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Optical excitation of electron-hole pairs in disordered one-dimensional semiconductors

Maxim Mostovoy, Frank Antonsen, and Jasper Knoester
Institute for Theoretical Physics, Materials Science Center, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands
(Received 17 September 2001; published 8 April 2002

We apply the optimal fluctuation method to the calculation of the optical absorption in disordered one-
dimensional semiconductors below the fundamental optical gap. We find that a photon energy exists at which
the shape of the optimal fluctuation undergoes a dramatic change, resulting in a different energy dependence of
the absorption rate above and below this energy. In the limit when the interaction of an electron and a hole with
disorder is stronger than their interaction with each other, we obtain an analytical expression for the optical
conductivity. We show that to calculate the absorption rate, it is, in general, necessary to consider a manifold
of optimal fluctuations, rather than just a single fluctuation. For an arbitrary ratio of the Coulomb interaction
and disorder, the optimal fluctuation is found numerically.

DOI: 10.1103/PhysRevB.65.155210 PACS nuntder71.23.An, 71.35.Cc, 78.67.Lt, 78.40.Fy

[. INTRODUCTION tive one-particle approach, by using the optimal fluctuation

The interplay between disorder and interparticle interacmethod™>1* This method applies when the dominant contri-
tions results in a number of remarkable phenomena, e.g., laution to the quantity of interest comes from disorder real-
singularity in the electron density of states at the Fermiizations close to a single large disorder fluctuation. This
energy~* and an enhanced localization length of pairs ofmethod can be formulated as a saddle-point calculation of
interacting particles A familiar situation in which the simul-  the functional integration over disorder realizatidnét was
taneous presence of Coulomb interactions and disorder playsed previously to calculate the optical absorption in disor-
an important role, is the process of optical absorption in disdered Peierls conductdfsand it is similar to the calculation
ordered semiconductors below the fundamental optical gamf the Urbach tails resulting from the interaction of the
i.e., below the band-to-band transitibwith the advent of electron-hole pair with the lattice, treated in the quasistatic
modern optical materials, this problem is not only of interestapproximationt.’
in its three-dimensional version, for which it has received In this paper we apply the optimal fluctuation method to
most attention, but also in two dimensiofgiantum well5%) the general case of arbitrary ratio of disorder strength and
and one dimensioriquantum wire§® and semiconducting Coulomb interaction. We show that the shape of the optimal
polymers). Interestingly, in the absorption spectrum the rela-fluctuation crucially depends on the dimensionality of the
tive strength of the Coulomb interaction between the electrosystem and we consider in detail the one-dimensional case.
and hole and their interactions with the disorder, does noln the strong disorder limit, when the exciton peak is de-
only depend on the disorder strength, but also on the photostroyed, and for weak disorder, assuming sufficiently low
energy: the lower the photon energy, the larger the amplitudphoton energies, we obtain an analytical expression for the
of a disorder fluctuation should be in order to create theoptical conductivity. We show that in these situations, the
corresponding absorbing state below the fundamental optic&lectron and hole in the optimal fluctuation are localized in
gap. two separate potential wells. We also show that in order to

The effect of a relatively weak disorder on the Wanniercalculate the optical absorption rate, one has, in general, to
exciton was considered in Refs. 10 and 11. Here, relativelgonsider a manifold of optimal fluctuations with different
weak refers to the situation where the exciton absorptiorvalues of the electron-hole separation, rather than just one
peak is still visible as a separate peak below the band-tdductuation.
band transition and is not smeared entirely by the disorder. In the general case of arbitrary ratio of the Coulomb in-
Moreover, the restriction to weak disorder only applies forteraction and disorder strength the equation for the optimal
photon energies close to the exciton energy in the absence fifictuation is solved numerically. We do this for an electron
disorderE,,. In this case, the exciton localization length is and hole described within the one-dimensional tight-binding
much larger than the average electron-hole separation, armdodel. The equation for the optimal fluctuation in this model
the exciton center-of-mass motion decouples from the relais similar to the equation for polaronic excitons and bipo-
tive motion of the electron and hole. The Wannier excitonlarons obtained in the adiabatic approximatl®r?°We show
then essentially behaves as a Frenkel exciton in an effectivihat, at some energy., lying in the region where the Cou-
disorder potential and the calculation of the optical absorplomb interaction and disorder are of the same order, the
tion spectrum becomes a single-particle problem. This effecshape of the optimal fluctuation undergoes a sudden change:
tive approach has been used to study numerically the absorpthile aboveE, it has the form of a single potential well,
tion and luminescence line shapes due to excitons imelowE, it consists of a “dip” that localizes the hole and a
semiconductor quantum wells with interface roughréss.  “bump” that localizes the electron. This transition takes

In Refs. 10 and 11, the low-energy tail of the exciton place only in one-dimensional systems.
absorption peak was calculated analytically within the effec- This paper is organized as follows. In Sec. Il we introduce
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the continuum model that describes interacting electron-holgacuum and the integration goes over one elementary unit

pairs in disordered semiconductors. In Sec. lll we brieflycell Vy, in which the functionsug(r) andvy(r) are normal-

recall the application of the optimal fluctuation method to theized to unity.

calculation of the one-particle density of states and derive The functionF in Eq. (3) is the part of the optical con-

some basic expressions for later use. Then, in Sec. IV, wductivity that has to be calculated within the continuum

will discuss the shape of the optimal fluctuation for the model

electron-hole states, in particular, its dependence on the di- 1

mensionality of the system. We obtain and solve perturba- _ 2

tively the nonlinear nonlocal equation for the optimal fluc- Flho=4)= V< Z. ool “6(A+E,~fiw) ). (5)

tuation in the one-dimensional case. In Sec. V we obtain an )

expression for the tails of the optical absorption spectrum!n the last equation

which has a wider range of validity than the optimal fluctua-

tion method. In Sec. VI we present and discuss our numerical D 0= f d9xW* (x,%) (6)

results for the optimal fluctuation. Finally, we summarize and

conclude in Sec. VII. Some technical details have beeris the “continuum part” of the matrix element of the transi-

moved to the Appendix in order not to disturb the naturaltion from the ground state to the excited stattsee Eq(1)].

flow of the text. In Eg. (5) the brackets- - -) denote the disorder average,
V=LY is the total volumel is the linear size, and is the

Il. CONTINUUM MODEL AND OPTICAL ABSORPTION dimensionality of the system.

