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Construction of the Foldy—Wouthuysen transformation and solution
of the Dirac equation using large components only

E. van Lenthe, E. J. Baerends, and J. G. Snijders
Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam,
The Netherlands

(Received 23 February 1996; accepted 2 May 1996

It is shown that it is possible to construct, within the framework of a basis set expansion method, the
full Foldy—Wouthuysen transformatiofi.e., to all orders in the inverse velocity of lighfior an
arbitrary potential once the Dirac equation has been solved. On this basis an iterative procedure to
solve the Dirac equation is suggested that involves only the large component, obviating the
time-consuming(at least in molecular calculationgtroduction of large basis sets for a proper
description of just the small components. The methods are used to compare the expectation value of
the radial distance operator in the Dirac picture and in the Sibhger picture for the orbitals of the
Uranium atom. ©1996 American Institute of Physid$$0021-9606)01930-7

I. INTRODUCTION istic calculations much more time consuming than the non-
relativistic analogs. It is therefore still considered very

As is well known; the nonrelativistic limit of the Dirac  worthwhile to explore schemes that obviate the explicit con-

equation for an electron in an external potential is notstruction of the small componerfts.

reached simply by letting the velocity of light go to infinity. The methods are used to compare the expectation value

Rather this limiting process entails a unitary transformationof the radial distance operator in the Dirac picture and in the

at the same time, which block diagonalizes the Dirac Hamil-Schralinger picture for the orbitals of the Uranium atom.

tonian by separating the positive and negative energy part of

its spectrum. This unitary transformation, known as the

Foldy—Wouthuysen transformation, is equivalent to a changd. CONSTRUCTION OF THE FOLDY-WOUTHUYSEN

of picture and consequently in comparing relativistic andTRANSFORMATION

nonrelativistic expectation valuésther than the energyne

has to be aware that the same operdsuch as the radial

distance operatar in an atom) does not represent the same

The time-independent Dirac equation for an electron in
an external potentia¥ reads(in atomic units:

physical quantity in both picturds? Unfortunately this v cop \ [ ¢P #P
transformation is only known exactly priori for a free par- HAWP=| | . 5 ( b= EP( 'D) =EPWP.
ticle. When an external potential is present, the transforma- co-p V-2¢ Xi i
tion is usually determined by expanding in the inverse veloc- @

ity of light to some finite order. In case the potential is Here WP is the four-component Dirac wave function and
Coulombic in nature, however, this expansion is known to bep® and xP are its large and small components. The Dirac
highly problematic, leading to divergencies except in theequation has positive and negative total energy solutions,
lowest order. This does not mean that the transformation aghile we are usually only interested in the positive energy
such does not exist, only that it should not be expanded ipart of the spectrum that describes electr@ather than pos-
this way. In this paper we will show that it is quite possible jtrons). (The EiD have been shifted downward layc?.) The
to obtain this nonexpanded unitary transformation within thenonexpanded Foldy—Wouthuysen transformétidecouples
framework of a basis set method without resorting to anythis four-component equation in two two-component equa-
perturbational expansion once the Dirac equation has beeibns, one of which has only positive energy eigenvalues and
solved for its positive energy solutions. the other only negative ones. This transformation can be ob-
In Sec. lll it is shown how on the basis of this method, tained in a rather simple forfd by using a unitary matrix
one can in fact obtain the large components of the DiraaJ:
orbitals, and the energies, in a finite basis set approximation

in an iterative way, without first solving the Dirac equation 1 1 xt

itself. This iterative procedure, which can also be used in J1+XxFX J1+ XX

self-consistent-field calculations, represents an alternative U= (2
way to solve the Dirac equation that does not involve the _ 1 X 1

small component. It is very clear that considerable advances V1+XX V1+XX

have been made towards four-component methods for mq— . I
ey . o transform the Dirac—Hamiltoniakly. The transformed
lecular calculations=’ Nevertheless, the need to describe theHamitonian'

small components accurately, requiring fairly large numbers
of basis functions, makes four-component molecular relativ- H=UHpU ! 3
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2374 van Lenthe, Baerends, and Snijders: Solution of the Dirac equation

is block-diagonal provideX satisfies:
o \IfiF"V:_Ek Vi+A[ctlciiop. (10)
—XV=Xco-pX+co-p+(V—2c%)X=0. (4) I
The Foldy—Wouthuysen Hamiltoniadd™ is then given by ~ We therefore have an explicit expression for the Foldy—
Wouthuysen transformed wave functions that only involves
W . . oo = ot the eigenvalues and eigenfunctions of essentially the overlap
H Z—m(CU' pX+X'co-p—2c°X'X+V matrix of the large components of the Dirac solutions. This
transformed wave function can subsequently be used to cal-
culate various properties in the transformed piciisee Sec.
, (5 V). Of course, in practice finite basis sets will have to be
v1+X'X used, with a concomitant loss of accuracy.

