

University of Groningen

Novel zwitterionic diallylzirconium complexes: Synthesis, structure, polymerization activity, and deactivation pathways

Pindado, G.J.; ThorntonPett, M.; Bouwkamp, M.W.; Meetsma, A.; Hessen, B.; Bochmann, M.

Angewandte Chemie-International Edition in English

10.1002/anie.199723581

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date:

1997

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Pindado, G. J., ThorntonPett, M., Bouwkamp, M. W., Meetsma, A., Hessen, B., & Bochmann, M. (1997). Novel zwitterionic diallylzirconium complexes: Synthesis, structure, polymerization activity, and deactivation pathways. Angewandte Chemie-International Edition in English, 36(21), 2358-2361. DOI: 10.1002/anie.199723581

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

Without interstate mixing the conjugate does not function as a phototropic assembly, and absorbed photons are converted into heat within about 50 ps. Interstate mixing extends the overall timescale for charge recombination to about 40 µs, but the phototropic process itself continues for milliseconds. This is because diffusional charge recombination occurs between separated π radical cations, and is followed by slower reinsertion of the dication into the receptor (see Figure 1). In contrast to the case with MV·2PF₆, where the acceptor is nonfluorescent and separation of the RIP is minimal, formation of free DAP-2PF₆ as a transitory species can be followed by fluorescence spectroscopy using two-color (or delayed pulse) excitation. Background fluorescence, being set by the amount of free DAP-2PF₆, can be suppressed with excess CE10, while the rate of reinsertion of DAP-2PF₆ into the cavity is solvent-dependent. Similar behavior is found for ADIQ-2PF₆, but the level of background fluorescence is too high for practical application. With complex 1, however, laser-induced fluorescence selectively tracks the evolution and disappearance of free diazapyrenium dications.

Experimental Section

DAP-2PF₆ [11] and CE10 [17] were prepared by literature methods. ADIQ-2PF₆ was available from earlier work [11]. All compounds gave satisfactory analytical data that were consistent with their assigned structures. Fast kinetic measurements were made with nanosecond and sub-picosecond laser flash photolysis equipment, built for this purpose, similar to that described previously [11]. The excitation wavelength was 440 nm. Decay kinetics were obtained by collecting transient differential absorption spectral profiles at about 50 delay times. Binding constants were determined by fluorescence spectroscopy with about 50 different concentrations of crown ether being added to a solution of fluorophore in acetonitrile.

X-ray structure analysis of 1: $C_{48}H_{54}F_{12}N_3O_{10}P_2$, $M_r = 1122.88$, yellow prisms, $0.15 \times 0.20 \times 0.45$ mm, measured at 293(2) K; triclinic, P1, a = 11.284(2), b =11.211(2), c = 12.043(2) Å, $\alpha = 99.95(3)$, $\boldsymbol{b} = 106.28(3)$, $\boldsymbol{g} = 107.15(3)^{\circ}$, V = 10.043(2)1342(4) Å³. $\mathbf{r}_{calcd} = 1.389 \text{ mgm}^{-3}$, Enraf-Nonius CAD-4 diffractometer, $Mo_{K\alpha}$ radiation (I = 0.71069 Å), $m = 0.179 \text{ mm}^{-1}$, w/2q scan, $2q \le 60^{\circ}$; of 7524 reflections measured, 6509 were independent; y-scan absorption correction, $T_{\min} = 0.94$, $T_{\max} = 0.94$ 1.00. The structure was solved with direct methods (SHELXS-86), and refined on F^2 (SHELXL-93; non-hydrogen atoms, except disordered F atoms, were refined anisotropically, and H atoms at calculated positions in riding mode). $R_1 = 0.0959$ for 6494 reflections $(F_0 \ge 4s(F))$, $wR_2 = 0.2949$ for all data, GOF = 1.0086, 330 parameters. $\Delta r_{\text{max}} = 1.042 \text{ eÅ}^{-3}$ in the vicinity of a severely disordered solvent molecule. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no CCDC-100 343. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax int. code +(1223) 336-033; e-mail: deposit@chemcrys.cam.ac.uk).

> Received: May 28, 1997 [Z 10407 IE] German version: *Angew. Chem.* **1997**, *109*, 2451-2454

Keywords: charge transfer \cdot crown compounds \cdot fluorescence spectroscopy \cdot Photochemistry \cdot polycycles

- a) A. C. Benniston, A. Harriman, Angew. Chem. 1993, 105, 1553-1555; Angew.
 Chem. Int. Ed. Engl. 1993, 32, 1459-1461; b) A. C. Benniston, Chem. Soc. Rev. 1996, 25, 427-435.
- [2] M. Seiler, H. Dürr, *Liebies Ann.* **1995**, 407-409.
- [3] R. Ballardini, V. Balzani, M. T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H. G. Ricketts, J. F. Stoddart, Angew. Chem. 1993, 105, 1362-1364; Angew. Chem. Int. Ed. Engl. 1993, 32, 1301-1304.
- [4] A. C. Benniston, A. Harriman, V. M. Lynch, J. Am. Chem. Soc. 1995, 117, 5279-5291.
- [5] a) A. C. Benniston, A. Harriman, D. Philp, J. F. Stoddart, J. Am. Chem. Soc. 1993, 115, 5298-5299; b) A. C. Benniston, A. Harriman, ibid. 1994, 116, 11531-11537.
- [6] J. N. Murrell, J. Am. Chem. Soc. 1969, 81, 5037-5043.
- [7] M. Bixon, J. Jortner, J. W. Verhoeven, J. Am. Chem. Soc. 1994, 116, 7349-7355.
- [8] a) I. R. Gould, J. E. Moser, D. Ege, S. Farid, J. Am. Chem. Soc. 1988, 110, 1991-1993; b) A. M. Brun, A. Harriman, S. M. Hubig, J. Phys. Chem. 1992, 96, 254-257.
- [9] A. C. Benniston, V. Grosshenny, A. Harriman, R. Ziessel, Angew. Chem. 1994, 106, 1956-1957; Angew. Chem. Int. Ed. Engl. 1994, 33, 1884-1885.
- [10] A. C. Benniston, A. Harriman in NATO ARW Physical Supramolecular Chemistry (Eds.: A. E. Kaifer, L. Echegoven), in press.

