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Trapping time statistics and efficiency of transport of optical excitations
in dendrimers
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9747 AG Groningen, The Netherlands
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We theoretically study the trapping time distribution and the efficiency of the excitation energy
transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on
a trap located at its core, is used as a probe of the efficiency of the energy transport across the
dendrimer. The transport process is treated as incoherent hopping of excitations between
nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative
and nonradiative decay of the excitations while diffusing across the dendrimer. We derive exact
expressions for the Laplace transform of the trapping time distribution and the efficiency of
trapping, and analyze those for various realizations of the energy bias, number of dendrimer
generations, and relative rates for decay and hopping. We show that the essential parameter that
governs the trapping efficiency is the product of the on-site excitation decay rate and the trapping
time ~mean first passage time! in the absence of decay. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1778136#

I. INTRODUCTION

During the past decade dendritic molecular systems or
dendrimers have received considerable attention.1–6 Den-
drimers are synthetic highly branched treelike macromol-
ecules consisting of a core and several branches which are
built self-similarly. Theoretically the process of building a
dendrimer can be repeatedad infinitumto obtain a dendrimer
with any number of generations, but in practice this number
is currently limited to 15.6 The first three dendrimers with
coordination numberz53 are schematically depicted in Fig.
1 ~we note that in general dendrimers are not planar objects!.

Dendrimers hold great promise for creating artificial
light harvesting systems. Indeed, because of their branched
nature, the number of units at their periphery grows expo-
nentially with the number of generations. Therefore, if light
absorbing states are located at the periphery, the cross section
of absorption grows exponentially with the number of gen-
erations. Combining this with a possibly efficient energy
transport to the core may result in efficient light harvesting
systems.2–4

A growing flux of publications exists, both experi-
mental7–17 and theoretical,18–29 reporting on optical and
transport properties of dendritic systems. For instance, in
Ref. 8 compact and extended polyphenylacetylene dendrim-
ers in solution were studied experimentally. Interpreting their
spectroscopic measurements, the authors argued that the op-
tical excitations in these systems are localized on dendrimer
subunits. They also made the important point that extended
dendrimers were characterized by a so-called energy funnel:
the excitation energies of dendrimer units decreases from the
periphery towards the core, thus providing an energetic bias

for transport of the excitation towards the core. Such a bias is
favorable for efficient transport of the absorbed energy
across the dendrimer. Using quantum chemical calculations,
the existence of an energy funnel towards the core was fur-
ther confirmed in Ref. 21. Experimental investigations of the
energy transport in these systems7 revealed the fact that it
occurred through a multistep~incoherent! hopping process
with an efficiency of 96%. On the other hand, low-
temperature measurements of the energy transport in
distyrylbenzene-stilbene dendrimers with a nitrogen core
gave clear indications of coherent interactions between the
dendrimer subunits.17 In this class of organic dendrimers,
ultrafast higher-order nonlinearities were also reported,12

which makes them potentially promising systems for appli-
cations in nonlinear optical switching elements.

The first theoretical efforts on dendrimers were mostly
focused on analyzing the mean first passage time, i.e., the
average time it takes for an excitation, created somewhere at
the periphery of the dendrimer, to reach its center, where a
trap is located. This problem was addressed in much detail in
Refs. 18–20, where the mean first passage time was calcu-
lated both in the presence and in the absence of a fixed en-
ergy bias. The presence of a random bias was considered in
Ref. 22, where it was found that the randomness tends to
reduce the transport efficiency. Large-scale numerical calcu-
lations of the statistics of the number of sites visited by the
excitation and its mean square displacement in very large
dendritic structures were performed in Ref. 23, while the
authors of Ref. 24 discussed the kinetics of symmetric ran-
dom walks in compact and extended dendrimers of a small
number of generations (<4).

In all papers cited above, the basis of the analysis was
the assumption of incoherent hopping transport between den-
drimer units, which is believed to work well at room tem-a!Electronic mail: knoester@phys.rug.nl
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perature. However, the actual nature of the excitation trans-
port and optical dynamics is still under debate. Thus, the
alternative approach of coherent excitons extending over
several dendrimer units has also been considered, in particu-
lar, to describe energy transport from the periphery to the
core25–28 and the enhancement of the third-order optical
susceptibility.29 Another interesting branch of experimental
and theoretical studies of dendritic systems concerns the dy-
namics of dendrimer-based networks, i.e., extended systems
using dendrimers as building blocks.30–33Recently, such net-
works have attracted much attention due to their two levels
of structural organization.

