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Trapping time statistics and efficiency of transport of optical excitations
in dendrimers

Dirk-Jan Heijs, Victor A. Malyshev, and Jasper Knoester®
Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

(Received 25 March 2004; accepted 9 June 2004

We theoretically study the trapping time distribution and the efficiency of the excitation energy
transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on
a trap located at its core, is used as a probe of the efficiency of the energy transport across the
dendrimer. The transport process is treated as incoherent hopping of excitations between
nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative
and nonradiative decay of the excitations while diffusing across the dendrimer. We derive exact
expressions for the Laplace transform of the trapping time distribution and the efficiency of
trapping, and analyze those for various realizations of the energy bias, number of dendrimer
generations, and relative rates for decay and hopping. We show that the essential parameter that
governs the trapping efficiency is the product of the on-site excitation decay rate and the trapping
time (mean first passage timén the absence of decay. @04 American Institute of Physics.
[DOI: 10.1063/1.1778136

I. INTRODUCTION for transport of the excitation towards the core. Such a bias is
favorable for efficient transport of the absorbed energy
During the past decade dendritic molecular systems ogcross the dendrimer. Using quantum chemical calculations,
dendrimers have received considerable atterfi6nDen-  the existence of an energy funnel towards the core was fur-
drimers are synthetic highly branched treelike macromolther confirmed in Ref. 21. Experimental investigations of the
ecules consisting of a core and several branches which aghergy transport in these systémsvealed the fact that it
built self-similarly. Theoretically the process of buiIding a occurred through a muitiste(jhcoheren); hopping process
dendrimer can be repeated infinitumto obtain a dendrimer wijth an efficiency of 96%. On the other hand, low-
with any number of generations, but in practice this numbegemperature measurements of the energy transport in
is currently limited to 1%. The first three dendrimers with distyrylbenzene-stilbene dendrimers with a nitrogen core
coordination numbezr=3 are schematically depicted in Fig. gave clear indications of coherent interactions between the
1 (we note that in general dendrimers are not planar objectsdendrimer subunit¥ In this class of organic dendrimers,
Dendrimers hold great promise for creating artificial yjtrafast higher-order nonlinearities were also repotfed,
||ght harvesting SyStemS. |ndEEd, because of their branChQﬁhich makes them potentiaiiy promising Systems for appii-
nature, the number of units at their periphery grows expocations in nonlinear optical switching elements.
nentially with the number of generations. Therefore, if light The first theoretical efforts on dendrimers were mostly
absorbing states are located at the periphery, the cross sectig§tused on analyzing the mean first passage time, i.e., the
of absorption grows exponentially with the number of gen-ayerage time it takes for an excitation, created somewhere at
erations. Combining this with a possibly efficient energythe periphery of the dendrimer, to reach its center, where a
transport to the core may result in efficient light harvestingirap is located. This problem was addressed in much detail in
systems™* Refs. 18—-20, where the mean first passage time was calcu-
A growing flux of publications exists, both experi- |ated both in the presence and in the absence of a fixed en-
mental~*’ and theoretical?~*° reporting on optical and ergy bias. The presence of a random bias was considered in
transport properties of dendritic systems. For instance, ifRef. 22, where it was found that the randomness tends to
Ref. 8 compact and extended polyphenylacetylene dendrinfequce the transport efficiency. Large-scale numerical calcu-
ers in solution were studied experimentally. Interpreting theifations of the statistics of the number of sites visited by the
spectroscopic measurements, the authors argued that the fcitation and its mean square displacement in very large
tical excitations in these systems are localized on dendrimejendritic structures were performed in Ref. 23, while the
subunits. They also made the important point that extendegthors of Ref. 24 discussed the kinetics of symmetric ran-
dendrimers were characterized by a so-called energy funnefom walks in compact and extended dendrimers of a small
the excitation energies of dendrimer units decreases from the,mper of generations<(4).
periphery towards the core, thus providing an energetic bias |, g papers cited above, the basis of the analysis was
the assumption of incoherent hopping transport between den-
¥Electronic mail: knoester@phys.rug.nl drimer units, which is believed to work well at room tem-
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efficiency under various conditior{sign of the energy bias,
number of generations, ratio of decay and hopping yates
discussed in Sec. V. Finally, we conclude in Sec. VI.