- [11] A. M. Brun, A. Harriman, J. Am. Chem. Soc. 1991, 113, 8153-8159.
- [12] P. R. Ashton, S. J. Langford, N. Spencer, J. F. Stoddart, A. J. P. White, D. J. Williams, *Chem. Commun.* 1996, 1387-1388.
- [13] B. L. Allwood, N. Spencer, H. Shahriari-Zavareh, J. F. Stoddart, D. J. Williams, J. Chem. Soc. Chem. Commun. 1987, 1064-1066.
- [14] S. Khazaeil, A. I. Popov, J. L. Dye, J. Phys. Chem. 1983, 87, 1832-1833.
- [15] Complexation of higher order causes a slight curvature of the plateau region at high mole fractions of CE10. Such behavior is not seen in the mass-spectral studies. Formation of a 1:1 complex for ADIQ·2PF₆ in [D₆]acetone causes upfield shifts of -0.15, -0.13, and -0.022 ppm for the α, b, d protons, respectively. Formation of a 1:2 complex causes further upfield shifts of -0.083 (α), -0.070 (b), and -0.012 ppm (d). Both complexes are observed by FAB mass spectrometry in acetonitrile.
- [16] These energy gaps, which are crudely estimated from absorption maxima of the lowest-energy π-π* transition localized on the acceptor and the CT transition are 1.6, 0.15, and -0.3 eV for MV·2PF₆, DAP·2PF₆, and ADIQ·2PF₆, respectively. For the latter, the CT band lies at higher energy than the lowest-energy π-π* transition.
- [17] P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 193-218.

Novel Zwitterionic Diallylzirconium Complexes: Synthesis, Structure, Polymerization Activity, and Deactivation Pathways**

Gerardo Jiménez Pindado, Mark Thornton-Pett, Marco Bouwkamp, Auke Meetsma, Bart Hessen,* and Manfred Bochmann*

Group 4 metallocene complexes are becoming increasingly important as "single-site" catalysts for the polymerization of α-olefins,^[1] and the number of industrial processes based on Cp complexes is growing rapidly. [2] The catalytically active species are electron-deficient complexes of the type $[Cp_2MR]^+$ (M = Ti,Zr, Hf), which are usually generated in situ by reacting a neutral metal alkyl complex with cation-generating activators such as methylaluminoxane (MAO) or, in aluminum-free systems, $M^{+}[B(C_{6}F_{5})_{4}]^{-}$ (M = HNMe₂Ph, CPh₃), to give ion pairs $[Cp_{2}MR]^{+}X^{-}$ [X = Me-MAO, $B(C_{6}F_{5})_{4}$]. Zwitterionic complexes such as $[Cp*_2Zr(m-C_6H_3Et)B(C_6H_4Et)_3]$, $[Cp_2ZrMe-C_6H_3Et)B(C_6H_4Et)_3]$ $(\mathbf{m} \cdot Me)B(C_6F_5)_3], [Cp*TiMe_2(\mathbf{m} \cdot Me)B(C_6F_5)_3] (Cp* = tetra$ methylcyclopentadienyl), [Zr(CH₂Ph)₃(**h**-Ph)BPh₃], and [Zr- $(CH_2Ph)_3(h^6-PhCH_2)B(C_6F_5)_3]$ have proved to be useful catalyst precursors; [3-7] here the active species is generated by dissociation into ion pairs. More recently Erker et al. prepared zwitterionic allylic complexes $[Cp_2M(\mathbf{h}^3-C_3H_4CH_2)B(C_6F_5)_3]$ by treating zirconocene and hafnocene butadiene complexes with $B(C_6F_5)_3$. These compounds are less electron-deficient than the alkyl complexes mentioned above and achieve an electron count of 18 through a weak Zr-F coordination. [8]

Structural and catalytic studies have so far mainly concentrated on the chemistry of highly reactive 14-electron alkyl complexes $[CP_2MMe]^+$ (M = Ti, Zr, Hf). The isoelectronic cationic

Department of Chemistry, University of Groningen Nijenborgh 4, NL-9747 AG Groningen (The Netherlands) e-mail hessen@chem.rug.nl

[**] This work was supported by the Engineering and Physical Sciences Research Council. G. J. P. thanks the Science and Education Ministry of Spain for a research fellowship.

^[*] Prof. Dr. M. Bochmann, Dr. G. Jiménez Pindado, Dr. M. Thornton-Pett School of Chemistry, University of Leeds Leeds LS2 9JT (UK) Fax: Int. code +(113) 233 6401 e-mail M.Bochmann@chem.leeds.ac.uk Dr. B. Hessen, M. Bouwkamp, Dr. A. Meetsma

diallyl complexes of the type $[CpM(h^3-allyl)_2]^+$ should exhibit a similarly promising reactivity. We describe here the synthesis, catalytic activity, and structural characterization of the first zwitterionic diallylzirconium complexes. The ability of these species to undergo unusually facile C-H activation illustrates the remarkable difference in reactivity between mono-Cp $\left[\text{CpM}(\text{allyl})_2\right]^+$ ions and the more familiar metallocene analogues $[Cp_2MR]^+$ (R = alkyl, allyl).

