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In the present paper we consider nonlinear elasticity and friction of grafted persistent chains, which
are highly stretched in the normal to the surface direction due to orientational interactions. We
examine the normal and the lateral forces both in equilibrium and under shear sliding when the
monolayer is confined by a bare surface. We show that in the confined monolayer in equilibrium the
tilted orientation of the director becomes stable. In the sliding regime the friction force passes
through a maximum value. The additional normal force in the sliding regime, when the distance
between the surfaces is fixed, is also considered. We show that this force is attractive for small
velocities and becomes repulsive for high velocities after the friction force passes through the
maximum value. ©1998 American Institute of Physics.@S0021-9606~98!50526-0#

I. INTRODUCTION

Thin surface monolayers formed by self-assembled mol-
ecules are very important both for technological applications
and from a fundamental point of view for understanding of
their elastic and frictional properties and those of more com-
plicated supermolecular systems. Considerable progress has
been made in the field of polymer brushes formed by long
flexible chains grafted on a flat surface.1–3 The conformation
of the chains in the brush becomes very stretched in the
direction normal to the surface when the surface density of
grafted points is high enough. However, such model system
can not be effectively used for a description of monolayers
formed by rather short self-assembled molecules. These
monolayers very often have a liquid-crystalline~LC! or a
crystalline ordering. Brushes with LC ordering have been
investigated far less than isotropic brushes.4–8

Recent experiments using Scanning Force Microscopy
~SFM! and Surface Force Apparatus~SFA! technique re-
vealed a strong correlation between the monolayer structure
and their tribology.9–13 In particularly, the friction force
strongly depends not only on the interactions in the mono-
layer, which in most cases depends on the chemical nature of
the chains, but also on the chain length. It suggests that the
friction is connected with the elasticity of the monolayers.

In order to examine this assumption we consider a
monolayer composed of chains with a persistent mechanism
of flexibility. It is well known that orientational interactions

result in strong stretching of the persistent chain along the
direction of the orientational field~so called stiffening
effect14!. It implies that grafted persistent chains can be
aligned just due to the orientational interaction. In this paper
we consider elasticity and frictional properties of a mono-
layer of persistent chains assuming that the orientational in-
teractions are dominant.

II. MODEL AND FREE ENERGY

Our consideration starts with the formulation of the
model. We assume that the persistent chains are grafted on a
flat surface with an average distanced between neighbor
grafted ends. It implies that the surface density satisfiesn0

.d22. The chain has a contour lengthL and a Kuhn seg-
ment lengthl , L> l . We also assume that the diameter of the
chainD,d. The orientational interaction between the chains
are described by a Maier–Saupe type potential in the follow-
ing way. Let us divide the chain into segments of lengthl
, l , the total number of segments in the chain isN5L/l. If
the angle between the orientationni of segment numberi ,
and directing vectorez of the normal to the surface~axisz! is
u i ~Fig. 1!, the energy of this segment is given by15

U~ni !5kBT
lA

2
u i

2. ~1!

Here, the parameterA characterizes the molecular mean
field. Actually this parameter depends on the concentration
of segments or the volume fraction of the polymer and on the
order parameter of the chain, which should be calculated
from a self-consistency condition.14 It implies that generally
A depends on the coordinatez. However, for the stretched

a!Author to whom correspondence should be addressed.
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persistent chains this dependence is important only in a small
region near the grafting surface and near the free boundary of
the layer, where fluctuations are large. In the other region of
the layer the parameterA is practically independent of the
coordinatez and we will employ this approximation through-
out. We will also assume a linear dependence of the param-
eterA on the volume fraction of the polymer in the layerf,
A}f, where the volume fraction is connected with the
heightH of the monolayer by

f5~LD2!/~Hd2!. ~2!

Obviouslyf<1, thereforeH>Hmin5L(D/d)2. Thus the pa-
rameterA can be written in the form

A5A0

L

H
, ~3!

where A05const. Equation~1! can be considered as the
asymptotic limit of the Maier–Saupe potential when the ori-
entation is high. Thus the total orientational energy of one
chain is a sumS i 51

N U(ni), which in the continuum limit can
be written as

U tot5kBT
A

2 E
0

L

u2~s!ds. ~4!

Obviously, the orientation of two successive segments,
n, n8, is not independent, but connected by the transition
probability g(nun8),16 which can be obtained from the ex-
pression for the elastic energy of the continuum model of the
persistent chain17,18

Uel5kBT
l

4 E
0

LS dn

dsD
2

ds, ~5!

and is given by

g~nun8!;expS 2
l

4l
~n2n8!2D . ~6!