Il. MODEL AND PERTINENT QUANTITIES

As was already mentioned in the Introduction, we treat
both the motion of the excitation over the dendrimer units
and the trapping at the core as incoherent nearest-neighbor
hopping processes. We label the dendrimer usies by
the indexi (1<i<WN), where N is the number of units,
while i=0 denotes the trap located at the cé¢eé Fig. 1).

The trap is considered irreversible, i.e., once the excitation
hops onto it, it never returns to the body of dendrimer. Then,
the system of rate equations for the excitation probabilities
FIG. 1. Schematic pictures of dendrimers of omg, two (D,), and three  (POpulationg p; of the dendrimer units reads

(D3) generations with the coordination numker 3 (equal to the number

of branches at each branching pointhe large circle at the dendrimer Do=2 Koip: , (18
center represents a trap, while the small circles are building units of the m e

dendrimer branches, representing sites on which optical excitations can re-
side. Connected by the dotted lines are the dendrimer units belonging to the

same generation. pi=—Ypi— % Kjipi+ % /kij pj (i#0). (1b)
J J

t H h tual nat f th itation t Here, the dot denotes the time derivative, the summaii
perature. However, the aclual nature of the excitation rangg performed over sitesthat are nearest neighbors of the site

port and optical dynamics is still under debate. Thus, thq, the prime in the second summation of Ejb) indicates

alternative approach of coherent excitons extending Ovetrhatjqﬁo, yis the exciton decay rat@ssumed independent

several dendrimer units has also been considered, in particBT i), andk;; is the rate of hopping from sitg to site |
1 1] ]

lar, to describe energy transport from the periphery to thef ludingi=0. The hoopi ¢ t the principle of de-
coré>?® and the enhancement of the third-order opticaltgﬁ;d It:]gl;n cék--:ek--Z?(E?Ig-iallzilsk,inﬁewhe?erl)zr-l?gﬁz gx- ©
1) | | ) 1

susceptibility?® Another interesting branch of experimental citation energy of the site, kg is the Boltzmann constant,

and theoretical studies of dendritic systems concerns the d%{ndT is the temperature. In this sense the energy of the trap
namics of dendrimer-based networks, i.e., extended syste o, IS considered infinitely low. Initially, the excitation is

using dendrimers as building bloc%%‘.ssRecently, TC’UCh net outside the trap, i.epo(0)=0, while one of dendrimer units

works have attracted much attention due to their two Ievel§S excited,p;(0)= 5,

of structural organization. REIRCE .
Among the factors that govern the efficiency of energy . The quantityr (t)=p, represents the instantaneous trap-

transport in dendritic systems, such as the energy bias agng rate and will be used to study the time-domain behavior

the presence of disorder, the radiative and nonradiative dec the gntehrgy tr;]':mtiportt ;nl dendnlt"t:. systertn.so.l It tc;}an tbe ex
of optical excitations during their random walk to the core res,se roug € total popuiation ou'side the @p,
=3/p;, which is hereafter referred to as the survival prob-

represents an additional factor, especially for dendrimersb.l_t ith t 10 both d dqt ina. Indeed. f
with a large number of generations. Moreover, the statistic§O"Y With reéspect to both decay and trapping. Indeed, from

of the trapping time has not been studied in detail either. IfEdS-(1) it follows that2;p;=po+ ¢=—y¢, so that forr (t)

this paper, we intend to fill these gaps and show that intimat@ne finds

relations exist between the analysis of both issues. We will F(t)=— yy— l// 2

show that in the presence of decay, the key parameter that

governs the trapping efficiency is the product of the on-sité-urthermore, the time dependencer ¢f) deriving from the

excitation decay rate and the mean first passage time in tHéecay constany can be extracted explicitly by the transfor-

absence of decay. mation p;=e~ "'P, . After this transformation Eq(2) is re-
The outline of this paper is as follows: In Sec. Il we duced to

present our model, which is based on incoherent motion of dw

excitations across the dendrimer, described by a rate equation r(t)=—e " rTa e "R(t), 3

that accounts for both trapping at the core and excitation

decay during the random walk towards the core. We alsavhere W (t)=2;P;, andP; now obey Eq.(1b) with y=0.