Treatment of a solution of $[Cp"Zr(\mathbf{h}^3-C_3H_5)\{\mathbf{h}^4-CH_2C(Me)-\mathbf{h}^4-CH_2C(Me)\}$ $C(Me)CH_2$ (1a) $[Cp" = 1,3-(SiMe_3)_2C_5H_3]$ in toluene with B(C₆F₅)₃ at -78 °C leads to a color change from red to orange. Monitoring this reaction by NMR spectroscopy in CD₂Cl₂ between -70 and 20 °C reveals the formation of a single chiral complex; seven ¹H NMR resonances for allylic ligands (five from the h^3 -C₃H₅ ligand, two from the h^3 -dienyl unit) appear together with two broadened doublets for the -CH₂-B moiety at d = -0.33 and -1.78 (Table 1). These data are consistent with an attack by B(C₆F₅)₃ exclusively on one of the terminal carbon atoms of the diene ligand to give the zwitterionic diallyl complex 2a [Eq. (a)]. The unusually high-field shifted ¹H NMR reso-

1b, $R_n = 1,3$ -(SiMe₃)₂; Y = Me, Z = H

1c, $R_n = Me_5$; Y = Me, Z = H

nances for the CH₂-B moiety suggest possible C-H · · · Zr bonding.

The ¹¹B NMR singlet of **2a** at d = -12.0 confirms the forma-

tion of a triarylborate. The ¹⁹F NMR spectrum shows six resonances for the ortho-F atoms of three inequivalent C₆F₅ groups, whose rotation about the B-C₆ and B-CH₂ bonds is evidently highly hindered. All six o-F signals have chemical shifts between d = -129 and -135 and remain unchanged on cooling to -85 °C; a high-field shift of one of the o-F signals, which might indicate a metal-fluorine coordination, [9] is not observed.

Compound 2a is isolated as air-sensitive orange crystals (83 % yield) that are thermally stable at room temperature. Cooling solutions of 2a in toluene to -16 °C afforded orange-yellow crystals of 2a-toluene suitable for X-ray diffraction. [10] The sterically demanding ligands of the zwitterionic molecule (Figure 1) prevent any close intra- or intermolecular M···F interactions. The Zr-C distances in the [Cp'Zr(allyl)₂]⁺ core correspond closely to the values of the neutral allyl precursor. The cationic 14-electron fragment is stabilized by two agostic interactions with the B-CH $_2$ group [Zr \cdots H $\,$ 2.29(5) and 2.30(5) Å]. $^{[11]}$

Compound 2a crystallizes with one molecule of toluene, which in the crystal is associated with one of pentafluorophenyl rings; the distances between the plane of the six-membered ring of the toluene molecule and the best least-squares plane through the C_6F_5 group are relatively short (3.17-3.45 Å). This solvent binding is reminiscent of the well known 1:1 stacking phases formed between benzene and hexafluorobenzene. [12]

Mixtures of 1a activated with one equivalent B(C₆F₅)₃ in toluene catalyze the polymerization of ethene under mild conditions (Table 2). While the $M_{\rm w}$ values are within the expected range, the broadening of the polydispersities with rising polyTable 1. Selected spectroscopic data.

2a: ¹H NMR (300MHz, CD₂Cl₂, -40°C; C atom numbering as in Figure 1): d =-1.78, -0.33 (br s, 1 H each; H₂CB), 0.19, 0.36 (s, 9 H each; SiMe), 1.41, 2.52 (d, J = 8.3 Hz, 1 H each; CCH₂), 1.68, 1.76 (s, 3 H each, diene-Me); 1.96 (m, 2 H), 2.66 (br. d, 1 H), 3.19 (d, J = 15.3 Hz 1 H; 14 or 16-CH₂), 5.96 (m, 1 H, 15-CH), 6.51, 6.96 (m, 1 H, 4,5-C₅H₃), 6.44 (m, 1 H, 2-C₅H₃); ¹³C NMR (75.4 MHz, CD₂Cl₂, -40 °C): $\mathbf{d} = -0.55$, -0.23 (q, J = 119.1, 119.6 Hz; SiMe), 16.93, 23.77 (q, J = 129.5, 127.8 Hz, diene-Me), 31.09 (vbr. t, CH_2B), 59.64 (t, J = 150.1 Hz, CCH_2), 67.12, 71.03 (t, J = 155.9, 158.6 Hz; CH₂ of C₃H₅), 112.91 (m, 8-C), 117.53 (d, J = 170.5Hz; $2-C_5H_3$), 124.0, 131.45 (d, J = 169.8, 172.0 Hz; $4.5-C_5H_3$), 125.28, 129.26 (m, 1,3-C₅H₃), 138.06 (m, 7-C), 140.77 (d, J = 153.2 Hz, 11-CH); ¹¹B NMR (96.2 MHz, CD_6Cl_2 , -40 °C): $\mathbf{d} = -11.99$; ¹⁹F NMR (CD_2Cl_2 , -50 °C): $\mathbf{d} = -129.6$, -132.2, -130.0, -132.6, -134.0, -134.7 (d, ${}^{3}J(F,F) = 19.6$ Hz, 1 F each; o-F), -159.9, -160.1, -160.6 (t, ${}^{3}J(F,F) = 19.7$ Hz, 1 F each; p-F); -164.2, -165.1, -165.6, -167.0 (m, 2 F, 1 F, 2 F, 1 F; m-F)