HerekBT( l /4l)(n2n8)2 is the elastic bend energy.
Let us denote thez coordinate of segmenti along the

chain aszi ~Fig. 1!. Then we can introduce theN-particle
distribution functionr as follows

r~n1 ,z1un2 ,z2u...unN ,zN!

5Cd~z12l cosu1!g~n1un2!

3d~z22z12l cosu2!e2U~n2!g~n2un3!

3d~z32z22l cosu3!e2U~n3!..., ~7!

whereC is a normalization constant. The distribution func-
tion of the free end is given by

c~L,n1 ,n,z!5E dz1dn2dz2 ..dnN21dzN21

3r~n1 ,z1 ,n2 ,z2 ,...nN21 ,zN21 ,n,z!.

~8!

Note that the orientation of the grafted end,n1 , is fixed. The
differential equation for this function can be derived by add-
ing a new segment to the chain keeping the concentration
and hence the parameterA constant. After transition to the
continuum limit the equation is given by

]c

]L
5

1

l
Dnc2cosu

]c

]z
2

Au2

2
c. ~9!

This equation coincides with the equation for the statistical
sum of the chain, which is proportional to or equalsc, de-
pending on the normalization condition.19 Thus the problem
reduces to the solution of the differential equation~9!.

The equation can be solved analytically in the
asymptotic case, when the chain is strongly stretched, so that
L2z!L. Using the approximation cosu.12u2/2, and as-
suming that the bend takes place in one plane,Dnc
5]2c/]u2, the solution has the form

c~L,u1 ,u,z!;A l

L2z
expS 2

U~L,u1 ,u,z!

kBT D , ~10!

where

U~L,u1 ,u,z!/kBT.
L2

8l ~L2z!
1

~u1
21u2!L

8~L2z!

1
~u1

21u2!2l

32~L2z!
1A~L2z!. ~11!

Here we kept the principal terms of the expansion. Note
that A depends on the height of the layerH, Eq. ~3!. In the
mean field approximationU is the free energy per chain. It
contains two main contributions. The first contribution arises
from the orientational interaction and is given by the last
term in Eq.~11!. The orientational energy is minimal when
the chain is completely stretched (z5L). The parameter
kBT•A equals the molecular stretching force. The second
contribution is connected with the chain elasticity and can be
divided in two parts: the loss of entropy of the chain due to
stretching@the first term in Eq.~11!# and the elastic bend
energy ~the second and the third term!. The contribution
from the chain elasticity is easy to understand if we write the
first term of Eq.~11! as (L/xc) where the length

xc5
8l ~L2z!

L
~12!

FIG. 1. Chain model.
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can be identified with the correlation length of the chain.
The second term of Eq.~11! follows from Eq. ~5! for the
elastic energy if we assume that the bending takes place
on a section of lengthxc near the chain ends,DUel

5( l /4)*0
L(du/ds)2ds.( l /xc)(u

21u1
2), which gives the cor-

responding term. It justifies the definition ofxc as the corre-
lation length. Note that the above equations are correct when
xc, l .

From now on we will assume that the grafted segments
are oriented normally to the surface,n15ez (u150). Let us
first estimate the equilibrium heightH* of the free mono-
layer ~Fig. 2!. This can be done in the following way. If
z* (H) is the equilibrium position of the chain tail whenH is
fixed, then the equilibrium height can be estimated from the
self-consistency conditionz* (H* )5H* . In order to calcu-
late z* we first average the free energy, Eq.~11!, over the
anglesu which are distributed according to the distribution
function c, Eq. ~10!

U* ~L,z!5^U~L,u,z!&u

5kBTE c~L,u,z!ln c~L,u,z!du. ~13!

Integration gives the average free energy

U* ~L,z!/kBT.U01
L2

8l ~L2z!
1

3l

2L2 ~L2z!

1
A0L

H
~L2z!. ~14!

Here U05const, and the third term is connected with the
elastic energy. We will assume that orientational energy~the
last term! exceeds the elastic energy. Therefore, there are
only two main contributions to the free energy, namely the
loss of the entropy due to the stretching and the orientational
energy

DU* ~L,z!/kBT.
L2

8l ~L2z!
1

A0L

H
~L2z!. ~15!

Minimization of this free energy with respect toz, using the
self-consistency condition, results in the equilibrium height
of the monolayer

H* 5LS 12
1

2A2A0l
D . ~16!

