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NONEQUILIBRIUM COEXISTENCE IN A COMPETITION MODEL
WITH NUTRIENT STORAGE

TOMÁS REVILLA AND FRANZ J. WEISSING
1

Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen,
P.O. Box 14, 9750 AA Haren, The Netherlands

Abstract. Resource competition theory predicts that, in equilibrium, the number of
coexisting species cannot exceed the number of limiting resources. In some competition
models, however, competitive interactions may result in nonequilibrium dynamics, allowing
the coexistence of many species on few resources. The relevance of these findings is still
unclear, since some assumptions of the underlying models are unrealistic. Most importantly,
these models assume that individual growth directly reflects the availability of external
resources, whereas real organisms can store resources, thereby decoupling their growth from
external fluctuations. Here we study the effects of resource storage by extending the well-
known Droop model to the context of multiple species and multiple resources. We
demonstrate that the extended Droop model shows virtually the same complex dynamics as
models without storage. Depending on the model parameters, one may obtain competitive
exclusion, stable equilibrium coexistence, periodic and non-periodic oscillations, and chaos.
Again, nonequilibrium dynamics allows for the coexistence of many species on few resources.
We discuss our findings in the light of earlier work on resource competition, highlighting the
role of luxury consumption, trade-offs in competitive abilities, and ecological stoichiometry.

Key words: Droop model; ecological stoichiometry; luxury consumption; Monod model; oscillations and
chaos; Redfield ratios; resource competition; resource uptake; supersaturation; trade-offs.

INTRODUCTION

Many resource competition models have the property

that, in a homogeneous environment and at equilibrium,

the number of coexisting species is limited by the

number of limiting resources (Grover 1997). As noticed

already by Hutchinson (1961), this creates the paradox

of how to explain the coexistence of many species on a

small number of resources. Traditional attempts to

resolve the paradox tend to invoke spatial heterogeneity

or externally imposed fluctuations (e.g., seasonal varia-

tion in nutrient supply or oscillations induced by

predator–prey or host–parasite interactions) in order

to create the nonequilibrium conditions required to

maintain high levels of biodiversity (Hutchinson 1961,

Armstrong and McGehee 1980).

More recently, Huisman and Weissing (1999, 2001,

2002) demonstrated that, even in a homogeneous and

constant environment, multispecies competition does

not necessarily lead to equilibrium. In fact, the

competition process itself may generate oscillations

and chaos. Such nonequilibrium conditions allow

‘‘supersaturation’’ (Schippers et al. 2001), i.e., the

coexistence of many more species than there are limiting

resources. It crucially depends on the relationship

between resource requirements and resource consump-

tion patterns whether competition leads to equilibrium

or to ongoing fluctuations (Huisman and Weissing 2001,
Huisman et al. 2001). If species tend to consume most of
the resources for which they have low resource
requirements, competitive exclusion will result where
the initial conditions decide upon who will win the
competition. If species tend to consume most of those
resources for which they have high resource require-
ments, then equilibrium coexistence is to be expected,
where the number of species does not exceed the number
of resources. Finally, oscillations and supersaturation
are to be expected if species tend to consume most of
those resources for which they have intermediate
requirements. These results are supported by mathemat-
ical analysis (Huisman and Weissing 2001, Li 2001, Li
and Smith 2003) and numerical simulations (Huisman
et al. 2001).

The conclusions of Huisman and Weissing were based
on the Monod model, which is one of the standard
models of resource competition theory (León and
Tumpson 1975, Tilman 1982, Grover 1997). However,
this model employs some unrealistic assumptions,
making it difficult to judge the empirical relevance of
the above predictions. Most importantly, the model
assumes that individual growth reflects the external
availability of resources, whereas many organisms are
able to store resources and hence are more dependent on
their individual internal resource content, called quota.
Much recent work on multiple nutrient limitation
(Legovic and Cruzado 1997, Klausmeier et al. 2004b),
dynamic energy budgets (Kooijman 2000), and ecolog-
ical stoichiometry in phytoplankton (Klausmeier et al.
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2004a) shows the importance of a more mechanistic
description of resource uptake, internal resource stor-
age, and quota-dependent growth. The so-called quota
models describe the dynamics of resource acquisition
and population growth separately and they often
provide a better description of competition than models
without storage, in particular in fluctuating environ-
ments (Grover 1997, Ducobu et al. 1998). On the other
hand, quota models contain many more parameters and
dynamic variables, making their analysis much more
difficult. It is therefore not surprising that quota models
have never been as popular as Lotka-Volterra models or
Monod-type of models for resource competition.

Still, it is important to investigate whether the

conclusions of classical resource competition theory

are robust with respect to plausible extensions of the

underlying models, e.g., by taking storage and quota-

dependent growth into account. In particular, it is by no

means self-evident that the results of Huisman and

Weissing still apply in the presence of nutrient storage.

