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Construction of the Foldy–Wouthuysen transformation and solution
of the Dirac equation using large components only

E. van Lenthe, E. J. Baerends, and J. G. Snijders
Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam,
The Netherlands

~Received 23 February 1996; accepted 2 May 1996!

It is shown that it is possible to construct, within the framework of a basis set expansion method, the
full Foldy–Wouthuysen transformation~i.e., to all orders in the inverse velocity of light! for an
arbitrary potential once the Dirac equation has been solved. On this basis an iterative procedure to
solve the Dirac equation is suggested that involves only the large component, obviating the
time-consuming~at least in molecular calculations! introduction of large basis sets for a proper
description of just the small components. The methods are used to compare the expectation value of
the radial distance operator in the Dirac picture and in the Schro¨dinger picture for the orbitals of the
Uranium atom. ©1996 American Institute of Physics.@S0021-9606~96!01930-7#

I. INTRODUCTION

As is well known,1 the nonrelativistic limit of the Dirac
equation for an electron in an external potential is not
reached simply by letting the velocity of light go to infinity.
Rather this limiting process entails a unitary transformation
at the same time, which block diagonalizes the Dirac Hamil-
tonian by separating the positive and negative energy part of
its spectrum. This unitary transformation, known as the
Foldy–Wouthuysen transformation, is equivalent to a change
of picture and consequently in comparing relativistic and
nonrelativistic expectation values~other than the energy! one
has to be aware that the same operator~such as the radial
distance operatorr in an atom! does not represent the same
physical quantity in both pictures.1–4 Unfortunately this
transformation is only known exactlya priori for a free par-
ticle. When an external potential is present, the transforma-
tion is usually determined by expanding in the inverse veloc-
ity of light to some finite order. In case the potential is
Coulombic in nature, however, this expansion is known to be
highly problematic, leading to divergencies except in the
lowest order. This does not mean that the transformation as
such does not exist, only that it should not be expanded in
this way. In this paper we will show that it is quite possible
to obtain this nonexpanded unitary transformation within the
framework of a basis set method without resorting to any
perturbational expansion once the Dirac equation has been
solved for its positive energy solutions.

In Sec. III it is shown how on the basis of this method,
one can in fact obtain the large components of the Dirac
orbitals, and the energies, in a finite basis set approximation
in an iterative way, without first solving the Dirac equation
itself. This iterative procedure, which can also be used in
self-consistent-field calculations, represents an alternative
way to solve the Dirac equation that does not involve the
small component. It is very clear that considerable advances
have been made towards four-component methods for mo-
lecular calculations.5–7Nevertheless, the need to describe the
small components accurately, requiring fairly large numbers
of basis functions, makes four-component molecular relativ-

istic calculations much more time consuming than the non-
relativistic analogs. It is therefore still considered very
worthwhile to explore schemes that obviate the explicit con-
struction of the small components.8,9

The methods are used to compare the expectation value
of the radial distance operator in the Dirac picture and in the
Schrödinger picture for the orbitals of the Uranium atom.

II. CONSTRUCTION OF THE FOLDY–WOUTHUYSEN
TRANSFORMATION

The time-independent Dirac equation for an electron in
an external potentialV reads~in atomic units!:

HHC i
D[S V csW •pW

csW •pW V22c2
D S f i

D

x i
DD 5Ei

DS f i
D

x i
DD 5Ei

DC i
D .

~1!

Here CD is the four-component Dirac wave function and
fD and xD are its large and small components. The Dirac
equation has positive and negative total energy solutions,
while we are usually only interested in the positive energy
part of the spectrum that describes electrons~rather than pos-
itrons!. ~TheEi

D have been shifted downward bymc2.) The
nonexpanded Foldy–Wouthuysen transformation1 decouples
this four-component equation in two two-component equa-
tions, one of which has only positive energy eigenvalues and
the other only negative ones. This transformation can be ob-
tained in a rather simple form10 by using a unitary matrix
U:

U5S 1

A11X†X

1

A11X†X
X†

2
1

A11XX†
X

1

A11XX†
D ~2!

to transform the Dirac–HamiltonianHD . The transformed
Hamitonian:

H5UHDU
21 ~3!
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is block-diagonal providedX satisfies:

2XV2XcsW •pWX1csW •pW 1~V22c2!X50. ~4!

