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A compact equivalent-circuit model for ferroelectric switching devices is derived from a general
model for local charge displacements. The general model consists of a matrix of repeat units
describing local dissipationless charge displacements~electrostatic channel!, as well as dissipative
charge displacements~electrochemical channel!, the channels being coupled due to the electrical
charge of the moving species. The derived model for ferroelectric charge displacements is used to
simulate both hysteresis and transient characteristics, and applied to two devices:~i! a ferroelectric
capacitor and~ii ! a ferroelectric memory field-effect transistor. The circuits are programmed in
SPICE-derived analysis software. We find that experimental hysteresis data obtained on
Pb~Zr,Ti!O3 ceramic capacitors and on thin-film transistors with a SnO2:Sb semiconductor and a
Pb~Zr,Ti!O3 ferroelectric insulator can be reproduced and interpreted with the equivalent-circuit
models. © 1999 American Institute of Physics.@S0021-8979~99!02011-3#

I. INTRODUCTION

Ferroelectric material, once electrically polarized, re-
mains polarized even in the absence of an electric field. This
is due to hysteresis in the polarization response of the ferro-
electric material to electric fields. Two remnant polarizations
are available, of opposite polarity but equal magnitude. Data-
storage devices with a ferroelectric component make use of
these states. The two possible remnant polarizations are re-
lated to a logic ‘‘0’’ and ‘‘1’’, memory states that can be
stored without needing a supply voltage or cyclic refreshing.
The ferroelectric component can also offer a low program-
ming voltage, radiation hardness, and nondestructive read
out. Owing to these properties, ferroelectric memory devices
such as ferroelectric random-access memories1 and ferro-
electric memory field-effect transistors~FEMFETs, see for
example Refs. 2–4! are being developed.

Ferroelectric device models can be used to support the
process of integration of devices such as FEMFETs within
complicated circuitry, as well as provide deeper understand-
ing of the device physics. In the absence of an analytical
description of ferroelectric charge switching, models that ap-
proximate~part of! the switching process have been devel-
oped in the past.5 Some models6,7 consist of a set of physics-
based operation equations to be evaluated by means of
mathematical software. Other, so-called behavioral
models8–11 translate experimentally observed ferroelectric
switching behavior into an equivalent circuit for device
simulation. Here, we present a model that combines a phe-
nomenological equivalent circuit with physics-based opera-
tion equations. Programmed by means of SPICE-derived
device-simulation software,12 the model is compact and re-

quires minimal mathematical efforts. As examples we will
show that the model can be used to reproduce the electrical
characteristics of a ferroelectric capacitor and of a FEMFET.

II. CHARGE-DISPLACEMENT MODEL

In this section we explain the conceptual origin of our
compact model for ferroelectric switching. It starts with the
observation that the movement of charge in a material is
partly accompanied by energy dissipation and partly dissipa-
tionless. For example, the polarization of core electronic
states is dissipationless, while the hopping of free carriers or
migration of ions involves the dissipation of energy. In a
one-dimensional model the dissipationless charge movement
is described by a serial arrangement of capacitors@Fig. 1~a!#.
Nodal point i between capacitorsCi 11 and Ci defines the
electrostatic potential Vi at point xi . The displaced charge
per unit areaQi displaced in capacitorCi depends on the
drop of electrostatic potentialVi2Vi 21.

Dissipative charge transport of particles of speciess
~e.g., electrons! is described by a serial arrangement of resis-
tors @Fig. 1~b!#. At the nodal pointsi s the electrochemical
potential Vi

s of speciess at positionxi is defined, assuming
local thermal equilibrium. The current flowing through resis-
tor Ri

s depends on the local drop of electrochemical potential
Vi

s2Vi 21
s . The channel for dissipative transport of speciess

(Ri
s) is coupled to the electrostatic backbone (Ci) when spe-

ciess carries electrical charge. The coupling strength—in our
model given byCi

DOS,s—is proportional to the local density
of states per unit energy@see Fig. 1~c!#.13,14 For unit-charge
particlesCi

DOS,s5e23DOSs , where DOSs is the density of
states for speciess ~units m23J21).