discuss several quantities relevant to the problem undefhus,V is the analog of4(t) and represents the total popu-

study, such as the distribution of survival times, the meardation outside the trap in the absence of excitation decay. It is

survival time, and the efficiency of trapping. Section Il dealsthe survival probability with respect to trapping alone. We

with deriving exact expressions for these quantities in thesee from Eq(3) that in the time domain, the trapping and the

Laplace domain. In Sec. IV, we present a detailed analysis afecay of the excitations are independent of each other.

the trapping time distribution in the limit of vanishing exci- Therefore, the time behavior of the trapping process can be

tation decay. Effects of the excitation decay on the trappingtudied separately, which simplifies the analysis.
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4886 J. Chem. Phys., Vol. 121, No. 10, 8 September 2004 Heijs, Malyshev, and Knoester

The quantityR(t)=—(dW/dt) is normalized to unity
for finite systemdin the sense thafyR(t)dt=1] and rep-
resents the probability distribution of thigure trapping
time. From this, the mean trapping time, often referred to as
the mean first passage tinféis calculated in a standard way,

(ty= J?tR(t)dtI f:‘l'(t)dt- (4)

The inverse quantityt) ! represents the effective trapping
rate in the absence of excitation decay. Note that(&xcan ki 1 &k 2 k 3
be rewriten via the Laplace transformR(s) . .(z - 1)k2.(z - 1)k2'
= [{e S'R(t)dt of R(t):

FIG. 2. Example of mapping of a dendrimBr; with z=3 and a linear

= energy bias onto an equivalent linear chain. The large circle represents the
dR . . 1t linez
(t) - , (5) trap, while all units of generatiomM(=1,2,3) are mapped onto one ske
ds <=0 of the linear chain, which is drawn by a small circle. The quantitigand

k, are the hopping rates towards and away from the trap, respectively, in the
which is useful for further consideratiorisee below: real dendrimer. The fact@— 1 counts the number of branches towards the
- - . periphery at each branching point and multipliesto obtain the effective
We now define ,the efflc!ency of trappirigenoted a$) outward hopping rate in the equivalent linear chain.
as the total population that is transferred to the trap, i.e., the
fraction of the initially created excitation that reaches the
trap during its lifetime:
I1l. LAPLACE DOMAIN ANALYSIS: EXACT RESULTS

e=limpy(t)= fo r(t)dt= fo e "R(Hdt=R(s)|s-,. (6) From now on, we will consider a specific model for the
. hopping process, in which only two different hopping rates
Another important quantity that contains information aboutoccur. Specifically, we will assume that the hopping rates
the trapping efficiency is towards and away from the dendrimer’s core are, respec-
tively, k; andk,, no matter at which branching point of the
* 1-¢ dendrimer the excitation resides. This assumption corre-
(e fo p(tydt= Ty () sponds to the situation with a linear energy bias, where the
excitation energy difference between units of generakibn
which is the mean survival timéwith respect to both trap- andM —1 is a constantAE, which is identical for every.
ping and decay Using this definition, we can, by conven- As was pointed out in Ref. 34, in this case the random walk
tion, define the effective trapping ra® in the presence of across the dendrimer may be mapped onto a random walk on
excitation decay as an asymmetric linear chain, where the rate of hoppinkyis
in the direction of one end of the chafwhere the trap re-
®) sides and (z— 1)k, in the other direction. In other words,
instead of a dendrimer of generatidh a linear chain of

lengthN+ 1 is considered with a trap at site 0. This mappin
It should be stressed that =, and W, being defined is ilgl‘ustrated in Fig. 2 P PPINg

through time integrations, are influenced by the excitation  Agar this mapping, the set of rate equations is different
decay. In particular, if the latter occurs on a time scale much,. yondrimers of one. two. anh>2 generations. For a

slqwer thar_1 the mean f|rst passage “'<T'¢' 'the trapping one-generation dendrimer, only one equation occurs:
efficiencye is close to unity, the survival timeis reduced to

the mean first passage tin{€), given by Eq.(4), and W .
~(t)%. If however the excitation decay occurs on a time  P1=—Kk.P;. €)
scale that is comparable to or faster than the mean first pas-

sage time, the quantities 7, andW will be determined by  For a dendrimer with two or more generations, we have the
the interplay of the random walk to the trap and the excitafollowing equations:

tion decay. This interplay between trapping and decay will be
one of the main issues in the remainder of this paper.

