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Optical excitation of electron-hole pairs in disordered one-dimensional semiconductors
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The Netherlands
~Received 17 September 2001; published 8 April 2002!

We apply the optimal fluctuation method to the calculation of the optical absorption in disordered one-
dimensional semiconductors below the fundamental optical gap. We find that a photon energy exists at which
the shape of the optimal fluctuation undergoes a dramatic change, resulting in a different energy dependence of
the absorption rate above and below this energy. In the limit when the interaction of an electron and a hole with
disorder is stronger than their interaction with each other, we obtain an analytical expression for the optical
conductivity. We show that to calculate the absorption rate, it is, in general, necessary to consider a manifold
of optimal fluctuations, rather than just a single fluctuation. For an arbitrary ratio of the Coulomb interaction
and disorder, the optimal fluctuation is found numerically.

DOI: 10.1103/PhysRevB.65.155210 PACS number~s!: 71.23.An, 71.35.Cc, 78.67.Lt, 78.40.Fy

I. INTRODUCTION

The interplay between disorder and interparticle interac-
tions results in a number of remarkable phenomena, e.g., a
singularity in the electron density of states at the Fermi
energy1–4 and an enhanced localization length of pairs of
interacting particles.5 A familiar situation in which the simul-
taneous presence of Coulomb interactions and disorder plays
an important role, is the process of optical absorption in dis-
ordered semiconductors below the fundamental optical gap,
i.e., below the band-to-band transition.6 With the advent of
modern optical materials, this problem is not only of interest
in its three-dimensional version, for which it has received
most attention, but also in two dimensions~quantum wells7,8!
and one dimension~quantum wires7,8 and semiconducting
polymers9!. Interestingly, in the absorption spectrum the rela-
tive strength of the Coulomb interaction between the electron
and hole and their interactions with the disorder, does not
only depend on the disorder strength, but also on the photon
energy: the lower the photon energy, the larger the amplitude
of a disorder fluctuation should be in order to create the
corresponding absorbing state below the fundamental optical
gap.

The effect of a relatively weak disorder on the Wannier
exciton was considered in Refs. 10 and 11. Here, relatively
weak refers to the situation where the exciton absorption
peak is still visible as a separate peak below the band-to-
band transition and is not smeared entirely by the disorder.
Moreover, the restriction to weak disorder only applies for
photon energies close to the exciton energy in the absence of
disorderEex . In this case, the exciton localization length is
much larger than the average electron-hole separation, and
the exciton center-of-mass motion decouples from the rela-
tive motion of the electron and hole. The Wannier exciton
then essentially behaves as a Frenkel exciton in an effective
disorder potential and the calculation of the optical absorp-
tion spectrum becomes a single-particle problem. This effec-
tive approach has been used to study numerically the absorp-
tion and luminescence line shapes due to excitons in
semiconductor quantum wells with interface roughness.12

In Refs. 10 and 11, the low-energy tail of the exciton
absorption peak was calculated analytically within the effec-

tive one-particle approach, by using the optimal fluctuation
method.13,14 This method applies when the dominant contri-
bution to the quantity of interest comes from disorder real-
izations close to a single large disorder fluctuation. This
method can be formulated as a saddle-point calculation of
the functional integration over disorder realizations.15 It was
used previously to calculate the optical absorption in disor-
dered Peierls conductors16 and it is similar to the calculation
of the Urbach tails resulting from the interaction of the
electron-hole pair with the lattice, treated in the quasistatic
approximation.17

In this paper we apply the optimal fluctuation method to
the general case of arbitrary ratio of disorder strength and
Coulomb interaction. We show that the shape of the optimal
fluctuation crucially depends on the dimensionality of the
system and we consider in detail the one-dimensional case.
In the strong disorder limit, when the exciton peak is de-
stroyed, and for weak disorder, assuming sufficiently low
photon energies, we obtain an analytical expression for the
optical conductivity. We show that in these situations, the
electron and hole in the optimal fluctuation are localized in
two separate potential wells. We also show that in order to
calculate the optical absorption rate, one has, in general, to
consider a manifold of optimal fluctuations with different
values of the electron-hole separation, rather than just one
fluctuation.

In the general case of arbitrary ratio of the Coulomb in-
teraction and disorder strength the equation for the optimal
fluctuation is solved numerically. We do this for an electron
and hole described within the one-dimensional tight-binding
model. The equation for the optimal fluctuation in this model
is similar to the equation for polaronic excitons and bipo-
larons obtained in the adiabatic approximation.18–20We show
that, at some energyEc , lying in the region where the Cou-
lomb interaction and disorder are of the same order, the
shape of the optimal fluctuation undergoes a sudden change:
while aboveEc it has the form of a single potential well,
below Ec it consists of a ‘‘dip’’ that localizes the hole and a
‘‘bump’’ that localizes the electron. This transition takes
place only in one-dimensional systems.

This paper is organized as follows. In Sec. II we introduce
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the continuum model that describes interacting electron-hole
pairs in disordered semiconductors. In Sec. III we briefly
recall the application of the optimal fluctuation method to the
calculation of the one-particle density of states and derive
some basic expressions for later use. Then, in Sec. IV, we
will discuss the shape of the optimal fluctuation for the
electron-hole states, in particular, its dependence on the di-
mensionality of the system. We obtain and solve perturba-
tively the nonlinear nonlocal equation for the optimal fluc-
tuation in the one-dimensional case. In Sec. V we obtain an
expression for the tails of the optical absorption spectrum,
which has a wider range of validity than the optimal fluctua-
tion method. In Sec. VI we present and discuss our numerical
results for the optimal fluctuation. Finally, we summarize and
conclude in Sec. VII. Some technical details have been
moved to the Appendix in order not to disturb the natural
flow of the text.