while the relation between the four-component Dirac wave SOMe insight into the nature of the o.peraldb( can be
function W2 and the two-component Foldy—Wouthuysen Obtained by examining its classical form:
transformed wave functiow ™" reads:

+XTVX)

pZCZ p2C2
1 XTX= —— 5= : (11)
PEW (2¢°+E-V)®  (Jc*+p2c+c?)?
#° NE U o _
xpiD: ol = : Clearly for small momenta it will approximately be equal to
Xi N 1 W p?/4c?, while for high momenta it will approach 1. Conse-
N+xTx | quently for a free particle, this oper_ato_r ha_s a Conti_nuou_s
6) spectrum between zero and one, while its eigenfunctions in
U= 1+ XTX¢P. this case will be plane waves.

From Eq.(6) it immediately follows that the two-component
operatorX has the special property that when working on the
large componeni® of the Dirac wave function it gives the
small componenit xP, thus

lll. ITERATIVE SOLUTION

We can use the ideas of the last section to formulate an
c R iterative procedure to solve the Dirac equation in an external

X¢P:m0' popP=xP. (7)  potentialV that avoids using the small component entirely.

: Using Egs.(5) and(6) we can write the Foldy—Wouthuysen

This property we can use to calculate the eigenfunctions offansformed Dirac equation
the (Hermitian non-negative operatoK'X. Suppose we EWer FW Fw
have solved the Dirac equation for a given external potential H™W =B (12
V. We can then assume that the large components of the . ;
normalized Dirac wave functions which have positive total2S aq equation f‘?r the Iarge gc;/rznponeﬁtof the Dirac wave
energy eigenvalues are linearly independémit not or-  function, by multiplying it byS™=
thogona) and form a complete basis for the two-component

space. In this basis we can easily calculate matrix elements ﬁ¢P: Eigd)P’ a3

of the operatoX'X: where

(SPIX"XI47) 2 A=co pX+X'co p—2e2XIX+V+XVX,  (19)
=715 gz ~vyaerE ) ) Fo14xx. 19
=(xt X)) =8 — (o787, (8)  Equation(13) is now in the standard form of an eigenvalue

equation with a metricS. In the basis set of large compo-

where the last equation follows from the fact that the Diracnents we can determine the matrix elements of the operators
wave functions are orthonormal. If we diagonalize the result— P

ant matrix we will find the eigenfunction and eigenvalues H agd S, yvithltge helpt)) of Elq'((?'. . . S
\{ of the operatorX'X in this basis. We are then able to quation(13) can be solved in an iterative manner. Sup-

express the orthogonal eigenfunctiofisin terms of Dirac {)hose vge; lhave an estlmr?teh for_”thte),- Iargﬁ C%mpogeg}f and
large componentg and vice versa: e orbital energies, which will be called; and E;

respectively , where runs over the different approximate
(positive energysolutions of the Dirac equatidithe number
— 4 D. D_ 4
ﬁi_; Cijd)d’J L _; Ci(? 0. (9 of which will be equal to the size of the large component
basis setand the superscript will indicate the number of the
Consequently we can use E@) to write the Foldy— cycle in the subsequent iterative procedure. We then proceed
Wouthuysen transformed wave functidr™ as from the N—1th cycle toNth cycle in the following way.

J. Chem. Phys., Vol. 105, No. 6, 8 August 1996
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We will first normalize everyg! ' such that the orbital (M"Y B =(' 1+ XX
density is normalized to 1: No1 .
=(& i+op

)255|¢IN_1> % C2
(2c?+E} ' =V)(2c*+E] *-V)

xa-plgf Y, (17)

2

(oM Mol H+(o) Yap

Cc
(2c2+E} -V
=1. (16)

The matrix elements of the opera@rare then approximated

in the basis of large componenwiN’l according to while the matrix elements of the Hamiltonidh are deter-
Eq. (7) as mined from:

N—1113 N—1 N—1 A Cz Y CZ e

N NTN=(p" +o- .p+o- .