One might argue that storage will diminish the effects of

external resource shortage and therefore help to protect

numerically abundant species against invaders. Since

repeated invasions are crucial for competition-induced

oscillations and supersaturation, one might conjecture

that nonequilibrium conditions are of minor importance

in quota models. On the other hand, quota models have

more degrees of freedom, they contain more non-

linearities, and they incorporate implicit time delays

caused by the separation of uptake and growth. Since all

these factors favor nonequilibrium conditions, one

might conjecture that just quota models have a higher

potential for oscillations and supersaturation. To settle

this issue, we here study the Droop model (Droop 1973,

Tilman 1977, Grover 1997, Legovic and Cruzado 1997),

which is currently viewed as the standard quota model

of resource competition. By means of a simulation

approach, we ask the question whether and to what

extent the conclusions of (Huisman and Weissing 2001)

are affected by nutrient storage. Is it, for example, more

or less likely that oscillations and supersaturation do

occur in the presence of nutrient storage?

MODELS AND DEFINITIONS

The multispecies Monod model

Huisman and Weissing (1999, 2001) studied the

multispecies extension of a classical resource competi-

tion model (Leon and Tumpson 1975, Tilman 1982)

where the densities Ni (individuals per volume) of n

species and the concentrations Rj (mass per volume) of k

resources are governed by a system of ordinary

differential equations:

dNi

dt
¼ Ni½liðR1; . . . ;RkÞ � mi� ð1aÞ

dRj

dt
¼ DðSj � RjÞ �

Xn

i¼1

cjiliðR1; . . . ;RkÞNi ð1bÞ

where D is the resource flow rate, Sj is the input

concentration of resource j, and cji is the fixed content of

resource j in species i (mass per individual). In this
system, the specific growth rate of species i ( [1/Ni ]dNi/

dt) is given by the difference between the specific growth
rate li and the specific mortality rate mi. Mortality rates

are assumed to be constant, while the growth rates are

functions of the (external) levels of resources R1, . . . ,Rk.
Usually, li is assumed to be given by a combination of

Monod’s (1950) equation and Liebig’s (1840) law of the

minimum:

liðR1; . . . ;RkÞ ¼ ri min
j

Rj

Hji þ Rj

� �
ð2Þ

where ri is the maximal specific growth rate of species i

under resource saturation, and Hji is the half-saturation

constant of resource j for species i. For brevity, we will
call the system defined by Eqs. 1 and 2 the Monod

model. The properties of this system are well known

(e.g., Tilman 1982, Huisman and Weissing 2001). To a
large extent, they depend on the resource supply point

S ¼ (S1, . . . , Sk), the consumption vectors ci ¼
(c1i , . . . , cki), and the minimal resource requirements
R�i ¼ (R�1i , . . . ,R�ki) of the various species. Here, the

resource requirement R�ji of species i with respect to

resource j is that concentration of resource j for which
mortality is just balanced by growth (mi¼li ), given that

all other resources are present in excess. In brief,

Huisman and Weissing (2001) arrived at the following
conclusions:

1) At equilibrium, each species is limited by a different

resource. Accordingly, no more species can coexist than

there are limiting resources.
2) If each species tends to consume most of that

resource for which it has the lowest requirement (i.e., the

lowest R�ji ), species-poor equilibrium systems are to be
expected where a single competitor excludes all others.

3) If each species tends to consume least of that

resource for which it has the lowest requirement, then

saturated equilibrium systems are to be expected, where
the number of coexisting species corresponds to the

number of limiting resources.

4) If species tend to consume most of the resources for
which they have intermediate requirements, then oscil-

lations and chaos allowing supersaturation (i.e., the

coexistence of more species than limiting resources) are
to be expected.

The multispecies Droop model

In the Monod model, all species are assumed to have

fixed resource contents (cji) and species growth is

directly dependent on the external resource concentra-
tions. In case of microorganisms (e.g., phytoplankton),

for which the Monod model was designed, it is more

plausible to assume that the internal resource content
can fluctuate (e.g., due to storage) and that growth more

reflects internal resource concentrations than external

resource availabilities. To model this, we use an

TOMÁS REVILLA AND FRANZ J. WEISSING866 Ecology, Vol. 89, No. 3



extension of the variable stores model of Droop (1973)

to n consumers and k resources. This model considers a

third set of variables in addition to the species and

resources: the internal resource content or quota Qji of

resource j for species i. The quota is the variable

equivalent of the fixed resource content cij in the Monod

model, both having units of mass of resource per

individual. The dynamical equations are

dNi

dt
¼ Ni½liðQ1i; . . . ;QkiÞ � mi� ð3aÞ

dQji

dt
¼ fjiðRjÞ � liðQ1i; . . . ;QkiÞQji ð3bÞ

dRj

dt
¼ DðSj � RjÞ �

Xn

i¼1

fijðRjÞNi: ð3cÞ

Notice that the equations for population growth

(Eq. 3a) correspond to Eq. 1a of the Monod model, with

the sole difference that the growth functions li do not

depend on external resource concentrations but on

internal quotas. The resource equations (3c) correspond

to Eq. 1b of the Monod model, but now the specific

resource uptake is described by functions fji (Rj) rather

than fixed consumption vectors. Eq. 3b characterizes the

quota dynamics, which is governed by the resource

uptake per individual [i.e., fji (Rj)] and dilution of quota

due to growth and/or reproduction [accounted for by

the term li(Qji)].