2b: ¹H NMR ([D₈]toluene, 300 MHz, -30 °C): d = -1.68 (s, br, 1 H; BCH₂), -1.58 $(d, J = 14.4 \text{ Hz}, 1 \text{ H}; BCH_2), -0.22, 0.09 \text{ (s, 9 H each; SiMe)}, 0.92 \text{ (d, } J = 5.61 \text{ Hz},$ 3 H; Me), 2.21, 1.98 (m, 1 H; diene-CH₂), 1.65, 2.00 (dd, J=13.4, 3 Hz, 1 H; CH₂ of C_4H_7), 1.71 (m, 1 H; CHMe of C_4H_7), 4.58 (dd, J = 14.0, 9.9 Hz, 1 H; diene-CH), 5.01 (m, 1 H; CH of C₄H₇), 5.17 (m, 1 H; diene-CH), 5.87, 5.93, 6.63 (m, each 1 H, C₅H₃); ¹³C NMR ([D₈]toluene, -50 °C): $\mathbf{d} = -0.91$, -0.71 (SiMe), 18.49 (Me), 28.0 (br., BCH₂), 57.58 (diene-CH₂), 61.18 (CH₂ of C₄H₇), 83.45 (diene-CHMe), 106.45 (diene-CH), 118.56, 124.43, 125.61 (2,4,5-C₅H₃), 126.35 (br., 1,3- C_5H_3), 133.09 (diene-CH), 137.37 (CH of C_4H_7), 137.23 (J(C,F) = 242.25 Hz, *m*-C, C₆F₅), 139.42, (*J*(C,F) = 235.0 Hz, *p*-C, C₆F₅), 148.23 (*J*(C,F) = 238.47 Hz, *o*-C, C₆F₅); 11 B{ 11 H} NMR ([D₈]toluene, -60 °C): d = -12.58; 19 F NMR ([D₈]toluene, -60 °C): $\mathbf{d} = -131.2$, -132.9, -135.1 (br. s, 1 F, 4 F, and 1 F; o-F); -158.9 (vbr. s, 3 F; *p*-F); -164.3 (br. s, 6 F, *m*-F)

3a: 1 H NMR (300 MHz, -20 °C): $\mathbf{d} = -1.87$ (br. s, 1 H; BCH₂); 0.12, 0.23 (s, 9 H each; SiMe); 1.29 (d, J = 5.4 Hz; 1 H, =CH₂ of diene), 1.49 (br. s, 1 H, BCH₂), 1.67 (s, 9 H; CMe₃), 1.80, 2.05 (s, 3 H each; diene-Me), 2.06 (d, J = 16.0 Hz 1 H; CH_2 of C_3H_5), 2.18 (m, 1 H, J = 16.0 Hz; CH_2 of C_3H_5), 2.28 (d, J = 5.4 Hz, 1 H; e1.3 of C_3H_3), 2.10 (iii, H_1), V = 10.5 Hz, V_1 of V_2 , V_3), 2.50 (iii), 2.54 V_3 , V_4 of V_3), 2.10 (iii), V_4 of V_5), 2.10 (iii), 2. 26.72 (br. s, BCH₂), 29.64 (q, J = 129.5 Hz; $C(CH_3)_3$), 47.1 (t, J = 151.0 Hz; diene-CH₂), 60.09 (s, CMe₃), 61.05, 68.25 (t, J = 158.8, 161.0 Hz; CH₂ of C₃H₅), 109.1 (d, J = 170.0 Hz; 2-C₅H₃), 117.71 (d, J = 172.8 Hz; 4,5-C₅H₃), 118.03, 118.81 (s, =CMe), 120.20 (m, 1,3- C_5H_3), 120.89 (t, J = 150.1 Hz; CH of C_3H_5), 124.6 (*ipso-*C, BC₆F₅), 136.54 (J(C,F) = 255.8 Hz; m-C, C₆F₅), 138.24 (J(C,F) = 255.8249.7 Hz; p-C, C_6F_5), 147.97 (J(C,F) = 247.5 Hz; o-C, C_6F_5), 159.06 (s, CN); ${}^{11}B\{{}^{1}H\}$ NMR (CD₂Cl₂, -20 °C): d = -14.02; ${}^{19}F$ NMR (CD₂Cl₂, 10 °C): d = -131.5 (t, br, 6 F; o-F), -163.1 (t, ${}^{3}J(F,F) = 19.8$ Hz, 3 F; p-F); -167.1 (br, 6 F: m-F)

4b: 1 H NMR ([D₈]toluene, 300 MHz, 25 ${}^{\circ}$ C): d = -0.14, 0.05 (s, each 9 H: SiMe), 0.59, 2.19 (t, br, J = 8.9 Hz, each 1 H; CH₂), 2.21 (d, J = 12.6 Hz, 1 H; BCH), 5.99 (t, br, 1 H, CH=CB), 6.23 (q, J = 9.2 Hz, 1 H; CH₂=CH), 6.48 (t, J = 2.2 Hz, 1 H; (t, bi, 1 H, CH2-CB), 0.25 (q, J = J.2 Hz, 1 H, CH2-CH), 0.46 (t, J = 2.2 Hz, 1 H, 2-C₅H₃), 6.65, 7.59 (br. s, 1 H each; 4.5-C₅H₃); 13 C NMR (CD₂Cl₂, -20 °C): $\boldsymbol{d} = -0.95$, -0.73 (q, J = 119.5 Hz; SiMe), 67.62 (t, J = 150.0 Hz; CH₂), 93.64 (d, J =136.56 Hz; BCH), 120.54, 129.53 (d, J = 170.55, 160.74 Hz; 4,5-C₅H₃), 124.65 (d, J = 167.53 Hz; CH=CB), 127.22 (d, J = 169.04 Hz; 2-C₅H₃), 135.64 (d, J = 166.02 Hz; H₂C=CH), 127.40, 134.56 (m; 1,3-C₅H₃); ¹¹B{¹H} NMR ([D₈]toluene, 15 °C): d = 43 (br. s); ¹⁹F NMR ([D₈]toluene, -40 °C): o-F: d = -114.1 (br. s; 2 F), -130.1 (d, J(F,F) = 19.7 Hz, 2 F), -130.6 (br. s; 1 F), -169.9 (br. s, 1 F), p-F: $\mathbf{d} = -149.3$ (br. s; 1 F), -150.7 (t, 1 F, J(F,F) = 21.1 Hz), -153.6 (t, 1 F; J(F,F) = 19.7 Hz); m-F: d = -156.2, -156.5 (br. s, 1 F each, overlaps with the m-F signal of 4b'), -161.2 (m,