II. CONTINUUM MODEL AND OPTICAL ABSORPTION

We consider direct-gap semiconductors with Wannier ex-
citons, in which case the low-energy electron-hole states can
be described in the continuum approximation.21 In this ap-
proximation, the wave functionCa(x1 ,x2) of the electron-
hole pair with the energyEa , counted from the gap valueD,
satisfies the Schro¨dinger equation,

F2
\2

2mh
D12

\2

2me
D21U~x1!2bU~x2!1V~x12x2!GCa

5EaCa . ~1!

Here,x1 andx2 are the coordinates of, respectively, the hole
and electron,mh(me) is the effective hole~electron! mass,
V(x)52e2/ex is the Coulomb interaction between the elec-
tron and hole,U(x) is the random potential due to impurities
acting on the hole, while the disorder potential acting on the
electron is2bU(x). The dimensionless coefficientb ac-
counts for a different dependence of the energies of the bot-
tom of the conduction band and the top of the valence band
on the concentration of impurities.11 We consider here the
case of uncorrelated white noise disorder of strengthA

^U~x!U~x8!&5Ad~x2x8!. ~2!

The optical conductivity per unit volume for the electric
field, polarized, e.g., in thex direction, is given by

s~v!5
C

v
F~\v2D!, ~3!

where the coefficientC,

C5
2pe2\2

m2 U E
V0

d3ru0* ~r !
]

]x
v0~r !U2

, ~4!

is expressed through the periodic Bloch waves,u0(r ) and
v0(r ), describing, respectively, the electron and hole states
with zero wave vector. In Eq.~4! m is the electron mass in

vacuum and the integration goes over one elementary unit
cell V0, in which the functionsu0(r ) andv0(r ) are normal-
ized to unity.

The functionF in Eq. ~3! is the part of the optical con-
ductivity that has to be calculated within the continuum
model

F(\v2D)5
1

V K (
a

uDa0u2d(D1Ea2\v)L . ~5!

In the last equation

Da05E ddxCa* ~x,x! ~6!

is the ‘‘continuum part’’ of the matrix element of the transi-
tion from the ground state to the excited statea @see Eq.~1!#.
In Eq. ~5! the bracketŝ •••& denote the disorder average,
V5Ld is the total volume,L is the linear size, andd is the
dimensionality of the system.

III. THE ONE-PARTICLE CASE

In this section we briefly recall how the optimal fluctua-
tion method can be used to calculate the low-energy tail of
the density states~per unit volume!13–15

r~«!5
1

V K (
a

d~«a@U#2«!L ~7!

of a single particle moving in a random potential

Hca5S 2
\2

2m
D1U~x! Dca5«aca , a50,1,2, . . . .

~8!

We are now interested in the density of states with a large
negative energy. Such states can only be induced by large
negative fluctuations of the disorder potentialU(x) ~in the
absence of disorder the energy of all eigenstates is positive!.
The density of states is then, essentially, the probability to
find such a fluctuation. When this probability is small, it
suffices to keep in Eq.~7! only the contribution of the ground
state (a50),

r~«!'
1

V
^d~«0@U#2«!&, ~9!

because the probability to find a disorder fluctuation that
induces an excited state with the same energy is even
smaller.

For the white noise potential Eq.~2! the disorder average
can be performed by functional integration,

r~«!5
1

VE DUe2 S/Ad~«0@U#2«!

5
1

VE DU
dl

2p iA
expS 2

1

A
@S1l~«0@U#2«!# D ,

~10!

where the ‘‘action’’S is given by
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S5
1

2E ddxU2~x!. ~11!

The optimal fluctuation method is the saddle-point calcu-
lation of the functional integral in Eq.~10!, in which one
assumes that the dominant contribution to this integral comes
from the vicinity of one ‘‘optimal’’ disorder fluctuationU(x),
which has the highest weight among the disorder realizations
that induce a state at the energy«. At the ‘‘saddle-point’’ the
variation of

Sl5S1l~«0@U#2«! ~12!

with respect toU(x) vanishes. This gives

U~x!52l
d«0@U#

dU~x!
52lc0

2~x!, ~13!

where c0(x) is the ground-state wave function, which we
can take to be real. Inserting Eq.~13! into the Schro¨dinger
equation~8!, we obtain a nonlinear equation forc0 as

\2

2m
Dc01lc0

31«c050. ~14!

It is convenient to introduce the dimensionless coordinate
z5kx, wherek is defined by«52\2k2/2m and the dimen-
sionless wave functionf(z)

c0~x!5
\k

Alm
f~z!, ~15!

which satisfies

Dzf12f32f50. ~16!

In dimensionless units the spatial extent of the wave function
and the optimal fluctuation is of the order of one. Ford51,
the solution of Eq.~16! is

f~z!5
1

coshz
, ~17!

while for d52,3 this equation has to be solved numerically.
The dependence of the functionf on the radiusz5uzu is
shown in Fig. 1.

The solution of Eq.~16! is an extremum of the functional

A@f#5
1

aE ddzF ~¹zf!21f22
1

2a
f4G , ~18!

wherea5*ddzf2. The coefficientl in Eq. ~13!, found using
the normalization condition*ddxc0

2(x)51 and Eq.~15!, is
expressed througha by

l5a
\2k22d

m

and the actionS, defined by Eq.~11!, for the optimal fluc-
tuation is given by

S5212d/2b
\du«u22d/2

md/2
, ~19!

where

b5E ddzf45
2

~42d!
a.

The value of the coefficienta ~see, e.g., Refs. 22 and 23! is

a5H 2 for d51

5.85 . . . for d52

6.30 . . . for d53.

The result for the single-particle density of states at large
negative energies, obtained by the optimal fluctuation
method, has the form

r~«!5K~«!e2S/A, ~20!

where the prefactorK(«) results from the Gaussian integra-
tions over the small deviations ofdU(x) from the optimal
fluctuation. The calculation of the prefactor also involves the
integration over the locations of the optimal fluctuation,
which cancels the volumeV in the denominator of Eq.~7!.
For d51, the prefactorK(«) is given by13

K~«!5
4u«u
pA

. ~21!