The equation describing the charge displaced in capaci-
tors and the current flowing through resistors can be a linear
as well as nonlinear function of the potentials, depending on
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the physical equations governing the charge movement. If
more than one species is being transported, the model con-
sists of parallel channelss that all link to the electrostatic
channel~the backbone! at nodal pointsi s with DOS capaci-
tors Ci

DOS,s . In the following section we will explain how
these principles can lead to a compact equivalent-circuit
model of ferroelectric material.

III. FERROELECTRIC MODEL

Ferroelectric materials are characterized by bistable
charge-displacement characteristics. The bistability is gener-
ally caused by off-centered ions in the atomic unit cell each
of which can flip from one off-center position to the other
when it has sufficient energy to overcome the energy barrier
in between the two positions.15 Thus, in its simplest form,
the charge displacement in ferroelectric material involves the
dissipative transport of one species of charge~i.e., ions!
within the atomic unit cells. In Fig. 2 we propose a system of
ferroelectric model units that represent atomic unit cells. The
dissipative movement of ionic charge within uniti is mod-
eled by resistorRi . The ions cannot cross the unit-cell
boundaries; the interaction with neighboring cells is of an
electrostatic nature only, so that the channel of dissipative
transport~the serial arrangement ofRis! is interrupted in be-
tween the ferroelectric units. The coupling between the
movement of ions and the local electrostatic potential is de-
scribed by capacitorsCi8

DOS,ion andCi
DOS,ion. Because of the

inability of ions to cross the unit-cell boundaries, we use two
of such DOS capacitors for one nodal pointi while in Fig. 1
a single capacitor is used. It is a general property of ferro-

electric materials that the polarization stabilizes at high ap-
plied electric field, so that the DOS capacitors are of a satu-
rating nature. A bistable system is created when the resistors
Ri have a strongly nonlinear current–voltage characteristic.
An isolated unit of Fig. 2 allows for parallel transport of
charge through the capacitor describing electrostatic charge
displacement (Ci) and through the serial arrangement of two
nonlinear capacitors (Ci8

DOS,ion andCi
DOS,ion! and a nonlinear

resistor (Ri). This arrangement is summarized in Fig. 3,
whereRi is denoted asRFE and Ci8

DOS,ion and Ci
DOS,ion are

represented byCFE. The voltage acrossRFE is given byV1,
the voltage acrossCFE by V2. CapacitorCi is denoted as
Cdiel . This set is summarized by the symbol on the right, a
ferroelectric capacitor with voltage dropVFE5V11V2.

Next we will choose functionalities for the three compo-
nents of the ferroelectric model unit. This choice will involve
smooth~analog! charge-displacement and energy-dissipation
characteristics, although in principle the polarization states
of a single atomic unit cell are discrete. In our model the
smooth curves represent the average displacement; this aver-
age is the same for time averaging or ensemble averaging.
CapacitorCdiel is a linear dielectric capacitor. We base our
choice for the functionality ofRFE on the picture of bistable
ions flipping at a threshold field. Thus, the switching current
throughRFE should rapidly increase foruV1u above a thresh-
old valueVa (Va.0). As an example, we take

FIG. 1. Equivalent-circuit model of dissipationless~a! and dissipative~b!
charge movement along a direction designated as thex direction. At x5xi

an electrostatic potentialVi is defined at nodei and an electrochemical
potentialVi

s at nodei s for every speciess of moving charge. The two types
of charge-movement channels~a! and ~b! are combined in panel~c!. The
capacitorsCi

DOS,s relate to the local density ofs-particle states in the mate-
rial. When using this circuit to describe a one-dimensional system, the unit
of Ci andCi

DOS,s is Farad. For a three-dimensional system the unit is F/m2.

FIG. 2. Equivalent circuit for the ferroelectric-type movement of a single
species of~ionic! charge.Ri describes dissipative charge movement. The
capacitorsCi

DOS,ionandCi8
DOS,iondefine how this movement affects the local

electrostatic potential. Dissipationless charge displacement is modeled by
capacitorCi .

FIG. 3. Equivalent-circuit model for the charge displacement and energy
dissipation in ferroelectric material, based on the model unit of Fig. 2. The
two DOS capacitors are combined inCFE while the dissipative-charge dis-
placement resistor is denoted asRFE . Both components are nonlinear. Elec-
trostatic charge displacement is modeled by a linear dielectric capacitor,
denoted asCdiel ~cf. Fig. 2!. The circuit is summarized by the hysteretic
capacitor shown on the right.
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RFE: I FE5I 0•

sinhS V1

aVa
D

sinhS 1

a D . ~1a!