Following Tilman (1977) and Legovic and Cruzado

(1997), we assume that the growth rate li is governed by

a combination of Liebig’s law of the minimum and

Droop’s (1973) formula relating growth and quotas:

liðQ1i; . . . ;QkiÞ ¼ ri min
j

1� qji

Qji

� �
ð4Þ

where ri is the maximum growth rate under quota

saturation and qji is the minimum subsistence quota for

resource j : for Qji . qji the growth rate is positive, but it

is set to zero if Qji , qji. According to Eq. 4, at any given

moment the growth of species i depends only on the

nutrient having the smallest internal content relative to

the subsistence quota.

Uptake of resources from the external medium is

assumed to be an increasing and saturating function of

the external resource concentration:

fjiðRjÞ ¼
vjiRj

Kji þ Rj
ð5Þ

where vji and Kji are the maximum uptake rate and the

uptake half-saturation constant for resource j by species

i, respectively.

For brevity, we will call the system defined by Eqs. 3,

4, and 5 the Droop model for the rest of the paper.

At first sight, the Monod and the Droop model seem

to share many properties. It is, however, important to be

aware of some crucial differences:

1) Although the dependence of li on Rj for the

Monod model (Eq. 2) and fji on Rj for the Droop model

(Eq. 5) are topologically identical functions, they

describe different (though related) processes. In fact, fji
can be given the same kind of mechanistic underpinning

(based on handling time arguments) as a ‘‘functional

response’’ of Holling type II (Aksnes and Egge 1991). In

contrast, the Monod terms in Eq. 2 correspond to a

‘‘numerical response’’ of consumer density toward

changes in resource availability. Since metabolism is

much more complex than resource uptake, there is at

present no general and simple theory providing a

mechanistic underpinning for the numerical response.

Accordingly, the Monod-type numerical response (Eq.

2) in the Monod model and the Droop-type numerical

response (Eq. 4) in the Droop model both represent

empirical relationships that are not yet linked to

underlying mechanisms.

2) Although there is an obvious correspondence

between some of the variables and parameters of the

two models, the relationship between the models is less

straightforward than one might think. For example, the

parameter ri corresponds to maximum growth rates in

both models. Still there is an important difference. In the

Monod model, ri corresponds to the growth rate of

species i achieved asymptotically when all resources are

overabundant. In the Droop model, this is not the case.

Here an infinite availability of all resources saturates the

uptake but not the growth rate. Even if uptake rates are

maximal, the quotas do not exceed some limit values,

leading to growth rates li that can be substantially

smaller than ri.

3) For the reason indicated above, the simpler

Monod model is not just a special case of the more

complex Droop model. Burmaster (1979) derived a

mapping between both models, but it only holds for the

characterization of the community equilibrium in case of

a single consumer growing on a single resource. In case

of more than one resource, the relationship between the

models is rather intricate, even if the quota dynamics is

rather fast and quotas are at a quasi-steady state all the

time.

Resource requirements and consumption patterns

As indicated above, the dynamics of the Monod

model is governed to a large extent by the relation

between resource requirements and resource consump-

tion patterns. We therefore start by defining the same

concepts for the Droop model. In contrast to the Monod

model, we now have to distinguish between external and

internal resource requirements, while the consumption

pattern of a species is no longer characterized by a fixed

consumption vector.

The internal requirement Q�ji of species i for resource j
is defined as the quota Qji for which mortality is just

balanced by growth (mi¼ li), given that the quota of all

other resources are not limiting growth. In view of Eqs.

3a and 4 Q�ji is given by the following:

March 2008 867NONEQUILIBRIUM COEXISTENCE



Q�ji ¼ riqji=ðri � miÞ: ð6Þ

We can now define the external requirement R�ji of

species i for resource j as that resource concentration Rj

just allowing to achieve the quota Q�ji , given that the

quota of all other resources are not limiting growth. R�ji
is obtained by setting Eq. 3b equal to zero, given that

li ¼ mi and Qji ¼ Q�ji . This implies fji (R
�
ji ) ¼ miQ

�
ji or

equivalently

R�ji ¼
KjimiQ

�
ji

vji � miQ�ji
: ð7Þ

As in the Monod model, the parameter R�ji summa-

rizes the competitive ability of species i for a given

resource j. Whenever the resource concentration Rj is

below R�ji , species i will decline. Hence, if competition

occurs for a single resource only, the species with the

lowest requirement will exclude all the others (Smith and

Waltman 1994), which is known as the R*-rule (Grover

1997).

In resource space, the set of external resource

requirements R�ji define the nullcline (or zero net growth

isocline) of species i: Rj . R�ji implies that li . mi and

species i can grow; while i decreases for Rj , R�ji . In case

of two resources, the resource space (R1, R2) is two

dimensional, and the nullclines are L-shaped, indicative

of a sharp switch in the identity of the limiting resource

(Fig. 1A). This concept can be extended to higher

dimensional resource spaces (R1, . . . ,Rk) where the

planes Rj ¼ R�ji define the nullclines.

The consumption vector (or consumption pattern) of
species i is given by i’s specific consumption rates fji (Rj)

of the different resources. In the Monod model, the
consumption vector of species i is given by ci ¼
(c1i, . . . ,cki) and hence independent of the resource

availabilities. In the Droopmodel, however, the direction
of the consumption vector fi (R) ¼ [ f1i (R1), . . . , fki (Rk)]

strongly reflects the external resource concentrations.
Fig. 1A illustrates this change in the direction of the

consumption vectors in a two-dimensional resource
space. If we keep resource 1 fixed at its requirement (R1

¼R�1i ) and if we increase the level of resource 2 above its
requirement (R2 . R�2i ), then the component of the

consumption vector corresponding to resource 2 increas-
es with respect to the one of resource 1. The same applies

mutatis mutandis for changes in resource 1. This
behavior is associated with the accumulation of higher
levels of non-limiting resources at equilibrium, a phe-

nomenon known as luxury consumption (Grover 1997).