IV. OPTIMAL FLUCTUATION FOR ELECTRON-HOLE
STATES

We now return to the problem of an interacting electron-
hole pair in the presence of disorder. Similar to the preceding
section, we can obtain an equation for the wave function of
the typical electron-hole state with large negative energy.
However, before turning to a formal consideration@see Eqs.
~29! and further#, we first give a qualitative discussion of the

FIG. 1. The shape of the wave functionf(z) for d51,2,3.
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properties of the optimal disorder fluctuation for the exci-
tonic states.

From Eq.~13! we see that the spatial extent of the disor-
der fluctuation, which induces the typical single-particle state
with the negative energy«, equals the spatial extent of this
state, given byk21}u«u21/2. Similarly, for the electron-hole
state with negative energyE, the spatial extent of the optimal
fluctuation r}uEu21/2. While the magnitude of the disorder
potential}uEu, the magnitude of the Coulomb energy of the
electron-hole pair}r 21}uEu1/2. Thus, for large negativeE,
the Coulomb energy becomes smaller than the energy of the
interaction of the electron and hole with disorder and the
Coulomb interaction can be treated perturbatively. This situ-
ation is very similar to that of the Coulomb gas, which be-
comes more ideal as its density increases.24

The shape of the typical electron-hole state crucially de-
pends on the dimensionality of the systemd. We first neglect
the electron-hole interaction completely and consider a local-
ized hole with the energy«h,0 and a localized electron with
the energy«e,0, such that«h1«e5E. Assuming that the
electron and hole are localized far from each other, the action
of the corresponding disorder fluctuation is given by the sum
of the single-particle actions@see Eq.~19!#,

S5Sh~«h!1Se~«e!5212d/2b\dS u«hu22d/2

mh
d/2

1
u«eu22d/2

b2me
d/2 D .

~22!

The factorb2 in the electron action is due to the fact that the
strength of the disorder potential, acting on the electron, is
b2A.

For d53 the minimum of the action is reached when only
one particle is localized, i.e., at

«h5E, «e50 for mh.meb
4/3,

«h50, «e5E for mh,meb
4/3.

If we now include the Coulomb interaction between the
electron and hole, we obtain the following picture of the
typical electron-hole state with a large negative energy: One
particle is localized by a disorder fluctuation, while the other
particle forms a bound hydrogenlike state with the localized
particle. If, e.g., the hole is localized, then the total pair en-
ergy is

E.« (1)1« (2)1« (3), ~23!

where« (1)52\2kh
2/2mh is the energy of the localized hole,

the second term is the binding energy of the electron,« (2)

52mee
4/2e2\2, and the third term is the energy of the re-

pulsion of the electron from the disorder potential that local-
izes the hole. This picture is valid whenu« (2)u!u« (1)u, in
which case the size of the hydrogenlike stater
5e(m/me)aB ~here aB is the Bohr radius! is much larger
than spatial extent of the disorder fluctuation localizing the
hole kh

21

khr 5Amh« (1)

me«
(2)

@1.

In this limit the disorder potential acting on the electron can
be approximated by ad function and the corresponding en-
ergy « (3).50(me /mh)3/2u« (2)u3/2/uEu is parametrically
smaller thanu« (2)u and can be neglected. Then the absorption
rate ford53 is

F~E!}e2Sh /A5expH 2
b\3

21/2mh
3/2A

UE1
mee

4

2e2\2U1/2J .

~24!

For d52, the situation is, essentially, the same as ford
53: the minimization of the action~22! gives that in the
optimal fluctuation only one of the two particles is localized
by disorder~the hole, formh.b2me , or the electron, other-
wise!. For d51 the situation is quite different. In that case
the minimum of the action~22! is reached at

«e

«h
5b4

me

mh
, ~25!

which means that in the one-dimensional electron-hole state
with large negative energy both the electron and the hole are
likely to be localized. In that case the optimal fluctuation has
two parts@cf. Figs. 4~b! and 4~c! below#: a part where the
disorder potential is negative~to localize the hole! and a part
with positive disorder potential~to localize the electron!. The
minimal value of the action is then given by

S05
4\

3
A2uEu3

M
, ~26!

whereM5mh1b4me .
There are two kinds of corrections to this action:~i! the

correction due to the electron-hole interaction and~ii ! the
correction due to the interaction of the electron with the dis-
order fluctuation localizing the hole and vice versa. For large
negativeE these corrections are relatively small. The regular
way to find them is the perturbative solution of the equation
for the typical wave function of the electron-hole state of a
given energy. This equation can be obtained using the same
considerations that led to Eq.~14!. The relation between the
optimal fluctuation U(x) and the wave function of the
electron-hole stateC(x1 ,x2) it induces, has the form

U~x!52lE ddx8@C2~x,x8!2bC2~x8,x!#, ~27!

where we used thatC satisfies Eq.~1!. Substituting this
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optimal fluctuation back into the Schro¨dinger equation~1!
leads to a nonlinear, nonlocal equation forC,

S 2
\2

2mh
D12

\2

2me
D21V~x22x1!2EDC~x1 ,x2!

5lC~x1 ,x2!E ddx8@C2~x1 ,x8!2bC2~x8,x1!

2bC2~x2 ,x8!1b2C2~x8,x2!#. ~28!

This equation is formally equivalent to the equation for the
excitonic polaron and bipolaron wave functions, obtained in
the adiabatic treatment of the lattice.18–20It is clearly impos-
sible to solve this equation analytically. In the remainder of
this section we obtain the action of the optimal fluctuation
for d51 using a perturbative solution of this equation, while
in Sec. VI we give the results of a numerical solution, also
for d51.

The first term in the perturbative expansion of the wave
function

C5C01C11•••

is the product of the wave functions of a noninteracting
electron-hole pair separated by some distance

C0~x1 ,x2!5ch~x12xh!ce~x22xe!