To conclude this section we notice that all quantities
relevant to the excitation energy transport, suckitase, r,
andW, are directly related to the Laplace transfoR¢s) of Pu=(z—1)koPy_1—[Ki+(z—1)ky]Py+KiPys1,
the trapping time distributiofk(t) in the absence of decay.
Furthermore we notice that these quantities are relevant char-

W 1 e
AR T

Py=—[ky+(z—1)ky]P1+ kP, (103

acteristics of the excitation energy transport in general, not 1<M<N, (100
only in dendrimers. In the following section, we will provide
the exact solution foR(s). Py=(z—1)k,Py_1—K;:Py, (100

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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vyhere in caseN=2, Eq.(10b is ab_sen_t. In all these equa- —BN=AN'~°2—F’3a (149
tions, Py, denotes the total population in tiéth dendrimer

generation, while the factar— 1 accounts for the number of WhereAy andBy are the same as in Eqd.2a), (12b), and
nearest-neighbor units towards the periphery for eactt13), while nowP;=Ry.;. Solving Eqgs.(143—(140 with
branching point. From this form it is clearly seen that therespect toP, leads to an expression that is algebraically
branching ¢=3) leads to a “geometrical” bias towards the identical to Eq.(13), except thatAy andBy are replaced by
dendrimer’s periphery, even in the absence of an energetis,, andBy., respectively. The latter are given by

bias AE=0). Whether a net bias exists and in what direc-

tion, depends on the quantitg=(z—1)k,/k;=(z—1) P — (153
X exp(—AE/KgT). At k=1 [k,=(z—1)k,], the geometrical 1+ k+s—Ay

and energetic biases exactly compensate each other, while By

for k<1 (k>1) a net bias towardgéaway from) the trap BN“:m’ (15b
occurs. K N

As initial condition we will consider the situation where and represent the recursive relations for these two functions.
one excitation has been created at the periphery of the defrom comparison of Eq15) with Eq. (13), one finds that
drimer, i.e.,Py(0)= éun . According to Eq.(1a), the trap- B, ,=Ry andAy.;=«Ry/Ry_;. Substituting these rela-
ping rate in the absence of excitation decay is now given byions back into Eq(13), we arrive at a recursive relation for
R(t) =k,P4(t). This will be the quantity of our prime inter- Ry
est, for which we will seek a solution in the remainder of this

section. Solving the one- and two-generation dendrimer 1 1 1
problems is straightforward and will be done later on. Our ~_:(1+K+S)~R _K~R : (16)
main goal is to find the solution of the general problem of an N N-1 N-2

N-generation dendrimer. This may be done in the Laplace Note that Eq(16) can be used foN>2 only. In order to
domain. If for brevity we !ntroduce the dimens!onless timec|05e the recursive iteratio[ﬁl and ﬁz must be calculated
t'=kyt, Egs.(10) written in the Laplace domain take the separately. In the Laplace domain the solution of g for

form N=1 and Eqs(109 and (100 for N=2 is straightforward
0= —(1+ k+ )P+ Py, (11a and gives us the necessary quantities:

- 1
OZKﬁMfl_(1+K+S)ﬁM+ﬁM+1, 1<M<N, (11b) Rl:m’ (176)
—1=kPy_1—(1+9)Py, (119 - 1

R T 2t s+s (17b

where the Laplace parametgiis now in units ofk, andR
=P, (we use a tilde to denote the Laplace transformed functsing Egs.(178 and (17b in the recursive relation, Eq.

tions. Below, we find a recursive relation f&, connecting (16, and solving this relation, we finally obtaiRy(s) in
this quantity for dendrimers of different numbers of genera-closed form:

tions (i.e., lengths of the effective linear chaifrherefore, oN+1 1—kis
we will from now on denotd for a dendrimer oN genera- —=| 1+ -
. ~ Ry V(1+k+s)°—4k
tions asRy .
After N— 2 steps of eliminatin®y ,Pn_1, . . . ,P3 from N

1+k+s++(1+ K+S)z_4K

0=—(1+k+s)Py+Py, (129 ( 1—k+s )