Among the factors that govern the efficiency of energy
transport in dendritic systems, such as the energy bias and
the presence of disorder, the radiative and nonradiative decay
of optical excitations during their random walk to the core
represents an additional factor, especially for dendrimers
with a large number of generations. Moreover, the statistics
of the trapping time has not been studied in detail either. In
this paper, we intend to fill these gaps and show that intimate
relations exist between the analysis of both issues. We will
show that in the presence of decay, the key parameter that
governs the trapping efficiency is the product of the on-site
excitation decay rate and the mean first passage time in the
absence of decay.

The outline of this paper is as follows: In Sec. II we
present our model, which is based on incoherent motion of
excitations across the dendrimer, described by a rate equation
that accounts for both trapping at the core and excitation
decay during the random walk towards the core. We also
discuss several quantities relevant to the problem under
study, such as the distribution of survival times, the mean
survival time, and the efficiency of trapping. Section III deals
with deriving exact expressions for these quantities in the
Laplace domain. In Sec. IV, we present a detailed analysis of
the trapping time distribution in the limit of vanishing exci-
tation decay. Effects of the excitation decay on the trapping

efficiency under various conditions~sign of the energy bias,
number of generations, ratio of decay and hopping rates! are
discussed in Sec. V. Finally, we conclude in Sec. VI.

II. MODEL AND PERTINENT QUANTITIES

As was already mentioned in the Introduction, we treat
both the motion of the excitation over the dendrimer units
and the trapping at the core as incoherent nearest-neighbor
hopping processes. We label the dendrimer units~sites! by
the index i (1< i<N), where N is the number of units,
while i 50 denotes the trap located at the core~cf. Fig. 1!.
The trap is considered irreversible, i.e., once the excitation
hops onto it, it never returns to the body of dendrimer. Then,
the system of rate equations for the excitation probabilities
~populations! pi of the dendrimer units reads

ṗ05(
$ j %

k0 j pj , ~1a!

ṗi52gpi2(
$ j %

kji pi1(
$ j %

8ki j pj ~ iÞ0!. ~1b!

Here, the dot denotes the time derivative, the summation($ j %
is performed over sitesj that are nearest neighbors of the site
i , the prime in the second summation of Eq.~1b! indicates
that j Þ0, g is the exciton decay rate~assumed independent
of i ), and ki j is the rate of hopping from sitej to site i ,
including i 50. The hopping rates meet the principle of de-
tailed balance:ki j 5kji exp@(Ej2Ei)/kBT#, whereEi is the ex-
citation energy of the sitei , kB is the Boltzmann constant,
andT is the temperature. In this sense the energy of the trap,
E0 , is considered infinitely low. Initially, the excitation is
outside the trap, i.e.,p0(0)50, while one of dendrimer units
is excited,pi(0)5d i i 0

.
The quantityr (t)[ ṗ0 represents the instantaneous trap-

ping rate and will be used to study the time-domain behavior
of the energy transport in dendritic systems. It can be ex-
pressed through the total population outside the trap,c
5( i8pi , which is hereafter referred to as the survival prob-
ability with respect to both decay and trapping. Indeed, from
Eqs.~1! it follows that( i ṗi[ ṗ01ċ52gc, so that forr (t)
one finds

r ~ t !52gc2ċ. ~2!

Furthermore, the time dependence ofr (t) deriving from the
decay constantg can be extracted explicitly by the transfor-
mation pi5e2gt p̃i . After this transformation Eq.~2! is re-
duced to

r ~ t !52e2gt
dC

dt
[e2gtR~ t !, ~3!

whereC(t)5( i8p̃i , and p̃i now obey Eq.~1b! with g50.
Thus,C is the analog ofc(t) and represents the total popu-
lation outside the trap in the absence of excitation decay. It is
the survival probability with respect to trapping alone. We
see from Eq.~3! that in the time domain, the trapping and the
decay of the excitations are independent of each other.
Therefore, the time behavior of the trapping process can be
studied separately, which simplifies the analysis.

FIG. 1. Schematic pictures of dendrimers of one (D1), two (D2), and three
(D3) generations with the coordination numberz53 ~equal to the number
of branches at each branching point!. The large circle at the dendrimer
center represents a trap, while the small circles are building units of the
dendrimer branches, representing sites on which optical excitations can re-
side. Connected by the dotted lines are the dendrimer units belonging to the
same generation.
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The quantityR(t)[2(dC/dt) is normalized to unity
for finite systems@in the sense that*0

`R(t)dt51] and rep-
resents the probability distribution of the~pure! trapping
time. From this, the mean trapping time, often referred to as
the mean first passage time,18 is calculated in a standard way,

^t&5E
0

`

tR~ t !dt5E
0

`

C~ t !dt. ~4!