_ We qonsiQer direct-gap semiconductors with Wannier ex- IIl. THE ONE-PARTICLE CASE
citons, in which case the low-energy electron-hole states can
be described in the continuum approximatforin this ap- In this section we briefly recall how the optimal fluctua-
proximation, the wave functio®’ ,(x;,x,) of the electron- tion method can be used to calculate the low-energy tail of
hole pair with the energ§,,, counted from the gap valug,  the density stateger unit volume'~*°
satisfies the Schdinger equation,

1
. 2 p(s)=v > 8(e[U]-¢) )
——A;——A,+U(X))— BU(Xp) + V(X;— Xp) |V,
2m,~ 1 2m,"? ! 2 vt of a single particle moving in a random potential
=E¥,. (2) 52
Here,x; andx, are the coordinates of, respectively, the hole v ( 2m 0] ¥a=eat :

and electronm,(m,) is the effective holeelectron mass, (8)
V(x)=—e?/ex is the Coulomb interaction between the elec-\we are now interested in the density of states with a large
tron and holelJ(x) is the random potential due to impurities negative energy. Such states can only be induced by large
acting on the hole, while the disorder potential acting on thenegative fluctuations of the disorder potentisx) (in the
electron is— BU(x). The dimensionless coefficieft ac-  absence of disorder the energy of all eigenstates is positive
counts for a different dependence of the energies of the botrhe density of states is then, essentially, the probability to
tom of the conduction band and the top of the valence bangnd such a fluctuation. When this probability is small, it

on the concentration of impuritiés.We consider here the gyffices to keep in Eq7) only the contribution of the ground
case of uncorrelated white noise disorder of strerfgth state @=0),

UX)U(X"))y=Ad(x—x"). (2 1
< : p(e)~ g (sl UT—2)), ©
The optical conductivity per unit volume for the electric

field, polarized, e.g., in the direction, is given by because the probability to find a disorder fluctuation that

induces an excited state with the same energy is even
C smaller.
o(w)=—F(ho—A), (3) For the white noise potential E(R) the disorder average
@ can be performed by functional integration,

where the coefficient,

1
2 p<s>=vf DUe™ SA5(so[U] &)

a
Jvod3rUS(r)a—xvo(r) : (4) 1 dx 1
——J DU 27TiAeX —K[S-F)\(SO[U]—S)] ,

v
(10)

B 2me’h?
- 2

m

is expressed through the periodic Bloch waveg(r) and
vo(r), describing, respectively, the electron and hole states
with zero wave vector. In Eq4) mis the electron mass in where the “action”Sis given by

155210-2
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1 3.5
S=3 f d9xU?%(x). (11)
3
The optimal fluctuation method is the saddle-point calcu-
lation of the functional integral in Eq.10), in which one 2.5
assumes that the dominant contribution to this integral come:

from the vicinity of one “optimal” disorder fluctuatiok) (x), 2
which has the highest weight among the disorder realizationsg
that induce a state at the energyAt the “saddle-point” the 15
variation of
]
S\=S+N\(go[U]—2) (12
with respect toJ(x) vanishes. This gives 0.5
580[U] 2 0
UX)=—A\ 50X =—Nyp(x), (13 : .

where ¢y(x) is the ground-state wave function, which we  FIG. 1. The shape of the wave functigi(z) for d=1,2,3.
can take to be real. Inserting E(L3) into the Schrdinger

equation(8), we obtain a nonlinear equation fg as 79|g|2- 92
S=21""p—0r—, (19
h? 3 md’2
=— Ayt Nyi+eiyy=0. 14
smA %ot Nbigtedy (14 where

It is convenient to introduce the dimensionless coordinate 2
z= kX, Wherex is defined bye = —#2x?/2m and the dimen- b= f diz¢*= a=d) a.
sionless wave functioi(z)

The value of the coefficierd (see, e.g., Refs. 22 and )23

fk
X)= —dd(2), 15 —
. . a=1¢ 5.85... ford=2
which satisfies 630 ford—3.
A,p+2¢3— p=0. (16)

The result for the single-particle density of states at large
In dimensionless units the spatial extent of the wave functiomegative energies, obtained by the optimal fluctuation
and the optimal fluctuation is of the order of one. Ber1,  method, has the form

the solution of Eq(16) is

p(e)=K(e)e 54 (20
d(z)= L (179  where the prefactoK(e) results from the Gaussian integra-
coshz tions over the small deviations @fU(x) from the optimal

fluctuation. The calculation of the prefactor also involves the
integration over the locations of the optimal fluctuation,
which cancels the volum¥ in the denominator of Eq.7).
Ford=1, the prefactoK(¢) is given by*

while for d=2,3 this equation has to be solved numerically.
The dependence of the functigp on the radiusz=|z| is
shown in Fig. 1.

The solution of Eq(16) is an extremum of the functional

_Alel

1 1 =1
Agl=5 [ a7 (VP googt as K= Za- @
wherea= [d%¢?. The coefficient in Eq.(13), found using IV. OPTIMAL FLUCTUATION FOR ELECTRON-HOLE
the normalization conditiof d®xy3(x)=1 and Eq.(15), is STATES

expressed througa by
We now return to the problem of an interacting electron-

h2k?d hole pair in the presence of disorder. Similar to the preceding
section, we can obtain an equation for the wave function of
the typical electron-hole state with large negative energy.
and the actior5, defined by Eq(11), for the optimal fluc- However, before turning to a formal consideratisee Egs.
tuation is given by (29 and furthet, we first give a qualitative discussion of the