4b': ¹H NMR ([D₈]toluene, 300 MHz, 25 °C): d = -0.15, 0.03 (s, 9 H, SiMe), 1.44 (m, 1 H), 3.42 (dd, J = 7.6, 6.6 Hz, 1 H; CH₂), 5.10 (m, 1 H; H₂C=CH), 5.34 (d, J)= 12.0 Hz; BCH), 5.82 (m, 1 H; CH=CB), 5.97, 7.01 (m, 1 H each; 4,5-C₅H₃), 7.71 (t, J = 1.9 Hz, 1 H, 2-C₅H₃); ¹³C NMR (CD₂Cl₂, -20 °C): $\mathbf{d} = -1.39$, -0.47 (q, J = 119.6 Hz; SiMe), 82.31 (t, J = 152.82 Hz; CH₂), 97.17 (d, J = 136.2 Hz, BCH), 123.96, 134.05 (m, 1,3-C₅H₃), 125.68 (CH=CB); 125.9, 128.13 (4,5-C₅H₃); 129.68 (d, J = 165.0 Hz; H₂C=CH), 135.11 (d, J = 172.06 Hz; 2-C₅H₃); ¹¹B{¹H} NMR ([D₈]toluene, 15 °C): d = 43 (br. s); ¹⁹F NMR ([D₈]toluene, -40 °C): o-F: d = 10.7 (4.70 F) -118.7 (d, J(F,F) = 25.4 Hz, 2 F), -129.4 (br. s, 1 F), -131.4 (d, J(F,F) = 16.9 Hz, 2 F), -184.1 (br. s, 1 F); p-F: $\mathbf{d} = -151.6$, -155.3 (t, 1 F each, J(F,F) = 19.7 Hz), -152.2 (t, 1 F, J(F,F) = 21.1 Hz); m-F: d = -156 (1 F, overlaps with the m-F signal of 4b), -157.1 (br. s, 1 F), -160.5, -162.2 (m, 2 F each)

4c: ¹H NMR ([D₈]toluene, 500 MHz, -30 °C): d = 1.53 (s, 15 H; Cp*), 2.38 (m, 1 H; CHH), 2.63 (t, J = 7.0 Hz, 1 H; CH H), 4.68 (br. m, 1 H; CH=CB), 5.04 (m, 1 H; CH₂=CH), 5.85 (d, J = 12.7 Hz, 1 H; BCH); ${}^{13}C\{{}^{1}H\}$ NMR ([D₈]toluene, 125 MHz, -30 °C): **d** = 10.96 (Cp*-Me), 77.81 (CH₂), 95.94 (BCH), 124.08 (Cp* ring), 125.95 (CH=CB), 126.91 (H₂C=CH); ¹⁹F NMR (C₆D₅Br, 282 MHz, -30 °C): o-F: d = -120.3 (1 F), -130.5 (br., 1 F), -130.55 (d, J(F,F) = 15 Hz; 2 F), -136.5 (br., 1 F), -180.0 (br., 1 F); p-F: $\mathbf{d} = -153.5$ (t, J(F,F) = 21 Hz, 1 F), -154.2 (t 21 Hz, 1 F), -156.0 (t, J(F,F) = 20 Hz, 1 F); m-F: $\mathbf{d} = -158.4$ (br, 1 F), -159.2 (m, 1 F), -160.2 (br, 1 F), -161.9 (m, 1 F), -163.7 (m, 2 F).

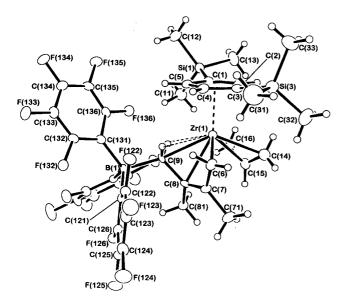


Figure 1. Structure of 2a (ORTEX [22] diagram). Thermal ellipsoids are shown at the 40% probability level. Selected bond lengths [Å] and angles [°]: Zr(1)-C(6) 2.331(5), Zr(1)-C(7) 2.525(4), Zr(1)-C(8) 2.450(4), Zr(1)-C(9) 2.442(4), Zr(1)-C(14) 2.443(5), Zr(1)-C(15) 2.492(6), Zr(1)-C(16) 2.438(6), Zr(1)-C(1) 2.521(4), Zr(1)-C(2) 2.500(4), Zr(1)-C(3) 2.527(4), Zr(1)-C(4) 2.509(5), Zr(1)-C(5) 2.484(4), Zr(1)-H(9a) 2.30(5), Zr(1)-H(9b) 2.29(5), C(6)-C(7) 1.425(7), C(7)-C(8) 1.388(7), C(8)-C(9) 1.508(6), C(9)-B(1) 1.714(6), C(14)-C(15) 1.393(8), C(15)-C(16) 1.395(8); C(7)-C(6)-Zr(1) 80.6(3), C(8)-C(9)-B(1) 116.9(4), C(8)-C(9)-Zr(1) 72.3(2), B(1)-C(9)-Zr(1) 169.6(3).

Table 2. Ethene polymerizations with 1a/B(C₆F₅)₃ [a]

Temperature [°C]	Time [min]	Polymer yield [g]	Productivity [× 10 ⁻³	b] <i>M</i> _w	$M_{ m w}/M_{ m n}$
0	3.5	0.144	98.7	201	3.5
20	5	0.132	63.3	181	4.7
44	10	0.180	43.2	107	5.2
60	10	0.190	45.6	77.3	7.6

[a] Conditions: 1a (25 μ mol), B(C₆F₅)₃ (25 μ mol), toluene (20 mL), ethene 1 bar. [b] In 10³ g PE (mol Zr)⁻¹ h⁻¹

merization temperature to values significiantly higher than those typically obtained for metallocenes may suggest the loss of active site uniformity. Such behavior may offer advantages where the desired polymer properties or processing parameters favor broader polydispersities. [13, 14]

Treatment of 2a with excess tert-butylisocyanide at 0 °C leads to the immediate formation of the adduct 3a as yellow microcrystals. Rather unexpectedly, warming the reaction mixture did not lead to an isocyanide insertion product but to the quantitative regeneration of 1a, together with $tBuNC \cdot B(C_6F_5)_3$ ($\vec{n}_{C\equiv N} = 2300 \text{ cm}^{-1}$), which, to our knowledge, is the first example of a fully reversible formation of a $[RB(C_6F_5)_3]$ borate unit. By contrast, di-Cp complexes such as $[Cp_2Zr\{C_3H_4CH_2-B(C_6F_5)_3\}]$ readily give the expected isocyanide insertion products.