The inverse quantitŷt&21 represents the effective trapping
rate in the absence of excitation decay. Note that Eq.~4! can
be rewritten via the Laplace transform R̃(s)
5*0

`e2stR(t)dt of R(t):

^t&52
dR̃

ds
U

s50

, ~5!

which is useful for further considerations~see below!.
We now define the efficiency of trapping~denoted as«!

as the total population that is transferred to the trap, i.e., the
fraction of the initially created excitation that reaches the
trap during its lifetime:

«[ lim
t→`

p0~ t !5E
0

`

r ~ t !dt5E
0

`

e2gtR~ t !dt5R̃~s!us5g . ~6!

Another important quantity that contains information about
the trapping efficiency is

t5E
0

`

c~ t !dt5
12«

g
, ~7!

which is the mean survival time~with respect to both trap-
ping and decay!. Using this definition, we can, by conven-
tion, define the effective trapping rateW in the presence of
excitation decay as

W5
1

t
2g5

«

12«
g. ~8!

It should be stressed that«, t, and W, being defined
through time integrations, are influenced by the excitation
decay. In particular, if the latter occurs on a time scale much
slower than the mean first passage time^t&, the trapping
efficiency« is close to unity, the survival timet is reduced to
the mean first passage time^t&, given by Eq.~4!, and W
'^t&21. If however the excitation decay occurs on a time
scale that is comparable to or faster than the mean first pas-
sage time, the quantities«, t, andW will be determined by
the interplay of the random walk to the trap and the excita-
tion decay. This interplay between trapping and decay will be
one of the main issues in the remainder of this paper.

To conclude this section we notice that all quantities
relevant to the excitation energy transport, such as^t&, «, t,
andW, are directly related to the Laplace transformR̃(s) of
the trapping time distributionR(t) in the absence of decay.
Furthermore we notice that these quantities are relevant char-
acteristics of the excitation energy transport in general, not
only in dendrimers. In the following section, we will provide
the exact solution forR̃(s).

III. LAPLACE DOMAIN ANALYSIS: EXACT RESULTS

From now on, we will consider a specific model for the
hopping process, in which only two different hopping rates
occur. Specifically, we will assume that the hopping rates
towards and away from the dendrimer’s core are, respec-
tively, k1 andk2 , no matter at which branching point of the
dendrimer the excitation resides. This assumption corre-
sponds to the situation with a linear energy bias, where the
excitation energy difference between units of generationM
andM21 is a constant,DE, which is identical for everyM .
As was pointed out in Ref. 34, in this case the random walk
across the dendrimer may be mapped onto a random walk on
an asymmetric linear chain, where the rate of hopping isk1

in the direction of one end of the chain~where the trap re-
sides! and (z21)k2 in the other direction. In other words,
instead of a dendrimer of generationN a linear chain of
lengthN11 is considered with a trap at site 0. This mapping
is illustrated in Fig. 2.

After this mapping, the set of rate equations is different
for dendrimers of one, two, andN.2 generations. For a
one-generation dendrimer, only one equation occurs:

Ṗ152k1P1 . ~9!

For a dendrimer with two or more generations, we have the
following equations:

Ṗ152@k11~z21!k2#P11k1P2 , ~10a!

ṖM5~z21!k2PM212@k11~z21!k2#PM1k1PM11 ,

1,M,N, ~10b!

ṖN5~z21!k2PN212k1PN , ~10c!

FIG. 2. Example of mapping of a dendrimerD3 with z53 and a linear
energy bias onto an equivalent linear chain. The large circle represents the
trap, while all units of generationM (51,2,3) are mapped onto one siteM
of the linear chain, which is drawn by a small circle. The quantitiesk1 and
k2 are the hopping rates towards and away from the trap, respectively, in the
real dendrimer. The factorz21 counts the number of branches towards the
periphery at each branching point and multipliesk2 to obtain the effective
outward hopping rate in the equivalent linear chain.
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where in caseN52, Eq. ~10b! is absent. In all these equa-
tions, PM denotes the total population in theM th dendrimer
generation, while the factorz21 accounts for the number of
nearest-neighbor units towards the periphery for each
branching point. From this form it is clearly seen that the
branching (z>3) leads to a ‘‘geometrical’’ bias towards the
dendrimer’s periphery, even in the absence of an energetic
bias (DE50). Whether a net bias exists and in what direc-
tion, depends on the quantityk5(z21)k2 /k15(z21)
3exp(2DE/kBT). At k51 @k15(z21)k2#, the geometrical
and energetic biases exactly compensate each other, while
for k,1 (k.1) a net bias towards~away from! the trap
occurs.

As initial condition we will consider the situation where
one excitation has been created at the periphery of the den-
drimer, i.e.,PM(0)5dMN . According to Eq.~1a!, the trap-
ping rate in the absence of excitation decay is now given by
R(t)5k1P1(t). This will be the quantity of our prime inter-
est, for which we will seek a solution in the remainder of this
section. Solving the one- and two-generation dendrimer
problems is straightforward and will be done later on. Our
main goal is to find the solution of the general problem of an
N-generation dendrimer. This may be done in the Laplace
domain. If for brevity we introduce the dimensionless time
t85k1t, Eqs. ~10! written in the Laplace domain take the
form

052~11k1s!P̃11 P̃2 , ~11a!