5
Akhke

2
f~kh@x12xh# !f~ke@x12xe# !,

~29!

wherexh(xe) are the average hole~electron! positions, the
single-particle wave functionf is given by Eq.~17!, and the
wave vectorskh andke are defined by«h52\2kh

2/2mh and
«e52\2ke

2/2me .
In the zeroth order of the expansion the disorder potential

in the optimal fluctuation is obtained by substituting Eq.~29!
into Eq. ~27!,

U0~x!5Uh~x2xh!1Ue~x2xe!

52lch
2~x2xh!1blce

2~x2xe!, ~30!

where the first term is the negative potential~a dip! that
localizes the hole and the second term is the positive poten-
tial ~a bump! that localizes the electron.

Inserting Eqs.~29! and~30! into Eq. ~28! and taking into
account that«h1«e5E, we obtain that the cancellation of
the zeroth-order terms in that equation requiresl
52\2kh /mh andlb252\2ke /me , from which we find

«h5
mh

M
E,

«e5
b4me

M
E, ~31!

l52\A2uEu
M

,

which agree with Eq.~25! obtained above. Also, the calcu-
lation of the action in the zeroth-order approximation

S05
1

2E dx@Uh
2~x!1Ue

2~x!#

gives Eq.~26!.
Though the calculation of the first-order correction to the

wave function is, in general, difficult, the first-order correc-
tion to the action can be expressed through the unperturbed
wave functions of the electron and hole,

S1~r !5lE dxch
2~x!F E dx8ce

2~x8!V~x2x81r !

1blce
2~x2r !G , ~32!

wherer 5xe2xh is the average electron-hole separation. The
somewhat lengthy derivation of this result is given in the
Appendix. The first term in the square brackets is the correc-
tion due to the electron-hole interaction, while the second
term describes the interaction of the hole with the bump,
localizing the electron and vice versa@see Eq.~30!#.

The optimal electron-hole distancer * is found by mini-
mizing S1 with respect tor,

dS1

dr U
r 5r

*

50. ~33!

From the form of Eq.~32! it is clear that the latter condition
is just the balance of average forces acting on the hole: the
attraction from the electron and repulsion from the disorder
potential localizing the electron. Thus the typical electron-
hole state of large negative energy can be considered as a
kind of ‘‘molecule’’ in which the disorder fluctuations bind-
ing the electron and the hole play the role of ‘‘nuclei’’ with,
respectively, positive and negative charge.

The result Eq.~32! can be cast into a more transparent
form using the fact that for the Coulomb interaction between
the electron and hole to be small compared to their interac-
tion with the disorder fluctuations, the optimal electron-hole
separationr * should be large compared to the spatial extent
of the disorder fluctuations:e2khr

* ,e2ker
* !1. We further-

more assume thatmh.meb
4 and thate2(kh2ke)r

* !1, i.e.,
the hole is sufficiently more localized than the electron,
which holds unlessmh is very close tomeb

4. Then Eq.~32!
becomes

S1~r !

l
'2

e2

er
1blce

2~r !. ~34!

For the optimal distancer * , at whichS1 has its minimum,
we obtain

ker * e2ker
* 5A e2

4ebl
, ~35!

wherel is given by Eq.~31!. The dimensionless parameter
on the right-hand side is, essentially, the square root of the
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ratio of the Coulomb energy to the total energyE, which, by
assumption, is small~and thusker * is logarithmically large!.

Furthermore, the second term in Eq.~34! ~due to repul-
sion of the hole from the electron optimal fluctuation! is
small compared to the first term~due to the electron-hole
interaction!,

blce
2~r * !

e2/~er * !
'

1

2ker *
.

Therefore,

S1'2l
e2

er *
5

dS0

dE

e2

er *
,

where in the last step we used

l52
dS0

dE
, ~36!

as follows from Eqs.~26! and ~31!. We thus see that, to the
lowest order, the effect of the correction to the actionS1 is to
replaceS0(E) by S0(E1e2/er * ), giving for the absorption
rate in one dimension

F~E!}expH 2
4A2\

3AM1/2UE1
e2

er *
U3/2J , ~37!

where the electron-hole Coulomb shift depends onE, as ac-
cording to Eq.~35!, r * }uEu21/2lnuEu.

To end this section about the shape of the optimal fluc-
tuation we note that the numerical solution of Eq.~33! for
sufficiently smalluEu givesr * 50, which corresponds to the
localization of the electron-hole pair by a symmetric single-
well disorder potential. In that case the repulsion of the elec-
tron from the disorder potential that localizes the hole is
compensated by the Coulomb interaction between the elec-
tron and hole. The transition from the symmetric to the
asymmetric shape of the optimal fluctuation is studied in
detail in Sec. VI, where the results of the numerical solution
of Eq. ~28! are discussed. We shall show that our analytical
approach, in fact, gives a rather accurate description of that
transition~see Fig. 5!.

V. OPTICAL ABSORPTION TAIL IN ONE DIMENSION

In the precedings section we have shown that ford51 the
electron and hole in the typical state with a large negative
energy are localized relatively far from each other. This
property allowed us to calculate approximately the weight of
the optimal disorder fluctuation for the electron-hole pair. It
also simplifies the calculation of the preexponential factor in
the expression for the absorption rate, which results from the
integration over small deviations from the optimal disorder
fluctuation. In this section we obtain an analytical expression
for the tail of the optical absorption spectrum that actually
has a wider range of validity than the standard optimal fluc-
tuation method.

As we have shown in the preceding section, the dominant
contribution to the optical absorption at large negativeE

comes from the disorder realizations that are close to the sum
of the single-particle optimal fluctuations,U0(x)5Uh(x
2xh)1Ue(x2xe) @see Eq.~30!#, whereUh(x2xe) localizes
the hole with energy«h nearx5xh andUe(x2xe) localizes
the electron with the energy«e nearx5xe . In the preceding
section we have calculated the optimal electron-hole separa-
tion, for which the weight of the disorder fluctuation reaches
its maximum. In this section we shall treatxh andxe , as well
as the single-particle energies«h and «e , as the collective
variables of the functional integration over disorder. Per-
forming the Gaussian integration over all the small devia-
tionsdU(x)5U(x)2U0(x) in Eq. ~5!, which are orthogonal
to the deviations corresponding to the four collective coordi-
nates, we obtain

F~E!.
1

LE d«hd«edxhdxeKh~«h!Ke~«e!D
2~xe2xh!