Obviously the chain is strongly stretched, and our con-
sideration is valid ifA0l @1. We will assume that this con-
dition is fulfilled. After expansion of the free energy, Eq.
~15!, around equilibrium we find for the size of the fluctua-
tions in the normal direction

jz;ALl
1

~A0l !3/4. ~17!

In order to estimate the size of the fluctuations in the
lateral direction, we note that the chain is stretched by the
force Fz;A0 . Therefore any deviation of the chain tail~or
of the middle part of the chain, Fig. 3! on a distance;jx in
the lateral direction implies~from the geometry of the forces!
that a restoring forceD f x;Fzw appears, wherew;jx /L.
The energy connected with this deviation isDUx;D f xjx .
The characteristic fluctuation sizejx , follows from the con-
dition DUx;kBT

jx;ALl
1

~A0l !1/2. ~18!

Note forA0l;1, jx;jz;ALl . Thus the conformation of the
chain in the monolayer is nearly completely stretched with
small fluctuations in the normal and lateral directions.

III. EFFECT OF EXTERNAL LOAD AND SHEAR
DEFORMATION

In this section we consider the behavior of the mono-
layer confined between two flat surfaces, separated by a dis-
tanceH,L. We start with the situationH.H* . In this case
the external forcef z is determined by fluctuations. In order
to find the dependence of the forcef z on the distanceH let
us introduce a distribution function of the free end,c(z).
The free energy per chain is given by

F5E
0

H

dz~kBTc~z!ln c~z!1c~z!DU* ~z!!, ~19!

whereDU* (z) was defined in Eq.~15!, and the molecular
field A5A0L/H* . Minimization with respect toc results in
a Boltzman distribution for the functionc, c(z)5C
3exp(2DU* (z)), C5*0

H exp(2DU* (z)/kBT)dz is the nor-
malization constant. Further elimination ofc from the Eq.
~19! results in the free energy as a function ofH

FIG. 2. Schematic illustration of the free monolayer.

FIG. 3. Geometry of forces when the middle part of the chain displaces in
the lateral direction.
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F52kBT ln E
0

H

exp~2DU* ~z!/kBT!dz. ~20!

The external normal force can be defined in the usual way,
f z5]F/]H, and equals

f z52kBTc~H !.2
1

jz
expS 2

L2

8l ~L2H ! D . ~21!

The sign of this force is negative, which implies a repulsion
between the surfaces. As it follows from Eq.~21!, the exter-
nal force is balanced by the ideal-gas pressure of the free
chain ends. ForH;H* the force is still exponentially small.

In order to calculate the normal force forH,H* we
have to take into account two things. First the molecular field
A depends on the distanceH, therefore minimization should
be done using this fact. Second, the initial normal to the
surfaces orientation of the layer could be unstable with re-
spect to the tilt. Let us assume at first that the vector of the
layer orientation is directed perpendicular to the surfaces. In
this case the free energy~20! in a first approximation can be
written as

F5DU* ~H !5kBTF L2

8l ~L2H !
1

A0L

H
~L2H !G . ~22!

This approximation corresponds to the mean field. The ex-
ternal normal force is given by

f z5kBTF L2

8l ~L2H !22
A0L2

H2 G . ~23!

The sign of this force is negative forH,H* ~the second
term is dominant!. We will not consider here the fluctuation
corrections, which are important forH;H* and which
bridge these two regimes. Actually the repulsion force is
very small forH;H* and is not important for the next dis-
cussion.

Next we take into account the tilting of the monolayer
~Fig. 4, H,H* !. The free energy of the monolayer having
an orientation which is tilted with respect to the normal vec-
tor of the surface, can in the mean field approximation be
derived from Eq.~22! by changing the system of coordinates.
If the system of coordinates rotates over some angle, so that
after the transformation the tail has coordinates (H,x), the
distance between the chain ends is given byr 5AH21x2

@before the transformation the coordinates of the tail were
(r ,0)#. Taking into account the fact that the bend elastic en-

ergy is small, and the molecular field parameterA depends
only on the heightH of the monolayer, the free energy per
chain can be written as

F* ~H,x!5kBTF L2

8l ~L2r !
1

A0L

H
~L2r !G . ~24!

The external loadf z and external shear forcef x applied
to the monolayer~per chain! can be expressed through the
free energyF* in the usual way:

f z5S ]F*

]z D
x5const

; f x5S ]F*

]x D
z5const

. ~25!

