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Abstract

We argue that the origin of the phase transition in quasi-one-dimensional antiferromagnet NaV2O5 is not the spin-Peierls (SP)
instability, but a charge ordering. The opening of the spin gap and the lattice dimerization, characteristic for the spin-Peierls
systems, in NaV2O5 result from the interplay between the charge, lattice, and spin degrees of freedom.q 1999 Elsevier Science
Ltd. All rights reserved.
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Quasi-one-dimensional antiferromagnets, such as TTF-
CuBDT, MEM(TCNQ)2, CuGeO3, undergo the spin-Peierls
(SP) transition into a state, in which neighboring spins form
singlet pairs, the chain lattice is dimerized and the spectrum
of the magnetic excitations has a gap. The driving force of
this transition is the instability of the quasi-one-dimensional
spin system against the singlet formation. The specific
features of the SP systems are the strong dependence of the
transition temperature on magnetic field and the transition
into the incommensurate state at high magnetic field [1,2].

It can also turn out, however, that the spin-gap opening,
rather than being responsible for the lattice deformation, is,
in fact, its consequence, while the deformation occurs
because of some other instability. In this case the thermo-
dynamics would be quite different from that of SP systems,
since spins and phonons are not the only low-energy degrees
of freedom [1]. In this paper we argue that the recently
discovered inorganic compound NaV2O5 is an example of
such a pseudo-spin-Peierls system and that the phase transi-
tion observed in this material is mainly related to a charge
ordering, which occurs in many oxides and is actively
studied now in the context of colossal magnetoresistance
and high-Tc materials.

Initially NaV2O5 was identified as an inorganic SP
material similar to CuGeO3. According to the early X-ray
studies [3], V41 ions form spin-1/2 chains separated by non-
magnetic V51-chains. Magnetic susceptibility, X-ray and

neutron scattering data show the opening of the spin gap
below Tc � 34 K and the doubling of the lattice period in
the chain direction [4–6].

However, according to the new X-ray and neutron data
[7–9], at room temperature all V sites are equivalent (V4.51).
Other indications that the physics of NaV2O5 is different
from that of, e.g. CuGeO3 come from thermodynamic
data. Thus the study of specific heat shows that the entropy
of the transition in NaV2O5 is larger than the entropy of a
pure SP system [10] (also B. Bu¨chner, private communica-
tion). The ratio�2D0=Tc�; whereD0 is the value of the spin
gap, is for NaV2O5 , 6 [5], while for all known SP materi-
als it is close to 3.5 [1]. Another evidence against the inter-
pretation of the phase transition in NaV2O5 as a SP transition
is a very weak dependence ofTc on magnetic field: the shift
of Tc is ,5 times smaller [10] than the theoretical predic-
tions [1,2]. The temperature-dependence of the thermal
conductivity of NaV2O5 is also remarkably different from
that of CuGeO3 [11].

All these facts show that the phase transition in NaV2O5 is
not an ordinary SP transition. We suggest that the main
phenomenon responsible for the transition is a charge order-
ing (CO): while in the high-temperature phase the fast
exchange between V41 and V51 makes all V sites equiva-
lent, in the low-temperature phase there are two kinds of V
ions with different charges. The appearance belowTc of two
inequivalent V sites was indeed observed in the recent NMR
experiment [12]. We show here that the opening of a spin
gap is just one of the consequences of this CO.

The structure of NaV2O5 consists of V2O5 layers with

Solid State Communications 113 (2000) 159–163

SSC 4992

0038-1098/00/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0038-1098(99)00453-6

PERGAMON
www.elsevier.com/locate/ssc

* Corresponding author.



approximately square oxygen lattice and V ions located in
the middle of two out of every three oxygen plaquettes (see
Fig. 1). Due to special orbital structure the diagonal (next-
nearest-neighbor (nnn)) hopping amplitudes,t' and tk; are
much larger than the nearest-neighbor (nn) hopping ampli-
tude txy (t' , 0:38 eV; tk , 0:17 eV; and txy , 0:012 eV
[7]). Thus, NaV2O5 is a system of V two-leg ladders with
one electron per rung occupying a bonding state with the
energy 2t': For strong on-site Coulomb repulsion the
energy cost of electron transfer on a neighboring rung is
$2t', so that for 2t' . 4tk the system is insulating and
can be described as a system of spins localized on the
rungs of V ladders [7,13].