I 0 is a normalization parameter. Parametera ~a.0! controls
the abruptness of ferroelectric switching atV156Va . In
casea is very close to zero, charge transport throughRFE can
only occur ifV1 equals6Va , so that the charge displaced in
the ferroelectric cell is given byQFE(VFE)5QFE(V26Va).
Consequently, the simulated hysteresis loop consists of two
QFE(V2) loops shifted along the voltage axis by6Va . For
larger values ofa the transport of charge throughRFE also
occurs for voltages that deviate from6Va ; this phenom-
enon corresponds to ferroelectric depolarization. For the
functionality of CFE we choose

CFE: QFE5sign~V2!3QSAT3tanhS uV2un

2d D , ~1b!

d5
Va

n

lnS 11QR /QSAT

12QR /QSAT
D . ~1c!

These expressions stem from Miller’s model equations of
ferroelectric capacitors6 and their specific form is chosen for
mathematical convenience and applicability to the experi-
mental data of Sec. IV.QSAT represents the saturation value
of the ferroelectric charge displacement andQR the value at
V25Va . An idealized, square hysteresis loop hasn'0 and
a'0 with Va equal to the coercive voltage andQR to the
remnant polarization. For larger values ofa, the hysteresis
loop deviates from the shape ofQFE(V2) and the apparent
coercive voltage and remnant polarization are no longer
equal toVa andQR , respectively. Such deviations also occur
when increasing the time needed for measuring one hyster-
esis loop~so, by decreasing the sweep frequency!.

IV. SIMULATION RESULTS

A. Ferroelectric capacitor

In Fig. 4~a! experimental data are shown of a ferroelec-
tric capacitor. Figure 4~b! presents a simulation for the serial
arrangement of a nonlinear resistor (RFE) and a nonlinear
capacitor (CFE), neglecting the dielectric contribution (Cdiel

50). This is to show that the serial arrangement of these two
components gives rise to hysteresis behavior with a nonzero
coercive voltage, a nonzero remnant polarization, and to a
saturating behavior at high applied voltages. The addition of
the dielectric contribution@Fig. 4~c!# reproduces the experi-
mentally observed characteristic. The sharpness of the
switching-current onset atV156Va , described by param-
etera, is closely related to the retention of ferroelectric po-
larization in the absence of an external electric field (VFE

50): low values ofa relate to material that retains its po-
larization effectively, high values give depolarization in
time. This is illustrated in the retention graph of Fig. 5,
where the decrease of polarization is shown for our model
ferroelectric unit atVFE50 over 16 time decades.

FIG. 4. ~a! Schematic cross section of the ferroelectric capacitors studied
and an experimental charge-displacement characteristic. The dielectric con-
tribution to the charge displacement is accentuated by two dotted lines. The
experimental graph was obtained on a capacitor of 180mm ceramic
PbZr0.5Ti0.5O3 measured in a Sawyer–Tower~see Ref. 16! circuit at a
sweeping frequency of 100 Hz.~b! Equivalent-circuit model of a ferroelec-
tric capacitor and typical results of a simulation using this model without
electrostatic charge displacement (Cdiel50) andn51; a50.02. ~c! Model
circuit including electrostatic charge displacement. The model is used to fit
the charge displacement characteristics of panel~a!. Experiment: solid line;
simulation: dotted line. Model-parametersa 5 0.02; n50.5; Va5130 V;
QR50.28; QSAT50.35; Cdiel5331024 F/m2; I 0543103 A/m2; sweep
frequency 100 Hz.