The equilibrium tilt angleu* 5arctan(x* /H) for a fixed
H, which corresponds to the minimum of the free energy,
follows from the equationf x(x* )50

u* 5arctanAL2

H2 S 12A H

2A0lL
D 21. ~26!

Note that the term under the square root is always positive
for H,H* , where our approach applies, and therefore the
confined layer has always a tilted orientation. Any displace-
ment of the chain tails in the lateral direction over a distance
x1 with respect to the equilibrium pointx* results in the
lateral force

f x5kBT
~2A0l !3/2

Ll S L

H D 3/2S 12
H2

L2 D x1 . ~27!

Actually x1,Dxmax 5 xmax 2 x* . LALH/8A0l (L22H2),
wherexmax5AL22H2 is the maximum lateral displacement.

Similarly we can calculate the normal force as a function
of the distanceH, when the tails of the chains are displaced
over a distancex* 1x1 in the lateral direction with respect to
their grafted ends

f z5kBTF2
1

2l S A0l

2 D 1/2S L

H D 3/2

1
~2A0l !3/2

Ll S L

H D 1/2AS 12
H2

L2 D x1G . ~28!

The first term of this equation is dominant and is connected
with increasing of the internal energy under compression,
and the second term arises due to nonlinearity and implies
the additional normal force which is connected with the lat-
eral force by the rule of the force geometry

D f z52 f x tan21 u* . ~29!

Thus if we apply shear deformation to the loaded monolayer
and try to keep the distanceH constant, we should decrease
the external load.

The fluctuations of the tail along the tilted axis and per-
pendicular to this axis can be found similarly to the unloaded
layer and the corresponding quantities are given by Eqs.~17!
and ~18!, whereA0 should be replaced byA5A0L/H.

IV. FRICTION BEHAVIOR

We apply the above results to the problem of friction
between the flat monolayer and the flat bare surface, which

FIG. 4. Schematic illustration of the confined monolayer.
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confines the monolayer. We will assume that the distance
between the surfacesH is constant and will calculate the
friction force and the additional normal force, which appears
when a shear velocityu is imposed to one of the surfaces. In
order to introduce friction we have to define a mechanism of
dissipation, which we assume to be connected with the re-
laxation interaction between the tails of the chains and the
bare surface. In order to describe this interaction we will
follow our previous model20 and introduce a thin adsorbed
layer of thicknessa on the free surface so that a free segment
adsorbs and desorbs for a timet. It is assumed that this time
is the same for both processes so that the surface is neutral
and our previous results can be applied to this situation. Note
that a difference between adsorption and desorption times for
the free segments implies an additional interaction in the
system which should be taken into account when the equi-
librium properties are considered.

Coming back to the definition of the relaxation timet,
we assume the activation mechanism of relaxation, which
means that the time can be written in the form

t5t* eVa /kBT, ~30!

whereVa is an activation energy andt* is the characteristic
oscillation time of a segment in a local potential well. The
situation becomes different when instead of a free segment, a
segment belonging to the chain tail is considered. In order
that the tail desorbs from the surface it should overcome not
only the activation barrier but also the potential barrier which
is connected with the change of the free energy of the chain.
This last one depends on the correlation between the thick-
ness of the adsorbed layer,a, and the magnitude of the fluc-
tuations of the tail,j. As mentioned before, the size of the
fluctuations is different along the orientational axis and per-
pendicular to this axis, and they are anisotropic. In order to
avoid this additional complication we will assume the isotro-
pic approximation, and thus define the size of the fluctua-
tions in the normal to the surface direction asj
;(Ll )1/2(H/A0lL )3/4 @see Eq.~17! with the renormalized pa-
rameterA0#. The additional potential barrier, which the tail
should overcome, is then approximately

DVa.kBT
a2

j2 .S A0lL

H D 3/2 a2

Ll
. ~31!

Thus the desorption time is given by

t25t* eVa1DVa /kBT. ~32!

When a<j, DVa;kBT, and the additional barrier is not
important.

The situation is opposite for the adsorption time. When
the tail adsorbs, it wins the energyDVa , therefore adsorption
occurs more easily, and the characteristic adsorption time is

t15t* eVa2DVa /kBT. ~33!