A=a
m

155210-3
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properties of the optimal disorder fluctuation for the exci- Mee@
tonic states. Kpl = n > 1.
From Eq.(13) we see that the spatial extent of the disor- mee )

der fluctuation, which induces the typical single-particle state
with the negative energy, equals the spatial extent of this
state, given by~ to|e| Y2 Similarly, for the electron-hole
state with negative enerdy, the spatial extent of the optimal
fluctuationr «<|E| ~Y2. While the magnitude of the disorder
potentiale|E|, the magnitude of the Coulomb energy of the
electron-hole paircr ~toc|E|Y2 Thus, for large negative,
the Coulomb energy becomes smaller than the energy of the

In this limit the disorder potential acting on the electron can
be approximated by a function and the corresponding en-
ergy £®=50(m./m,)*3c@|®|E| is parametrically
smaller tharje(®)| and can be neglected. Then the absorption
rate ford=3 is

interaction of the electron and hole with disorder and the b2 m 84‘1/2
Coulomb interaction can be treated perturbatively. This situ-  F(E)xe™Sh/A=expl — T |ET : 5 _
ation is very similar to that of the Coulomb gas, which be- 27 mp A 2¢%h?|

comes more ideal as its density increaes. (24)

The shape of the typical electron-hole state crucially de-
pends on the d|m¢n5|onql|ty of the systenie flrst'neglect For d=2, the situation is, essentially, the same asdor
the electron-hole interaction completely and consider a local-

) . . . =23: the minimization of the actiori22) gives that in the
ized hole with the energy,<0 and a localized electron with . . ) ) .
the energys.<0, such thate,+ z,=E. Assuming that the optimal fluctuation only one of the two particles is localized

. 2 _
electron and hole are localized far from each other, the actiorqy dlsorder(t_he hole, _form_h>@ Me, OF Fhe electron, other
. : ST wise). Ford=1 the situation is quite different. In that case

of the corresponding disorder fluctuation is given by the SUML & minimum of the action22) is reached at
of the single-particle actiorsee Eq(19)],

len|27 92 [ |29 ge  ,Me

S=Sn(en) + Selee) =21 ¥2b1i¢ : =B, (25
S(en e\ e md2 B2md2 eh my,

(22

. o which means that in the one-dimensional electron-hole state
The factor in the electron action is due to the fact that the wjth |arge negative energy both the electron and the hole are
strength of the disorder potential, acting on the electron, igikely to be localized. In that case the optimal fluctuation has

B?A. o o two parts[cf. Figs. 4b) and 4c) below]: a part where the
Ford=3 the minimum of the action is reached when only dgisorder potential is negativo localize the holgand a part
one particle is localized, i.e., at with positive disorder potentidto localize the electronThe

minimal value of the action is then given by
en=E, &,=0 for m,>m.B*"

4 [2|E|?
en=0, &,=E for m,<m,B*° So=3 |M|’ (26)

If we now include the Coulomb interaction between the
electron and hole, we obtain the following picture of thewhereM =mjy+ 8*m,.
typical electron-hole state with a large negative energy: One There are two kinds of corrections to this acti@n: the
particle is localized by a disorder fluctuation, while the othercorrection due to the electron-hole interaction dnd the
particle forms a bound hydrogenlike state with the localizedcorrection due to the interaction of the electron with the dis-
particle. If, e.g., the hole is localized, then the total pair en-order fluctuation localizing the hole and vice versa. For large
ergy is negativek these corrections are relatively small. The regular
way to find them is the perturbative solution of the equation
E=eW4g@4503) (23)  for the typical wave function of the electron-hole state of a
given energy. This equation can be obtained using the same
considerations that led to E¢L4). The relation between the
optimal fluctuationU(x) and the wave function of the
electron-hole stat& (x4,X,) it induces, has the form

wheres M= —#%2x2/2m;, is the energy of the localized hole,
the second term is the binding energy of the electedR),

= —mge*/2€°%2, and the third term is the energy of the re-
pulsion of the electron from the disorder potential that local-
izes the hole. This picture is valid whda®|<|eW)], in
which case the size of the hydrogenlike state Ux) = —)\f dI%'[W2(x,x" )= BY2(x',x)], (27)
=e(m/my)ag (hereag is the Bohr radiusis much larger

than spatial extent of the disorder fluctuation localizing the

hole Kgl where we used that satisfies Eq.(1). Substituting this

155210-4
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optimal fluctuation back into the Schiimger equation(1)
leads to a nonlinear, nonlocal equation by

( h? h?

- Z_mhAl_ Z_n,.|eA2+V(X2_X1)_ E|W(Xy,X2)

which agree with Eq(25) obtained above. Also, the calcu-
lation of the action in the zeroth-order approximation

so%f dx{Ufi(x)+UZ(x)]

gives Eq.(26).

Though the calculation of the first-order correction to the
5 ) oo, wave function is, in general, difficult, the first-order correc-
—BY(x2,X") + BTWAX X)) (28)  tjon to the action can be expressed through the unperturbed

This equation is formally equivalent to the equation for theWave functions of the electron and hole,
excitonic polaron and bipolaron wave functions, obtained in
the adiabatic treatment of the lattit& 2t is clearly impos-

sible to solve this equation analytically. In the remainder of
this section we obtain the action of the optimal fluctuation
for d=1 using a perturbative solution of this equation, while
in Sec. VI we give the results of a numerical solution, also

=AW (X, ,xz)f dO%'[W2(x,,x")— BY2(X",Xy)

Sl(r)=)\dez/;ﬁ(x) fdx’z/xé(x’)V(x—x’+r)

+BNYA(x—T)|, (32)

ford=1.

wherer =Xx.— Xy, is the average electron-hole separation. The

The first term in the perturbative expansion of the wavesomewhat lengthy derivation of this result is given in the

function

V=W W+

Appendix. The first term in the square brackets is the correc-
tion due to the electron-hole interaction, while the second
term describes the interaction of the hole with the bump,

is the product of the wave functions of a noninteractinglocalizing the electron and vice vergsee Eq(30)].

electron-hole pair separated by some distance
W o(X1,X2) = hn(X1 = Xp) he( X2~ Xe)
VKhK
= dlenlxa= X)) el X1~ Xe]),
(29)

where x,(X.) are the average hol@lectron positions, the
single-particle wave functiog is given by Eq.(17), and the
wave vectorse, and k. are defined by,=— ﬁzxﬁ/th and
ge=—h2kZ2m,.