FIG. 5. Simulated time evolution of the ferroelectric charge displacement
(Q5Q0 at zero time;QR,Q0,QSAT) . Recorded withVFE50. The model
circuit is that of Fig. 3. Note the very rapid partial depolarization between
t50 and 1 ns. In this period, the system relaxes towards the remnant situa-
tion, Q5QR . For smaller values ofa, this initial depolarization becomes
more pronounced.
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$The influence ofa on theQ(VFE) graphs is particularly
notable for voltage sweeps with an amplitude that is insuffi-
cient to drive the ferroelectric polarization into saturation, so
-called inner hysteresis loops or subsaturation loops. Figure
6~a! shows a set of experimentalQ–V curves including sub-
saturation loops. The loops have a dissimilar derivative
dQFE/dVFE for givenVFE ~the experimental observation that
this derivative is similar among different subsaturated loops
is described for example in Ref. 6!. In fact, for simulations
with a low value fora andCdiel50 @Fig. 6~b!#, the derivative
is either that of the outer loop or zero. This is due to the fact
that no charge is being displaced when the voltage across
RFE is lower thanVa . When aCdiel.0 is added, the zero-
derivative sections turn into sections with a~constant! de-
rivative equal toCdiel ~not shown!. The correspondence with
the experimental results, especially in those sections, is im-
proved when two dissimilar model units are combined as can
be appreciated from Fig. 6~c! in which two units with a dif-
ferent value ofa are combined. Possibly, nonuniformities in
the material and effects like domain-wall movement and pin-
ning generate the need for dissimilar model units. The use of
two a-modules also results in two decay characteristics in
the retention graph, one giving rise to fast decay of the po-
larization ~a50.2! and one relating to a more slowly
decaying component~a50.02!. We note that the data of
Teowee and co-workers17 for Ti/Pb~Zr,Ti!O3/Pt and

Ti/Pb~Zr,Ti!O3/Zn capacitors are similar to the retention
simulations of Fig. 6~c!. The origin of the complex decay
behavior may be the presence of nonuniform fields inside the
capacitor~e.g. due a space-charge region near the interface
or due to nonswitching layers! or structural inhomogeneities.
The influence of depolarization in time is also seen when the
measurement of a hysteresis loop is performed more slowly,
resulting in a decrease of the apparent coercive voltage and a
decrease of the apparent remnant polarization for decreasing
sweep frequencies. This well-known property of ferroelec-
trics is reproduced by our simulations as well~not shown!.

B. Ferroelectric transistor

We will next describe how a thin-film ferroelectric field-
effect transistor, shown in Fig. 7 and described in detail in
Ref. 3, can be simulated with a compact equivalent-circuit
model such as shown in Fig. 1. We treat the case of small
source-drain voltages, so that we only need to derive the
equations for charge displacement in the ferroelectric mate-
rial and the semiconductor layer along the normal of the
semiconductor/ferroelectric interface~i.e., along thex axis!.
For the ferroelectric gate insulator we use the model of Fig.
4~c!. A description of the band bending and charge
accumulation/depletion in the semiconductor layer of thick-
nesst must satisfy the Poisson equation18

]2F

]x2 5
r~x!

e
. ~2!

eF(x)5Ec(x)—EF denotes the position of the conduction
band edge (Ec) with respect to the Fermi level (EF), r(x)
the associated charge density, ande the dielectric constant of
the semiconductor. We base our equivalent-circuit descrip-
tion of the n-type semiconducting material on the general
model of Fig. 1~c!. One moving charge species is involved,
viz. electrons. No current is flowing in thex direction, so that
the resistors in the electrochemical channel can be replaced
by shorts. The nodal pointsi s are at zero electrochemical
potential, corresponding to the Fermi level of the semicon-
ductor material. This yields the model displayed in Fig. 8~a!.
Parametert is the thickness of the thin-film semiconducting
layer. As is shown explicitly in the Appendix, the array

FIG. 6. ~a! Left: Schematic cross section of the ferroelectric capacitors
studied. Right: charge-displacement characteristics including subsaturated
hysteresis loops.~b! Left: equivalent-circuit model of a ferroelectric capaci-
tor. Right: simulation results of~sub!saturated hysteresis loops fora50.02,
n51, andCdiel50. ~c! Two ferroelectric modules with differenta-values
~n51! and simulation results.

FIG. 7. Schematic cross section of a field-effect transistor with a ferroelec-
tric insulator.
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solves Poisson’s equation forN equidistant pointsxi when
we define forQi ~on Ci! andQi

DOS,e ~on Ci
DOS,e)

Qi5
e

Dx
•@F~xi !2F~xi 21!#, ~3a!

