrier converges to zero when j tends to
zero, i.e. when q

)%5
approaches the ESS. As a consequence, for each value

x
n
'0 a mutant allele can be found which is not yet selected against at this

frequency. In other words, there does not exist a uniform invasion barrier
D
.*/

'0 which could be applied to all mutant strategies.
In view of Result 5, only a complete multi-locus specification of the above

example could turn it into a counter-example to Hammerstein and Selten’s

Genetic versus phenotypic models of selection 547



Fig. 1. Regions of selective advantage (I
`

) and selective disadvantage (I
~
) of a mutant allele

that has reached the frequency x
n

in a previously monomorphic ESS population. The
mutant allele induces the strategies q

)%5
"(0.5#j, 0.5!j) and q

nn
"(0, 1) in heterozygous

and homozygous condition, respectively

claim that a phenotypically monomorphic ESS population is long-term
stable. However, the example illustrates that it may be difficult if not imposs-
ible to justify this claim. Consider a mutant allele whose heterozygote strategy
q
)%5

(j ) changes in the course of selection. Hence j and the invansion barrier
(30) change with time. As long as x

n
(t)(D (t), the mutant frequency will

decrease. But j(t) may also decrease in time, implying a decrease in D (t). If j (t)
decreases at a faster rate than x

n
(t), the pair (j(t ), x

n
(t)) might enter the region

I
`

in Fig. 1 where the mutant allele is no longer selected against. It is therefore
conceivable that a monomorphic ESS population can be destabilized by the
invasion of a single, rare mutant.

The problem outlined above is closely related to the nonexistence of
a uniform invasion barrier. It only arises if the marginal strategy q

n
(t) of the

invading mutant approaches the resident ESS p* in the course of selection.
Suppose that the marginal strategies that a mutant allele may attain cannot
approach the ESS p*. This is, for example, the case if p* is not contained in the
convex hull of the strategies Q

nj, ab . In such a case, a compact set C can be
found that does not contain p* but which contains all feasible mutant
strategies q

n
. The continuous ‘‘invasion barrier function’’ of Lemma 2 attains

its minimum

D
C
"minMD(q) D q3CN'0 (31)

on C. D
C

is a uniform invasion barrier for all strategies in C. Hence, for
a sufficiently small starting frequency (x

n
(0)(D

C
), the mutant allele will be

selected against for all times (see (29)). As a consequence, the mutant frequency
will monotonically decline to zero. In other words, a monomorphic ESS
population is externally stable against all mutants whose marginal strategies
are restricted to a compact set not containing the ESS p*.
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A phenotypically monomorphic ESS population will therefore be ex-
ternally stable against the majority of invasion attempts. A slight modification
of the above argument shows that even more can be said for a genetic
monomorphism:

Result 7. A genetic monomorphism is long-term stable if its population strategy
p* is a regular ESS.

Proof. At a genetic monomorphism, only one allele is present at each locus.
Newly arising alleles at locus A do not affect the genetic background of this
locus which remains constant. Hence all other loci may be neglected and, in
essence, we are dealing with a one-locus situation. Assume that at the mono-
morphism allele A

1
is present at locus A (i.e. Q

11
"p*) and that the mutant

allele A
2

enters the population with a small frequency x
2
. The mutant allele

induces the strategies Q
12

and Q
22

in heterozygote and in homozygote
condition, respectively. We shall consider three cases:

(A) Q
12
"Q

22
"p*. In this case, the mutant allele induces the same

strategy as the resident population and it will therefore neither increase
nor decrease in frequency (Result 2). Hence the monomorphism is
phenotypically attractive and (neutrally) externally stable against the mutant
allele.