In this paper we take into account also the charge
dynamics in NaV2O5. We start from the electronic
Hamiltonian, which includes the electron hopping in and
between ladders (see Fig. 1), as well as the Coulomb inter-
action between electrons on different V sites: the nn inter-
actionV2 (e.g. between sites C and D on neighboring ladders
in Fig. 3), the nnn interactionV1 inside ladders (e.g. between
sites A and E or B and E in Fig. 3), etc. The on-site Coulomb
repulsionU is the largest parameter and is here taken as
infinite.

Next we make a projection on the subspace of states with
one electron per rung. Four different states of a single
electron on a rung can be represented as the eigenstates of
spin S� 1=2 and isospinT � 1=2 operators,u1=2; Szl ^

u1=2; Tzl; whereTz � ^1=2 corresponds to an upper/lower
position of the electron on a rung (see Fig. 3).

The effective spin–isospin Hamiltonian can then be
written in the formH � H0 1 H1; whereH0 is a pure isospin
Hamiltonian:

H0 � 22t'
X
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Here, the vectorr runs over the rungs of V ladders. The first

term in Eq. (1) describes the electron hopping in the rungs,
the second term is the nnn Coulomb interaction between
electrons occupying neighboring rungsr and r 1 b of a
ladder, the third term is the repulsion between nn electrons
from neighboring ladders, andH 00 denotes all other interac-
tion terms (the longer range Coulomb terms, the interaction
via the lattice, etc.).

The HamiltonianH1 describes the spin–isospin interac-
tion. The strongest interaction occurs inside ladders. For
tk p t'; V1; the corresponding Hamiltonian of a single
ladder has the form:

H1 � 2
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wheren runs over the rungs of the ladder. The Hamiltonian
(2) resembles the effective spin–isospin interaction for the
Hubbard model with two degenerate orbitals [14,15]. It
results from the virtual electron hopping on neighboring
rungs,D being the energy difference between the virtual
and the ground states. The value ofD is determined byH0

and depends on a state considered. If, e.g. we neglect the
Coulomb terms in the disordered phase, thenD � 2t'; while
for the extreme zigzag CO discussed below:D , 2V1: Note,
that in theU ! ∞ limit D is finite.

The spin–isospin structure of the exchange interactionH1

follows from the Pauli principle: the wave function of two
neighboring electrons in the intermediate state (when they
occupy the same rung) is antisymmetric under the exchange
of both their spin and isospin coordinates. Therefore, if the
spin state of two electrons on neighboring sitesn andn 1 1
is antisymmetric (the total spin,S� Sn 1 Sn11; is 0), their
isospin state has to be symmetric (the total isospinT �
Tn 1 Tn11 has to be 1) and, vice versa, ifS� 1; thenT �
0: Correspondingly, the first term in square brackets of Eq.
(2) is the projection operator onS� 0; T � 1; Tz � 0 state,
while the second term is the projection operator onS�
1; T � 0 state. The projection of the total isospin of two
electrons,Tz

; in both terms is zero, because for infinitely
large on-site Coulomb repulsionU the hopping between
rungs is only possible if electrons are located on different
chains of the ladder.

SinceH1, obtained by the second-order perturbation in the
interrung hopping, is smaller thanH0, we can start by
considering only the charge degrees of freedom. The isospin
Hamiltonian H0 describes the competition between the
hopping in the rungs, which tends to make V ions equiva-
lent, and the Coulomb interaction, which favors a CO. If,
e.g. we leave only the first two terms in Eq. (1), the ladders
become decoupled and the Hamiltonian of each ladder is the
Hamiltonian of the Ising model in perpendicular magnetic
field. ForV1 , 2t' its ground state is disordered (all V ions
are equivalent), while in the opposite case, isospins in the
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Fig. 1. The crystal structure of V–O plane of NaV2O5: oxygens are
located at the corners of plaquettes, while V ions are located at
their centers; the shaded plaquettes are vacant. Also shown are
the relevantdxy-orbitals of V ions and V ladders (dashed lines).



ground state are ordered antiferromagnetically:k2Tz
nl �

h�21�n: This CO corresponds to the zigzag occupation of
vanadium sites by electrons, like the one shown in Fig. 2a,
where the large circles denote V41 ions with the large ionic
radius and the small circles denote small nonmagnetic V51

ions.
On the other hand, the third term in Eq. (1) favors the

structure shown in Fig. 2b, which would give the spin chains
of V41 �d1

;S� 1=2� ions and is the initially assumed crystal
structure [3]. If we would take into account only the second
and the third terms withV2 �

��
2
p

V1; the zigzag structure
(Fig. 2a) would have lower energy than the chain structure
(Fig. 2b). For real long-range Coulomb interaction, the
Madelung energies of these structures appear to be rather
close, the chain structure of Fig. 2b being slightly more
favorable.

