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Growth front scaling aspects are investigated by atomic force microscopy for oligomer
2,5-di-n-octyloxy-1,4-bis~48-~styryl!styryl!-benzene thin films vapor deposited onto silicon
substrates at room temperature. Analyses of the height–height correlation function for film thickness
that are commonly used in optoelectronic devices, i.e., ranging between 15 and 300 nm, yield
roughness Hurst exponents aroundH50.4560.04. Further, the root-mean-square roughness
amplitude s evolves with film thickness as a power laws}db, with b50.2860.05. The
nonGaussian height distribution and the measured scaling exponents~H and b! suggest a
roughening mechanism close to that described by the Kardar–Parisi–Zhang@Phys. Rev. Lett.56,
889 ~1986!# scenario indicating nonlinear film growth. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1404132#

Thin films grown under nonequilibrium conditions show,
in many cases, scaling behaviors which are of technological
interest in relation to physical properties.1–5 Recently, there
has been strong interest in organic thin films, either polymers
or oligomers, as the active layer in molecular devices such as
light-emitting diodes, solar cells, and field-effect
transistors.2,6 In particular, the transport phenomena are
known to be strongly correlated to the electronic structure
and self-organized order in the molecular assembly. Injec-
tion, transport, and recombination of charge carriers depend
among other parameters on molecular packing, range of
grain boundaries, and roughness of the formed interfaces.7–9

Therefore, control of the film morphology is of primary con-
cern for the optimization of electro-optical properties in
organic-based photonic devices.6

So far, only scant research has been concentrated on
growth properties of organic thin films.3–5 These studies
have shown that the root-mean-square~rms! roughness am-
plitude s evolves with film thickness as a power laws
}db with b the growth exponent in the range 0.25,b,1,
and a roughness exponentH in the rangeH.0.6.3–5 The
latter quantifies the degree of surface irregularity at short
length scales~,j with j the in-plane correlation length!. For
plasma polymer films,3 the scaling exponents 0.9,H<1 and
0.6,b<1 were measured. The roughness evolution of a 100
nm thick T6 ~sexithienyl! oligomer film,4 with increasing
substrate temperature~25 °C–250 °C! during deposition, was
associated with a decreasing roughness exponent fromH
51.1 to H50.7. Finally, the growth of vapor deposited-
polymerized linear poly~p-xylene! films5 revealed the scaling
exponentsH'0.7, b'0.25, and 1/z50.31 (j;d1/z) which
were consistent with a roughening model due to monomer
bulk diffusion.5

In this work, we will investigate scaling aspects of the
growth front of the oligomer van der Waals thin films6 grown
by vapor deposition onto SiO2 substrates held at room tem-
perature~RT!. The five-ring oligomer 2,5 -di-n-octyloxy-
1,4-bis@48-~styryl!styryl#-benzene is synthesized from solu-
tion, and its molecule exhibits a characteristic length of 2.9
nm @Fig. 1~a!#.10 During vacuum deposition, the molecules
sublime at;230 °C, and then as a whole unit condense on
the Si wafer held at RT~ensured by proper water cooling!.
The base pressure in the deposition chamber was

a!Author to whom all correspondence should be addressed; electronic mail:
hossonj@phys.rug.nl

FIG. 1. ~a! Chemical structure of the Ooct-OPV5 and~b! TGA for an Ooct-
OPV5 specimen are shown. The upper inset shows an isothermal for the
temperature~230 °C! and the heating time~, 45 min! used in our experi-
ments. The lower inset shows a small scan size~800 nm! AFM topography
image for a film grown at RT of thicknessd5105 nm.
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;1028 mbar, while during deposition it was typically
;1027 mbar. During deposition, the average growth rate of
'7.1 nm/min was monitored using a quartz crystal microbal-
ance. Thermogravimetric analysis measurements~TGA!11

showed that the molecule remains stable for temperatures up
to ;350 °C@Fig. 1~b!, upper inset#. An additional isothermal
scan for the temperature and the heating time used for the
deposition of the thickest films in our experiments verifies
the latter. After TGA analysis, the color of the samples re-
mained unchanged. Therefore, molecule fragmentation can
be excluded during evaporation.

The film surface morphology was measured using an
atomic force microscope~AFM! ~Digital Instruments Nano-
scope IIIa! in tapping mode12 to avoid any damage of the
film surface@Fig. 1~b!, lower inset#. The radius of the Si tip
is <10 nm, and the side angle<10°, and 5123512 pixels
were used during AFM imaging. Moreover, AFM analysis
yielded a substrate roughness amplitude of about 0.3 nm,
which is much smaller than that of the film surfaces. For
each film thickness, the height–difference correlation func-
tion g(r )5^@h(r )2h(0)#2& data from five AFM topography
images~acquired at different locations on the film surface!
were averaged~Fig. 2!. h(r ) is the surface height at lateral
position r @5(x,y)# on the surface relative to the mean sur-
face height. The notation̂...& means an ensemble average as
well as an average of all possible choices of the origin. The
self-affine scaling hypothesis requires thatg(r )5Ar2H for r
!j andg(r )52s2 for r @j ~with A;s/jH a constant!.13 As
the roughness exponentH decreases, the surface becomes
more irregular~jagged! at length scalesr !j.1 The saturation
regime ofg(r ) yieldss, and the log–log plot at short length
scales yields the roughness exponentH @Fig. 2~a!#. The cor-
relation lengthj is given byj5(2s2/A)1/2H ~intersection of
power law and saturation lines!. Sincej@2.9 nm~molecule
length!, significant lateral correlation develop during growth.
The calculation ofg(r ) requires the use of a scan size at least
ten times larger than the significantly large cluster sizes seen
in the AFM images in order to capture all of the necessary
lateral roughness wavelengths.14