(B) Q
12

"p*, Q
22
9p*. In this case, pN can be put into the form (21), i.e. it

is a convex combination of p* and q
2
: pN "pe , where e"x

22
/x

2
. Since x

22
is of

order (x
2
)2, the ESS property (20) immediately yields (22) for a sufficiently

small mutant frequency x
2

(for x
22

/x
2
(E). Hence the frequency of a rare

mutant allele A
2
will monotonically decline to zero (Result 2). Accordingly the

resident population is externally stable against A
2
, and the population strat-

egy converges to p*.
(C) Q

12
9p*. In this case, a compact neighbourhood C of Q

12
can be

found which does not contain p*. The marginal mutant strategy can be
written as q

2
"Q

12
#(x

22
/x

2
) · (Q22

!Q
12

) and it is therefore close to Q
12

if
x
2

is small. Hence, there exists a d'0 such that q
2
3C for x

2
(d. Suppose

that the initial frequency of the mutant allele is smaller than d and D
C
, the

uniform invasion barrier for the strategies in C. In view of (29), the mutant will
have a smaller than average fitness, and the mutant frequency will monotoni-
cally decline to zero. Again, the monomorphism is externally stable, and the
population strategy converges back to the ESS p*. K

Result 7 justifies Hammerstein and Selten’s claim for the context of a genetic
monomorphism. It is, however, important to realize the limitations of this
result. Consider a genetically monomorphic ESS population that is chal-
lenged by the appearance of a rare mutant allele A

2
. If Q

12
9p* or Q

22
9p*,

the mutant allele will be driven out of the population lim
t?=

x
2
(t)"0),

provided that its initial frequency is small enough. But how small is ‘‘small
enough’’? We have seen that a uniform invasion barrier does not always exist.
Accordingly, the degree of external stability may be ‘‘relative’’ in the sense that
the invasion barrier depends on the marginal strategy of the mutant allele.
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A second problem may be even more important. If Q
12
"Q

22
"p*, the

mutant allele will not be selected against and stay in the population. Hence,
the population is transformed from a genetic monomorphism into
a phenotypic monomorphism, and it is not yet clear whether such a monomor-
phism is stable against further invasion attempts. Even if we suppose that
a phenotypically monomorphic ESS population is always completely ex-
ternally stable and phenotypically attractive, dynamic stability is still rather
shaky. Suppose that p* is not a pure strategy. For each value of x

n
, we can

construct a mutant allele n that is phenotypically equivalent to the resident
population (i.e. q

n
"p*) but for which not all strategies Q

nj, ab are identical to
p*. Such a mutant will not be selected against, but it transforms the
phenotypic monomorphism into a phenotypic polymorphism. It is well
known (e.g. Weissing 1991) that polymorphic ESS populations may be dynam-
ically unstable. Hence, the resulting polymorphic population might be de-
stabilized by internal perturbation or further invasion attempts.

In conclusion, we have shown that the evolutionary stability of the
population strategy guarantees the long-term stability of a genetic monomor-
phism. Whether the same holds true for a phenotypic monomorphism has still
to be established. Long-term stability of a (genetic or phenotypic) monomor-
hism is, however, a rather weak property, since it is conceivable that a mono-
morphic ESS population can be destabilized by a series of successive invasion
attempts.

Discussion

Evolution by natural selection is the result of an interplay between forces at
the phenotypic and the genetic level. An integrated study of natural selection
is, however, hampered by the fact that the genetical component of selection is
typically unknown in practice. In reaction to this ignorance, phenotypic
approaches towards natural selection tend to neglect the genetic constraints
on adaptive evolution. Instead, these approaches focus on the complexity of
interactions at the phenotypic level. The theory of long-term evolution (the
‘‘streetcar theory of natural selection’’, Hammerstein 1996) seems to provide
a justification for such an approach. In contrast to population genetical
models which concentrate on a fixed number of alleles at a fixed number of
loci, the theory of long-term evolution considers a huge variety of mutants
which are all viewed as potential invaders into a resident population. In this
broader context, the analysis of external stability rests on the assumption that,
in the long run, mutants should arise whose invasion chances are less affected
by genetic factors than by their phenotypic effects. As a consequence, the
long-term outcome of selection should rather be dominated by fitness proper-
ties than by genetic constraints. The two ‘‘streetcar theorems’’ of Hammerstein
and Selten (1994) reflect this principle: only Nash strategies can be long-term
stable, and the ESS property characterizes the long-term stability of mono-
morphic populations.
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In the present paper, these theorems (Results 4, 6, and 7) are derived from
rather general genetical considerations. The derivation is based on the idea
that phenotypic and genetic processes are often fairly independent from one
another. Within a generation, the allele frequency changes brought about by
(viability) selection are governed by fitness differences (Li 1955; Turner 1970):
xJ
i
"x