V(A +k+s)?—4xk

X

Egs.(11b) and (110, we arrive at two coupled equations

~By=A\P,—P,, (12b
N
a solution of which with respect tB,=Ry is X| 1+ k+s—(1+k+8)°— 4k (18
Bn

Ry=r————. (13  This is the principal result of this section.
1+ k+s—Ay It should be noticed that, despite the fact that Eif)

Here, Ay and By are functions of the Laplace parameggr ~ contains square root®y * in reality is a polynomial ofNth
which will be specified later on. For a dendrimer lgf-1  order ins. This may be checked by explicit expansion of Eq.
generations, similarly, N—2 steps of excluding (18) in powers ofs. Alternatively, the recursive relation, Eq.
|3N+1'|3N, o ;,54 from Egs.(11b and (110 yield a system (16), itself already represents a proof of this statement.

of three coupled equations IV. TRAPPING TIME DISTRIBUTION
0=—(1+k+s)P;+P,, (14a It turns out to be impossible to perform the transforma-
B o tion back to the time domain for the general result, B@),
0=kP;—(1+k+s)Py,+Pg, (14b) implying that we do not obtain an explicit expression for the

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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trapping time distribution. However, the moments of this dis-On the other hand, using ER1) and the method of induc-
tribution and its asymptotic form at largé do allow for an  tion, one may show that

analytical treatment. In this section, we will address these ) 1 ., _

two topics. We will also show that the asymptotic form may a = 2a(N=DNN+1(N+2),  «=1, (279
already be reached for rather small dendrimers, making these 2 KNI k(N=1)—(N+2)] N(N+1)
analytical expressions of practical use. ay’= (1-r)” 2(1—x)2

A. Moments K2(N+1)+2k—N

To study the moments of the trapping time distribution, + (1—r) , k#L (270
we make use of the following relation:

Making now use of Eqs(25) and(27) in Eq. (26), we find

(t") metnR (t)dtz(—l)ndnﬁN (19 En.
Nodoo N ds’ | o (t)y=5N(N+D)[5N(N+1)+2], k=1, (283
Furthermore, we recall that B{ is a polynomial ofNth o N(N+1) (6N+2)N*t
order ins (see the preceding sectipand thus can be written (tn= (1- k)2 (1— k)3
as
. +2K(K2N+l+ kN—2) 1 (285
m . Kk#1.
~i _ 2 ag\‘m)sm’ ag\‘m):i(d_ ;) (20) (1- K)4
Ry ™0 mHids"Ry/| It is worthwhile to consider the asymptotic behavior of

the first and second moments Bf; at largeN, the case of

Substituting Eqg.(20) into Eg. (16) and comparing coeffi- our primary interest. They are given by

cients related to the same powersyfwe obtain a recursive

relation fora{" N N(N+1

| N (On=7— <t2>N::(L_—)2)1 k<1, (293

a("=a{" Y+ (1+x)a?, - xa",, (22) o (1-x

_1p\2 2y _ 54 _
where it is implied thag{”=0 for m>N andm<0. From (On=zN% (=N w=1, (29
Eqgs.(178 and (17D it follows that forN=1 andN=2, N1 . 2, 2(N+1)
On=——", (IN=""T"7, >1. 290
aP=alV=aP=aP=1, al’=2+«. (22 (O (k—=1)% (O (xk—1" ° (236

These formulas already allow us to make a prediction con-

The first important conclusion concerning the expansiorf€Ming the shape of the trapping time distribution. In par-
coefficients, which follows from Eq21), is thata{®)=1 for ~ ficular, comparing Eqs(29b) and (299 with Eg. (293, we
any N. This simply means that the zeroth moment of theconclude that a drastic difference must exist between the two
casesk<1 (bias towards copeand k=1 (no bias or bias

trapping time distributiorRy(0)=1, i.e., the distribution is . X
: . . _away from corg with respect to the shape of the trapping
normalized. As a consequence of this fact, one can elucidate o . .
ime distributionRy, . Indeed, calculating the standard devia-

the physical meaning of the second coefficient of the expan- 7 .
sion, Eq.(20). It appears to be equal to the first moment of 10N oN= {t)n— (DN, we obtain

This allows us to start the recursive proceduredff? .