3expH 2
1

A
@Sh~«h!1Se~«e!1dS#J

3d~«h1«e1d«2E!. ~38!

Here,L is the chain length,D is the transition matrix element
@see Eq.~6!#, Sh(«h) and Se(«e) are the single-particle ac-
tions, given by Eq.~22!, and dS5dS(r ), where r 5xe
2xh , is the correction to the action of the electron-hole pair
due to the overlap between the electron and hole optimal
fluctuation

dS~r !5E dxUh~x2xh!Ue~x2xe!.

Furthermore,d«5d«(r ) is the energy correction due to the
electron-hole interaction and the interaction of the electron
with the hole optimal fluctuation and vice versa. The first-
order correction, calculated using the unperturbed electron-
hole wave function Eq.~29!, is

d«~r !5E dx@ch
2~x2xh!Ue~x2xe!

1ce
2~x2xe!Uh~x2xh!#

1E dxdx8ch
2~x2xh!V~x2x8!ce

2~x82xe!,

~39!

wherer 5xe2xh is the electron-hole separation. In the same
approximation the transition matrix element is given by

D~r !5E dxch~x2xh!ce~x2xe!.

Finally, in Eq. ~38! we used the fact that for small overlap
between the electron and hole optimal fluctuations the pref-
actor, resulting from the Gaussian integration overdU(x), is
the product of prefactors for isolated the hole and electron,
Kh(«h)Ke(«e).

25 @We note, that inKe(«e) the disorder
strengthA has to be substituted byb2A.#

The integration over the center-of-mass coordinate
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R5
mhxh1mexe

mh1me
,

which is a zero mode, gives the chain lengthL. Due to thed
function in Eq.~38! «e5E2d«2«h and the remaining inte-
gration over the hole energy«h can be performed in the
saddle-point approximation. The condition of the minimum
of Sh(«h)1Se(«e) gives Eq. ~25!, which determines the
saddle-point values of«h and«e . Then Eq.~38! can be writ-
ten as follows:

F~E!.A2pA

B E drKh~«h!Ke~«e!D
2~r !

3expH 2
1

A
@S0~E2d«!1dS#J , ~40!

where

B5
d2

d«h
2 @Sh~«h!1Se~E2«h!#5

\

m
A2M

uEu
,

m5b4memh /(mh1b4me), andS0(E) is given by Eq.~26!.
ExpandingS0(E2d«(r ))'S0(E)2(dS0 /dE)d«(r ) and

using Eq.~36! and the relation between the single-particle
optimal fluctuations and the wave functions:Uh(x2xh)
52lch

2(x2xh) and Ue(x2xe)5lbce
2(x2xe), we find

that the r-dependent part of the action coincides with the
first-order correction to the action of the optimal fluctuation
Eq. ~32!,

dS2
dS0

dE
d«5S1~r !.

Thus, we can write Eq.~40! in the form

F~E!.A2pA

B E drKh~«h!Ke~«e!D
2~r !

3expH 2
1

A
@S0~E!1S1~r !#J . ~41!

The typical energy dependence of the absorption rate Eq.
~41! is shown in Fig. 2, where we plot lnF as a function of
(E/E0)3/2, with E0,0 being the exciton binding energy. One
can see, that the energy dependence of lnF very quickly
becomes linear for energies belowE0. The linear dependence
reflects the relative weakness of the Coulomb interaction be-
tween the electron and hole@see Eq.~26!#, which was the
main assumption of this analytical calculation.

In the case when the integral over the electron-hole sepa-
ration r comes from a small vicinity of the saddle-pointr * ,
determined by Eq.~33!, we find that the saddle-point action
coincides with the action for the optimal fluctuation,S0
1S1(r * ), obtained in the Sec. IV. The result of the saddle-
point integration overr is

F~E!.
2pA

AB
d2S

dr
*
2

rh~«h!re~«e!D
2~r * !e2S1(r

*
)/A,

where

d2S

dr
*
2

'
2le2

er
*
3 ~ker * 21!

and «h and «e are the unperturbed single-particle energies,
given by Eq.~31! @we have used that the factorsKh(«h) and
Ke(«e) are slow functions of the energies#.

Equation~41! also applies when, instead of one optimal
fluctuation, one finds an entire manifold of disorder realiza-
tions that significantly contribute to the optical absorption. In
particular, for a noninteracting electron-hole pair the mini-
mum of the actionS1 is reached at the largest possible
electron-hole separation, since forV(x12x2)50 nothing can
counteract the ‘‘repulsion’’ between the two disorder fluctua-
tions, described by the second term in Eq.~32!. However,
these electron-hole states clearly do not contribute to the op-
tical absorption as the transition matrix elementD vanishes
at infinite r. Since the repulsion decays exponentially with
the electron-hole separation, the actionS1 is a very weak
function of r, as soon as the latter exceeds the spatial extent
of the electron and hole states,kh

21 andke
21 . The contribu-

tion of the electron-hole pairs with larger is then suppressed
not by the weight of such fluctuations, but by the smallness
of the transition matrix elementD, which decays exponen-
tially with r. Thus, when the electron-hole interaction is ab-
sent or relatively weak, in order to calculate the absorption
rate, one has to sum the contributions of many disorder fluc-
tuations with different electron-hole separations, which can
be accomplished using Eq.~41!. In this case the electron-
hole separation is the ‘‘soft mode’’ in the space of disorder
realizations, integration over which is non-Gaussian.