—0D c*(2¢°~V) > *|¢N*1>
TP T V)2 B v T Pl

2
_ N
=(op 1|V+U'P(2—Crv)0'lo|¢}\‘ D)
EiNflE]N*lCZ
(262 +E] = V)(2c’+E} 1 - V)(2¢2 -V

(¢ Yo-p )5-5|¢,-N‘1>. (18)

The first term can be recognized as the zeroth order regulddamiltonian matrix, being limited to the positive energy
approximationZORA) to the Dirac Hamiltonian extensively space.
discussed in earlier papers:’® The ZORA approach was A very good starting point for the iterative procedure is
shown to already give quite accurate approximations to thérmed by the zeroth order ZORA equation which we stud-
full Dirac energies in many cases. The last term, which coried beforé' and which appears explicitly as the first term in
rects this ZORA Hamiltonian, is small if the orbital energies EQ. (18). We know from the results of Ref. 12, that the
involved are small compared t5. ZORA Hamiltonian is bounded from below. Since the sec-
Diagonalizing the generalized eigenfunction equation,ond term in Eq(18) is small if the' orbital energies are small
one obtains improved eigenvalu& and eigenfunctions compared t@?, we expect that this term does not destroy the
iN' By iterating to self-consistency we obtain solutions toPoundedness from below. This expectation is borne out by

the Dirac equation without ever having to calculate the smalf€ results to be presented in Sec. IV. We note however that

component explicitly. The price to be paid is that the equall 'S czruual to start with “positive” total energies
When starting with positron-like energies

tion has to be solved iteratively. On the other hand this pricéEi> _(2: P d ith d : lik
is not as large as it may seem if one considers the usual ca 3 —2C%, one may end up with converged positron-iike
that the potential is not fixed but is also determined itera-s'omt'.0 ns of the_ Dirac equation, becau;e the lterative proce-
tively until self-consistency is reached. In particular in thegll:/\r;z1 '2 aclzﬂolear“def?(; thg:ﬁi\f;aiifél\/\éigrn?ég Sv(\/ar?.egvvt/r;ats\t,;?t
density functional method the improved potential can be de- . ys ¢ 9 po: : gles, .

with positive total energies and with an initial wave function

termined from the improved density at the end of each Itera_the ZORA wave functionthat is already quite accurate. It is

tive cycle described above and one can converge both thc ear that the present method may be used if it is felt desir-

self-consistent-field potential and the Dirac large componen{ljlble after obtaining the ZORA solutions, to improve the
at. the same time. _Th's way of iteratively solving for the,results to the level of full Dirac solutions. In view of the
Dirac orbital energies and large components therefore Iﬁccuracy of the ZORA solutions for the valence electfdns,

similar to the iterative SCF procedure followed in Dirac— this will hardly ever be the case for problems of chemical
Fock methods anyway, but it has to be noted that the matri)éonding, but it may be useful fddeep core levels.

elements ofH have to be calculated in a basis set that
changes from cycle to cycle. The method is nevertheless in-
teresting, and may well be competitive, since it avoids the!V' NUMERICAL TEST RESULTS
large bases needed to describe the small components accu- It is obvious that the method discussed in the previous
rately. Note also that the matrix to be constructed and diagosection will be most useful for molecules, since in molecular

nalized has only roughly half of the size of the full Dirac calculations the small components lead to very large, often

J. Chem. Phys., Vol. 105, No. 6, 8 August 1996



2376 van Lenthe, Baerends, and Snijders: Solution of the Dirac equation

TABLE I. Uranium 91+ orbital expectation values in a.u.

(R)—(r) (RY—(r) (RY—(r) (R)—(r)

Orbital (r) exact first order Orbital (r) exact first order
1Sy, 0.01349  —0.00097  —0.00122 5, 0.3702  —0.00005  —0.00005
251 0.05334 —0.00032 —0.00031 P2 0.3593 0.00005 0.00005
2p1 0.04247 0.00033 0.00031 PG, 0.3819  —0.00010  —0.00010
2p3p 0.05183 —0.00058 —0.00061 B 0.3602 0.00010 0.00010
3sy, 0.1263 —0.00014 0.00014 &), 0.3668 —0.00015 —0.00015
3pys 0.1154 0.00015 0.00014 5, 0.3342 0.00015 0.00015
3pap 0.1289 —0.00027 —0.00027 512 0.3376 —0.00020 —0.00020
3dzp, 0.1072 0.00028 0.00027 sf, 0.5411 —0.00004 —0.00003
3ds, 0.1116 —0.00040 —0.00041 B2 0.5302 0.00004 0.00003
4s,), 0.2319 —-0.00008  —0.00008 P 0.5574  —0.00007  —0.00007
4pyp 0.2211 0.00008 0.00008 dg, 0.5357 0.00007 0.00007
4p3n 0.2390 —0.00015 —0.00015 @5/, 0.5435 —0.00010 —0.00010
4ds)» 0.2173 0.00016 0.00015 Sio 0.7446 —0.00003 —0.00002
4ds); 0.2228 —0.00023 —0.00023
af g, 0.1902 0.00023 0.00023
4f 4 0.1932 —0.00030 —0.00031