We will consider the general case,DVa@kBT. When the
surface slides with a velocityu with respect to the mono-
layer, the dynamics of the chain is as follows. If the velocity
u is small,ut2,Dxmax ~we define it as regime 1!, the ad-
sorbed tail first moves along thex-axis and then breaks after
a timet2 , then the chain relaxes very fast to the minimum

of the energy, and after a timet1 adsorbs again. After that
the circle is repeated. The lateral friction force~per unit
area!, which should be applied in order to keep the velocity
constant, can be found from Eq.~27! whenx15ut2

Fx.n0kBT
~2A0l !3/2

Ll S L

H D 3/2S 12
H2

L2 Dut2 . ~34!

Similarly we find the additional normal force from Eq.~28!

DFz.2n0kBT
~2A0l !3/2

Ll
S L

H
D 1/2AS 12

H2

L2 D •ut2 .

~35!

This force is negative and hence implies an additional attrac-
tion between the surfaces.

After the imposed velocity exceeds the critical value

u15
Dxmax

t2
. ~36!

the tails cannot break thermally any more and the breakage is
connected with the limited extensibility of the chains~regime
2!. The friction force has two contributions in this case,
namely from the elongating chains and from the breaking
chains~Fig. 5!. The average force~per chain! in the elonga-
tion stage can be approximately obtained from Eq.~34! av-
eraging on the interval 0,ut2,Dxmax

f x
el.kBTA0

AL22H2

H
. ~37!

The additional normal attractive force is

D f z
el.2kBTA0 . ~38!

Let us consider the breakage stage. In this case both the
lateral and the normal forces and the lateral velocity and the
velocity of breakage can be found from geometric argu-
ments. The breakage velocity is~the tangential of the angle
between the orientational axis and thez-axis is tanu
5AL22H2/H!

uz5u tan21 u5u
H

AL22H2
. ~39!

FIG. 5. The monolayer in the sliding regime.
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The breakage time is thereforetb;a/uz . In order to calcu-
late the normal breakage force we use the following argu-
ments. If the forceD f z is applied to the adsorbed segment,
the segment is desorbed after a time

t~D f z!.t* eVa1DVa1D f za/kBT, ~40!

~the sign of this force is negative because it is directed
against the direction of thez-axis!. In our case the breakage
time is tb , hence the breakage force follows from the equa-
tion tb.t(D f z

br)

D f z
br.2

kBT

a
ln

uzt2

a

.2S Va

a
1S A0lL

H D 3/2 a

Ll
1

kBT

a
ln

ut*

a D . ~41!

From the geometry of the forces we find the lateral force

f x
br.2D f z

br tan u

.
AL22H2

H S Va

a
1S A0lL

H D 3/2 a

Ll
1

kBT

a
ln

ut*

a D . ~42!

Note that the forces act only during the breakage timetb .
The total life time of the chain in the adsorbed state is deter-
mined by the elongation time

t* 5
Dxmax

u
.

L

u
A LH

8A0l ~L22H2!
. ~43!

Thus the friction force per unit area can be written as

Fx5n0S f x
el1

tb

t*
f x

brD ~44!

and the additional normal force, which is attractive, is given
by

DFz5n0S D f z
el1

tb

t*
D f z

brD . ~45!

So far we did not take into account the effect of the
desorbed chains on the normal pressure. The fraction of these
chains in regime 2 ist1 /(t11t* ).t1 /t* ~here we assume
thatt1,t* !. The desorbed chains are compressed by a force
of the order

f z8;kBT
a

j2 .kBTS A0lL

H D 3/2 a

Ll
~46!

and their reaction is directed against the external pressure
and thus positive. The origin of this force becomes clear by
noting that the reaction of the adsorbed layer is elastic on a
time scale smaller thant1 , and thus the desorbed chains
press on the boundary of the adsorbed layer. The contribu-
tion from the desorbed chains to the additional normal force
per unit area is

DFz8.n0f z8
t1

t*
~47!

and the total additional normal force is the sumDFz
tot5DFz

1DFz8 , where the sign of these forces is opposite. The attrac-

tion is dominant in this case. Finally the friction and the
normal forces in regime 2 can approximately be written as

Fx.n0kBT
AL22H2

H

3S A01
~8A0l !1/2

~LH !1/2 S L22H2

LH D ln
ut2

a D , ~48!

DFz.2n0kBTS A01
~8A0l !1/2

~LH !1/2 S L22H2

LH D ln
ut2

a D
12&n0kBTS A0l

H D 2 aAL22H2

Ll
ut1 . ~49!

The last regime~regime 3! corresponds to high veloci-
ties, whent1,t* or u.u2 , where

u25
Dxmax

t1
. ~50!