Community equilibrium

A Droop system is at equilibrium if all rate equations

(Eqs. 3a–c) are equal to zero: dNi/dt¼ dQji/dt¼ dRj/dt¼
0. Dynamic variables at equilibrium will be indicated by

a hat (^). An equilibrium will be called a community
equilibrium if n � 2, k � 2, and all dynamical variables

are positive N̂i . 0, Q̂ji . 0, R̂j . 0. Such a state, stable
or not, exists if the following conditions are met.

First, the nullclines of all coexisting species have to
intersect in a single point in resource space (see Fig. 1B).

This implies that at most k species can coexist at

FIG. 1. Two-dimensional resource space illustrating competition for two limiting resources. (A) For each species i, an L-shaped
nullcline divides the resource space into an area where net growth occurs (li . mi) and an area where species i does decline (li ,
mi ). The nullcline is determined by the minimal resource requirements R�1i and R�2i. The consumption vector fi¼ fi (R1, R2) of species
i depends on the resource concentrations. The slope of fi increases along the vertical segment of the nullcline and decreases along
the horizontal segment. (B) A two-species community equilibrium exists if the two nullclines cross and the supply point falls inside
the wedge defined by the consumption vectors f̂1 and f̂2 of the two species (designated 1 and 2) at the intersection point. If each
species consumes most of the resource limiting its own growth (the configuration shown here), the community equilibrium is stable.
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equilibrium, since generically more than k nullclines will

not have a common intersection point in k-dimensional
resource space. Let us therefore assume from now on

that n¼ k. Moreover, all n nullclines can only intersect if

each species is limited by a different resource (see Fig.
1B). Let us therefore assume that species 1 is limited by

resource 1, species 2 by resource 2, and so on. Then the

equilibrium in resource space is given by

R̂ ¼ ðR̂1; . . . ; R̂nÞ ¼ ðR�11; . . . R�nnÞ: ð8Þ

Second, the common intersection point in resource

space must be attainable. This is only possible if the
resource supply point S ¼ (S1, . . . , Sn) is located in the

positive cone that is attached at the resource equilibrium

R̂ and spanned by the consumption vectors f̂i ¼ fi ( R̂) ¼
[ f1i (R

�
11), . . . , fni (R

�
nn)] at this equilibrium (see Huisman

and Weissing [2001] for a detailed justification). Fig. 1B
visualizes this cone as a wedge in a two-dimensional

resource space.

The special case of two species competing for two
resources has for the Droop model been studied

graphically by Turpin (1988). This is depicted in Fig.

1B, where each species consumes comparatively more of
the resource for which it has the highest requirement, a

situation leading to stable coexistence. If, on the other

hand, each species consumes more of the resource most
required by the other species (corresponding to the

situation where the two consumption vectors f̂1 and in f̂2
Fig. 1B were interchanged), competitive exclusion will

result where the winner may depend on the initial

conditions. Hence for n¼ k¼ 2, the graphical analysis is
very similar to that of the simpler Monod model. Notice,

however, that the slopes of consumption vectors are
fixed in the Monod model, whereas they are dependent

on the position in resource space in the Droop model (as

illustrated in Fig. 1A).
Notice further that the equilibrium values R̂j and Q̂ji

are in general not equal to resource requirements R�ji and
Q�ji . The ‘‘star values’’ are consumer properties that are
derived under the assumption that the given resource j is

limiting. In contrast, the ‘‘hat values’’ are system

properties reflecting the state of the system at equilib-
rium. Star and hat values only coincide for those

resources that happen to be limiting at the community
equilibrium, i.e., R̂i ¼ R�ii and Q̂il ¼ Q�ii . For the

nonlimiting resources ( j 6¼ i ), we have instead R̂j .

R�ji , Q̂ji . Q�ji , corresponding to luxury consumption.

RESULTS

In a separate attempt, we show how the local stability
of the community equilibrium can be characterized

analytically (T. Revilla and F. J. Weissing, unpublished
manuscript). Because of the high dimensionality of the

Droop model, already a local analysis is difficult,

although it turns out that, as in the Monod model, the
consumption patterns at equilibrium fi(R̂) plays a

crucial role. We have little hope that global and

nonequilibrium dynamics of the Droop model can be

characterized analytically. Therefore, we see no alterna-

tive than to rely on numerical simulations.

To get a representative picture of the dynamics, we

performed tens of thousands of simulations, each

covering an extensive period of time. Details about

parameter choice, initializations, and the numerical

integration technique are given in Appendix A. The

parameters used in our figures are given in Appendix B.

In the majority of simulations, we focused on chemo-

stat-like conditions where mi¼D. Moreover, we usually

set ri¼ r for all species. See Discussion for a justification

of these assumptions.