The optimal electron-hole distaneg is found by mini-
mizing S; with respect tar,

ds,
dr

r=r,

(33

From the form of Eq(32) it is clear that the latter condition

is just the balance of average forces acting on the hole: the
attraction from the electron and repulsion from the disorder
potential localizing the electron. Thus the typical electron-
hole state of large negative energy can be considered as a
kind of “molecule” in which the disorder fluctuations bind-

In the zeroth order of the expansion the disorder potentiaing the electron and the hole play the role of “nuclei” with,

in the optimal fluctuation is obtained by substituting E2P)
into Eq. (27),

Uo(X) =Un(X—Xp) +Ue(X—Xe)

= = NR(X—Xp) + BNYE(X—Xe),  (30)
where the first term is the negative potential dip that

respectively, positive and negative charge.

The result Eq.(32) can be cast into a more transparent
form using the fact that for the Coulomb interaction between
the electron and hole to be small compared to their interac-
tion with the disorder fluctuations, the optimal electron-hole
separatiorr, should be large compared to the spatial extent
of the disorder fluctuationse™ "+ e “e'+<1. We further-

localizes the hole and the second term is the positive potermore assume thah,>m,8* and thate (*n~ %'+ <1 i.e.,

tial (a bump that localizes the electron.
Inserting Eqs(29) and(30) into Eg. (28) and taking into

account thate,+e.,=E, we obtain that the cancellation of

the zeroth-order terms in that equation requiras
=2h2%k,/m, and\ B%=2#2k./m,, from which we find

E, (31

the hole is sufficiently more localized than the electron,
which holds unlessn, is very close tan,8*. Then Eq.(32)
becomes

Sir) € 5
X ~—E+,8)\1//e(r).

(39

For the optimal distance, , at whichS; has its minimum,
we obtain

e2

deBN’

Kol € Kelx =

(35

where\ is given by Eq.(31). The dimensionless parameter
on the right-hand side is, essentially, the square root of the

155210-5
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ratio of the Coulomb energy to the total enefgywhich, by  comes from the disorder realizations that are close to the sum
assumption, is smafand thus«r, is logarithmically large ~ of the single-particle optimal fluctuations)q(x)=Up(x
Furthermore, the second term in E&4) (due to repul- —xp)+U(x—X.) [see Eq(30)], whereU,(x—x.) localizes
sion of the hole from the electron optimal fluctuatios  the hole with energy, nearx=x;, andU(x—x,) localizes
small compared to the first terfdue to the electron-hole the electron with the energy, nearx=x.. In the preceding
interaction), section we have calculated the optimal electron-hole separa-
tion, for which the weight of the disorder fluctuation reaches
BA wg(r*) 1 its maximum. In this section we shall treqtandx,, as well
el(er,) = 2Kl as the single-particle energieg and ¢, as the collective
variables of the functional integration over disorder. Per-
Therefore, forming the Gaussian integration over all the small devia-
5 5 tions U (x) =U(x) — Uy(x) in Eq. (5), which are orthogonal
e d_So e to the deviations corresponding to the four collective coordi-
dE

Si=~—\ = , .
1 €r, €r, nates, we obtain

where in the last step we used 1
F(E)= Ef depde (dx,dxKn(8n)Ke(8e) D?(Xe—Xn)

dS
e B p[ 1[ ) )+ 6S]
Xexp — <[ Sy(en) + Selee) + S
as follows from Eqs(26) and(31). We thus see that, to the A Sn(en e
lowest order, the effect of the correction to the act®ris to
' X +e.t+ 0 —E).
replaceSy(E) by So(E+ €% er,), giving for the absorption d(enteetde—F) (38)
rate in one dimension Here,L is the chain lengthD is the transition matrix element
[see Eq.6)], Sy(en) and Sy(e) are the single-particle ac-
424 e? |37 tions, given by EQ.(22), and §S=48S(r), where r=x,
F(E)xexp — 3AM 2 E+ z ' (37) —Xp, is the correction to the action of the electron-hole pair

due to the overlap between the electron and hole optimal
where the electron-hole Coulomb shift dependsEpmas ac-  fluctuation
cording to Eq.(35), r, «<|E|~Yn|E|.

To end this section about the shape of the optimal fluc-
tuation we note that the numerical solution of E§3) for

sufficiently small|E| givesr, =0, which corresponds to the Furthermore 5= = e (r) is the energy correction due to the

localization of the electron-hole pair by a symmetric Slngle_electron—hole interaction and the interaction of the electron

well disorder potential. In that case the repulsion of the eIeCWith the hole optimal fluctuation and vice versa. The first-

tron from the disorder potential that localizes the hole is rder correction, calculated using the unperturbed electron-
compensated by the Coulomb interaction between the elec- ! 9 P

tron and hole. The transition from the symmetric to the ole wave function Eq(29), is
asymmetric shape of the optimal fluctuation is studied in

detail in Sec. VI, where the results of the numerical solution 58(r):f dX[ A(X—Xn) U o(X—Xe)
of Eq. (28) are discussed. We shall show that our analytical

approach, in fact, gives a rather accurate description of that + h2(X—Xe) Up(X—Xp) ]
transition(see Fig. 5.

8S(r)= f AdXUp(X—Xp)Ue(X—Xg).