05k P̃M212~11k1s!P̃M1 P̃M11 , 1,M,N, ~11b!

215k P̃N212~11s!P̃N , ~11c!

where the Laplace parameters is now in units ofk1 and R̃

5 P̃1 ~we use a tilde to denote the Laplace transformed func-
tions!. Below, we find a recursive relation forR̃, connecting
this quantity for dendrimers of different numbers of genera-
tions ~i.e., lengths of the effective linear chain!. Therefore,
we will from now on denoteR̃ for a dendrimer ofN genera-
tions asR̃N .

After N22 steps of eliminatingP̃N ,P̃N21 , . . . ,P̃3 from
Eqs.~11b! and ~11c!, we arrive at two coupled equations

052~11k1s!P̃11 P̃2 , ~12a!

2BN5ANP̃12 P̃2 , ~12b!

a solution of which with respect toP̃15R̃N is

R̃N5
BN

11k1s2AN
. ~13!

Here,AN andBN are functions of the Laplace parameters,
which will be specified later on. For a dendrimer ofN11
generations, similarly, N22 steps of excluding
P̃N11 ,P̃N , . . . ,P̃4 from Eqs.~11b! and~11c! yield a system
of three coupled equations

052~11k1s!P̃11 P̃2 , ~14a!

05k P̃12~11k1s!P̃21 P̃3 , ~14b!

2BN5ANP̃22 P̃3 , ~14c!

whereAN andBN are the same as in Eqs.~12a!, ~12b!, and
~13!, while now P̃15R̃N11 . Solving Eqs.~14a!–~14c! with
respect toP̃1 leads to an expression that is algebraically
identical to Eq.~13!, except thatAN andBN are replaced by
AN11 andBN11 , respectively. The latter are given by

AN115
k

11k1s2AN
, ~15a!

BN115
BN

11k1s2AN
, ~15b!

and represent the recursive relations for these two functions.
From comparison of Eq.~15! with Eq. ~13!, one finds that
BN115R̃N and AN115kR̃N /R̃N21 . Substituting these rela-
tions back into Eq.~13!, we arrive at a recursive relation for
R̃N :

1

R̃N

5~11k1s!
1

R̃N21

2k
1

R̃N22

. ~16!

Note that Eq.~16! can be used forN.2 only. In order to
close the recursive iteration,R̃1 and R̃2 must be calculated
separately. In the Laplace domain the solution of Eq.~9! for
N51 and Eqs.~10a! and ~10c! for N52 is straightforward
and gives us the necessary quantities:

R̃15
1

11s
, ~17a!

R̃25
1

11~21k!s1s2 . ~17b!

Using Eqs.~17a! and ~17b! in the recursive relation, Eq.
~16!, and solving this relation, we finally obtainR̃N(s) in
closed form:

2N11

R̃N

5S 11
12k1s

A~11k1s!224k
D

3F11k1s1A~11k1s!224k GN

1S 12
12k1s

A~11k1s!224k
D

3F11k1s2A~11k1s!224k GN

. ~18!

This is the principal result of this section.
It should be noticed that, despite the fact that Eq.~18!

contains square roots,R̃N
21 in reality is a polynomial ofNth

order ins. This may be checked by explicit expansion of Eq.
~18! in powers ofs. Alternatively, the recursive relation, Eq.
~16!, itself already represents a proof of this statement.

IV. TRAPPING TIME DISTRIBUTION

It turns out to be impossible to perform the transforma-
tion back to the time domain for the general result, Eq.~18!,
implying that we do not obtain an explicit expression for the
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trapping time distribution. However, the moments of this dis-
tribution and its asymptotic form at largeN do allow for an
analytical treatment. In this section, we will address these
two topics. We will also show that the asymptotic form may
already be reached for rather small dendrimers, making these
analytical expressions of practical use.

A. Moments

To study the moments of the trapping time distribution,
we make use of the following relation:

^tn&N[E
0

`

tnRN~ t !dt5~21!n
dnR̃N

dsn U
s50

. ~19!

Furthermore, we recall that 1/R̃N is a polynomial ofNth
order ins ~see the preceding section!, and thus can be written
as

1

R̃N

5 (
m50

N

aN
(m)sm, aN

(m)5
1

m! S dm

dsm

1

R̃N
D U

s50

. ~20!