prohibitive, computation times. In the present paper we rehigher orders on this picture change. The expectation value
strict ourselves to a test calculation on the uranium ion withof the “Dirac position” is given by

only one electron, where we can compare with exact results, DI 1t FWI1 T EWE, 1 TFWA 1 ars FU

and to the neutral uranium atom where we can test the self- (") =(WIr[¥2)= (¥ U™ (UPHT|E, (19
consistent procedure within the density functional frame-while on the other hand the expectation value of the “Sehro
work (here we used the simpka potentia). Having estab-  dinger position” reads:

lished the viability of the proposed method, we will in the W EW D11 FWe 21 FWIAD

present paper use the fact that we achieve the construction of (R)=(¥"™"|r|¥F)=(WP|(U™)TrU™|w>). (20)

the Foldy—Wouthuysen transformation. This makes it posy, Taple | we show differences between these two observ-
sible to address the issue of the effect of the Dirac to Foldy—pes for some orbitals of the hydrogen-like Uranium+91
Wouthuysen picture change on expectation values for thg,, The expectation value of the Dirac position can be cal-

operatorr. _ culated analyticall{f:
As a basis set for the calculation of the neutral atom we
(y+n—|k|)(3N2—k?)— kN

used the Dirac type Slater orbita(®TOs) with fractional

exponents we discussed in an earlier pAjpad which were {r) 2ZN '

shown to give accurate representations of the large compo-.

nents of the Dirac orbitals in this case. In the hydrogenic case

(U®H), the exact solutions of the large components of the ) 72 ) 72

Dirac orbitals are a combination of a finite number of DTOs, Y= \ K"~z N= \/(n—|K| Ytz (22

for the calculated orbitals. These DTOs were added with )

some extra DTOs in our basis set, to get sufficient flexibility!n first ordef the difference between the Schimger and

to also represent accurately the Foldy—Wouthuysen trand?irac position for a hydrogenic orbital with quantum number

formed orbitals, which resemble the renormalized large comD and« is given by:

ponents. In both the ion and the neutral atom the method

described above quickly converged and the orbital energies (R)—(r)=

of the full Dirac calculations were reproduced to high nu-

merical accuracy, only limited by the fact that we use nu-where Z is the nuclear charges. The table shows that the

merical integration for the calculation of matrix elements.influence of higher order terms in the Foldy—Wouthuysen

The fact that we obtain the Dirac result to any desired pretransformation is generally quite small, except in the case of

cision testifies to the correctness of our procedure. the 1s1/2 orbital where more then 25% of the effect is seen
An interesting question that can now be answered, conto arise from these higher order contributions. As an example

cerns the difference between the two distinct observables thaf the self-consistent method we solved the equations for a

are represented by the operatan the Dirac picture and in  neutral Uranium atom using the simp¥x version of the

the Schrdinger (Foldy—Wouthuysen picture respectively. density functional method. The same DTO basis set was

In an earlier papérwe studied this question using the used as in Ref. 8, where the Dirac equation was solved using

Foldy—Wouthuysen transformation to first order only, buta basis set for the large component only. The results are in

now we are in a position to investigate the influence ofperfect agreement with each other. In Table Il we again com-

(21)

K
ac?’ 3
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TABLE II. Neutral uranium orbital expectation values in a.u.

Orbital (ry (R)—(r) Orbital (r) (R)—(r)
1syp 0.01364 —0.00095 S 0.6668 —0.000027
251 0.05650 —0.00030 By 0.6938 0.000025
2D12 0.04576 0.00032 B2 0.7735 —0.000046
2Pap 0.05599 —0.00054 Bl 0.8673 0.000040
351 0.1471 —0.00012 Bls) 0.8957 —0.000059
3P 0.1382 0.00012 5, 1.487 0.000038
3Py, 0.1566 —0.00022 5 1.550 —0.000046
3da), 0.1350 0.00023 S 1.473 —0.000011
3ds, 0.1405 —0.00033 B 1.650 0.000011
451 0.3199 —0.00006 3 1.897 —0.000018
ap,, 0.3182 0.00006 & 3.237 0.000011
Apap 0.3549 —0.00010 6ls) 3.499 —0.000015
4ds), 0.3515 0.00010 ) 4,118 —0.000004
ads), 0.3625 —0.00014
A g 0.3517 0.00014
af 4, 0.3571 —0.00017

pare the difference of the two position observables. Althougtiors with the uranium atom as an example. Higher than first
the basis set results for the valence orbitals of the neutralrder effects of this picture change turn out the be only im-

Uranium atom have an accuracy of about 0.1% for the exportant for the deep core orbitals, where they can be as large
pectation value of, the picture change effects are expectedas 25% in the case of hydrogen-like uranium.
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