Competition for two resources

In the Monod model, competition for two resources

always results in the convergence of the system to a

stable equilibrium where at most two species can stably

coexist (Huisman and Weissing 2001). Oscillations never

occur. To check whether the same holds true for the

Droop model, we ran extensive simulations of two

species competing for two resources. Without exception,

we found the same three dynamical scenarios that are

well-known from the Monod model:

1) Species 1 always wins when it is the better

competitor for both resources (i.e., R�11 , R�12 and R�21

, R�22 ); species 2 always wins when the opposite holds

true (i.e., R�12 , R�11 and R�22 , R�21).

2) The two species stably coexist at equilibrium if the

nullclines intersect and at the intersection point each

species consumes most of the resource for which it has

the highest requirement (i.e., Fig. 1B).

3) Either species 1 or species 2 wins (depending on the

initial condition) if the nullclines intersect and each

species consumes at the intersection point most of the

resource for which it has the lowest requirement (i.e.,

Fig. 1B, but with f̂1 and f̂2 interchanged).

In all simulations, the system approached a steady

state, and oscillations did not occur. This conclusion

does not depend on the chemostat assumption (mi¼D)

or the equality of the ri values.

Competition for three resources

Also, in the case of more than two resources, the

dynamics of competition strongly depends on the

relationship between resource requirements and con-

sumption patterns. However, a full characterization of

the system behaviour seems a forbidding task. In fact,

there are (k!)2k qualitatively different configurations of

resource requirements and consumption patterns (Huis-

man and Weissing 2001), giving a huge number (46 656)

already for n ¼ k ¼ 3. Huisman and Weissing therefore

restricted their analysis to some important special cases.

In the case of three resources, they were able to derive

clear-cut predictions for the following three scenarios:

1) Each species consumes most of the resource for

which it has the highest requirement. Prediction: stable

equilibrium coexistence.
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2) Each species consumes most of the resource for

which it has the intermediate requirement. Prediction:

species oscillations.

3) Each species consumes most of the resource for

which it has the lowest requirement. Prediction:

competitive exclusion where the winner depends on the

initial condition.

In the case of the Droop model, there are even more

degrees of freedom since the consumption patterns are

not fixed but variable. The three scenarios above can,

however, be implemented by focusing on the consump-

tion vectors f̂i ¼ fi(R̂) at equilibrium (see Appendix A).

The three scenarios and the predictions based on the

Monod model are summarized in Table 1.

Fig. 2 shows some simulations of the Droop model

with outcomes fully in line with the predictions derived

on the basis of the Monod model. When all species

consume most of the resource for which they have the

highest requirements, the three species coexist stably at

equilibrium (Fig. 2A). The same result was obtained by

TABLE 1. The dynamics of competition for three resources strongly depends on the relationship
between resource requirements (quantified by R*-values) and consumption patterns [quantified
by the elements of the consumption vectors at equilibrium f̂ji ¼ fji (R̂j)].

Requirements Scenario 1 Scenario 2 Scenario 3

R�11 . R�12 . R�13 f̂11 . f̂12 . f̂13 f̂12 . f̂13 . f̂11 f̂13 . f̂12 . f̂11
R�22 . R�23 . R�21 f̂22 . f̂23 . f̂21 f̂23 . f̂21 . f̂22 f̂21 . f̂23 . f̂22
R�33 . R�31 . R�32 f̂33 . f̂31 . f̂32 f̂31 . f̂32 . f̂33 f̂32 . f̂31 . f̂33

Prediction equilibrium
coexistence

oscillations exclusion

Notes: For a cyclic configuration of resource requirements (where in all cases species i has the
highest requirement for resource i), the table shows three different configurations of consumption
patterns and the outcome predicted on the basis of the Monod model. In the first scenario, species i
consumes most of the resource for which it has the highest requirement; in the second scenario, all
species consume most of the resource for which it has the intermediate requirement; and in the third
scenario, each of them consumes most of the resource for which its requirement is the lowest.

FIG. 2. Three species competing for three resources. (A) Equilibrium coexistence: species 2 invades the monoculture of species
1, the resulting two-species equilibrium is invaded by species 3, and the resulting three-species equilibrium is stable. (B) Competitive
exclusion: here the initial condition favors species 3. (C) Species oscillations: convergence to a limit cycle. (D) Species oscillations of
increasing period: convergence to a heteroclinic cycle.
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all 100 000 simulations for scenario 1. When all species

consumes least of the resource for which they have

highest requirements, one of the three species outcom-

petes the other two (Fig. 2B). In all simulations based on

scenario 3, we similarly obtained competitive exclusion,

with the winner depending on the initial conditions.

Nonequilibrium outcomes were obtained for scenario

2, where each species consumes most of the resource for

which it has intermediate requirements. We obtained

regular limit cycles with a constant period as in Fig. 2C

or oscillations with increasing period as in Fig. 2D. The

latter type corresponds to a heteroclinic orbit connecting

the three monoculture equilibria.

Fig. 3 illustrates that the competition induced oscil-

lations are somewhat different than those of the Monod

model. In this figure, the dynamics of a Droop model

(left panels) are compared with those of the ‘‘corre-

sponding’’ Monod model, i.e., a Monod model with the

same community equilibrium, the same external re-

source requirements R�ji , and the same consumption

patterns ci¼ 1/mi [fi (R̂)]¼ 1/D[fi (R̂)]. In line with many

similar simulations, the Monod model displays a much

higher oscillation frequency (notice the time scale).