Substituting Eq.~20! into Eq. ~16! and comparing coeffi-
cients related to the same power ofs, we obtain a recursive
relation foraN

(m) ,

aN
(m)5aN21

(m21)1~11k!aN21
(m) 2kaN22

(m) , ~21!

where it is implied thataN
(m)50 for m.N andm,0. From

Eqs.~17a! and ~17b! it follows that for N51 andN52,

a1
(0)5a1

(1)5a2
(0)5a2

(2)51, a2
(1)521k. ~22!

This allows us to start the recursive procedure foraN
(m) .

The first important conclusion concerning the expansion
coefficients, which follows from Eq.~21!, is thataN

(0)51 for
any N. This simply means that the zeroth moment of the
trapping time distributionR̃N(0)51, i.e., the distribution is
normalized. As a consequence of this fact, one can elucidate
the physical meaning of the second coefficient of the expan-
sion, Eq.~20!. It appears to be equal to the first moment of
the distributionRN , which is nothing but the mean trapping
time ^t&N :

aN
(1)5

d

ds

1

R̃N

U
s50

52S 1

R̃N
2

dR̃N

ds DU
s50

5^t&N . ~23!

Substituting this result in Eq.~21! yields a recursive formula
for ^t&N ,

^t&N511~11k!^t&N212k^t&N22 , ~24!

from which earlier results for the mean trapping time in den-
drimers are reproduced:18

^t&N5 1
2 N~N11!, k51, ~25a!

^t&N5
N

12k
1

k

~12k!2 @kN21#, kÞ1. ~25b!

The next coefficientaN
(2) , contains information about the

second moment ofRN . It is straightforward to show that

aN
(2)5^t&N

2 2 1
2 ^t2&N . ~26!

On the other hand, using Eq.~21! and the method of induc-
tion, one may show that

aN
(2)5 1

24 ~N21!N~N11!~N12!, k51, ~27a!

aN
(2)5

kN11@k~N21!2~N12!#

~12k!4 1
N~N11!

2~12k!2

1
k2~N11!12k2N

~12k!4 , kÞ1. ~27b!

Making now use of Eqs.~25! and ~27! in Eq. ~26!, we find
^t2&N ,

^t2&N5 1
12 N~N11!@5N~N11!12#, k51, ~28a!

^t2&N5
N~N11!

~12k!2 1
~6N12!kN11

~12k!3

1
2k~k2N111kN22!

~12k!4 , kÞ1. ~28b!

It is worthwhile to consider the asymptotic behavior of
the first and second moments ofRN at largeN, the case of
our primary interest. They are given by

^t&N5
N

12k
, ^t2&N5

N~N11!

~12k!2 , k,1, ~29a!

^t&N5 1
2 N2, ^t2&N5 5

12 N4, k51, ~29b!

^t&N5
kN11

~k21!2 , ^t2&N5
2k2(N11)

~k21!4 , k.1. ~29c!

These formulas already allow us to make a prediction con-
cerning the shape of the trapping time distribution. In par-
ticular, comparing Eqs.~29b! and ~29c! with Eq. ~29a!, we
conclude that a drastic difference must exist between the two
casesk,1 ~bias towards core! and k>1 ~no bias or bias
away from core!, with respect to the shape of the trapping
time distributionRN . Indeed, calculating the standard devia-
tion sN5A^t2&N2^t&N

2 , we obtain

sN5
N1/2

12k
, k,1, ~30a!

sN5
N2

A6
, k51, ~30b!

sN5
kN11

~12k!2 , k.1. ~30c!

As is seen, for largeN, sN!^t&N for k,1, i.e., the distribu-
tion RN is narrow in the sense that its standard deviation is
much smaller than its mean. By contrast,sN;^t&N if k>1,
which means thatRN is a broad distribution in this sense.

B. Long-time limit

From Eqs.~29! it follows that the characteristic time of
trapping^t&N in dendrimers of higher number of generation
is long on the scale of the ‘‘effective’’ hopping times, which
are (12k)21, (k21)21, and 1 @or (k12k2)21, (k2

2k1)21, andk1
21 in dimensional units# for dendrimers with
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a total bias towards the trap (k,1), towards the periphery
(k.1), and no bias (k51), respectively. Within the
Laplace domain, this means that the dominant region of the
parameters, being of the order of̂ t&N

21 , is, respectively,
small compared to 12k, k21, and 1 for these three differ-
ent situations. This allows us to significantly simplify the
expression, Eq.~18!, for R̃N .

1. Total bias towards the trap, kË1

We start analyzing the case of a total bias towards the
trap (k,1). Note that in this particular case we can read of
from Eq. ~29a! that N has to be quite large for the mean
trapping time to be much larger than (12k)21. We therefore
expect that the following expansion only gives a good ap-
proximation if N@1. Using a Taylor expansion of Eq.~18!
with respect tos/(12k), we obtain

1

R̃N

5
skN11

~12k!2 S 12
s

12k
D N

1S 11
s

12k
D N

. ~31!