The Foldy–Wouthuysen HamiltonianHFW is then given by

HFW5
1

A11X†X
~csW •pWX1X†csW •pW 22c2X†X1V

1X†VX!
1

A11X†X
, ~5!

while the relation between the four-component Dirac wave
function CD and the two-component Foldy–Wouthuysen
transformed wave functionCFW reads:

C i
D5S f i

D

x i
DD 5S 1

A11X†X
C i

FW

X
1

A11X†X
C i

FWD ;
~6!

C i
FW5A11X†Xf i

D .

From Eq.~6! it immediately follows that the two-component
operatorX has the special property that when working on the
large componentfD of the Dirac wave function it gives the
small component10 xD, thus

Xf i
D5

c

2c21Ei2V
sW •pW f i

D5x i
D . ~7!

This property we can use to calculate the eigenfunctions of
the ~Hermitian! non-negative operatorX†X. Suppose we
have solved the Dirac equation for a given external potential
V. We can then assume that the large components of the
normalized Dirac wave functions which have positive total
energy eigenvalues are linearly independent~but not or-
thogonal! and form a complete basis for the two-component
space. In this basis we can easily calculate matrix elements
of the operatorX†X:

^f i
DuX†Xuf j

D&

5^f i
DusW •pW

c2

~2c21Ei2V!~2c21Ej2V!
sW •pW uf j

D&

5^x i
Dux j

D&5d i j2^f i
Duf j

D&, ~8!

where the last equation follows from the fact that the Dirac
wave functions are orthonormal. If we diagonalize the result-
ant matrix we will find the eigenfunctionsu i and eigenvalues
l i

u of the operatorX†X in this basis. We are then able to
express the orthogonal eigenfunctionsu i in terms of Dirac
large componentsf j

D and vice versa:

u i5(
j
ci j

uff j
D ; f i

D5(
j
ci j

fuu j . ~9!

Consequently we can use Eq.~6! to write the Foldy–
Wouthuysen transformed wave functionCFW as

C i
FW5(

j ,k
A11l j

uci j
fucjk

uffk
D . ~10!

We therefore have an explicit expression for the Foldy–
Wouthuysen transformed wave functions that only involves
the eigenvalues and eigenfunctions of essentially the overlap
matrix of the large components of the Dirac solutions. This
transformed wave function can subsequently be used to cal-
culate various properties in the transformed picture~see Sec.
IV !. Of course, in practice finite basis sets will have to be
used, with a concomitant loss of accuracy.

Some insight into the nature of the operatorX†X can be
obtained by examining its classical form:

X†X5
p2c2

~2c21E2V!2
5

p2c2

~Ac41p2c21c2!2
. ~11!

Clearly for small momenta it will approximately be equal to
p2/4c2, while for high momenta it will approach 1. Conse-
quently for a free particle, this operator has a continuous
spectrum between zero and one, while its eigenfunctions in
this case will be plane waves.

III. ITERATIVE SOLUTION

We can use the ideas of the last section to formulate an
iterative procedure to solve the Dirac equation in an external
potentialV that avoids using the small component entirely.
Using Eqs.~5! and~6! we can write the Foldy–Wouthuysen
transformed Dirac equation

HFWC i
FW5EiC i

FW ~12!

as an equation for the large componentfD of the Dirac wave
function, by multiplying it byS̃1/2:

H̃f i
D5EiS̃f i

D , ~13!

where

H̃5csW •pWX1X†csW •pW 22c2X†X1V1X†VX, ~14!

