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The influence of electron scattering by rough boundaries on electrical conductivity of quantum wires
is studied in the diffuse transport limit within the kinetic Boltzmann equation approach. The
considerations are restricted to the wires obtained by lateral confinement of a two-dimensional
electron gas. Both intra- and interboundary roughness correlations are taken into account. It is
shown that the cross correlations usually increase the conductivity, leaving the shape and phase of
the quantum size oscillations almost unaffected. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1372656#

I. INTRODUCTION

Progress in nanofabrication technology in recent years
has made it possible to impose lateral confining potential on
a two-dimensional electron system, and to produce quasione-
dimensional quantum wires. Laterally confined quantum
structures have been fabricated, for instance, in GaAs/
AlGaAs heterostructures, where the split-gate or etching
techniques allow the lateral modulation of the composition
and the band gap.1 In such structures, long mean free path of
charge carriers in comparison with the wire width leads to
transport phenomena due to nonlocal effects2,3 and to some
anomalies in the low-field Hall effect.4 Apart from this, scan-
ning probe microscopy techniques enabled production of
nanowires of Al,5 Fe,6 and Co7 with a wire width smaller
than 10 nm.

It has been shown experimentally that electron scattering
from rough boundaries has a strong influence on the magne-
toresistance of long wires, and in general on their transport
properties.8 In fact, if the wire width is comparable to the
Fermi wavelength, pronounced quantum-size-effect~QSE!
oscillations with the wire width are expected. This has been
shown, e.g., in Ref. 9, where magnetotransport in quantum
wires in the presence of scattering from rough boundaries
was studied. The roughness was described there in terms of a
Gaussian correlation function by two parameters—the root
mean square~rms! roughness amplitudeD and the lateral
correlation lengthj. It was shown that the roughness scatter-
ing leads to a large positive magnetoresistance for wire
widths larger than the Fermi wavelengthlF and correlation
lengths smaller thanlF . Boundary roughness in quantum

wires was also shown to have a significant influence on the
current distribution and Hall effect.10 In some other studies
of single and coupled quantum wires in a magnetic field,11

the boundary roughness was considered only in terms of the
Gaussian correlation function.

Quantum-mechanical calculations of electrical conduc-
tivity have also been performed for quantum wires with a
wide range of boundary morphologies. In that case, some
additional features arise from possible boundary fractality,
described by the roughness exponentH.12–16 The boundary
fractality was shown to have a significant influence on wire
conductivity. The considerations, however, were limited to
incoherent electron scattering from different boundaries, ne-
glecting this way effects arising from possible cross correla-
tions between the wire boundaries. This problem is analyzed
in the present article in which we include cross correlations
and analyze their influence on electrical transport properties.

The article is organized as follows. In Sec. II we present
general expressions for electrical conductivity of quantum
wires. Model boundary roughness is described in Sec. III.
Numerical results are presented and discussed in Sec. IV.
Final conclusions and some general remarks are in Sec. V.

II. CONDUCTIVITY OF QUANTUM WIRES

We consider a two-dimensional~2D! electron gas, con-
fined laterally by an external potential to form a long quan-
tum wire. The axisx is along the wire and the axisy is
perpendicular to the wire but within its plane~the plane of
the 2D electron gas!. The wire boundaries are located aty1

5y1
01h1(x)[2d/21h1(x) and y25y2

01h2(x)[d/2
1h2(x), whered is the wire width andh1(x) andh2(x) are
two random functions, average values of which vanish by
definition, ^h1(x)&5^h2(x)&50. We assume that the rough-
ness is isotropic, so that the height–height correlation func-
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tions depend only on the relative distanceux2x8u. We will
consider the situation when the dominant contribution to
electrical resistivity comes from the electron scattering due
to roughness of the lateral confining potential, neglecting
other sources of scattering like impurities or roughness of the
vertical confining potential. Assuming step-like lateral con-
fining potentials one may write the relevant Hamiltonian in
the form12

H5H 2
\2

2m S ]2

]x2 1
]2

]y2D1V1Q~2y2d/2!1V2Q~y

2d/2!J 1$V1h1~x!d~y1d/2!2V2h2~x!d~y2d/2!%

[H01Hscatt, ~1!

wherem is the electron mass andVb denotes height of the
confining potential at thebth interface (b51,2). The first
part,H0 in the formula~1! is the Hamiltonian of a wire with
ideal boundaries, whileHscatt is a perturbation due to the
boundary roughness. The wave functions and the corre-
sponding eigenvalues of the HamiltonianH0 are Fnk(x,y)
5L21/2eikxwn(y) and Evk5En1\2k2/2m, respectively,
whereL is the wire length. Free electron motion is assumed
along the wire, with the corresponding wave vectork, while
the motion along the axisy is quantized with the correspond-
ing discrete energy levelsEn (n51,2,...) and wave functions
wn(y) ~assumed real!. In the first term of Eq.~1! Q(x) is the
step function,Q(x)51 for x>0 and Q(x)50 for x,0,
whereasd(x) in the second term is the Dirac delta function.
One should note at this point that in real situations the lateral
confining potential is not steplike, but varies with the dis-
tance from the middle of the wire in a more complex way.
This general case, however, will not be considered in this
article.