The reaction of $B(C_6F_5)_3$ with the butadiene complexes **1b** and **1c** gives the corresponding zwitterionic complexes **2b** and **2c**, respectively. The spectroscopic data of these compounds are very similar to those of **2a**. Both catalyze the polymerization of ethene but are thermally less stable than the sterically more hindered **2a** and decompose by an unexpected C-H activation pathway, in which 2-butene is eliminated and a C_6F_5 group migrates from boron to zirconium to give **4** [Eq. (b)]. In the case

of **2b**, this reaction sequence is very facile even at -60 °C. ^[15] The transformation of the four-coordinate borate in **2b** into a three-coordinate boryl in **4b** is reflected in the change in the ¹¹B NMR signal from about d = -12 to d = +43. Compound **4b** is accompanied by a second, fluxional isomer **4b**′. The C_5Me_5 complex **2c** is more stable and rearranges to **4c** with $t_{1/2} \approx 20$ min in C_6D_6 and 2-3 min in C_6D_5Br at room temperature.

The X-ray structure analysis of $4c \cdot 0.5$ Et₂O (Figure 2)^[16] shows a trigonal-planar B(C₆F₅)₂ unit; one *o*-F atom is coordinated to the metal center (d(¹⁹F) = -179.8). The ZrC₄ core has the familiar metallacyclopentene envelope conformation.

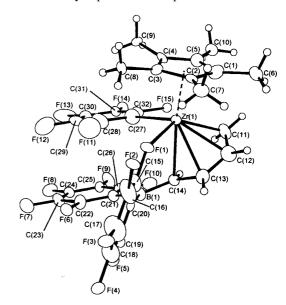


Figure 2. Structure of **4c**. Selected bond lengths [Å] and angles [°]: Zr(1)-C(11) 2.314(3), Zr(1)-C(12) 2.451(3), Zr(1)-C(13) 2.458(3), Zr(1)-C(14) 2.481(2), Zr(1)-C(27) 2.315(2), Zr(1)-F(1) 2.4292(15), Zr(1)-C(12) 1.414(4), Zr(1)-C(13) 1.375(4), Zr(1)-C(14) 1.454(3), Zr(1)-C(14) 1.488(3), Zr(1)-C(20) 1.582(4), Zr(1)-C(21) 1.590(3), Zr(1)-F(1) 1.380(3), Zr(1)-F(5) 1.351(3); Zr(1)-C(17)-C(27) 100.47(7), Zr(1)-C(13) 126.3(2), Zr(1)-C(12)-C(13) 121,8(2), Zr(1)-C(14) 1.205(2).

Surprisingly, the diene unit is oriented approximately orthogonal to the Cp ring and does not fall into either of the usual "prone" and "supine" categories. [17] The distribution of the bond lengths in the ZrC₄B unit, in particular the relatively short B-C(H) bond (1.485 Å), suggests that the zwitterionic resonance structure **B** may dominate over formulation **A**. [18]

$$C_6F_5$$
 C_6F_5
 C_6F_5

The results establish cationic 14-electron mono-Cp complexes as a new class of polymerization catalysts; their reactivity patterns, however, differ markedly from the behavior of the better-known di-Cp systems.

Experimental Section

All synthetic procedures were carried out under dry nitrogen using Schlenk techniques. NMR spectra were recorded on Bruker 300 and 500 MHz instruments Compounds **1a-1c** were synthesized according to literature procedures [19].

- 2a: $B(C_6F_5)_3$ (0.89 g, 1.73 mmol) in toluene (20 mL) was added to a solution of 1a (0.73 g, 1.72 mmol) in toluene (30 mL) at -78 °C. The mixture was stirred at this temperature for 30 min and then allowed to warm to room temperature. The color of the mixture changed instantaneously from red to dark orange. Concentration of the solution to 20 mL followed by cooling to -16 °C afforded orange crystals of 2a-toluene (1.29 g, 1.38 mmol, 80%). Elemental analysis (%): Calcd for $C_{38}H_{36}BF_{15}Si_2Zr\cdot C_7H_8$: C 52.6, H 4.3; found: C 51.8, H 4.5.
- **3a**: *t*BuNC (0.21 mL, 1.86 mmol) was added to a solution of **2a** (0.96 g, 0.93 mmol) in toluene (10 mL) at 0 °C. The resulting yellow mixture was concentrated and cooled to -16 °C to give yellow crystals of **3a** (0.79 g, 0.77 mmol, 83 %). Elemental analysis (%): Calcd for $C_{43}H_{45}BF_{15}NSi_2Zr$: C 50.4, H 4.5, N 1.4; found: C 50.6, H 4.7, N 1.3. IR(Nujol): $\vec{n} = 2179 \text{ cm}^{-1}$ (C=N).
- **2b**: This compound is thermally sensitive and was therefore generated in solution and characterized spectroscopically. $B(C_6F_5)_3$ (52 mg, 0.1 mmol) in $[D_8]$ toluene (0.2 mL) was added to a solution of **1b** (42 mg, 0.1 mmol) in $[D_8]$ toluene (0.3 mL) at -60 °C. The orange solution contained **2b**, together with some **4b** and **4b**'.
- **4b**: The compound was generated in situ from **1b** and $B(C_6F_5)_3$ (1 equiv) in $[D_8]$ toluene at 0 °C; it slowly decomposed in solution at room temperature.
- $\textbf{4c}\colon A$ solution of $B(C_6F_5)_3$ (0.228 g, 0.44 mmol) in benzene (5 mL) was added to a solution of 1c (0.148 g, 0.44 mmol) in benzene (5 mL) at room temperature. The resulting orange solution was stirred at ambient temperature for 40 min during which the solution turned red. The solvent was removed in vacuo and the residue was extracted with diethyl ether. Concentration and cooling of the solution to -70 °C yielded 4c-0.5 Et₂O as a red crystalline solid (0.141 g, 0.20 mmol, 46%) Elemental analysis (%): Calcd for $C_{32}H_{20}BF_{15}Zr\cdot0.5(C_2H_5)_2O$: C 48.8, H 3.0, Zr 10.9; found: C 48.5, H 3.0, Zr 10.8.