the distributionRy, which is nothing but the mean trapping N2
time (t)y: oON=T . K<L (303
d 1 1 dR N2
a(Nl):d_S~_ :_(~_2d_SN) =(t)y. (23) N k=1, (30b
RN s=0 RN s=0 6
N+1
Substituting this result in Eq21) yields a recursive formula __K
for <t>N, oN —(1_K)2, k>1. (300)
(On=1+ (14 k) (t)y_1— &()N—2, (24)  Asis seen, for largdl, oy<(t)y for k<1, i.e., the distribu-

; hich i its for th ing time in d tion Ry is narrow in the sense that its standard deviation is
rom which earlier results for the mean trapping time In €N-much smaller than its mean. By contrasf,~ (t)y if k=1,

drimers are reproducef: which means thaRy is a broad distribution in this sense.
(thy=3N(N+1), «=1, (259

N K N B. Long-time limit
(D=t [k N=1], k#L. (25h)
1-x (1-x) From Egs.(29) it follows that the characteristic time of

The next coefficiena(?), contains information about the {rapping(t)y in dendrimers of higher number of generation

second moment oRy . It is straightforward to show that 1S long on the scale of the “effective” hopping times, which
are (1-x)"Y (k—1)"% and 1[or (ky—ko) %, (ko
aP=(t)x— 3(t)n. (26)  —ky) "%, andk; * in dimensional unitsfor dendrimers with

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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a total bias towards the trapc 1), towards the periphery 1 —_——
(k>1), and no bias #=1), respectively. Within the AN N=4 |
Laplace domain, this means that the dominant region of the = | f

parameters, being of the order oft)y®, is, respectively, E I

small compared to + «, k—1, and 1 for these three differ- =

ent situations. This allows us to significantly simplify the
expression, Eq(18), for Ry.

1. Total bias towards the trap, k<l

We start analyzing the case of a total bias towards the
trap («k<<1). Note that in this particular case we can read of
from Eq. (299 that N has to be quite large for the mean
trapping time to be much larger than<{k) ~*. We therefore Py

. . . ! N =50
expect that the following expansion only gives a good ap- -
proximation if N>1. Using a Taylor expansion of E¢L8) ol
. . P
with respect tos/(1— ), we obtain N |
1 g tL N N I
- 2 - +| 1+ . (31) 0 . R .
Ry (1—x) 1-« 1-« 0 1 t/{t)n 2 3

If k<1 orif k<1 andN>1, the first term on the rlght-hand FIG. 3. Plots of the trapping time distributioRy(t) for dendrimers of

side can be neglected as compared to the second one, thdifferent number of generation with a total bias towards the trapc(

providing us with a very simple expression fﬁr\l , =1/5). In all plots, the solid curves represent the exact solutiorRfgt)
obtained from numerically solving EqglL0), while the dotted curves corre-
spond to the approximate expression, E2B). Note that the vertical and
, (32 horizontal scale depend dv through(t)y.

s -N

1-«

which can be easily transformed back to the time domain.
The result reads

RN:(l_ K)Nthlef(lfk)t_ (33) At zero total bias, i.e., when the energetic bias and geo-
(N=1)! metrical one compensate each other(1), the problem we

We stress that this result is exact in the limit-0 (indepen- ~ @re dealing with is equivalent with the classical one-
dent of N), therefore we also expect this approximation todimensional diffusion problem on a finite segment with ab-
work well for k<1 even for smallN. As is seenR, is  Sorbing and reflecting boundary conditionsxat0 and x
strongly nonexponential and fo>1 is characterized by a =N, respectively, and an initial condition corresponding to
sharp profile, consistent with our findings in the preceding
section. In fact, in the limit o6/(1—x)<1 andN—»> we

can approximately writtRy=exg—s(t)y], where (t)y 1

1+

ﬁN:

2. Zero total bias, k=1

=N/(1-«) is the mean trapping time fate<1. The time- N=4
domain behavior, which corresponds to this Laplace trans- S

form, is Ry= &(t—(t)y). The nonexponentiality found is in Z /

fact a characteristic property of the trapping in dendrimers > |[i

with a total bias towards the trag& 1), independent of the i

number of generation. r
In order to illustrate how the approximate expression, !