Apart from this, the oscillations of external resource

concentrations and species densities look rather similar

in both models, despite oscillations of the resource

contents in the Droop model (in the Monod model, the

resource contents are constant by definition). However,

in the Droop model the pattern of oscillations tends to

be somewhat more complex at the resource level and

somewhat less complex at the level of species densities.

Interestingly, the oscillations of consumer densities are

more pronounced than in the Monod model, despite of

the (presumably) buffering effect of nutrient storage.

To investigate whether the outcomes in Figs. 2C, D

and 3 are representative, we again ran many simulations.

In 20–25% of cases (depending on the search window in

parameter space), we obtained regular oscillations as in

Fig. 2C, where all species stayed well above zero in

density. In about 60% of cases, we obtained either

oscillations involving very low species densities (,10�4)

or heteroclinic cycles as in Fig. 2D. In a heteroclinic

cycle, the system stays close to a monoculture equilib-

rium for increasingly long periods of time, once in a

FIG. 3. Dynamics of consumers, quotas, and resources for a Droop model and an equivalent Monod model, i.e., a model with
the same resource requirements, quotas, and uptake rates as the Droop model has at equilibrium. Resources are indicated by colors
(1, red; 2, green; 3, blue), and consumers by line patterns (1, solid; 2, dashed; 3, dotted). For the Monod model, the fixed resource
contents cji are shown for comparison with the quotas Qji.
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while rapidly switching from one monoculture to

another. Hence, for long periods of time, two of the

three species have very low densities. Accordingly, in a

real-world system such a situation would lead to the

extinction of two of the three species, corresponding to

competitive exclusion. In contrast with the Monod

model, we also obtained ‘‘theoretical competitive exclu-

sion’’ in 15–20% of our simulations. In these cases, the

system converged to an asymptotically stable monocul-

ture equilibrium. To understand this, notice that the

scenarios in Table 1 are only valid at the community

equilibrium. In contrast to the Monod model, the

hierarchy of consumption patterns may change in time,

leading, for example, to a switch from the ‘‘rock–

scissors–paper’’ scenario 2 to a scenario favoring

competitive exclusion. In conclusion, nutrient storage

and luxury consumption change the rules of the game,

making oscillations (slightly) less likely than in the

Monod model.

Competition for more than three resources

With the same reservations as in the case n ¼ k ¼ 3,

the results of Huisman and Weissing (2001) seem to

extend to more than three resources. With four species

and four resources (results not shown) our simulations

revealed stable equilibrium coexistence if at equilibrium

each species consumes most of the resource for which it

has the highest requirement; and competitive exclusion if

each species consumes most of the resource for which it

has the lowest requirement. We also found oscillations

with either constant or increasing period when consump-

tion is higher on resources for which the requirements are

intermediate. In some cases, as in Huisman and Weissing

(2001), if each species consumes most of the resource for

which it has the second-highest requirement, one species

pair displaces the other species pair; the winning pair

depending on the initial conditions.

With five species competing for five resources,

competitive oscillations with switching partners occur

if each species consumes most of the resource for which

it has the second-highest requirement. But if each species

consumes most of the resource for which it has the

intermediate requirement, the system can generate

chaos. In Fig. 4, we show one of these chaotic time

series, which displays an apparent period of stabilization

followed by violent fluctuations again. For a given set of

physiological and environmental parameters the system

may have alternative attractors. This is exemplified by

Fig. 5, where the system may, depending on the initial

conditions, end up in a limit cycle, a heteroclinic cycle or

a non-periodic attractor.

More species than resources: supersaturation

In light of the previous results, the question arises

whether, as in the Monod model, internally generated

nonequilibrium conditions allow supersaturation, i.e.,

the coexistence of more species than the number of

resources (Huisman and Weissing 1999). The answer is

yes. Fig. 6 shows oscillatory coexistence of four, five,

and six species on three resources. These oscillations can

have low or high amplitudes. Fig. 6A is particularly

interesting; here the invasion of a fourth species actually

leads to a reduction in the amplitude of oscillations,

making the system look more ‘‘equilibrium-like.’’

DISCUSSION

Storage-based models proved able to display as rich

dynamics as their constant resource content counter-

parts (e.g., the Monod model). This is a new confirma-

tion that multispecies competition can display sustained

oscillations, with no need of externally imposed fluctu-

ations. The mechanism is the same in both models: non-

transitivity in competitive dominance (Huisman and

Weissing 2001). If species dominance relationships are

FIG. 4. Competitive chaos for five species competing for five resources. (A) Time series illustrating how an apparently stable
period is followed by violent fluctuations. (B) The chaotic attractor for the same series plotted for species 1, 3, and 5 for t¼ 10 000–
20 000.
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not transitive (A beats B, B beats C, but C beats A), the
community equilibrium is unstable, so that oscillations

or chaos occur. Moreover, many, if not all, of the

boundary equilibria of the community are unstable,
preventing species from going extinct and promoting

high diversity and supersaturation (Fig. 6). It is worth

noticing that a variety of modeling approaches (Gilpin
1975, May and Leonard 1975, Huisman and Weissing

1999, Laird and Schamp 2006) point toward the general

conclusion that non-transitivity in competitive hierarchy

promotes coexistence, or alternatively, delays competi-
tive exclusion, enhancing biodiversity.