FIG. 2. The energy dependence of the logarithm of the absorp-
tion rate.
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The integration in Eq.~41! for the noninteracting electron
and hole becomes particularly simple in the case when the
hole is localized stronger than the electron, or more pre-
cisely, whene2(kh2ke)r!1 for relevant electron-hole sepa-
rationsr, which we already have used in the Sec. IV. Then
the actionS1 for the noninteracting case is

S1~r !5l2bE dxch
2~x!ce

2~x1r !'l2bce
2~r !

and the transition matrix element is given by

D~r !'
p

A2kh

ce~r !,

and

E drD~r !2e2S1(r )/A5
p2

4kh
E

2`

1` dz

cosh2z
e2z/cosh2z

'
p2bMA

32muEu2
,

where we assumed that

z5
l2bke

2A
5

3meb
3

M

S0

A
@1. ~42!

Since for the applicability of the optimal fluctuation method,
anyhow, the actionS0 has to be much larger thanA, Eq. ~42!
holds, unless 3meb

3/M is very small.
Thus, finally, for the noninteracting electron and hole in

one dimension the expression for the absorption rate~that
also includes the preexponential factor! is

F~E!.
1

b F pm

2A\
A uEu

2M G1/2

expH 2
4\

3A
A2uEu3

M J . ~43!

VI. NUMERICAL RESULTS

The analytical results of Secs. IV and V for the optimal
fluctuation and the optical absorption spectrum were ob-
tained by a perturbative treatment of the Coulomb interaction
between the electron and hole. When this interaction is of the
same order as the magnitude of the disorder potential, the
optimal fluctuation has to be solved numerically. In this sec-
tion we present our numerical results for the optimal fluctua-
tion in one dimension.

Instead of solving Eq.~28! directly, we perform the nu-
merical calculations for a tight-binding model defined on a
lattice. The discrete version of the Schro¨dinger equation~1!
reads

2t1~cn21,m1cn11,m!2t2~cn,m111cn,m21!1Vnmcnm

1~Un2bUm!cnm5Ecnm , ~44!

wheret1 and t2 are, respectively, the hole and electron hop-
ping amplitudes, the indicesn,m51,2, . . . ,L denote the
sites of the one-dimensional lattice with the lattice constanta
and periodic boundary conditions,Un is the disorder poten-
tial

^Un&50, ^UnUm&5
A

a
dn,m ,

andVnm is the regularized Coulomb interaction

Vnm52g0S 1

un2mu1dn,m
1

1

N2un2mu1d un2mu,N
D .

~45!

Here, g05e2/ea and the second term in the brackets is
added to satisfy the periodic boundary conditions.

The discrete equation~44! reduces to the Schro¨dinger
equation~1! in the continuum limit, when all relevant elec-
tron and hole states have small wave vectors,k1a,k2a!1. In
that case, the dispersion of the free hole dispersion is

«h~k!522t1coska'22t11t1~ka!2,

so thatmh5\2/2t1a2 and, similarly, for the electron we have
me5\2/2t2a2. In this calculation we puta5t15t251. Then
the continuum limit is reached for small values of the cou-
pling constantg0 and the energyE, counted from the bottom
of the band,

E5E12~ t11t2!5E14!1.

The discrete analog of the action~12! is

Sl@c,U#5
1

2 (
n

Un
21l~E@c,U#2E!, ~46!

where

E@U,c#5

22(
nm

@cnm~ t1cn11,m1t2cn,m11!1Vnmcnm
2 1~Un2bUm!cnm

2 #

(
nm

cnm
2

. ~47!
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The denominator in the last equation takes care of the wave-
function normalization. It is readily seen that varyingSl with
respect to the wave functioncnm ~that can be chosen real!
yields the discrete Schro¨dinger equation~44!, while the mini-
mization ofSl with respect to the disorder potentialUn gives
a relation between the optimal fluctuation andcnm ,

Un52
l

N (
m

~cnm
2 2bcmn

2 !, ~48!

where we have used the notation

N5(
nm

cnm
2 . ~49!

We find the optimal fluctuationUn and the corresponding
wave functioncnm by minimizing the functional

Al@c#52
2

N (
nm

cnm~ t1cn11,m1t2cn,m11!

1
1

N (
nm

Vnmcnm
2 2

l

2N 2 (
n

S (
m

~cnm
2

2bcmn
2 ! D 2

, ~50!

which is the two-particle analog of Eq.~18!. While Sl de-
pends on bothcnm andUn , Al is a functional of the wave
function only. One can easily check that the condition
dAl /dcnm50 is equivalent to Eq.~44! with the disorder
potentialUn given by Eq.~48!. The minimization ofAl with
respect tocnm was carried out numerically, using the steep-
est descent algorithm forL550. The energy of the electron-
hole pair and other quantities of interest, e.g., the optimal
fluctuationUn , its weight, and the corresponding electron-
hole wave function, are first obtained as functions of the
Lagrangian multiplierl. Then we eliminatel by replotting
these quantities as functions of the energyE.

We first consider the energy dependence of the weight of
the optimal fluctuation, which, essentially, determines the en-
ergy dependence of the optical absorption rate. This weight
is given by e2S/A, where S5 1

2 (nUn
2 is the action of the

optimal fluctuation@cf. Eq. ~11!#. Motivated by the dominant
uEu3/2 behavior ofS @cf. Eq. ~26!#, we plot in Fig. 3S2/3 as a
function of the energyE for g050.2 andb50.5. The open
circles are obtained by the numerical procedure described
above, while the solid line is the result of our approximate
analytical calculation of the action:S5S01S1, whereS0 and
S1 are given by Eqs.~26! and ~32!, respectively. Clearly,
apart from a small energy interval near the exciton binding
energy in the absence of disorder,E0'20.08, the energy
dependence ofS2/3 is indeed close to linear and the agree-
ment between our numerical and analytical results is good.

For energies close toE0, the assumption that disorder
dominates the Coulomb interaction, used in our analytical
approach, breaks down, which explains the deviations of the
numerical data from theS}uEu3/2 law and from the analytical
curve. On the other hand, the deviations found at relatively

large energiesuEu;1 are due to the break down of the con-
tinuum approximation, resulting from the fact that the hole
becomes localized on a single lattice site.