i
w
i
/wN . In contrast, the transition from one generation to the next is

governed by genetic factors such as Mendelian segregation or recombination.
These factors lead to a reassociation between alleles but they usually do not
affect the allele frequencies. Consequently, as long as we focus on the level of
allele frequencies, the transition from the zygote stage of the parent generation
to the zygote stage of the offspring generation is still governed by fitness
differences (Results 1 and 2): x@

i
"xJ

i
"x

i
w
i
/wN . We may conclude that the two

‘‘streetcar theorems’’ hold true whenever (a) selection can be decoupled from
reproduction, and (b) mating and reproduction do not lead to changes in
allele frequencies. As a consequence, the theorems apply to a wide range of
genetical contexts, including viability selection at multiple loci in a randomly
mating population.

Hammerstein and Selten’s proof makes use of the special properties of an
ESS under linear frequency dependent selection. The present paper shows that
linearity of the fitness function in its second component is not really required.
This is an important generalisation since ‘‘playing the field’’ situations
(Maynard Smith 1982) or games with non-random matching of opponents
easily lead to this kind of non-linearity. Moreover, the more transparent
arguments given here show that there is a gap in Hammerstein and Selten’s
proof of the second streetcar theorem. This gap has partially been closed by
demonstrating that a genetically monomorphic ESS population is stable in
a long-term perspective. Whether the same holds true for a phenotypic mono-
morphism remains to be shown.

If we neglect this technical problem, the two fundamental theorems of the
‘‘streetcar theory’’ hold under a broad range of circumstances. Nevertheless, it
would be premature to conclude that the theory of long-term evolution does
already rest on a firm foundation. Conceptually, the theory has opened new
roads to the study of evolution. But I do not want to end this article without
mentioning some serious drawbacks and limitations.

¹he monomorphism problem. The ESS concept is based on the heuristics that
a monomorphic wildtype population should be immune against the invasion
attempts of single mutants. It is therefore not too suprising that the most
convincing result of the streetcar theory (Result 7) only applies to mono-
morphic populations. In my opinion, a similar characterization of long-term
stability will hardly be possible for polymorphic equilibria, since phenotypic
criteria are not well-suited to study internal stability (Weissing 1991). In case
of asexual reproduction, one may argue that monomorphic equilibria have
a slight but consistent advantage over phenotyically equivalent polymorhic
equilibria (Weissing, in preparation). But I do not see a convincing reason why
such a ‘‘trend towards monomorphism’’ should also be expected in Mendelian
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populations. One might even argue that polymorphisms are inherently ad-
vantageous in a long-term perspective since they buffer a population against
environmental fluctuations. In any case, polymorphisms abound in nature
and one should not expect monomorphisms to play a dominant role in the
face of a reproductive system whose main features are related to the genera-
tion and conservation of genetic variation.