S̃511X†X. ~15!

Equation~13! is now in the standard form of an eigenvalue
equation with a metricS̃. In the basis set of large compo-
nents we can determine the matrix elements of the operators
H̃ and S̃, with the help of Eq.~7!.

Equation~13! can be solved in an iterative manner. Sup-
pose we have an estimate for the large components and
the orbital energies, which will be calledf i

0 and Ei
0

respectively , wherei runs over the different approximate
~positive energy! solutions of the Dirac equation~the number
of which will be equal to the size of the large component
basis set! and the superscript will indicate the number of the
cycle in the subsequent iterative procedure. We then proceed
from theN21th cycle toNth cycle in the following way.
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We will first normalize everyf i
N21 such that the orbital

density is normalized to 1:

^f i
N21uf i

N21&1^f i
N21usW •pW

c2

~2c21Ei
N212V!2

sW •pW uf i
N21&

51. ~16!

The matrix elements of the operatorS̃ are then approximated
in the basis of large componentsf i

N21 according to
Eq. ~7! as

^f i
N21uS̃uf j

N21&5^f i
N21u11X†Xuf j

N21&

5^f i
N21u11sW •pW

3
c2

~2c21Ei
N212V!~2c21Ej

N212V!

3sW •pW uf j
N21&, ~17!

while the matrix elements of the HamiltonianH̃ are deter-
mined from:

^f i
N21uH̃uf j

N21&5^f i
N21uV1sW •pW

c2

~2c21Ei
N212V!

sW •pW 1sW •pW
c2

~2c21Ej
N212V!

sW •pW

2sW •pW
c2~2c22V!

~2c21Ei
N212V!~2c21Ej

N212V!
sW •pW uf j

N21&

5^f i
N21uV1sW •pW

c2

~2c22V!
sW •pW uf j

N21&

2^f i
N21usW •pW

Ei
N21Ej

N21c2

~2c21Ei
N212V!~2c21Ej

N212V!~2c22V!
sW •pW uf j

N21&. ~18!

The first term can be recognized as the zeroth order regular
approximation~ZORA! to the Dirac Hamiltonian extensively
discussed in earlier papers.11–13 The ZORA approach was
shown to already give quite accurate approximations to the
full Dirac energies in many cases. The last term, which cor-
rects this ZORA Hamiltonian, is small if the orbital energies
involved are small compared toc2.

Diagonalizing the generalized eigenfunction equation,
one obtains improved eigenvaluesEi

N and eigenfunctions
f i
N . By iterating to self-consistency we obtain solutions to

the Dirac equation without ever having to calculate the small
component explicitly. The price to be paid is that the equa-
tion has to be solved iteratively. On the other hand this price
is not as large as it may seem if one considers the usual case
that the potential is not fixed but is also determined itera-
tively until self-consistency is reached. In particular in the
density functional method the improved potential can be de-
termined from the improved density at the end of each itera-
tive cycle described above and one can converge both the
self-consistent-field potential and the Dirac large component
at the same time. This way of iteratively solving for the
Dirac orbital energies and large components therefore is
similar to the iterative SCF procedure followed in Dirac–
Fock methods anyway, but it has to be noted that the matrix
elements ofH̃ have to be calculated in a basis set that
changes from cycle to cycle. The method is nevertheless in-
teresting, and may well be competitive, since it avoids the
large bases needed to describe the small components accu-
rately. Note also that the matrix to be constructed and diago-
nalized has only roughly half of the size of the full Dirac

Hamiltonian matrix, being limited to the positive energy
space.