Qi
DOS,e52eDxE

2`

`

f ~E!D~E2eF~xi !!dE1q0 , ~3b!

with f (E) the Fermi-Dirac distribution function andD(E)
the density of electron states~in m23J21! in the semiconduc-
tor. Parameterq0 ensures charge neutrality for zero gate–
voltage. Since we are using a degenerately doped semicon-
ductor material19 we chooseq0 such that the Fermi level
lines up with the conduction band edge atF50. We assumed
that the influence of the source-drain voltage on the band
bending is negligible, so that we can approximate the source-
drain conductivity~s! by counting the electrons in states
above the conduction band edge (ncond) and calculating
s(x)5ncond(x)3e3m @see Fig. 8~b!#

s~x!5emE
eF~x!

`

f ~E!D~E2eF~x!!dE, ~4!

for n-type conduction with electron mobilitym. We assume
that the conduction band shape is parabolic, i.e.,D(E);(E
2Ec)

21/2.20 To model the grain boundaries in the polycrys-
talline semiconductor material a constant density of grain-
boundary states (Dgr(E)5Dgr for all energies! is added to
the DOS. Grain-boundary states with an energy inside the
semiconductor energy gap are assumed to have zero mobil-
ity; states above the gap are assumed to be part of the con-
duction band. The sheet conductance~G! of the transistor
finally follows from

G5E
0

t

s~x!dx'(
0

N

s~xi !Dx. ~5!

This summation is performed by an array of resistors, see
Fig. 8~b!, each having a conductance equal tos(xi)Dx.

So far, the model does not take into account charge in-
jection into the insulating layer, which may occur in the pres-
ence of high electric fields. In our device the charge displace-
ment is of the order of 0.1 C/m2, which gives rise to electric
fields of the order of 109 V/m at the semiconductor/
ferroelectric interface. These very high fields are expected to
yield charge injection into localized states near the interface
~see Ref. 21 for a discussion on charge injection into ferro-
electric material!. This effect modifies the transistor charac-
teristics. The injected charge is localized and does not con-
tribute to conduction along the semiconducting channel.
Furthermore, the process of charge trapping and detrapping
causes hysteresis in the conductance of the source-drain
channel as a function of the displaced charge in the gate
insulator. We model the interfacial trapping region by an
interfacial insulating layer of thicknesst inter ~see Fig. 9!. The
local density of trap states across the interfacial layer is de-
scribed by capacitanceCtrap ~unit F/m2!. Since the interfacial
layer is an insulator the capacitors describing the density of
nontrapped states may be neglected in this region.Rtrap con-
trols the threshold behavior and rate of trapping/detrapping
of charge carriers, in a similar fashion asRFE does in our
ferroelectric model unit. We choose for the functionality of
Rtrap expression~1a! in which fit-parametera is replaced by
b, and switching-thresholdVa by trap/release-thresholdVb .
To model the complete ferroelectric field-effect transistor, a
single ferroelectric module22 is connected to the interfacial
region as shown in Fig. 9.

Let us now compare the experimental results@Fig. 10~a!#
to our simulation results from the ferroelectric/
semiconductor model@Fig. 10~b!#. The charge displacement
curves~a1 and b1! have an apparent coercive voltage of 2 V.
This voltage results from the coercivity of the ferroelectric
layer and the coercivity of the charge trapping across the
interfacial layer. The apparent remnant polarization~;0.08
C/m2! is a factor of two smaller than the value ofQR . This
reduction is caused by the band bending in the semiconduc-
tor layer, giving a partial depolarization of the ferroelectric
material at zero externally applied voltage~see for example
Ref. 3!. The sense of rotation of the transfer characteristic
~panels a2 and b2! indicates what mechanism determines the
memory effect in the semiconductor layer. When the ferro-
electric polarization dominates, the sign of the induced
charge in the semiconductor upon voltage application is the
same as the sign of the remnant charge when the voltage is

FIG. 8. Equivalent-circuit model of~a! the charge displacement in thex
direction, and~b! the source-drain current as a function ofx in the semicon-
ducting layer of thicknesst. VoltageVSD5VS2VD is applied on the channel
electrodes, whileeF(xi) is the conduction-band bending in the semiconduc-
tor ~in units of eV! at x5xi . The band bending is calculated forN points
from x050 to xN5t. The local source-drain conductivity is denoted as
s(xi).