+ | dxdX g2(x—xp) V(X=X ) (X' —X,),
V. OPTICAL ABSORPTION TAIL IN ONE DIMENSION J wh( h) ( )lpE( E)

In the precedings section we have shown thatferl the (39)
electron and hole in the typical state with a large negativeyherer —x,—x,, is the electron-hole separation. In the same

energy are localized relatively far from each other. Thisyyh oximation the transition matrix element is given by
property allowed us to calculate approximately the weight of

the optimal disorder fluctuation for the electron-hole pair. It

also simplifies the calculation of the preexponential factor in D(r)=f AXin(X—=Xp) Pre(X—Xe) -

the expression for the absorption rate, which results from the

integration over small deviations from the optimal disorderFinally, in Eq. (38) we used the fact that for small overlap
fluctuation. In this section we obtain an analytical expressiorbetween the electron and hole optimal fluctuations the pref-
for the tail of the optical absorption spectrum that actuallyactor, resulting from the Gaussian integration o§ei(x), is

has a wider range of validity than the standard optimal flucthe product of prefactors for isolated the hole and electron,

tuation method. Kn(en)Ke(ge).2> [We note, that inK.(s.) the disorder
As we have shown in the preceding section, the dominanstrengthA has to be substituted hg?A.]
contribution to the optical absorption at large negative The integration over the center-of-mass coordinate

155210-6
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B MpXp+ MeXe
mp+ Mg

which is a zero mode, gives the chain lengtiDue to thed
function in EqQ.(38) e,=E— 8¢ — ¢}, and the remaining inte-
gration over the hole energy, can be performed in the
saddle-point approximation. The condition of the minimum
of S,(ep) +Sc(ee) gives Eg. (25, which determines the
saddle-point values af,, ande,. Then Eq.(38) can be writ-
ten as follows:

27A
F(E)=\/ "5 | drku(enKd(eaD(1)

xexp{—%[SO(E—ﬁs)wL&S] , (40)

where

d? #o [2Mm
|E|’

B= E[%(sh)+3e(E—8h)]= ”

w=B*mem,/(m,+ B*m,), andSy,(E) is given by Eq.(26).
ExpandingSy(E— de(r))~Sy(E) — (dS,/dE) de(r) and
using Eq.(36) and the relation between the single-particle
optimal fluctuations and the wave functions,(x—Xx;)
= —NgA(x—xp) and Ug(x—Xe)=\By2(x—Xe), we find
that ther-dependent part of the action coincides with the
first-order correction to the action of the optimal fluctuation
Eq. (32,

d—SO58=Sl(r)

0S— dE

Thus, we can write Eq40) in the form

27A )
F(E)= TJ drKp(en)Ke(ge)D(r)

1
Xex;){—K[SO(EH-Sl(r)]]. (41
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FIG. 2. The energy dependence of the logarithm of the absorp-
tion rate.

2mA
F(E)= ———=pn(en)pe(ee) D?(r, ) S1=)A
d?s
B—
drg
where

d?s 2)\e2( 3

—_— ——— Ker* —

dr2 3

and e, and g, are the unperturbed single-particle energies,
given by Eq.(31) [we have used that the factdfs,(e},) and
Ke(ee) are slow functions of the energies

Equation(41) also applies when, instead of one optimal
fluctuation, one finds an entire manifold of disorder realiza-
tions that significantly contribute to the optical absorption. In
particular, for a noninteracting electron-hole pair the mini-
mum of the actionS; is reached at the largest possible
electron-hole separation, since #{x; — X,) =0 nothing can
counteract the “repulsion” between the two disorder fluctua-
tions, described by the second term in E&2). However,
these electron-hole states clearly do not contribute to the op-
tical absorption as the transition matrix elemé&nvanishes

The typical energy dependence of the absorption rate Eat infinite r. Since the repulsion decays exponentially with

(41) is shown in Fig. 2, where we plot Fras a function of
(E/E)¥2, with E;<0 being the exciton binding energy. One
can see, that the energy dependence df irery quickly
becomes linear for energies bel@&y. The linear dependence

the electron-hole separation, the actipis a very weak
function ofr, as soon as the latter exceeds the spatial extent
of the electron and hole states, * and «_ *. The contribu-

tion of the electron-hole pairs with larges then suppressed

reflects the relative weakness of the Coulomb interaction benot by the weight of such fluctuations, but by the smallness

tween the electron and holsee Eq.(26)], which was the
main assumption of this analytical calculation.

of the transition matrix elemerid, which decays exponen-
tially with r. Thus, when the electron-hole interaction is ab-

In the case when the integral over the electron-hole sepasent or relatively weak, in order to calculate the absorption

rationr comes from a small vicinity of the saddle-point,
determined by Eq(33), we find that the saddle-point action
coincides with the action for the optimal fluctuatioS,

+S,(r, ), obtained in the Sec. IV. The result of the saddle-

point integration over is

rate, one has to sum the contributions of many disorder fluc-
tuations with different electron-hole separations, which can
be accomplished using E@41). In this case the electron-
hole separation is the “soft mode” in the space of disorder
realizations, integration over which is non-Gaussian.

155210-7



MAXIM MOSTOVOY, FRANK ANTONSEN, AND JASPER KNOESTER PHYSICAL REVIEW B5 155210

The integration in Eq(41) for the noninteracting electron Instead of solving Eq(28) directly, we perform the nu-
and hole becomes particularly simple in the case when theerical calculations for a tight-binding model defined on a
hole is localized stronger than the electron, or more prelattice. The discrete version of the Sctiimger equatior(1)
cisely, whene™ (*n"%e'<1 for relevant electron-hole sepa- reads
rationsr, which we already have used in the Sec. IV. Then
the actionS; for the noninteracting case is

_tl( ‘r/fnfl,m"' 'r//n+l,m)_t2( ‘//n,m+1+wn,mfl)+vnm‘/’nm

+(Un=BUn) ynm=Ednm, 44
51(r)=)\2/3J dxy2(X) p2(x+1)~N2ByA(T) ( BUm) ¥ W (44)

and the transition matrix element is given by wheret, andt, are, respectively, the hole and electron hop-
ping amplitudes, the indicea,m=1,2,...L denote the

T sites of the one-dimensional lattice with the lattice constant
D(r)~ \/ﬁ‘ﬁe(r)' and periodic boundary condition¥,, is the disorder poten-
n tial
and
A
w2 [+ dz (Up)=0, (UUp=— Snms
f drD(r)2e StA=_—_ J e —¢lcosiz
4kn) -= costz

andV,, is the regularized Coulomb interaction

™ BMA
D |E|?’ Y, ! + !
/) .