Mathematical analysis of the Monod model (Huisman

and Weissing 2001, Li 2001) revealed that the stability of
the community equilibrium is crucially dependent on the

consumption pattern, i.e., the matrix of consumption

terms cji. In a separate paper (T. Revilla and F. J.
Weissing, unpublished manuscript), we show analytically

that the same is true for storage models in general. In

line with a recent study of Li and Smith (2007), who

FIG. 5. Coexisting attractors in the case of five species competing for five resources. For a given set of parameters, each graph
corresponds to a different initial condition for the fifth species: (A) N5(0) ¼ 0.9, non-periodic oscillations; (B) N5 (0) ¼ 1.5, limit
cycle; (C) N5(0) ¼ 1.8, heteroclinic cycle.
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perform a global analysis for the special case n¼ k¼ 2,

we arrive at the conclusion that the dynamic behaviour

of both types of model is qualitatively very similar close

to equilibrium.

Still, there are important differences between both

types of model. Most importantly, the consumption

terms in the Droop model are no longer fixed but

functions fji (Rj) of the external resource concentrations.

Accordingly, it is not possible to separate resource

requirements and consumption patterns, as in the

Monod model. In the Monod model, the positive cone

in resource space allowing stable coexistence (like the

wedge in Fig. 1B), looks the same irrespective of the

position of the resource equilibrium R̂. In the Droop

model, luxury consumption of non-limiting resources

has the effect that the corresponding cone (spanned by

the consumption vectors fji (R )) gets smaller and smaller

when the resource equilibrium R̂ is approached from the

direction of the resource supply point. Accordingly,

luxury consumption results in a decrease of the zone of

stable coexistence. Thus, the multispecies quota models

seem to be more likely to end up displaying unstable

community equilibria. When the community equilibrium

is unstable the resulting dynamics could be nonequilib-

rium coexistence or competitive exclusion.

According to our simulations, the Droop model has a

lower tendency for oscillations than the Monod model,

because the consumption pattern at equilibrium may

change as the system evolves, as well as the identity of

the resource that causes growth limitation for a given

species. Theoretically, such changes might allow oscilla-

tions in cases where such oscillations cannot occur in the

Monod model. We never encountered a simulation

corresponding to this possibility, perhaps because we

focused on the cases k ¼ 3, 4, and 5. There is however,

another potential mechanism that may cause oscillations

in models with nutrient storage. In fact, damped

oscillations occur in the single-species Droop model if

the mortality rate m is large enough when compared to

the flow rate D (Clodong and Blasius 2004), this will

never happen if m ¼ D (Lange and Oyarzun 1992,

Oyarzun and Lange 1994, Legovic and Cruzado 1997).

It was for this reason that we made the chemostat

assumption, since we were mainly interested in compe-

tition-induced oscillations. Since we ran only few simu-

lations with mi . D, it is an open problem whether or

not such fluctuations of physiological origin could

interact synergistically with competitive-induced oscilla-

tions, enhancing the chances of nonequilibrium coexis-

tence.

Toward a realistic theory of trade-offs

We have seen that the occurrence of nonequilibrium

dynamics strongly depends on trade-offs between

resource requirements and consumption rates. In the

context of the Monod model, it is difficult to develop a

mechanistic theory of such trade-offs, since already the

underlying growth equation (Eq. 2; corresponding to a

numerical response) lacks a mechanistic underpinning.

In contrast, the uptake function (Eq. 5; corresponding to

a functional response of Holling [Holling 1959] type II)

of the Droop model can be justified mechanistically in

terms of physiological and environmental factors (e.g.,

transporter properties, cell size, medium viscosity,

temperature).

For example, Aksnes and Egge (1991) have shown

that the maximum uptake rate vji for a given nutrient is

directly proportional to the number nji of nutrient-

specific transporters. If each transporter occupies an

area aji on the surface of the cell membrane, a natural

constraint arises, since R ajinji � Ai , where Ai denotes

the total surface available. If we further assume that

surface area scales with cell mass wi with a certain

allometric exponent q (i.e., Ai } wq
i ), we get an allometric

constraint for the maximum uptake rates of the form

R ajivji � kwq
i . Thus, raising the maximum uptake vji for

resource j may be associated by a decrease in the

maximum uptake of other resources, unless the cell size

is increased too. An increase in cell size would in turn

have other metabolic costs, reflected as increased

threshold requirements qji.

To illustrate the use of a mechanistic interpretation of

trade-offs, consider the following argument. For the

second scenario in Table 1, we obtained competitive

exclusion in a considerable number of cases where an

equivalent Monod model would predict oscillations.

When we looked at these cases in detail, it turned out

that the vji and Kji yielded uptake functions that cross

each other, like in Fig. 7. This means that the consump-

tion hierarchies can change as the system evolves,

leading, for example, to a hierarchy inducing compet-

itive exclusion. A situation as in Fig. 7 can easily arise if

the parameters vji and Kji happen to be positively related.