FIG. 9. As Fig. 8~a!, with added elements to account for trapping sites,
which are assumed to be especially significant near the ferroelectric/
semiconductor interface~x50!. The dielectric capacitance of the interface
regionCinter equalse inter /t inter .
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removed~counter-clockwise rotation!. When charge injec-
tion is the dominant memory mechanism, the sign of the
charge induced by voltage application is opposite to the sign
of the remnant charge~clockwise rotation!. The counter-
clockwise sense of rotation of our transfer characteristic
proves that the memory effect is dominated by ferroelectric
charge displacement and that charge injection is of minor
importance.3 At gate–voltages below22 V the experimental
transfer characteristic shows a higher current than the simu-
lated curve due to the presence of a gate leakage current,
which has not been included in the model. At the outer ends
~for voltages higher than 3 V, and in the simulation also for
voltages lower than23 V! we find that the transfer charac-
teristics show small loops. These loops point to the injection

of charge into the interfacial layer between the semiconduc-
tor and the ferroelectric material.

In panels a3 and b3, theQ–VG and I D –VG curves are
combined to a curve of the conductance of the source-drain
channel~G! versus the charge density displaced in the gate
insulator. The slope of theG–Q curve in the high-
conductivity ~or accumulation! regime determines the elec-
tron mobility in the semiconducting channel; the deduced
value ~1.331024 m2/Vs) is in agreement with measure-
ments of the Hall mobility in the same material.19 The slope
of the G–Q curve at low conductivity~depletion or sub-
threshold regime! is given by the density of grain statesDgr

and the effective semiconductor layer thicknessteff . These
parameters cannot be deduced independently from the mea-
sured curve. However, the semiconductor band bending re-
quired for the displacement of a given amount of charge
increases for increasingteff ; because the band bending in the
semiconductor should be smaller than the applied gate volt-
age minus the voltage required for ferroelectric switching,
we can deduce an upper limit forteff ~so also a lower limit
for Dgr!. The deduced value is about 2.5 nm, which is of the
same order as the Fermi wavelength of the charge carriers19

and smaller than the nominal thickness of 10 nm. We at-
tribute this difference to the granular nature of the semicon-
ducting material19 and to depletion effects near the
semiconductor/capping interface. The fact that several na-
nometers of the film thickness do not contribute to the con-
duction is in agreement with our experience that laser-
ablated thin films of SnO2 with a nominal thickness below 10
nm show a strongly reduced conductivity compared to films
of only slightly larger thickness. The fitted value of the den-
sity of grain-boundary states is 8.53107 F/m3, correspond-
ing to a state density of 1.831020 cm23.25 This value is in
the expected range for polycrystalline material.26,19 Finally,
we observe hysteresis in panels a3 and b3 with a clockwise
sense of rotation. This is caused by charge trapping in the
interfacial layer between the semiconductor and the ferro-
electric material. From comparison of experimental and
simulation results, no precise value forCtrap could be con-
cluded. The similarity between theG–VG-curves for both
sweep directions suggests that charge injection into the trap-
ping layer occurs only at high gate voltages. Due to leakage
currents in the same regime, it is difficult to estimate values
for Vb , I b , and Ctrap. Thus, we have chosen them as to
yield a sharp transition from zero trapping to complete trap-
ping of all additional charges whenuVGu;3 V, indicated for
example in panel b3 of Fig. 10.

V. SUMMARY AND DISCUSSION

This article describes a model for the electrical switching
characteristics of ferroelectric material in devices such as
capacitors and field-effect transistors. The model is based on
a compact modeling concept of charge displacement as a
function of position in a material, distinguishing dissipative
and dissipationless currents. Dissipative transport is de-
scribed by a channel of resistors; the current that flows