nm Nn—m[+8ym N=|n—m[+5,_mn

where we assumed that (45)
Here, go=¢?/ea and the second term in the brackets is

N2Bke 3mMBE S, added to satisfy the periodic boundary conditions.

iy VI (42 The discrete equatioi44) reduces to the Schadinger

equation(1) in the continuum limit, when all relevant elec-
Since for the applicability of the optimal fluctuation method, tron and hole states have small wave vectlra, k,a<<1. In
anyhow, the actiorg, has to be much larger thak Eq.(42)  that case, the dispersion of the free hole dispersion is
holds, unless 81,8%/M is very small.
Thus, finally, for the noninteracting electron and hole in
one dimension the expression for the absorption (ttat en(k)=—2t,coska~ —2t; +t;(ka)?,
also includes the preexponential fagta
so thatm,=#2/2t,a? and, similarly, for the electron we have
me=7%2/2t,a%. In this calculation we pua=t,;=t,=1. Then
|E 2 4n [2E] the continuum limit is reached for small values of the cou-
F(E)~ 3 W ™ (43 pling constang, and the energ¥, counted from the bottom
of the band,

VI. NUMERICAL RESULTS

The analytical results of Secs. IV and V for the optimal E=E+2(t+ty) =E+4<1.
fluctuation and the optical absorption spectrum were ob-
tained by a perturbative treatment of the Coulomb interaction The discrete analog of the actigh2) is
between the electron and hole. When this interaction is of the
same order as the magnitude of the disorder potential, the S U
optimal fluctuation has to be solved numerically. In this sec- \LiU]
tion we present our numerical results for the optimal fluctua-
tion in one dimension. where

:%z UZ+N(E[4U]-8),  (46)

- 2% [wnm(tl¢n+l,m+t2wn,m+l) +Vnm¢ﬁm+ (Un_ ﬂU m) wﬁm]
E[U,y]= : (47)
2, Yo
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The denominator in the last equation takes care of the wave 2 ' '
function normalization. It is readily seen that varyiBgwith

respect to the wave functiog,,, (that can be chosen regal
yields the discrete Schdinger equatiori44), while the mini- 1.6
mization ofS, with respect to the disorder potentld}, gives 1.4k
a relation between the optimal fluctuation aigl,,,

1.8

1.2

A o
Un: _ N% (lpﬁm_ﬂw%n)’ (48) C\(‘f) 1k -0.2 -0.16 -0.12  -0.08
0.8}
where we have used the notation 06l
0.4}
N=2 tiom: (49
nm 0.2
We find the optimal fluctuatiok, and the corresponding > 08 06 Toa o2 K 0
wave functiony,,,, by minimizing the functional E

2 FIG. 3. The actiors of the optimal fluctuation to the power 2/3
A\l y]=— JT/E Unm(t¥ns 1mt t2¥nme1) plotted as a function of the electron-hole eneEgyor g,=0.2, 8
nm =0.5, and the chain length=50. The open circles are results of
the numerical calculation and the solid curve was obtained analyti-

1 A . .
I lanat the text
+ X/% Vnml//ﬁm_ e ; % (l//ﬁm cally (see explanations in the tex
2 large energie$E|~1 are due to the break down of the con-
-BYA) ] (500  tinuum approximation, resulting from the fact that the hole
becomes localized on a single lattice site.
which is the two-particle analog of E¢18). While S, de- These changes in the energy dependences aeflect

pends on bothy, , andU,,, A, is a functional of the wave changes_ in the shape of the optimal_ quctuat_ion and the cor-
function only. One can easily check that the condition'®SPonding electron-hole wave function. In Fig. 4 we gt
SA\ 1 8¢m=0 is equivalent to Eq(44) with the disorder and the_ contour plot of,,, calculated numerically, for
potentialU,, given by Eq.(48). The minimization of4, with ~ three different values of the energy-0.14, —0.30,
respect toy,,,, was carried out numerically, using the steep-

est descent algorithm far=50. The energy of the electron- 05 50
hole pair and other quantities of interest, e.g., the optimal
fluctuationU,,, itg weight, gnd the 'corresponding electron- 0 AV 25
hole wave function, are first obtained as functions of the
Lagrangian multiplieix. Then we eliminatex by replotting 0.5 5 50 % 25 50
these quantities as functions of the enekyy 05 50
We first consider the energy dependence of the weight ol © ©
the optimal fluctuation, which, essentially, determines the en-¥ o -
ergy dependence of the optical absorption rate. This Weigh:’ \/\
is given bye 52 where S=13,U2 is the action of the  -05 0
optimal fluctuatior{cf. Eq. (11)]. Motivated by the dominant s %0 500 % %0
|E|®? behavior ofS[cf. Eq.(26)], we plot in Fig. 35?2 as a ol g
function of the energ¥ for go=0.2 andB=0.5. The open o5
circles are obtained by the numerical procedure describec -1 ——
above, while the solid line is the result of our approximate - o
analytical calculation of the actio®= Sy + S;, whereS, and 0 25 50 0 25 50
S, are given by Eqgs(26) and (32), respectively. Clearly, X %2

apart frqm a small energy interval near the exciton binding FIG. 4. The shape of the numerically obtained optimal fluctua-
energy in the absence of disordé&y~ —0.08, the energy tion for E=—0.13 (), E=—0.3 (b), and E= —0.94 (¢). Panels

213 o i i
dependence of~" is |nde(_ad close to Ilngar and the_ agree'(d)—(f) show contour plots of the corresponding electron-hole wave
ment between our numerical and analytical results is good.fynction 4, .. All plots correspond togy=0.2, B=0.5, andL