Eq. (33), fits the exact result obtained by numerically inte- &

grating Eqs(10), we plotted in Figs. 3 and 4 the distribution =

Ry calculated fork=1/5 andx=1/2 at different number of e

generationdN. Here the solid lines are the exact solutions -

and the dashed lines correspond to the approximation, Eq. N

(33). From these plots we conclude that fo 1, in this case

for k=1/5, Eq.(33) works well, even for dendrimers with & 2

only four generations. On the other hand, for1/2 the &

deviation of Eq(33) from the exact solution gets larger even -1

for N as large as 50. These figures also clearly demonstrate \

the tendency of the trapping time distribution for large den- % 1 t}<t)1v 2 3
drimers to tend towards &function at the mean first passage

time. FIG. 4. Same as in Fig. 3, using=1/2.
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I— — We recognize herét)y=x""1/(k—1)? as the mean trap-

ping time fork>1 [see Eq(290)]. As the relevant region of
the Laplace parameter is determined &ft)y~1, while
(t)n>N/(k—1) atk>1, the termss/(k—1) in the parenthe-
ses of Eq.(36) are negligible. Upon this simplificatioRy
takes the form
R ! 3

N SO 1 37
which, converted to the time domain, corresponds to the ex-
ponential behavior

{t)nRy

{t)¥Rn

. (39

1 {
"y ? Rn= mex‘{ (O

FIG. 5. Plots of the trapping time distributioRy(t) for dendrimers of  Figure 5(lower panel illustrates this finding. All curves pre-
different number of generationld in the diffusive regime of hopping  sented in this panel were obtained by numerically integrating

=1) and for a total bias towards the periphewy=(2). All curves were Egs. (10)_ As is seen. all curves are close to each other
obtained by numerically solving Eq&L0). In both panels, the solid curves ! !

correspond tdN=2, the dashed curves t§=4, and the dotted curves to including the one foN=2. Also for this case the approxi-
N=8. The decaying part of the latter curve in the upper panel coincides witfmation, Eq.(38), works well, because the long-time limit is
exf —72t/8(t)y]. Note that the vertical and horizontal scale dependNon reached for even smallé&t than in the case of =1, because
through(t)y. (t)\ grows exponentially wittN. From this we conclude that
the approximation, E(.38), works perfectly for any number
of generations.
The difference in the behavior dRy (exponential or
nonexponentialfor different signs of the total bias in prin-
2 1 34 ciple may be used to experimentally probe for the direction
~ — 34)  of the energetic bias in a dendrimer. Indeed, using pump-
(1+ V)N (1= 9" costiv2s(t)n) probe experiments the excitation populatmyft) of the core
where(t)y=N?/2 is the mean trapping time in the diffusive of the dendrimer could be measured and therefofg
regime of the random walk, and we used the fact that (1=py(t) can be obtained directly. Because the fluorescence
+/s)N~e*N' for s<1 andN>1. In the time domain we intensityl(t) is proportional toyr=e~ Vt[l—f},R(t’)dt’] we
then obtain can findy from the early time decay dft). Combining these
) 5 two experiments we can extragt) and find information
n+% exp{ . (2;;/2) t about the direction of the energetic bias.
N

the creation of a diffusing object at=N. The Laplace trans-
form Ry, derived from Eq(18) in the limit of s<1, reads

ﬁN:

o
RnFmE (—1)

n=0

(39 v, EFFICIENCY OF TRAPPING

In Fig. 5 (upper pane| we depictedry(t) calculated by

numerically integrating Eqg10) for dendrimers of different ~ ! ]

numbers of generations witk=1. First, we note that the en=Rn(S)[s-, [cf. Eq. (6)], the exact expression for which
curves obtained foN=4 andN=8 are almost identical. follows directly from Eq.(18),

In this section, we turn to analyze the trapping efficiency

Approximation_, Eq.(3_5), works very well, becags«ét)_,\, _ oN+1 1—k+7y )

grows quadratically wittN, and therefore the long-time limit =| 1+

is reached already for small. Second, the dotted curve in eN V(14 k+y)* =4k

the plot, corresponding tbl=8, coincides in fact with the N
limiting curve; it is not changed by further increasiNg The X| 1+ k+ y+(1+k+7y)2—4«k

decaying part of this curve is nicely fitted by the first term of

the series, Eq(35), i.e., by expt 7t/8(t)y). Thus, we con-

clude that already for smal, the approximate result, Eq. +
(35), gives a good fit to the exact result, and the taiRgf{t)

is described by a single exponential.