The wire conductivity, calculated in the Born approxi-
mation, is given by the following formula:

s5
e2

\

\4

8p3m2d (
n51

N

(
n851

N

knkn8@D21~EF!#nn8 , ~2!

where the matrix elements@D(EF)#nn8 are calculated at the
Fermi energyEF and are given by

@D~EF!#nn85@D in~EF!#nn81@Dcros~EF!#nn8 , ~3!

with

@D in~EF!#nn85 (
b51

2 H dnn8 (
m51

N

An
bAm

b kn

Km
@Cb~kn2km!

1Cb~knkm!#2An
bAn8

b
@Cb~kn2kn8!

2Cb~kn1kn8!#J , ~4!

@Dcros~EF!#nn8522H dnn8 (
m51

N

An
crosAm

croskn

km
@C12~kn

2km!1C12~kn1km!#2An
crosAn8

cros

3@C12~kn2kn8!2C12~kn1kn8!#J .

~5!

Here, An
b5Vb@wn(yb

0)#2, An
cros5AV1V2wn(y1

0)wn(y2
0),

whereasCb(k)5*Cb(x)exp(ikx)dx is the Fourier transform
of the autocorrelation functionCb(x), defined asCb(x)
5^hb(x)hb(0)&[(1/L)*hb(x)hb(0)dx, for b51,2. Since
Cb(x)5Cb(2x), the Fourier components are real, and
Cb(k)5Cb(2k). Similar definitions also hold for the cross-
correlation function C12(x) and its Fourier components
C12(k). The matrix elements@D in(EF)#nn8 describe incoher-
ent electron scattering by different boundaries, while the ma-
trix elements@Dcros(EF)#nn8 take into account coherent scat-
tering due to cross correlations of the wire boundaries. In the
above equationsN is the number of occupied one dimen-
sional minibands, andkn is defined askn5@(2m/\2)(EF

2En)#1/2.11 The Fermi energyEF and the number of occu-
pied minibandsN for a given wire widthd and electron
densityn per unit area of the 2D electron gas can be deter-
mined from the condition

nd5
2

p S 2m

\2 D 1/2

(
n51

N

~EF2En!1/2. ~6!

When the electrons are confined by infinite potential walls
(Vb→`), one finds An

b5\2p2n2/md3, An
cros

5(21)n11\2p2n2/md3, andEn5(\2/2m)(np/d)2.

III. WIRE BOUNDARY ROUGHNESS AND CROSS
CORRELATIONS

In the following discussion we suppress the boundary
indexb, which will be restored at the end of this section. For
a self-affine rough boundary, the height–height correlation
function C(x)5^h(x)h(0)& has the scaling behaviorC(x)
'D22Bx2H if x!j, and C(x)50 if x@j13–16 with B
('D2/j2H) being a constant. Here,j is the in-plane rough-
ness correlation length,D5^@h(x)#2&1/2 is the saturated rms
roughness amplitude, andH(0,H,1) is the roughness ex-
ponent which characterises the degree of surface irregularity
at small length scales (x!j).13–16

For self-affine fractals the roughness spectrumC(k)
5*C(x)exp(ikx)dx has the scaling behaviorC(k)}k2122H

if kj@1 and C(k)}const if kj!1. Such behavior can be
described by the simple Lorentzian analytic model16

C~k!5
D2j

~11aukuj!112H . ~7!

Indeed, in the limitkj!1, we haveC(k)'D2j, while in the
limit kj@1 we obtainC(k)}k2122H. The normalization
condition *2kc,k,kc

C(k)dk5D2 yields the constanta; a

5(1/H)@12(11akcj)22H# if 0 ,H,1, and a52 ln(1
1akcj) if H50 ~logarithmic roughness!.16 Here, kc5p/a0
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Downloaded 06 Oct 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



with a0 being a parameter of the order of interatomic spac-
ing. For other roughness models see also Refs. 17 and 18.