For energies close t&,, the assumption that disorder —5g0 The coordinate; = na andx,=ma, wheren,m=1, . . ., L
dominates the Coulomb interaction, used in our analyticaljescribe, respectively, the hole and electron positions in the chain in
approach, breaks down, which explains the deviations of th@nits ofa=1. Note, that a€ decreases, the shape of the optimal
numerical data from th&«|E|*? law and from the analytical fluctuation undergoes a transition from a single-well to a “dip-
curve. On the other hand, the deviations found at relativelypump” structure.
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12 T T T T T T T T Electron and hole distribution Effective potential
02} (a) of (d)
10- 1
0.1 -0.05
C
'g o -0.1
© 8r 1 Q 10 20 30 40 50 ’ 10 20 30 40 50
3
[}]
@ . | of (e)
= 6r b o 0.15
o o c
T ac Z 005
c
Qe
8 4r i % 10 20 30 40 50 Ol 40 20 a0 40 0
L
04 0.3
ol | (c) ®
0.2
0
0 . . . . . . . .
-1 09 -08 -07 -06 E—o.s -04 -03 -02 -01 % 1o 20 30 0 =0 o 10 20 30 40 50
n n
FIG. 5. Numerical(circles and analytical(solid line) energy FIG. 6. The left-hand side of the figure shows the elecfthitk
dependence of the average electron-hole separation calculated figtie) and the hole(thin line) distributions in the typical electron-
go=0.2, 8=0.5, andL =50. hole state folE=—0.18(a), E= —0.20(b), andE=—0.50(c). On

the right-hand sidépanels(d)—(f)] the corresponding effective po-

and—0.94. The first valueE = —0.14 is rather close to the tentials acting on the electron are plotted. All plots correspond to
exciton binding energ,. In that case, the optimal fluctua- 90~ 92 #=0-5, andL.=50.

tion, shown in Fig. 4a), is rather shallow and it is symmetric

aroundxq, wherex, is the position of the minimum of this r=>, (m—n)y2,.

fluctuation. This symmetry implies that no separation exists nm

betyveen the average e'?c"on an_d hole positions. _Such %he results of the numerical calculationroés a function of

optimal fluctuation was dlscu.ssed in Ref. 11 for the sﬂuaﬂona1e energ)E are shown in Fig. 5 by circles. In this figure we

where th_e Coulomb mteracthn domlnates_ the _dlsorder and)so plot the optimal electron-hole distange, obtained by

the spatial extent pf the (_)pt|mal qu.ctuatldgpt is much our approximate analytical approach of Sec. [B. (33)].

larger than the exciton radiug,, leading to decoupling of - The minimization of the correction to the acti®p was per-

the center-of-mass and the relative motion. That limit iSformed numerically, as the approximation that was used to

rather difficult to simulate numerically within our discrete obtain Eq.(35) is too crude to describe the changes in the

model, as the requirement to maintain the validity of theshape of the optimal fluctuation. Figure 5 shows a transition

continuum approximation then leads to<iq<l,,<L,  from the optimal fluctuation with zero-average electron-hole

thus forcing us to consider a very large lattice dizé=rom  separation to one with finite separation. One can also see that

Fig. 4 one observes that f&= —0.14,1,,; is comparable to the approximate analytical approach provides a good quali-

the exciton radius.,~5. Still, one can see from Fig.(d) tative description of this transitidiin particular, the onset of

that the electron-hole wave function, apart from the delocalthe transition and the shape of thE) curve], but it gives a

ization along the electron coordinatg, also shows a strong someyvhat larger value of the electron-hole separation at low

delocalization along the ling&;=x,, which corresponds to €nergies.

the center-of-mass motion of the exciton. For the second 10 clarify the nature of this transition, we plot in Figs.

value of the energyE = — 0.3, the optimal fluctuation has the 6(&)—(C) the coordinate distributions of the electraimick

asymmetric “dip-bump” shape, which corresponds to the lo-1in€) and hole(thin line)

calization of the electron and hole on different sites of the

chain[see Fig. 4b)]. Finally, atE= —0.94, the hole is prac- P[}:E Wi

tically localized on one chain site, in which case the discrete m

model should not be used to simulate the continuum[sae

Fig. 4(c)]. From Figs. 4e),(f) one can see that foE=

—0.3 andE= —0.94 the electron-hole wave functiaf,, is

mostly delocalized along the electron coordin&geand it .

has no delocalization along the center-of-mass directign, for do=0.2, 8=0.5, and three different values of energy

=Xo. In addition, Figs. €6d)—(f) show the corresponding effective
The transition from the symmetric to the asymmetric Hartree potential acting on the electron

shape of the optimal fluctuation can be most clearly seen

from the energy dependence of the average electron-hole __ e

separation, defined by Won BUer; PrVom-

Pﬁsz am:
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1 ' ' ' ' ' ' a single-particle calculation, since, on the one hand, the elec-

tron and hole move in a common disorder potential, and, on
the other hand, the effect of the disorder on the electron is
different from the effect of the disorder on the hole. We
showed that to calculate the optical absorption tail for rela-
tively weak interactions between electron and hole, one has
to go beyond the standard optimal fluctuation method and
perform the (non-Gaussian integration over the “soft
mode”"—the electron-hole separati¢see the derivation of
Eq. (43)].

We found that, as the photon energy decreases, the shape
of the optimal fluctuation undergoes a crossover. Clogg,to
(the exciton binding energy in the absence of disordkie
Coulomb energy dominates over the disorder and the optimal
, , , , fluctuation has a symmetric shape. It reflects the fact that at

84 -035 -03 -025 02 -0.15 -01 those energies the exciton is not entirely destroyed by disor-

E der. That limit was considered previously in Ref. 11. In the

FIG. 7. The energy dependence Bf 2 for g,=0.2, =0.5,  Opposite limit, when the disorder dominates over the Cou-
andL=50. lomb interaction, the optimal fluctuation has two parts: a
“dip” that localizes the positively charged hole and a

At E=—0.18, just above the transition, the electron Wave“bump" that localizes the negatively charged electron. This

function has two peaks, in accordance with the double-welfransmon to an asymmetric optimal fluctuation is character-

structure of the effective Hartree potentiésee Figs Istic for motion in one dimension—it does not occur in two

6(a),(d)]. The peak separating the two potential wells is theand_ three dimensions. It can, in principle, be_ observed ex-
verimentally, as the absorption rate has a different energy

disorder potential that localizes the hole and repels the eleéd) q b d bel he critical Figs. 3
tron. As the energyE decreases, the height of the peak ependence above and below the critical engsgg Figs.