If k!1 or if k,1 andN@1, the first term on the right-hand
side can be neglected as compared to the second one, thus
providing us with a very simple expression forR̃N ,

R̃N5S 11
s

12k D 2N

, ~32!

which can be easily transformed back to the time domain.
The result reads

RN5
~12k!N

~N21!!
tN21e2(12k)t. ~33!

We stress that this result is exact in the limitk→0 ~indepen-
dent of N), therefore we also expect this approximation to
work well for k!1 even for smallN. As is seen,RN is
strongly nonexponential and forN@1 is characterized by a
sharp profile, consistent with our findings in the preceding
section. In fact, in the limit ofs/(12k)!1 andN→` we
can approximately writeR̃N5exp@2ŝ t&N#, where ^t&N

5N/(12k) is the mean trapping time fork,1. The time-
domain behavior, which corresponds to this Laplace trans-
form, is RN5d(t2^t&N). The nonexponentiality found is in
fact a characteristic property of the trapping in dendrimers
with a total bias towards the trap (k,1), independent of the
number of generationsN.

In order to illustrate how the approximate expression,
Eq. ~33!, fits the exact result obtained by numerically inte-
grating Eqs.~10!, we plotted in Figs. 3 and 4 the distribution
RN calculated fork51/5 andk51/2 at different number of
generationsN. Here the solid lines are the exact solutions
and the dashed lines correspond to the approximation, Eq.
~33!. From these plots we conclude that fork!1, in this case
for k51/5, Eq. ~33! works well, even for dendrimers with
only four generations. On the other hand, fork51/2 the
deviation of Eq.~33! from the exact solution gets larger even
for N as large as 50. These figures also clearly demonstrate
the tendency of the trapping time distribution for large den-
drimers to tend towards ad function at the mean first passage
time.

2. Zero total bias, kÄ1

At zero total bias, i.e., when the energetic bias and geo-
metrical one compensate each other (k51), the problem we
are dealing with is equivalent with the classical one-
dimensional diffusion problem on a finite segment with ab-
sorbing and reflecting boundary conditions atx50 and x
5N, respectively, and an initial condition corresponding to

FIG. 3. Plots of the trapping time distributionRN(t) for dendrimers of
different number of generationsN with a total bias towards the trap (k
51/5). In all plots, the solid curves represent the exact solution forRN(t)
obtained from numerically solving Eqs.~10!, while the dotted curves corre-
spond to the approximate expression, Eq.~33!. Note that the vertical and
horizontal scale depend onN through^t&N.

FIG. 4. Same as in Fig. 3, usingk51/2.
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the creation of a diffusing object atx5N. The Laplace trans-
form R̃N , derived from Eq.~18! in the limit of s!1, reads

R̃N5
2

~11As!N1~12As!N
'

1

cosh~A2s^t&N!
, ~34!

where^t&N5N2/2 is the mean trapping time in the diffusive
regime of the random walk, and we used the fact that (1
6As)N'e6NAs for s!1 andN@1. In the time domain we
then obtain

RN5
p

^t&N
(
n50

`

~21!nS n1
1

2DexpF2
p2~n11/2!2t

2^t&N
G .

~35!

In Fig. 5 ~upper panel!, we depictedRN(t) calculated by
numerically integrating Eqs.~10! for dendrimers of different
numbers of generations withk51. First, we note that the
curves obtained forN54 and N58 are almost identical.
Approximation, Eq. ~35!, works very well, becausêt&N

grows quadratically withN, and therefore the long-time limit
is reached already for smallN. Second, the dotted curve in
the plot, corresponding toN58, coincides in fact with the
limiting curve; it is not changed by further increasingN. The
decaying part of this curve is nicely fitted by the first term of
the series, Eq.~35!, i.e., by exp(2p2t/8^t&N). Thus, we con-
clude that already for smallN, the approximate result, Eq.
~35!, gives a good fit to the exact result, and the tail ofRN(t)
is described by a single exponential.

3. Total bias towards the periphery, kÌ1

We proceed similarly to the above in the case of a total
bias towards the dendrimer periphery (k.1). Assuming
now in Eq.~18! that s/(k21)!1, one finds

1

R̃N

5
skN11

~k21!2 S 11
s

k21
D N

1S 12
s

k21
D N

. ~36!

We recognize herêt&N5kN11/(k21)2 as the mean trap-
ping time fork.1 @see Eq.~29c!#. As the relevant region of
the Laplace parameter is determined bys^t&N;1, while
^t&N@N/(k21) atk.1, the termss/(k21) in the parenthe-
ses of Eq.~36! are negligible. Upon this simplification,R̃N

takes the form

R̃N5
1

s^t&N11
, ~37!

which, converted to the time domain, corresponds to the ex-
ponential behavior

RN5
1

^t&N
expF2

t

^t&N
G . ~38!