¹he time scale problem. To apply the concept of long-term stability to the
natural world, one has to assume that the situation found in nature does
resemble an evolutionary equilibrium which has resisted invasion by a huge
variety of mutations. This includes the assumption that the selective forces
have been present and consistent long enough to allow all kinds of mutants to
appear and to challenge the resident population. But how long is ‘‘long
enough’’? Consider the classical example of sickle cell anaemia, where human
populations remain polymorphic at the b-globin locus due to overdominance
(heterozygote advantage). This polymorphism is short-term stable due to
genetic constraints but can hardly be considered long-term stable. In fact, the
theory of long-term evolution would predict the occurrence of mutations
which combine the advantages of the overdominant heterozygote in
homozygous condition. To explain the discrepancy between theoretical pre-
diction and empirical findings, one might argue that selection for malaria
resistance is of recent origin, that the selective forces have been weak or
inconsistent in the past, that the required ‘‘super-mutations’’ have not yet
shown up, and so on. There is probably some truth in these arguments, and
transient phenomena have certainly to be taken into account in a long-term
perspective. Nevertheless, one should be sceptical towards these kinds of
arguments since they provide an ad hoc explanation for any phenomenon
which does not fit into the theory. The empirical relevance of the theory of
long-term evolution will strongly depend on the development of criteria which
make it possible to judge what ‘‘long-term’’ really means and to which
phenomena the theory can be expected to apply.

¹he attainability problem. In the sickle cell anaemia example, the prevalence
of the polymorphic overdominance equilibrium is often explained by the fact
that no superior homozygotes are available. This is, however, not the whole
story. Actually, homozygous individuals of a genotype CC have the highest
fitness, where C is an alternative allele found in several human populations.
Despite its fitness advantage in homozygous condition, this allele cannot
invade the resident population since it provides a lower fitness in combination
with the resident alleles (see e.g., Cavalli-Sforza and Bodmer 1971; Hartl and
Clark 1989). This example illustrates the general principle that well adapted
genotypes are not necessarily good invaders. Even more important is the
opposite: successful invaders have a fitness advantage in the neighbourhood of
a resident equilibrium, but there is no guarantee that they also provide a high
fitness once this context is left. Consequently, one should not expect that the
destabilization of an equilibrium by a superior invader will typically lead to
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the establishment of a superior equilibrium. Even if we envisage long-term
evolution as a succession of equilibria where each new equilibrium results
from a successful invasion of the previous one, there is no reason to assume
that the equilibria that are reached later in the series have a higher degree of
external stability than their predecessors. In fact, the theory of long-term
evolution says virtually nothing about how a long-term stable equilibrium can
be reached and whether it will be reached at all.

¹he existence problem. The Nash property is a necessary condition for long-
term stability, but it is far from being sufficient. In fact, many situations are
conceivable where long-term stability is not feasible at all. In the terminology
of the streetcar metaphor, a final stop does not exist in these cases. Consider,
for instance, the situation where rare alleles have a systematic, structural
advantage over common alleles. Examples for such a minority advantage are
more common than one might expect. Apart from phenomena as (marginal)
overdominance and segregation distortion (e.g. Feldman and Otto 1991), they
include many of the ‘‘standard examples’’ for frequency dependent selection:
negative assortative mating and rare male preferences (e.g. Partridge
1988); genetic incompatibility systems (e.g. Uyenoyama 1988); apostatic
selection mediated by predators (e.g. Allen 1988); the arms race between
hosts and infectious agents (e.g. May 1985). If rarity provides an advantage
per se, the role of fitness differences is marginalized and the outcome of
selection can be highly counterintuitive (Weissing et al., in preparation).
The streetcar theory will hardly apply to these situations, since all equilibria
are externally unstable, and a high degree of polymorphism should
be expected. It is difficult to judge how common these situations are,
but I have the impression that evolutionary biology underestimates their
relevance.

Let me conclude with a personal evaluation of the streetcar theory which
is necessarily highly subjective. The paradigm of long-term evolution has
opened new ways to think about selection. It is therefore certainly an impor-
tant contribution to evolutionary biology, if not a conceptual break-through.
It is more difficult to judge the empirical relevance of the theory when it is
applied to specific situations. I see no problem to apply the theory to
phenotypic traits such as the morphology of locomotory or sensory organs,
since these traits have probably been shaped by strong and consistent selec-
tion forces. Much more problematic is the application of the theory to traits
which are of recent origin or subject to weak selection (e.g. many behavioral
traits). And the theory of long-term evolution does certainly not apply to
fluctuating selection (e.g. host-parasite coevolution) or to traits where minor-
ity per se provides a systematic advantage.
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