grows, which suppresses the electron tunneling between tHaepd 7. . .

two wells. For large separations between the wells, the At photon energies well below the exciton energy, 'when
weight of the symmetric optimal fluctuation, in which the the Coulomb Interaction can b_e treated as a perturbanor_l,_we
electron is delocalized over the two wells, is lower than theObta'r?ed an analytlcal_ expression for _the optical conductivity
weight of the single-well optimal fluctuation with the same ofa dlsordereq one-d|men_5|onal semlconductor. We "?"SO per-
electron energy. FOE=—0.20 in the transition region the formed numerical calculations of the optimal fluctuation for
two wells become unequésee Figs. () and 8e)], and at a discrete model that allowed us to study the whole region of

E=—0.50, well below the transition region, the electron is photon energies, in which the optimal fluctuation method is

- ; : - applicable(i.e., for E<E,, for which the actionS is much
g(rfe)(]:i.ommantly located in a single wdliee Figs. &) and larger thanA). In the continuum limit we found a good

We finally note that, though the weight of the optimal agreement between our numerical and analytical results.

fluctuation varies smoothly at the critical enerfiy~0.19 Finally, in the region of validity of the optimal fluctuation
[see Fig. 3 the transition matrix elemer® [see Eq.(6)] method, we do not observe a significant delocalization due to

being sensitive to the shape of the electron-hole wave fun(#ptera';:.tlorl dtlﬁcushsed '? Ref..t.S. Ir? pa}'rtttllculaftfr, a;s catr;] b? selen
tion, is singular at the critical energy. This is illustrated in from Fig. =, the shape transition has little effect on the local-
Fig. 7, where we plot the energy dependencBof. Clearly ization length of the electron-hole pair. We note, however,

the derivatived D/dE is discontinuous d = E. (one can see that thg mechamsm of d(.alocallzapon, proposed n Ref_. 5
also a small discontiuty dD at the critical energy, which is essennally. relies on the high qe”S'ty of excited two—partlg:le
likely to be a finite-size effeqt ’ states, which enhances the diffusion rate of the two-particle

states along the chain. We, however, consider low-energy
states that are all strongly localized. The density of such
VII. CONCLUSIONS states is relatively small and we do not expect, neither do we
see, an enhancement of the localization length. The only ex-

In this paper we studied theoretically the photoexcitationception to this is the casg~1, when the interaction of a

of electron-hole pairs in disordered one-dimensional semitightly bound electron-hole pair with disorder is relatively
conductors. Using the optimal fluctuation method, we calcuyeak.

lated the low-energy tail of the absorption spectrum in these
systems. We were, in particular, interested in the effects of
the Coulomb interaction between the electron and hole on
the energy dependence of the absorption spectrum.

We want to point out, however, that the calculation of the This work was financially supported by the Stichting voor
absorption rate is a nontrivial problem even for the noninter~undamenteel Onderzoek der Materie, FOM. We thank Ya.
acting electron and hole. In particular, it cannot be reduced td1. Blanter for useful discussions.

1/D?

N w > 3] (=2 ~ 2] © o
T

—_

ACKNOWLEDGMENTS

155210-11



MAXIM MOSTOVOY, FRANK ANTONSEN, AND JASPER KNOESTER PHYSICAL REVIEW B5 155210

APPENDIX: FIRST-ORDER CORRECTION deps,
TO THE WEIGHT OF THE OPTIMAL FLUCTUATION S=-— 3 f dx¢2( k[ X—Xn] H2 (ke X—Xe])
OF THE ELECTRON-HOLE PAIR

The calculation of the first-order correction can be per- +j dxUg(X)U4(X), (A2)
formed in two different ways. On the one hand we can use

the exact relation between the action of the optimal fluctuay, o 1 is the first-order correction to the disorder poten-
tion and the disorder potential averaged over the eIectronﬁal

hole wave function:
f dZX‘PZ(Xl,Xz)[U(Xl)_BU(Xz)] Ul(x)=_2)\j dX,[‘Po(X,X,)‘Pl(X,XI)
_IB\PO(X,!X)\Pl(X/!X)]-

1 2
=——f dxU?(x)=——S. _ o
A A The second term in EGA2) can be rewriten in the form

This equation allows us to write the action in the form

J dXUo(X)Ul(X):m\f d?XW (X1, X2) ¥ 1(Xq,X2)

2Mh xg 2Me ox; X{|en| $2(kn[X1—Xn]) +[eel H2(rcel X2
_Xe])_3_1|8e| ¢2(Ke[xl_xe])

+V(X;{—X,)—E | .
bamx) ) _B|8h|¢2(’<h[x2_xh])}~281,.*

The first-order correction to the action is then given by (A3)
N where in the last step, we used that the overlap between the
Sl:if AWV (x,—Xp) + S;, (A1)  unperturbed e!ectron and hole wave functiou@(x—xh)
and ¢o(X—X,) is small, as a result the third and the fourth
where terms in the curly brackets of E¢A3) give a much smaller
contribution than the first and the second terms. Thus, we
f & h2 92 I obtain
Si=A XVl —s———5———E|V¥,.
! Hoo2my gx2 2me g2 ° depe
_ € 2 _ 2 _ ’
Using Eq.(29) for the unperturbed electron-hole wave func- S1= B J AX@"(kn[X=Xn]) p™( ke[ X—Xe]) +25;.
tion ¥, and Eq.(16) for the single-particle wave functiog, (A4)

we obtain . .
Combining Eqs(Al) and (A4), we obtain

S= 2)\1 d*xW oW 1| en| p*( k[ X1~ Xn])

31=7\J dzx\IfSV(xl—xz)+4818h%f dx¢?
+|Se|¢2(Ke[X2_Xe])}'

2
On the other hand, the direct calculation of the first-order X el x=Xn]) e X)), (A%)
correction to the action, in which one uses [Etfl), gives which is equivalent to Eq(32).
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