A very good starting point for the iterative procedure is
formed by the zeroth order ZORA equation which we stud-
ied before11 and which appears explicitly as the first term in
Eq. ~18!. We know from the results of Ref. 12, that the
ZORA Hamiltonian is bounded from below. Since the sec-
ond term in Eq.~18! is small if the orbital energies are small
compared toc2, we expect that this term does not destroy the
boundedness from below. This expectation is borne out by
the results to be presented in Sec. IV. We note however that
it is crucial to start with ‘‘positive’’ total energies
Ei.2c2. When starting with positron-like energies
Ei,22c2, one may end up with converged positron-like
solutions of the Dirac equation, because the iterative proce-
dure is also valid for those states. We find in Sec. IV that we
always converge to positive total energies, when we start
with positive total energies and with an initial wave function
~the ZORA wave function! that is already quite accurate. It is
clear that the present method may be used if it is felt desir-
able, after obtaining the ZORA solutions, to improve the
results to the level of full Dirac solutions. In view of the
accuracy of the ZORA solutions for the valence electrons,11

this will hardly ever be the case for problems of chemical
bonding, but it may be useful for~deep! core levels.

IV. NUMERICAL TEST RESULTS

It is obvious that the method discussed in the previous
section will be most useful for molecules, since in molecular
calculations the small components lead to very large, often
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prohibitive, computation times. In the present paper we re-
strict ourselves to a test calculation on the uranium ion with
only one electron, where we can compare with exact results,
and to the neutral uranium atom where we can test the self-
consistent procedure within the density functional frame-
work ~here we used the simpleXa potential!. Having estab-
lished the viability of the proposed method, we will in the
present paper use the fact that we achieve the construction of
the Foldy–Wouthuysen transformation. This makes it pos-
sible to address the issue of the effect of the Dirac to Foldy–
Wouthuysen picture change on expectation values for the
operatorr .

As a basis set for the calculation of the neutral atom we
used the Dirac type Slater orbitals~DTOs! with fractional
exponents we discussed in an earlier paper8 and which were
shown to give accurate representations of the large compo-
nents of the Dirac orbitals in this case. In the hydrogenic case
(U911), the exact solutions of the large components of the
Dirac orbitals are a combination of a finite number of DTOs,
for the calculated orbitals. These DTOs were added with
some extra DTOs in our basis set, to get sufficient flexibility
to also represent accurately the Foldy–Wouthuysen trans-
formed orbitals, which resemble the renormalized large com-
ponents. In both the ion and the neutral atom the method
described above quickly converged and the orbital energies
of the full Dirac calculations were reproduced to high nu-
merical accuracy, only limited by the fact that we use nu-
merical integration for the calculation of matrix elements.
The fact that we obtain the Dirac result to any desired pre-
cision testifies to the correctness of our procedure.

An interesting question that can now be answered, con-
cerns the difference between the two distinct observables that
are represented by the operatorr in the Dirac picture and in
the Schro¨dinger ~Foldy–Wouthuysen! picture respectively.
In an earlier paper4 we studied this question using the
Foldy–Wouthuysen transformation to first order only, but
now we are in a position to investigate the influence of

higher orders on this picture change. The expectation value
of the ‘‘Dirac position’’ is given by

^r &5^CDurWuCD&5^CFWuUFWrW~UFW!†uCFW&, ~19!

while on the other hand the expectation value of the ‘‘Schro¨-
dinger position’’ reads:

^R&5^CFWurWuCFW&5^CDu~UFW!†rWUFWuCD&. ~20!

In Table I we show differences between these two observ-
ables for some orbitals of the hydrogen-like Uranium 911
ion. The expectation value of the Dirac position can be cal-
culated analytically14:

^r &5
~g1n2uku!~3N22k2!2kN

2ZN
, ~21!

with

g5Ak22
Z2

c2
; N5A~n2uku1g!21

Z2

c2
. ~22!