FIG. 10. Experimental graphs~a! and simulation results~b!. Panel a1 and b1
show ferroelectric-type charge displacement per unit area~Q! inside a FEM-
FET channel as a function of gate–voltage (VG). Panels a2 and b2 show the
transistor transfer characteristics~drain-currentI D vs VG!. The source is at
zero potential andVD51 V. The curves are combined in panels a3 and b3,
showing the semiconductor sheet-conductance~G! vs Q for the measured
data and simulation, respectively. The simulation curves were
obtained with the following model parameters:Va52.2 V,
I a5104 A/m2, a50.02, Qsat50.22 C/m2, n50.4, QR50.17 C/m2,
Cdiet50.02 F/m2, e r510, m51.331024 m2/V s, Dgr58.53107 F/m3,
teff 52.5 nm, t inter,5 nm, e inter 550 e0 , Vb51.3 V, I b51 A/m2;
b50.01, Ctrap51 F/m2, andN531. Note the hysteresis inG due to trap-
ping. Gate leakage currents dominate the conductance at negative gate volt-
ages (VG,22 V!. The experimental graphs were obtained on a thin-film
transistor with a 144 nm PbZr0.8Ti0.2O3 ferroelectric layer and a 15 nm-
polycrystalline SnO2 layer, doped with 431019 cm23 Sb forming the tran-
sistor channel, passivated by a capping layer of 10 nm BaZrO3. Panel 1a was
determined with a Sawyer–Tower circuit~See Ref. 16! swept at 100 Hz.
More details on the transistor fabrication can be found elsewhere~see Refs.
2, 3, 23, and 24!.
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through the resistors depends on the drop of electrochemical
potential inside the material. The dissipationless transport
occurs in a channel of capacitors across which a drop of the
electrostatic potential is present. The two channels are
coupled by capacitors that relate to the local DOS inside the
material. The model is used to derive a resistor/capacitor unit
that reproduces the ferroelectric switching behavior of an
atomic unit cell~Fig. 3!. A serial arrangement of a capacitor
of saturating nature and a resistor with an exponential
current–voltage behavior yields ferroelectric-type charge-
displacement characteristics. Important in this model unit is
the degree of nonlinearity of the resistor~described by pa-
rametera! which determines the sharpness of the onset of
switching and the time-dependent depolarization of the ma-
terial. A combination of fast and more slowly decaying po-
larization components~experimentally observed in Ref. 17
for example! can be simulated by utilizing multiple model
units with differing values fora. Good agreement is obtained
between experimental characteristics~i.e., charge displace-
ment and transfer characteristics! of ferroelectric thin-film
transistors and simulations based on our ferroelectric model
combined with a model for the semiconductor and for the
ferroelectric/semiconductor interface. The latter two models
are derived from the same modeling concept that generated
the ferroelectric unit. Charge displacement in the semicon-
ductor channel is calculated along one dimension, sufficient
to describe the linear regime of transistor operation (VSD

!VG). The model can be straightforwardly extended to de-
scribe displacements in two or three dimensions by extend-
ing the network of Fig. 1. From the comparison between
experiment and our model we conclude that at the most 25%
of the nominal 10 nm thickness of the SnO2:Sb layer~the
transistor channel! is conductive. This we attribute to the
granularity of and depletion effects in the semiconductor thin
film.

In this work we have developed models describing
ferroelectric-type, semiconductor-type, and injection-type
charge displacement from a single concept model. This
model takes into account fundamental material parameters
such as the intrinsic DOS, the dielectric behavior, and dissi-
pative charge transport. Therefore, it appears to be a versatile
vehicle for modeling a variety of materials. Inhomogeneities
in the material call for dissimilar model units to be connected
to each other. As an example, several model units placed in
a matrix will allow the study of multicell ordering phenom-
ena such as ferroelectric domain wall movement. The exis-
tence of inhomogeneities does in principle endanger the
compactness of the model. This situation occurs in highly
disordered systems where charge transport is determined for
example by percolation~the principle of which is a random
matrix of dissimilar resistors27! or by variable-range
hopping.28 When sufficiently compact units can be defined,
as in the case of our ferroelectric devices, compact modeling
can be of great importance to simulate the behavior of the
devices when embedded in larger electronic circuits, like for
example in sensor systems or in memory chips.
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APPENDIX: THE CHARGE-DISPLACEMENT MODEL
SOLVING POISSON’S EQUATION

Referring to Fig. 8, charge conservation yields

@F~xi !2F~xi 11!#3Ci 111@F~xi !2F~xi 21!#

3Ci1F~xi !Ci
DOS50. ~A!

From ~3b! we have

F~xi !Ci
DOS5r~xi !Dx ~B!

so that

2F~xi 21!12F~xi !2F~xi 11!

Dx2 52
r~xi !

CiDx
. ~C!

Here, the left-hand side corresponds to minus the second
derivative of F(x) at x5xi . Ci is defined by Eq.~3a! as
e/Dx so that Eq.~C! yields a discretization of the Poisson
equation, Eq.~2!.
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