There is, however, another type of interaction between

charges—the interaction via lattice distortions. As shown
in Fig. 2a, this latter interaction definitely favors the zigzag
structure: large V41 ions push out neighboring oxygens (the
directions of oxygen displacements in a ladder are shown in
Fig. 2a by arrows). As a result, neighboring plaquettes in a
ladder would preferably be occupied by smaller V51 ions.

Note, that the zigzag structure shown in Fig. 2a immedi-
ately gives the doubling of the lattice period in botha andb
directions observed in the experiment [5]. Thus, one does
not need to invoke the SP mechanism to explain the distor-
tion pattern belowTc. We also note, that there exist four
equivalent realizations of the zigzag structure of Fig. 2a,
which differ by the location and orientation of pairs of nn
V41 ions (large circles in Fig. 2a). This may provide a clue
to understanding of the four-fold increase of the period in
c-direction belowTc [5].

The isospin excitation corresponds to an electronic transi-
tion from the symmetric state on a rung�Tx � 11=2� to the
antisymmetric one�Tx � 21=2�: Due to Coulomb inter-
actions these on-rung excitons can hop on other rungs and
thus form a band. For a general form of the interrung
Coulomb interactions,

P
r ;r 0 Vr ;r 0T

z
r Tz

r 0 ; the exciton disper-
sion aboveTc, obtained in the random phase approximation,
is given by

Eq �
��������������������������
2t'�2t' 1 kTxlV�q��

p
; �3�

where V(q) is a Fourier transform ofVr ,r 0 and kTxl �
�1=2� tanh�t'=T� is the average value ofTx

i : The strong
peak at,1 eV in the optical absorption spectrum for electric
field applied ina-direction [16] can then be related to the
q � 0 isospin excitation.

The excitonic gapD � Eq0
; whereq0 is the wave vector at

which V(q) has minimum, may, however, be much smaller
then 1 eV, asuV�q�u is of the same order as 2t': The conti-
nuum of several soft isospin excitations may explain the
broad peak at,0.1 eV observed in Ref. [16]. In our scenario
we assume thatq0 � �1=2; 1=2; 1=4�; V�q0� , 0 and that the
isospin excitations soften atT � Tc; i.e. the gapD vanishes
at transition temperature. The mean field expression forTc

is:

tanh
t'
Tc
� 4t'

uV�q0�u
: �4�

As Tc p t'; the charge system should be close to the quan-
tum critical point, at which the transition between the
ordered and disordered state occurs at zero temperature.
The soft isospin excitations can be directly observed by
measuring the electron energy loss spectrum at low energy.

Below Tc the nonzerokTz
r l � Mz cos�q0r 1 f� appears,

corresponding to the zigzag CO. Since the coupling to elec-
tric field parallel to a-axis in our model has the form,
2aEa

P
r Tz

r and the zigzag ordering corresponds to “anti-
ferromagnetic” ordering of isospins, the temperature depen-
dence of the dielectric constantea close toTc should be
similar to that of the parallel magnetic susceptibility of an
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Fig. 2. Two types of CO: the zigzag structure (a) and the old struc-
ture, in which V41 chains are separated by V51 chains (b). Large
circles denote V41 ions with the large ionic radius, while small
circles denote small nonmagnetic V51 ions. Arrows show shifts of
oxygen atoms around V41 ions in one ladder (for simplicity, the
shifts induced by V41 ions in other ladders are not shown).



antiferromagnet. Such behavior was indeed observed
experimentally [17,18].

Next we consider the spin excitations. From Eq. (2) the
effective spin-exchange constant in the ladder direction,Jk;
is:

Jk �
4t2k
D

kTn·Tn11 2 Tz
nTz

n11l � 4t2k
D

kTx
nTx

n11 1 Ty
nTy

n11l;

�5�
wherek…l denotes the thermal and quantum average. From
Eq. (5) it follows that CO results in the decrease of the spin-
exchange constant belowTc. In particular, if the electrons on
neighboring rungs are completely uncorrelated, then
kTx

nTx
n11 1 Ty

nTy
n11l � 1=2, while for the extreme zigzag

CO �h � 1� kTn·Tn11l � kTz
nTz

n11l; andJk � 0: In general,
the charge order parameterh , 1; so that the CO results
only in a partial reduction ofJk: The decrease with tempera-
ture of the spin stiffness inb-direction could be observed in
neutron scattering experiments.