This is precisely what the model of Aksnes and Egge

predicts, since both vji and Kji are proportional to the

handling time needed to pass a nutrient molecule

through the membrane. In our simulations, we unin-

tendedly also introduced a positive correlation among vji
and Kji (see Appendix A). Accordingly, we encountered

a relatively large number of situations were the rules of

the competitive game at equilibrium change drastically

when moving away from equilibrium. If vji and Kji were

negatively correlated instead, the consumption hierar-

chies of Table 1 are more likely to remain stable, as in

the Monod model.

Stoichiometry

For both the Monod and the Droop model, oscilla-

tions can only occur if species differ in their resource

requirements and in their resource uptake characteristics

in a specific and contrasting way (e.g., scenario 2 in

Table 1). In nature, variation in resource contents and

requirements occur within the limits allowed by the

stoichiometry of the underlying biochemical reactions.

One may therefore wonder whether our theoretical
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considerations are compatible with such stoichiometric

constraints.

First, one might think that species cannot differ too

much in their hierarchy of resource requirements R�ji or in
their hierarchy of quotas at equilibrium Q̂ji. It is, for

example, well known that organisms cannot have a lower

content (grams or moles) of carbon (C) than their

contents of nitrogen (N) or phosphorous (P), no matter

how flexible the variable quotas are. For algae, the

canonical stoichiometric reference are the Redfield (1958)

ratios for atomic composition, C:N:P ¼ 106:16:1. How-

ever, recent work (Legovic and Cruzado 1997, Klaus-

meier et al. 2004a, b) indicates that Redfield ratios are

not cast in stone but actually quite variable. Due to this

flexibility, it is not unrealistic that each resource has a

different hierarchy across species with respect to either

resource contents or resource requirements. This is

illustrated by Table 2, showing three species resource

FIG. 6. Nonequilibrium coexistence of 4, 5, and 6 species on three limiting resources. (A) High-amplitude oscillations of three
species allows the invasion of a fourth species (introduced at t¼ 6000 d). The system ends up displaying low-amplitude oscillations.
(B) Oscillations of five species competing for three resources. (C) Oscillations of six species competing for three resources (species 6
invades at t¼ 5000 d).
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contents coming close to Redfield ratios. In this

example, species 1 has the highest content of P, species

2 of C, and species 3 of N. Similarly, we can build any

hierarchy for resource requirements. We can conclude

that stoichiometric principles like the Redfield ratios

only impose mild constraints on the hierarchies of

requirements and quotas.

Second, one might think that, even if hierarchies differ

between species, for each given species, the hierarchy of

resource requirements should roughly match the hierar-
chy of resource consumption. In fact, one might argue

that scenario 1 in Table 1 is much more likely than the

other two scenarios: according to Eq. 7, external (R�ji )
and internal (Q�ji ) requirements are positively related,

implying, that the hierarchy of R*- and Q*-values are

not to be different. Because of f̂ji ¼ mi Q̂ji, the hierarchy

of uptake patterns f̂ji should roughly match the hierarchy
of equilibrium quotas Q̂ji, at least if the mi are not too

different (as in a chemostat, where mi¼D). Does this not

imply that the hierarchies of R*-values should corre-

spond to the hierarchy of f̂-values, as in scenario 1 of

Table 1? The answer is no. First, luxury consumption

causes a mismatch between Q�ji and Q̂ji, implying that the

relationship between R�ji and Q̂ji is far from obvious.

Second, already the relationship between R�ji and Q�ji is
not really obvious, since the parameters vji and Kji in Eq.

7 are both species and resource specific. According to

theories like those of Aksnes and Egge (1991), these

parameters depend on many details that are not related

with the rules of internal metabolism or the stoichiom-

etry underlying biochemical reactions. Accordingly, we

do not see a reason for stoichiometry to prevent specific
patterns of resource requirements and resource con-

sumption.

CONCLUSION

Our simulations show that multispecies resource

competition models with storage dynamics like the

Droop model can display the competitive oscillations

that are common in other models (Gilpin 1975, May and

Leonard 1975, Huisman and Weissing 1999). In addition

they can also generate coexistence of more species than

the number of resources. The mechanism behind the

oscillations is the sequence of replacements of species

due to the lack of absolute winners in the total ensemble

of species as in the ‘‘rock–scissors–paper’’ game, a

condition that results from trade-offs between resource

requirements and consumption patterns. The implicit

delay by which a species responds to resource fluctua-

tions in the external medium does neither cause nor

enhance these oscillations. In fact, it retards the

oscillations considerably, leading to periods that are

one or more orders of magnitude longer than those in

corresponding models without storage. Moreover, in a

considerable percentage of cases oscillations do not

occur in models with storage, while they are to be

expected on basis of the corresponding models without

storage. This discrepancy is caused by luxury consump-

tion that may destroy the intransitivity causing oscilla-

tions (as in the rock–scissors–paper game) as soon as the

system is sufficiently far from equilibrium. Storage

models are considerably more complex than purely

phenomenological models like the Lotka-Volterra mod-

els or less detailed semi-mechanistic models like the

Monod model. But physiological models accounting for

storage have the big advantage that the all-important

trade-offs can be given a much better interpretation.
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APPENDIX A

Simulation details (Ecological Archives E089-050-A1).

APPENDIX B

Parameter values (Ecological Archives E089-050-A2).

SUPPLEMENT

Source code for simulations (Ecological Archives E089-050-S1).
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