Figure 5~lower panel! illustrates this finding. All curves pre-
sented in this panel were obtained by numerically integrating
Eqs. ~10!. As is seen, all curves are close to each other,
including the one forN52. Also for this case the approxi-
mation, Eq.~38!, works well, because the long-time limit is
reached for even smallerN than in the case ofk51, because
^t&N grows exponentially withN. From this we conclude that
the approximation, Eq.~38!, works perfectly for any number
of generations.

The difference in the behavior ofRN ~exponential or
nonexponential! for different signs of the total bias in prin-
ciple may be used to experimentally probe for the direction
of the energetic bias in a dendrimer. Indeed, using pump-
probe experiments the excitation populationp0(t) of the core
of the dendrimer could be measured and thereforer (t)
5 ṗ0(t) can be obtained directly. Because the fluorescence
intensity I~t! is proportional toc5e2gt@12*0

t R(t8)dt8# we
can findg from the early time decay ofI~t!. Combining these
two experiments we can extractR~t! and find information
about the direction of the energetic bias.

V. EFFICIENCY OF TRAPPING

In this section, we turn to analyze the trapping efficiency
«N5R̃N(s)us5g @cf. Eq. ~6!#, the exact expression for which
follows directly from Eq.~18!,

2N11

«N
5S 11

12k1g

A~11k1g!224k
D

3F11k1g1A~11k1g!224k GN

1S 12
12k1g

A~11k1g!224k
D

3F11k1g2A~11k1g!224k GN

. ~39!

From this result, one easily generates plots for any set of
variablesk, g, andN. In particular, we present in Fig. 6 the
results for the trapping efficiency according to Eq.~39!, for
dendrimers ofN51 to N510 generations and different
directions of the total bias, settingg50.01 ~in units of k1).
The general trends displayed in this figure are easily under-
stood. For small dendrimers, the efficiency is close to unity,

FIG. 5. Plots of the trapping time distributionRN(t) for dendrimers of
different number of generationsN in the diffusive regime of hopping (k
51) and for a total bias towards the periphery (k52). All curves were
obtained by numerically solving Eqs.~10!. In both panels, the solid curves
correspond toN52, the dashed curves toN54, and the dotted curves to
N58. The decaying part of the latter curve in the upper panel coincides with
exp@2p2t/8^t&N#. Note that the vertical and horizontal scale depend onN
through^t&N.
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unless a strong bias towards the periphery is combined with
a fast decay. For larger dendrimers, the efficiency decreases
due to an increased chance of decay before reaching the core.
This effect grows when increasing the number of genera-
tions. However, a more detailed physical interpretation of
Eq. ~39! for largerN values requires a deeper analysis. In the
following, we will focus on this large-N region. It is then
natural to limit ourselves to a decay rateg that is small
compared to the ‘‘effective hopping rates’’ 12k, k21, and
1, as we also assumed with respect to the Laplace parameter
s in our analysis of the trapping time distribution~see Sec.
IV B !. Otherwise, the trapping efficiency will be low even
for a dendrimer of a small number of generations. Hereafter,
we impose this condition, which allows us to directly use
Eqs.~32!, ~34!, and~37!, replacings by g.

1. Total bias towards the trap, kË1

We first consider the case of a total bias towards the trap
(k,1). The corresponding expression for«N is

«N5S 11
g

12k D 2N

'expS 2
gN

12k D5exp@2g^t&N#.

~40!

As is seen from this equation, the only parameter that deter-
mines the trapping isg^t&N5gN/(12k). The interplay of
trapping in the absence of excitation decay and the excitation
decay itself determines the trapping efficiency: the latter is
high ~close to unity! for g^t&N!1, decreasing linearly with
g^t&N , and exponentially small in the opposite limit,g^t&N

@1. We note that Eq.~40! implies that in the large-N limit
with k,1, ^exp@2gt#&5exp@2g^t&#, which is due to the fact
that under these conditions the trapping time distribution
tends to ad function at the mean trapping time, as we have
found in Sec. IV B.

Using the definitions, Eqs.~7! and ~8!, we can also cal-
culate the mean survival timetN and the effective trapping
rateWN . They are given by

tN5
1

g
@12exp~2g^t&N!#, ~41a!

WN5
g

exp~g^t&N!21
. ~41b!

If the decay is slow on the scale of the mean trapping time
(g^t&N!1), the survival timetN coincides with the mean
trapping time^t&N , andWN is just the inverse valuêt&N

21 .
In the opposite limit (g^t&N@1), we gettN5g21 ~because
the excitation cannot reach the trap within its lifetime! and
WN5g exp@2g^t&N#. Note that the range of variation oftN is
always from^t&N to g21 upon increasing the driving param-
eterg^t&N from zero to values large compared to unity. This
is the general behavior of the survival timetN , independent
of the direction of the total bias.