Received: April 14, 1997 [Z10339IE] German version: *Angew. Chem.* **1997**, *109*, 2457-2460

Keywords: allyl complexes · C-H activation · diene complexes · homogeneous catalysis · zirconium

- M. Bochmann, J. Chem. Soc. Dalton Trans. 1996, 255; H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255; Angew. Chem. Int. Ed. Engl. 1995, 34, 1143; M. Aulbach, F. Küber, Chem. Unserer Zeit 1994, 28, 197.
- [2] A. M. Thayer, Chem. Eng. News, 1995, Sept. 11, 15; Chem. Br. 1995, 936; H.
 G. Hauthal, Nachr. Chem. Tech. Lab. 1995, 43, 822.
- [3] G. G. Hlatky, H. W. Turner, R. R. Eckman, J. Am. Chem. Soc. 1989, 111, 2728.
 [4] X. Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1991, 113, 3623; ibid. 1994, 116, 10015; M. Bochmann, S. J. Lancaster, M. B. Hursthouse, K. M. A. Malik, Organometallics 1994, 13, 2235.
- [5] D. J. Gillis, M. J. Tudoret, M. C. Baird, J. Am. Chem. Soc. 1993, 115, 2543.
- [6] M. Bochmann, G. Karger, A. J. Jaggar, J. Chem. Soc. Chem Commun. 1990, 1038.
- [7] C. Pellecchia, A. Grassi, A. Immirzi, J. Am. Chem. Soc. 1993, 115, 1160; C.
 Pellecchia, A. Grassi, A. Zambelli, J. Mol. Catal. 1993, 82, 57.
- [8] a) B. Temme, G. Erker, J. Karl, H. Luftmann, R. Fröhlich, S. Kotila, Angew. Chem. 1995, 107, 1867; Angew. Chem. Int. Ed. Engl. 1995, 34, 1755; b) B. Temme, J. Karl, G. Erker, Chem. Eur. J. 1996, 2, 919. For further examples for fluoroarylborate coordination see: X. Yang, C. L. Stern, T. J. Marks, Organometallics 1991, 10, 840; A. D. Horton, A. G. Orpen, ibid. 1991, 10, 3910; A. R. Siedle, R. A. Newmark, W. M. Lamanna, J. C. Huffman, ibid. 1993, 12, 1491; L. Lia, X. Yang, C. L. Stern, T. J. Marks, ibid. 1997, 16, 842.
- [9] The coordinated *ortho-F* in $[Cp_2Zr\{C_3H_4CH_2B(C_6F_5)_3\}]$ experiences an upfield shift of about 80 ppm to $\mathbf{d} = -213.2$ [8a].
- [10] X-ray structure analysis of **2a**-toluene: An orange prism with dimensions $0.65 \times 0.42 \times 0.25$ mm was grown from toluene and coated in perfluoropolyether RS3000 oil (Riedel De-Haën). $C_{38}H_{36}BF_{15}Si_2Zr\cdot C_7H_8$, $M_r=1028.01$ (includes toluene molecule), triclinic, space group P1, a=10.4955(12), b=13.538(2), c=16.650(2) Å, $\alpha=77.695(11)$, b=83.542(10), $g=78.945(14)^\circ$, Z=2, V=2262.2(5) Å³, $\mathbf{r}_{calcd}=1.509$ Mg m³, $\mathbf{m}=3.344$ mm¹, F(000)=1044. Data collection was carried out at 160 K on a Stoe STADI4 four-circle diffractometer operating in the $\mathbf{w}\cdot\mathbf{q}$ scan mode using graphite-monochromated $Cu_{K\alpha}$ radiation ($\mathbf{I}=1.54184$ Å). 7130 unique reflections were measured in the range $2.72 \le \mathbf{q} \le 64.54^\circ$ (- $12 \le h \le 12$, - $15 \le k \le 15$, $0 \le l \le 18$). The structure was solved by heavy atom methods using SHELXS-