These changes in the energy dependence ofS reflect
changes in the shape of the optimal fluctuation and the cor-
responding electron-hole wave function. In Fig. 4 we plotUn
and the contour plot ofcnm , calculated numerically, for
three different values of the energy:20.14, 20.30,

FIG. 3. The actionSof the optimal fluctuation to the power 2/3
plotted as a function of the electron-hole energyE for g050.2, b
50.5, and the chain lengthL550. The open circles are results of
the numerical calculation and the solid curve was obtained analyti-
cally ~see explanations in the text!.

FIG. 4. The shape of the numerically obtained optimal fluctua-
tion for E520.13 ~a!, E520.3 ~b!, and E520.94 ~c!. Panels
~d!–~f! show contour plots of the corresponding electron-hole wave
function cnm . All plots correspond tog050.2, b50.5, and L
550. The coordinatesx15na and x25ma, wheren,m51, . . . ,L
describe, respectively, the hole and electron positions in the chain in
units of a51. Note, that asE decreases, the shape of the optimal
fluctuation undergoes a transition from a single-well to a ‘‘dip-
bump’’ structure.
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and20.94. The first valueE520.14 is rather close to the
exciton binding energyE0. In that case, the optimal fluctua-
tion, shown in Fig. 4~a!, is rather shallow and it is symmetric
aroundx0, wherex0 is the position of the minimum of this
fluctuation. This symmetry implies that no separation exists
between the average electron and hole positions. Such an
optimal fluctuation was discussed in Ref. 11 for the situation
where the Coulomb interaction dominates the disorder and
the spatial extent of the optimal fluctuationl opt is much
larger than the exciton radiusr ex , leading to decoupling of
the center-of-mass and the relative motion. That limit is
rather difficult to simulate numerically within our discrete
model, as the requirement to maintain the validity of the
continuum approximation then leads to 1!r ex! l opt!L,
thus forcing us to consider a very large lattice sizeL. From
Fig. 4 one observes that forE520.14, l opt is comparable to
the exciton radiusr ex;5. Still, one can see from Fig. 4~d!
that the electron-hole wave function, apart from the delocal-
ization along the electron coordinatex2, also shows a strong
delocalization along the linex15x2, which corresponds to
the center-of-mass motion of the exciton. For the second
value of the energy,E520.3, the optimal fluctuation has the
asymmetric ‘‘dip-bump’’ shape, which corresponds to the lo-
calization of the electron and hole on different sites of the
chain@see Fig. 4~b!#. Finally, atE520.94, the hole is prac-
tically localized on one chain site, in which case the discrete
model should not be used to simulate the continuum one@see
Fig. 4~c!#. From Figs. 4~e!,~f! one can see that forE5
20.3 andE520.94 the electron-hole wave functioncnm is
mostly delocalized along the electron coordinatex2 and it
has no delocalization along the center-of-mass direction,x1
5x2.

The transition from the symmetric to the asymmetric
shape of the optimal fluctuation can be most clearly seen
from the energy dependence of the average electron-hole
separation, defined by

r 5(
nm

~m2n!cnm
2 .

The results of the numerical calculation ofr as a function of
the energyE are shown in Fig. 5 by circles. In this figure we
also plot the optimal electron-hole distancer * , obtained by
our approximate analytical approach of Sec. IV@Eq. ~33!#.
The minimization of the correction to the actionS1 was per-
formed numerically, as the approximation that was used to
obtain Eq.~35! is too crude to describe the changes in the
shape of the optimal fluctuation. Figure 5 shows a transition
from the optimal fluctuation with zero-average electron-hole
separation to one with finite separation. One can also see that
the approximate analytical approach provides a good quali-
tative description of this transition@in particular, the onset of
the transition and the shape of ther (E) curve#, but it gives a
somewhat larger value of the electron-hole separation at low
energies.

To clarify the nature of this transition, we plot in Figs.
6~a!–~c! the coordinate distributions of the electron~thick
line! and hole~thin line!

Pn
h5(

m
cnm

2 ,

Pm
e 5(

n
cnm

2 ,

for g050.2, b50.5, and three different values of energyE.
In addition, Figs. 6~d!–~f! show the corresponding effective
Hartree potential acting on the electron

Wm52bUm1(
n

Pn
eVnm .

FIG. 5. Numerical~circles! and analytical~solid line! energy
dependence of the average electron-hole separation calculated for
g050.2, b50.5, andL550.

FIG. 6. The left-hand side of the figure shows the electron~thick
line! and the hole~thin line! distributions in the typical electron-
hole state forE520.18 ~a!, E520.20 ~b!, andE520.50 ~c!. On
the right-hand side@panels~d!–~f!# the corresponding effective po-
tentials acting on the electron are plotted. All plots correspond to
g050.2, b50.5, andL550.
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At E520.18, just above the transition, the electron wave
function has two peaks, in accordance with the double-well
structure of the effective Hartree potential@see Figs.
6~a!,~d!#. The peak separating the two potential wells is the
disorder potential that localizes the hole and repels the elec-
tron. As the energyE decreases, the height of the peak
grows, which suppresses the electron tunneling between the
two wells. For large separations between the wells, the
weight of the symmetric optimal fluctuation, in which the
electron is delocalized over the two wells, is lower than the
weight of the single-well optimal fluctuation with the same
electron energy. ForE520.20 in the transition region the
two wells become unequal@see Figs. 6~b! and 6~e!#, and at
E520.50, well below the transition region, the electron is
predominantly located in a single well@see Figs. 6~c! and
6~f!#.

We finally note that, though the weight of the optimal
fluctuation varies smoothly at the critical energyEc;0.19
@see Fig. 3#, the transition matrix elementD @see Eq.~6!#,
being sensitive to the shape of the electron-hole wave func-
tion, is singular at the critical energy. This is illustrated in
Fig. 7, where we plot the energy dependence ofD22. Clearly
the derivativedD/dE is discontinuous atE5Ec ~one can see
also a small discontiuty ofD at the critical energy, which is
likely to be a finite-size effect!.