For the Fourier transform of the cross correlation func-
tion we assume for simplicity the following form:

C12~k!5AC1~k!C2~k! exp~2d/t!. ~8!

This form corresponds to exponentially decaying cross cor-
relations with increasing wire width, with the corresponding
decay parametert. Similar forms have been used to describe
real-space cross correlations in multilayer between
interfaces.19

IV. NUMERICAL RESULTS

Numerical calculations were performed for the 2D areal
electron densityn54.0 nm22, atomic spacinga050.3 nm,
and rms roughness amplitudeD15D250.3 nm, which is of
the atomic dimensions. Apart from this, our calculations
were performed for infinite potential walls and for the wire
widths much larger thanD1 andD2 ,d@D1 ,D2 ~in order to
ensure validity of the description!.

Figure 1 shows electrical conductivity versus the wire
width d for two different values of the decay parametert. As
one might expect, the conductivity varies oscillatorylike with
increasingd. The oscillations are of quantum origin and the
corresponding oscillation period islF/2 ~lF being the Fermi
wavelength!. Each time the Fermi level crosses another lat-
eral miniband, another channel for electron scattering be-
comes open, which reduces the conductivity and leads to the
observed QSE oscillations. Since the role of boundary scat-
tering decreases with increasingd, average magnitude of the
conductivity increases with increasing wire widthd. As Fig.
1 shows, the conductivity increases with increasing decay
parametert. This is because coherent scattering due to the
cross correlations reduces the contribution from the incoher-
ent electron scattering by the wire boundaries. The shape and
phase of the QSE oscillations remain almost unaffected by
the cross-correlated scattering component. However, a com-
ponent with the oscillation period equal tolF is generated by
the interference term, as one can note in Fig. 1 fort
56 nm.

In Fig. 2 we show conductivity as a function ofH2 /H1

~at constantH1! for several values of the decay parametert.
As before, the conductivity increases with increasing value
of t. The conductivity also increases with increasing value of
H2 /H1 , and the rate of this increase is larger for larger val-
ues oft. Thus, boundaries with larger values of the rough-
ness exponentH give smaller contribution to resistivity. A
similar behavior is shown in Fig. 3, where the conductivity is
plotted as a functionH2 /H1 ~at constantH1! for various
roughness correlation lengthsj1 andj2 . At small values of
H2 /H1 and large roughness correlation lengths,j1 ,j2.t,
the conductivity increases rather fast with increasingH2 .
However, when either correlation lengths orH2 /H1 are
small, the increase is significantly smaller. The conductivity
also increases with increasing correlations lengthsj1 andj2 .

Variation of electronic conductivity with the roughness
correlation lengths is shown explicitly in Fig. 4, where the
conductivity is plotted as a function ofj2 /j1 ~at constantj1!
and for different values of the decay parametert. The con-
ductivity significantly increases in magnitude with increasing
j2 for j2 /j1,1 and for large cross-correlation lengths (t
.d). Similar dependence is shown in Fig. 5 for different
values of the roughness exponentsH1 andH2 .

FIG. 1. Wire conductivity vs wire widthd, calculated for indicated values of
the decay parametert, H15H250.5, and forj15j255 nm.

FIG. 2. Wire conductivity vs roughness exponent ratioH2 /H1 (H150.5)
calculated for indicated values oft, d55 nm, and forj15j255 nm.

FIG. 3. Wire conductivity vs roughness exponent ratioH2 /H1 (H150.5)
calculated fort53 nm, d55 nm, and for various boundary correlation
lengths,j15j2 .
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V. CONCLUSIONS

We have analyzed the boundary scattering effects on the
electrical conductivity of quantum wires formed from a 2D
electron gas by lateral confinement. The lateral boundaries
are described by random functions with nonzero inter- and
intraboundary correlations. The formalism used to calculate
the conductivity was based on the Boltzman equation, and
scattering probabilities were calculated within the Born ap-
proximation. It was shown that the cross correlations leave
QSE oscillations almost unaffected in shape, although the
average conductivity increases in magnitude. However, an
additional component with the oscillation period equal tolF

is generated by the interference effects due to cross-
correlated roughness. Moreover, it was shown that the
boundary roughness correlation lengths and roughness expo-
nents have a significant influence on the wire conductivity.

In a more realistic approach, finite confining potential
and other scattering effects should be taken into account.
Such effects were recently considered in the case of quantum
wells, and were shown to reduce the role of electron scatter-
ing by surface/interface roughness, and consequently reduce
the role of fractality effects described by the exponentH.20

Similar behavior is expected also for one-dimensional quan-
tum wires with self-affine rough boundaries.
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