More importantly, the zigzag CO can open a spin gap.
There are, in principle, two scenarios for the spin-gap open-
ing. First, as one can see from Fig. 2a, the CO results in the
appearance of pairs of nn vanadiums coupled by the hopping
amplitudetxy, (cf. Fig. 1). For largetxy these interladder pairs
would form spin singlets, which could explain the spin gap
in NaV2O5. However, we think that this is rather unlikely.
On the one hand, as we mentioned above, the band structure
calculations give rather small value oftxy [7]. On the other
hand, even for largertxy (as, e.g. in Ref. [13]) there are
several competing mechanisms of nn exchange: an antifer-
romagnetic one due to direct d–d overlap, and an exchange
via 908 V–O–V path, which is ferromagnetic. Even the sign
of the resulting interaction is unclear: in Ref. [13] a small
antiferromagnetic nn exchange was obtained, while the
LDA 1 U calculations for the structurally similar material
CaV2O5 give a ferromagnetic nn interaction [19]. Further-
more, in NaV2O5 there is a third mechanism of exchange
resulting from the circular motion of electrons over V

triangles (e.g. along the CDE triangle in Fig. 3). The sign
of the latter exchange coincides with the sign of the product
of three amplitudes of electron hopping along the sides of a
triangle (cf. Ref. [20]). As the later sign is negative [7], the
corresponding exchange is ferromagnetic.

Thus, whether the interladder singlets are formed or not,
is still not clear. It is, however, obvious that the zigzag CO
results in an alternation of the exchange constantsalong the
spin chains formed by V ladders. Indeed, the exchange inter-
action between the ions A and B (see Fig. 3) goes via a
plaquette having V51 both above and below it, whereas
for B and C ions the corresponding positions are occupied
by V41 ions. This inequivalence in the occupation of V sites
in neighboring ladders results in the alternation of the
exchange constants along the ladder direction,Jk�n; n 1 1�
� Jk�1 1 �21�nd�; which opens the spin gap.

Although the opening of the spin gap is not the main
driving force of the transition, it may be important for deter-
mining the relative phases of charge order parameterh in
different ladders. If, e.g.h in the bottom ladder in Fig. 3
would have opposite sign, there would be no doubling of the
periodicity in a-direction and no alternation in the spin-
exchange constants along the ladders, and consequently,
no spin gap. The energy gain due to the spin-gap opening,
by itself, can make the structure of Fig. 2a more stable than
the zigzag structure without the dimerization alonga-axis.

Summarizing, we argued that NaV2O5 is not a SP mate-
rial, but a new low-dimensional system with charge order-
ing, in which magnetic V41 sites form zigzags in the V
ladders. We argued, that this charge ordering results in the
doubling of the lattice period both ina- andb-directions and
may also explain the appearance of a period 4 inc-direction,
as well as the anomalous behavior of the dielectric constant.
Another consequence of this charge ordering is the alterna-
tion of the exchange interaction along V ladders, which
opens the spin gap. This picture is consistent with the
main experimental observations for NaV2O5. Our considera-
tion shows that one has to be careful in ascribing the origin
of the spin gap to the spin system itself: it may be a conse-
quence of some other effects, here—zigzag charge ordering
in quarter-filled ladders.

After completion of this work two papers appeared
[21,22] in which similar ideas were put forward. Thalmeier
and Fulde [22] argued in favor of the CO shown in Fig. 2b,
after which they still had to invoke the spin–lattice coupling
to get second transition of a SP type. In their model the
largest electron hopping amplitudet' was completely
neglected, which would result in the random exchange
between electron spins aboveTc, instead of the quasi-one-
dimensional behavior. Also, the recent careful study [10] did
not confirm the presence of the second transition in NaV2O5.
The picture of Seo and Fukuyama [21] is closer to ours: they
also concluded that the zigzag structure is more favorable.
Their arguments, however, are based on nn and nnn
Coulomb terms only, which is definitely insufficient (as
we mentioned above, thelong rangeCoulomb interaction
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Fig. 3. This figure demonstrates that the zigzag CO makes the spin-
exchange in neighboring pairs of electrons (AB and BC) inequiva-
lent. The inequivalence is caused by the difference in the occupation
of V sites in neighboring ladders.



by itself would favor the structure of Fig. 2b). Furthermore,
their singlets are formed by nn pairs between ladders, which,
as we argued above, is rather unlikely.
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