- 86 [20] and refined by full-matrix least-squares (against all the unique F^2 data) using SHELXL-93 [21]. Non-hydrogen atoms (including those of the toluene solvate molecule) were refined with anisotropic displacement parameters: hydrogen atoms were constrained to idealized positions by using a riding model with free rotation for methyl groups and fixed isotropic displacement parameters. Final $wR_2 = \{\Sigma[w(F_o^2 F_c^2)^2]/\Sigma(F_o^2)^2\}^{-1} = 0.1542$, conventional R = 0.0530 for F values of 6699 reflections with $F_o^2 > 2\mathbf{s}(F_o^2)$. Weighting scheme $w = [\mathbf{s}^2(F_o^2) + (0.0584\ P)^2 + 12.2995\ P]^{-1}$, where $P = (F_o^2 + 2\ F_o^2)/3$, goodness of fit = 1.069 for all F^2 values and 618 parameters. Maximum and minimum residual electron density 1.13 and -1.15 eÅ 3 , respectively [16 b].
- [11] Similar agostic interactions of two of the three methyl hydrogen atoms are found in [(1,2-C₅H₃Me₂)₂ZrMe($\textbf{\textit{m}}$ Me)B(C₆F₅)₃] [Zr · · · H = 2.25(3) and 2.30(3) Å], while [Cp₂ZrMe($\textbf{\textit{m}}$ Me)B(C₆F₅)₃] shows rather weaker agostic interactions [Zr · · · H 2.44(3) and 2.47(3) Å] [4].
- [12] C. R. Patrick, G. S. Prosser, *Nature* **1966**, 187, 1021; J. H. Williams, J. K. Cockcroft, A. N. Fitch, *Angew. Chem.* **1992**, 104, 1666; *Angew. Chem. Int. Ed. Engl.* **1992**, 31, 1655; J. H. Williams, *Acc. Chem. Res.* **1993**, 26, 593.
- Engl. 1992, 31, 1655; J. H. Williams, Acc. Chem. Res. 1993, 26, 593.
 [13] The "constraint geometry" complexes [(C₅Me₄SiMe₂NtBu)Ti(C₄H₄R₂)] in the presence of B(C₆F₅)₃ are highly active for the copolymerization of ethene with 1-octene: D. D. Devore, F. J. Timmers, D. L. Hasha, R. K. Rosen, T. J. Marks, P. A. Deck, C. L. Stern, Organometallics 1995, 14, 3132. The living ethene oligomerization with activator-free [(C₅Me₅)ZrR(2,3-Me₂C₄H₄)] has recently been reported: B. Hessen and H. van der Heijden, J. Am. Chem. Soc. 1996, 118, 11670.
- [14] By contrast, propene polymerizations with [Cp*TiMe₃]/B(C₆F₈)₃ give polymers with very narrow polydispersities and living characteristics: J. Sassmannshausen, M. Bochmann, J. Rösch, D. Lilge, *J. Organomet. Chem.*, in press.
- [15] In contrast to the facile transfer of a C_6F_5 substituent from $B(C_6\overline{F}_5)_3$ to a Zr atom, $B(C_6F_5)_3$ is inert towards electrophiles such as BBr_3 or Br_2 . C_6F_5 transfer has been observed before at higher temperature and prolonged reaction times: R. Gomez, M. L. H. Green, J. L. Haggit, *J. Chem. Soc. Dalton Trans.* **1996**, 939.
- [16] a) X-ray structure analysis of 4c·0.5Et₂O: an orange-red parallelepiped with dimensions $0.15 \times 0.17 \times 0.50$ mm was grown from diethyl ether. Data were collected at 130 K. $C_{32}H_{20}BF_{15}Zr \cdot 0.5(C_2H_5)_2O$, $M_r = 828.58$, monoclinic $P2_1/n$, $a = 12.903(1), b = 18.430(1), c = 13.389(1) \text{ Å}, \mathbf{b} = 96.08(1)^{\circ}, V = 3166.0(4) \text{ Å}^{3},$ Z = 4, $\mathbf{r}_{calcd} = 1.738 \text{ Mgm}^{-3}$, $\mathbf{m} = 4.64 \text{ cm}^{-1}$, 5128 reflections with $F_o \ge 4.0 \mathbf{s}(F_o)$, 566 refined parameters. Data collection was carried out on an Enraf-Nonius CAD-4F² diffractometer using graphite-monochromated $Mo_{K\alpha}$ radiation (I = $0.71073 \text{ Å}; \Delta w = 0.90 + 0.34 \tan q$). 6264 Unique reflections were measured in the range $2.2 \le 2q \le 56.0^{\circ}$ (-15 $\le h \le 8$, -1 $\le k \le 20$, $0 \le l \le 17$). The structure was solved by Patterson methods and extension of the model was accomplished by direct methods applied to differene structure factors using the program DIRDIF [23]. The structure was refined by full-matrix least-squares (SHELXL93 [21]). Non-hydrogen atoms were refined with anisotropic displacement parameters. The diethyl ether solvent molecule was highly disordered over an inversion center. The programs PLATON [24] (calculation of geometric data) and PLUTO [25] (structure diagram) were used. Final wR_2 = Since the data) and 120 10 [22] (state-that stags am, 100 10 [22]) (state-that stags am, 100 values and 566 parameters. Maximum and minimum residual electron density 0.54 and -0.48 eÅ³, respectively. b) Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100329. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: Int. code +(1223) 336-033; e-mail deposit@chemcrys.cam.ac.uk).
- [17] H. Yamamoto, H. Yasuda, K. Tatsumi, K. Lee, A. Nakamura, J. Chen, Y. Kai, N. Kasai, Organometallics 1989, 8, 105.
- [18] For a discussion of B-C bond lengths see: G. Herberich, A. Fischer, Organometallics 1996, 15, 58, and references therein.
- [19] J. B. Blenkers, H. J. de Liefde Meijer, J. H. Teuben, J. Organomet. Chem. 1981, 218, 383; G. Erker, K. Berg, R. Benn, G. Schroth, Chem. Ber. 1985, 118, 1383; J. Blenkers, B. Hessen, F. van Bolhuis, A. J. Wagner, J. H. Teuben, Organometallics, 1987, 6, 459.
- [20] G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467.
- [21] G. M. Sheldrick, SHELXL-93, Program for refinement of crystal structures, Universität Göttingen, 1993.
- [22] P. McArdle, J. Appl. Crystallogr. 1995, 28, 65.
- [23] P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Gracía-Granda, R. O. Gould, R. Israel, J. M. M. Smits, the DIRDIF-96 program system, University of Nijmegen, 1996.
- [24] A. L. Spek, PLATON, program for automated analysis of molecular geometry, University of Utrecht, 1996.
- [25] A. Meetsma, PLUTO, program for the display and analysis of crystal and molecular structures, University of Groningen, 1996.