2. Zero total bias, kÄ1

In the diffusive regime (k51), according to Eq.~34!,

«N5
1

coshA2g^t&N

, ~42!

and, consequently,

WN5
g

2 sinh2Ag^t&N/2
, ~43!

where now^t&N5N2/2 is the trapping time fork51. In the
limit of slow decay on the time scale of trapping (g^t&N

!1) one obtains

«N5
1

11g^t&N
5

1

11gN2/2
, ~44!

i.e., the trapping efficiency is close to unity, as expected. In
Eq. ~44! we kept the ‘‘small’’ term in the denominator, be-
cause this expression works well even ifg^t&N is slightly
larger than unity. This is due to the fact that the Taylor ex-
pansion of the hyperbolic cosine only contains even powers
of its argument.

If g^t&N gets larger than unity, another regime of trap-
ping comes into play:

«N52 exp@2A2g^t&N#5exp~2AgN!. ~45!

As is seen, asymptotically«N decreases exponentially, with
an exponent proportional toN ~and notN2). This thus re-
sembles the behavior of trapping in the case of a large bias
towards the trap@cf. Eq. ~40!#. The prefactorAg in Eq. ~45!,
however, is larger than in the case of a bias towards the trap
~g!. This is not surprising, because in the diffusive regime,
the excitation makes steps towards the periphery that slow
down the process of reaching the trap, allowing for a larger
effect of excitation decay before trapping may occur.

Finally, the effective trapping rateWN starts from the
value ^t&N

21 in the limit of slow decay@g^t&N!1# and re-
veals the same behavior as«N for g^t&N@1.

3. Total bias towards the periphery, kÌ1

In a certain sense, this is the simplest case. Fors5g, Eq.
~37! yields for the efficiency of trapping

«N5
1

11g^t&N
~46!

for any ratio of ^t&N5kN11/(k21)2 and g21. Conse-
quently, the relationshipWN5^t&N

21 holds in general.

FIG. 6. Plots of the trapping efficiency«N as a function of number of
generationsN calculated forg50.01 and different values fork. The squares
correspond tok51/2 ~total bias towards the trap!, circles correspond tok
51 ~no total bias, diffusive regime of hopping!, and the triangles corre-
spond tok52 ~total bias towards the periphery!.
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VI. CONCLUSIONS

In this paper we theoretically studied the trapping of
excitations in dendritic systems in the presence of~radiative
and nonradiative! excitation decay when moving to the trap
at the dendrimer’s center. We derived an exact expression for
the Laplace transform of the trapping time distribution for a
dendrimer of any number of generations. This expression
was then used to analyze the general properties of pure trap-
ping ~in the absence of decay!, focusing on dendrimers of a
large number of generations. We found that the general na-
ture of this distribution is governed by the total~geometrical
and energetic! bias towards the trap. In the presence of a bias
towards the trap, the trapping time distribution is narrow, in
the sense that its standard deviation is small compared to its
mean. The shape of the distribution is strongly nonexponen-
tial. Oppositely, in the presence of a bias towards the den-
drimer’s periphery, the trapping time distribution is broad~its
standard deviation is of the order of its mean!, and its shape
is essentially exponential with an exponent equal to the mean
trapping time. The strong difference between both regimes is
nicely illustrated by comparing Figs. 3 and 5. Experimen-
tally, the total trapping time distributionR~t! may be deter-
mined by a combination of pump-probe spectroscopy and
fluorescence measurements~see end of Sec. IV!. This allows
for a clear distinction of the inward and outward bias in
experiment. In this context it is of importance to note that,
although in the analysis of the trapping time distribution we
used the limit of a large number of generations, it appears
from comparison to numerically exact results that many of
the analytical expressions hold even for small dendrimers,
with just a few generations.

The trapping efficiency« was found to depend on the
ratio of the decay time (g21) and the trapping time in the
absence of decay (^t&). The productx5g^t& turns out to be
the only essential parameter that governs the trapping in the
presence of excitation decay. For dendrimers with a total bias
towards the trap (k,1), the efficiency of trapping depends
exponentially on this parameter within its entire range of
values:«5e2x. In the diffusive regime of trapping, when
the geometrical and energetic bias compensate each other
(k51), «5(11x)21 for x,1, while forx.1 this behavior
changes to a stretched-exponential one,«;e2Ax. For den-
drimers with a total bias towards the periphery (k.1), the
trapping efficiency«5(11x)21, independent ofx.

We finally notice that in practice the various regimes
with regards to the total bias parameterk distinguished by
us, may be probed experimentally in one and the same den-
dritic system by varying the temperature. In particular,k
tends from zero at low temperature toz21 at high tempera-
ture.
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