In first order4 the difference between the Schro¨dinger and
Dirac position for a hydrogenic orbital with quantum number
n andk is given by:

^R&2^r &5
Zk

4c2n2
, ~23!

where Z is the nuclear charges. The table shows that the
influence of higher order terms in the Foldy–Wouthuysen
transformation is generally quite small, except in the case of
the 1s1/2 orbital where more then 25% of the effect is seen
to arise from these higher order contributions. As an example
of the self-consistent method we solved the equations for a
neutral Uranium atom using the simpleXa version of the
density functional method. The same DTO basis set was
used as in Ref. 8, where the Dirac equation was solved using
a basis set for the large component only. The results are in
perfect agreement with each other. In Table II we again com-

TABLE I. Uranium 911 orbital expectation values in a.u.

^R&2^r & ^R&2^r & ^R&2^r & ^R&2^r &
Orbital ^r & exact first order Orbital ^r & exact first order

1s1/2 0.01349 20.00097 20.00122 5s1/2 0.3702 20.00005 20.00005
2s1/2 0.05334 20.00032 20.00031 5p1/2 0.3593 0.00005 0.00005
2p1/2 0.04247 0.00033 0.00031 5p3/2 0.3819 20.00010 20.00010
2p3/2 0.05183 20.00058 20.00061 5d3/2 0.3602 0.00010 0.00010
3s1/2 0.1263 20.00014 0.00014 5d5/2 0.3668 20.00015 20.00015
3p1/2 0.1154 0.00015 0.00014 5f 5/2 0.3342 0.00015 0.00015
3p3/2 0.1289 20.00027 20.00027 5f 7/2 0.3376 20.00020 20.00020
3d3/2 0.1072 0.00028 0.00027 6s1/2 0.5411 20.00004 20.00003
3d5/2 0.1116 20.00040 20.00041 6p1/2 0.5302 0.00004 0.00003
4s1/2 0.2319 20.00008 20.00008 6p3/2 0.5574 20.00007 20.00007
4p1/2 0.2211 0.00008 0.00008 6d3/2 0.5357 0.00007 0.00007
4p3/2 0.2390 20.00015 20.00015 6d5/2 0.5435 20.00010 20.00010
4d3/2 0.2173 0.00016 0.00015 7s1/2 0.7446 20.00003 20.00002
4d5/2 0.2228 20.00023 20.00023
4f 5/2 0.1902 0.00023 0.00023
4f 7/2 0.1932 20.00030 20.00031
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pare the difference of the two position observables. Although
the basis set results for the valence orbitals of the neutral
Uranium atom have an accuracy of about 0.1% for the ex-
pectation value ofr , the picture change effects are expected
in absolute value to be more accurate, because the same basis
set was used for both orbitals. For the deep core the picture
change effects are roughly the same as for the hydrogenic
Uranium. For valence orbitals the absolute value in the pic-
ture change is about 4 to 7 times smaller than in the hydro-
genic case, which is much smaller than the accuracy of the
used basis set. Also in the neutral atom there is opposite
behavior fork,0 orbitals andk.0 orbitals.

V. CONCLUSIONS

In this paper the nonexpanded Foldy–Wouthuysen trans-
formation is constructed for an arbitrary potential. On the
basis of this construction an iterative procedure is formulated
that constitutes an alternative way for solving the Dirac
equation, obviating the need for a small component basis.
The procedure seems especially attractive when used in a
self-consistent-field scheme, since then the iterative proce-
dure can be run concurrently with the SCF iterations. The
method has been applied to the calculation of the picture
change effects in the expectation value of the position opera-

tors with the uranium atom as an example. Higher than first
order effects of this picture change turn out the be only im-
portant for the deep core orbitals, where they can be as large
as 25% in the case of hydrogen-like uranium.
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4s1/2 0.3199 20.00006 6p3/2 1.897 20.000018
4p1/2 0.3182 0.00006 6d3/2 3.237 0.000011
4p3/2 0.3549 20.00010 6d5/2 3.499 20.000015
4d3/2 0.3515 0.00010 7s1/2 4.118 20.000004
4d5/2 0.3625 20.00014
4f 5/2 0.3517 0.00014
4f 7/2 0.3571 20.00017
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