The important feature of this regime is the decrease of the
fraction of adsorbed chains. Indeed, the chains spend a time
t* in the adsorbed state, whereas in the desorbed state the
time is t1 . Hence the faction of adsorbed chains is propor-
tional to t* /(t11t* ). Taking into account the fact that the
dynamics of the chains in this regime is the same as in re-
gime 2, the main results can be obtained in a similar manner.
The principle difference is in the statistics of the adsorbed
and desorbed chains. Thus based on the above arguments,
the friction force and the additional normal force can be de-
rived from the corresponding equations@Eqs. ~41!, ~42!,
~44!–~47!#:

Fx.n0

t*

t1
S f x

el1
tb

t*
f x

brD , ~51!

DFz
tot.DFz

t*

t1
1DFz8 . ~52!

After some calculations the final expressions for these forces
are found to be

Fx.4n0kBTS L

8A0lH D 1/2S A01
~8A0l !1/2

~LH !1/2

3S L22H2

LH D ln
ut2

a D L

t1u
, ~53!

DFz.n0kBTS A0lL

H D 3/2 a

Ll
2n0kBTS LH

8A0l ~L22H2! D
1/2

3S A01
~8A0l !1/2

~LH !1/2 S L22H2

LH D ln
ut2

a D L

t1u
. ~54!

A plot of the friction force and the additional normal
force versus velocity is shown in Fig. 6.

V. CONCLUSION

In the present article we considered the elastic and fric-
tion behavior of liquid-crystalline monolayers, composed of
persistent chains grafted on a flat surface. The equilibrium
structure of the monolayer is stabilized by orientational in-
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teractions, which compensate the loss of entropy due to the
stretching of the chains inside the monolayer. Under confine-
ment the monolayer adopts in equilibrium a tilted orienta-
tion. The external pressure increases with decreasing the dis-
tanceH between the surfaces with a power 3/2,f z}H23/2.

In order to describe the dynamical properties of the con-
fined monolayer we introduced a thin adsorbed layer on the
bare surface, so that the adsorption-desorption kinetics for
free segments is characterized by a single relaxational timet,
which is connected with an activation barrier. The
adsorption-desorption kinetics of the tails of the chains is
more complicated and is governed by an additional potential
barrier due to the change of the free energy of the chains.
Desorption is more difficult than adsorption, and the corre-
sponding desorption time,t2 , is longer than the adsorption
time, t1 . Note that both times depend on the chain length
and the interaction in the monolayer.

Finally, three regimes of behavior of the friction force
can be identified. The first regime is linear and occupies the
range of velocitiesu,u1 . Here, the desorption of the chains
occurs thermally and the friction force increases linearly with
the imposed velocity. In the second regime (u1,u,u2) the
adsorbed chains attain maximum elongation before they de-
sorb thermally~ut2 exceeds the maximum displacement
Dxmax! and thus desorb because of the finite extensibility. In
this regime there are two contributions to the friction force,
namely from the elongating chains and from the breaking
chain. The contribution from the elongating chains is inde-
pendent of the velocity. The second part of the friction force,
which is connected with the breaking chains, increases loga-
rithmically with the velocity. The last third regime is char-
acterized by a decrease in the number of adsorbed chains
with imposed velocity. This regime takes place whenu

.u2. The fraction of adsorbed chains decreases with the ve-
locity as u21, and thus the friction force also decreases in
this regime following the same law.

The effect of the sliding velocity on the normal force
was also examined. We found that the additional normal
force, which appears under the shear is negative~attractive!
in the first two regimes and becomes repulsive in the third
regime ~the distance between the surfaces,H, is constant!.
The attraction is connected with an additional normal force,
which is induced by the tangential friction force due to non-
linearity. This normal force is proportional to the concentra-
tion of the adsorbed chains, and thus becomes small in re-
gime 3. On the contrary the repulsive force arises as the
reaction of the desorbed chains, which are compressed and
arranged under the adsorbed layer. The fraction of these
chains becomes dominant in the third regime and therefore
the additional normal force is repulsive in this regime.

Our consideration demonstrates that the tribology of the
monolayers is strongly correlated with their nonlinear elas-
ticity. Qualitatively the results are in agreement with the ex-
periments with respect to the dependence of the friction on
the imposed velocity.9–13 On the other hand most of the ex-
periments were performed under constant load. Actually, this
effect might be considered in the spirit of our model after
elimination of the distanceH from the equations assuming
that the load is constant.
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