The height distributionP(h) shows deviations from the
best Gaussian fit especially in the negative tail@left-hand side
arrow in Fig. 2~b!#. To further quantify this point, we calcu-
lated the SkewnessS5*h3@P(h)/*P(h)dh#dh/s3, which
is a measure of the distribution symmetry around a reference
surface level. For Gaussian distributionS50, while in the
present case, we obtainS50.23(.0). Also for other film
thickness, we obtainS.0 indicating violation of theh
→2h symmetry and thus the presence of a nonlinearity as-
sociated with growth dependence on the local surface
inclination.17

From Fig. 2, the roughness exponentH is in the range
H50.4560.04 for the thickness range 15 nm<d<300 nm.
These roughness exponentsH are well below of any predic-
tion of surface diffusion relaxation mechanism (0.66<H
<1).15,16 On the other hand, the Kardar–Parisi–Zhang
~KPZ! type of growth,17 where the dominant relaxation
mechanisms are desorption or vacancy formation, lead to
roughness exponentH'0.4.1,18 Indeed, due to finite tip size
effects, the actual roughness exponent could be closer to the
KPZ valueH'0.4.19 The nonlinear term (¹h)2 in the KPZ
model []h/]t5v¹2h1b(¹h)21n with ‘‘ n’’ random Gauss-
ian due to deposition and the termv¹2h associated with the
surface relaxation#18 arises from theh→2h symmetry
breaking, leading to growth dependence on surface inclina-
tion. By itself, the nonlinear term would convert a surface
consisting of rounded hills into a surface of plateaus sepa-
rated by narrow, step-sided canyons.1 Such an effect appears
to be consistent with the AFM topology images, as in Fig. 2,
where the formation of fine nanosize@<100 nm; Fig. 1~b!#
domains~plateaus! orientated almost randomly out of plane
~with respect to the substrate! occurs, being separated by
deeper groove networks that develop especially for thicker
films.

Although, roughness exponentsH<0.3 have been mea-
sured also on T6 oligomer films,20 these studies did not ad-
dress any further growth aspects such as the development of
out-of-plane correlations as quantified by the growth expo-
nent b.20 Indeed, measurement of the exponentb ~s}db;
Fig. 3 upper inset! yieldsb50.2860.05 which is within the
predictions of the KPZ scenariob'0.25 ~for 211 dimen-
sional growth!.1,18 We should point out, however, that with
increasing film thickness a groove network develops. Since
surface diffusion is excluded as the relaxation mechanisms of
deposited molecules, the formation of column-like structures
tens of nanometers in diameter with poor crystallinity which
are separated by voids or are amorphous can occur.21 The
groove network might be responsible for the limited devel-
opment of lateral correlation~Fig. 3; lower inset!, leading to
a slow increment of the correlation lengthj with increasing
film thickness. At earlier stages of growth (d<100 nm), a
closely power law increment of the correlation length ap-
pears to develop with a corresponding dynamic exponent
1/z'0.3160.05 ~as the fit to the first four data points indi-
cates, Fig. 3 lower inset! which is smaller than the KPZ
prediction 1/z'0.61.1,18

In conclusion, the growth front roughening of vapor-
deposited oligomer thin films~Ooct-OPV5! onto silicon-
oxide substrates at room temperature appears to follow a
scaling behavior close to the KPZ scenario. This is supported

FIG. 2. Height–height difference correlation functiong(r ) vs the in-plane
distancer @scan sizeL to calculateg(r ) is L52000 nm@j# is shown. The
rms roughness amplitude iss51.90 nm. The estimated correlation length is
j576.2 nm which compares with the cluster sizes in Fig. 1~double arrow!.
~a! Linear fit at small length yields the roughness exponentH50.4760.02
and ~b! Height distribution function are shown.
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by the roughness exponentsH50.4560.04, the growth ex-
ponentb50.2860.05, as well as by the breakdown of the
h→2h symmetry at the height distribution during growth.
Further studies are in progress, in particular concentrating on
the effect of substrate temperature on film surface morphol-
ogy and the influence of the latter on electrical transport
properties.22
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FIG. 3. Roughness exponentH vs film thickness are shown. An average
value is estimated to beH50.4560.04. The inset on the left-hand side
showss vs the film thicknessd which grows with an exponentb50.28
60.05 as the fit yields. The inset on the right-hand side shows the in-plane
roughness correlation lengthj vs the film thicknessd. The line depicts a
linear fit for the first four data points to determine the dynamic exponentz.
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