VII. CONCLUSIONS

In this paper we studied theoretically the photoexcitation
of electron-hole pairs in disordered one-dimensional semi-
conductors. Using the optimal fluctuation method, we calcu-
lated the low-energy tail of the absorption spectrum in these
systems. We were, in particular, interested in the effects of
the Coulomb interaction between the electron and hole on
the energy dependence of the absorption spectrum.

We want to point out, however, that the calculation of the
absorption rate is a nontrivial problem even for the noninter-
acting electron and hole. In particular, it cannot be reduced to

a single-particle calculation, since, on the one hand, the elec-
tron and hole move in a common disorder potential, and, on
the other hand, the effect of the disorder on the electron is
different from the effect of the disorder on the hole. We
showed that to calculate the optical absorption tail for rela-
tively weak interactions between electron and hole, one has
to go beyond the standard optimal fluctuation method and
perform the ~non-Gaussian! integration over the ‘‘soft
mode’’—the electron-hole separation@see the derivation of
Eq. ~43!#.

We found that, as the photon energy decreases, the shape
of the optimal fluctuation undergoes a crossover. Close toE0
~the exciton binding energy in the absence of disorder!, the
Coulomb energy dominates over the disorder and the optimal
fluctuation has a symmetric shape. It reflects the fact that at
those energies the exciton is not entirely destroyed by disor-
der. That limit was considered previously in Ref. 11. In the
opposite limit, when the disorder dominates over the Cou-
lomb interaction, the optimal fluctuation has two parts: a
‘‘dip’’ that localizes the positively charged hole and a
‘‘bump’’ that localizes the negatively charged electron. This
transition to an asymmetric optimal fluctuation is character-
istic for motion in one dimension—it does not occur in two
and three dimensions. It can, in principle, be observed ex-
perimentally, as the absorption rate has a different energy
dependence above and below the critical energy~see Figs. 3
and 7!.

At photon energies well below the exciton energy, when
the Coulomb interaction can be treated as a perturbation, we
obtained an analytical expression for the optical conductivity
of a disordered one-dimensional semiconductor. We also per-
formed numerical calculations of the optimal fluctuation for
a discrete model that allowed us to study the whole region of
photon energies, in which the optimal fluctuation method is
applicable~i.e., for E,E0, for which the actionS is much
larger thanA). In the continuum limit we found a good
agreement between our numerical and analytical results.

Finally, in the region of validity of the optimal fluctuation
method, we do not observe a significant delocalization due to
interaction discussed in Ref. 5. In particular, as can be seen
from Fig. 4, the shape transition has little effect on the local-
ization length of the electron-hole pair. We note, however,
that the mechanism of delocalization, proposed in Ref. 5,
essentially relies on the high density of excited two-particle
states, which enhances the diffusion rate of the two-particle
states along the chain. We, however, consider low-energy
states that are all strongly localized. The density of such
states is relatively small and we do not expect, neither do we
see, an enhancement of the localization length. The only ex-
ception to this is the caseb;1, when the interaction of a
tightly bound electron-hole pair with disorder is relatively
weak.
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FIG. 7. The energy dependence ofD22 for g050.2, b50.5,
andL550.
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APPENDIX: FIRST-ORDER CORRECTION
TO THE WEIGHT OF THE OPTIMAL FLUCTUATION

OF THE ELECTRON-HOLE PAIR

The calculation of the first-order correction can be per-
formed in two different ways. On the one hand we can use
the exact relation between the action of the optimal fluctua-
tion and the disorder potential averaged over the electron-
hole wave function:

E d2xC2~x1 ,x2!@U~x1!2bU~x2!#

52
1

lE dxU2~x!52
2

l
S.

This equation allows us to write the action in the form

S5
l

2E d2xCS 2
\2

2mh

]2

]x1
2

2
\2

2me

]2

]x2
2

1V~x12x2!2ED C.

The first-order correction to the action is then given by

S15
l

2E d2xC0
2V~x12x2!1S18 , ~A1!

where

S185lE d2xC1S 2
\2

2mh

]2

]x1
2

2
\2

2me

]2

]x2
2

2ED C0 .

Using Eq.~29! for the unperturbed electron-hole wave func-
tion C0 and Eq.~16! for the single-particle wave functionf,
we obtain

S1852lE d2xC0C1$u«huf2~kh@x12xh# !

1u«euf2~ke@x22xe# !%.

On the other hand, the direct calculation of the first-order
correction to the action, in which one uses Eq.~11!, gives

S152
4«h«e

b E dxf2S kh@x2xh#f2~ke@x2xe# !

1E dxU0~x!U1~x!, ~A2!

whereU1 is the first-order correction to the disorder poten-
tial

U1~x!522lE dx8@C0~x,x8!C1~x,x8!

2bC0~x8,x!C1~x8,x!#.

The second term in Eq.~A2! can be rewriten in the form

E dxU0~x!U1~x!54lE d2xC0~x1 ,x2!C1~x1 ,x2!

3$u«huf2~kh@x12xh# !1u«euf2~ke@x2

2xe# !2b21u«euf2~ke@x12xe# !

2bu«huf2~kh@x22xh# !%'2S18 ,

~A3!

where in the last step, we used that the overlap between the
unperturbed electron and hole wave functions,ch(x2xh)
and ce(x2xe) is small, as a result the third and the fourth
terms in the curly brackets of Eq.~A3! give a much smaller
contribution than the first and the second terms. Thus, we
obtain

S152
4«h«e

b E dxf2~kh@x2xh# !f2~ke@x2xe# !12S18 .

~A4!

Combining Eqs.~A1! and ~A4!, we obtain

S15lE d2xC0
2V~x12x2!1

4«h«e

b E dxf2

3~kh@x2xh# !f2~ke@x2xe# !, ~A5!

which is equivalent to Eq.~32!.
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