1-k+vy )

V(1+ K+ ’}/)2_4K
1+k+y—V(1+k+ y)§—4K

. . rom this result, one easily generates plots for any set of
We proceed similarly to the above in the case of a totaC y 9 P y

. _ ) | ariablesk, v, andN. In particular, we present in Fig. 6 the
bias towards the dendrimer peripherg>1). Assuming : . :
now in Eq.(18) that/(x—1)<1, one finds results for the trapping efficiency according to E89), for

dendrimers ofN=1 to N=10 generations and different
N )N directions of the total bias, setting=0.01 (in units ofk;).
+

N
X . (39

3. Total bias towards the periphery, «>1

1_

(36)  The general trends displayed in this figure are easily under-
stood. For small dendrimers, the efficiency is close to unity,

1 SK_N+l
—= 1+
Ry (k—1)2 k=1 k—1
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I35 7 If the decay is slow on the scale of the mean trapping time
=t PRI (¥{t)y<<1), the survival timery coincides with the mean
[ . te trapping time(t)y, andWy is just the inverse valué)y®.
05p a 1 In the opposite limit ¢(t)y>1), we getry=7y" ! (because
a the excitation cannot reach the trap within its lifetireand
I .., ’I Wy =y exd — ®t)n]. Note that the range of variation ef; is
L — 4 6 8 10 always from(t)y to ¥~ upon increasing the driving param-
N etery(t)y from zero to values large compared to unity. This

is the general behavior of the survival timg, independent

FIG. 6. Plots of the trapping efficiencyy as a function of number of of the direction of the total bias.

generationdN calculated fory=0.01 and different values for. The squares
correspond toc=1/2 (total bias towards the trapcircles correspond ta
=1 (no total bias, diffusive regime of hoppihgand the triangles corre- 2. Zero total bias, wk=1

spond tox=2 (total bias towards the periphery . . . .
In the diffusive regime £=1), according to Eq(34),

1
unless a strong bias towards t'he periphery 'is' combined with SN:coshJW' (42
a fast decay. For larger dendrimers, the efficiency decreases
due to an increased chance of decay before reaching the co@fld, consequently,
This effect grows when increasing the number of genera- y
tions. However, a more detailt_'-zd physical interprefcation of wWy=——""—="—, (43)
Eq. (39) for largerN values requires a deeper analysis. In the 2 sintt\y(t)n/2

following, we will focus on this largeN region. It is then  \yhere now(t)y=N2/2 is the trapping time fok=1. In the

natural to limit ourselves to a decay rajethat is small  jimit of slow decay on the time scale of trapping/(t)x
compared to the “effective hopping rates*«, x—1,and  <1) one obtains

1, as we also assumed with respect to the Laplace parameter
s in our analysis of the trapping time distributideee Sec. - 1 _ 1
IV B). Otherwise, the trapping efficiency will be low even NT 1+ p(t)y 1+ yN%2

for a dendrimer of a small number of generations. Hereafter-,.e_' the trapping efficiency is close to unity, as expected. In

we impose this condition, which allows us to directly useEq (44) we kept the “small” term in the denominator, be-

Egs.(32), (34), and(37), replacings by y. cause this expression works well evenyift)y is slightly
larger than unity. This is due to the fact that the Taylor ex-
pansion of the hyperbolic cosine only contains even powers

(44)

1. Total bias towards the trap, <1 of its argument.
We first consider the case of a total bias towards the trap  f ¥(t)n gets larger than unity, another regime of trap-
(k<1). The corresponding expression fey is ping comes into play:

en=2 exf — V2 y(t)n]=exp(— VyN). (45)

y |7V N
1+ 1—K> ~ex;{ 1—;<) =X = v(On]- As is seen, asymptoticallyy decreases exponentially, with
(400 an exponent proportional th (and notN?). This thus re-

As is seen from this equation, the only parameter that dete§embles the behavior of trapping in the case of a large bias
mines the trapping is/(t)y= yN/(1— «). The interplay of ~towards the tracf. Eq.(40)]. The prefactor/y in Eq. (45),
trapping in the absence of excitation decay and the excitatioROWeVer, is larger than in the case of a bias towards the trap
decay itself determines the trapping efficiency: the latter ig¥)- This is not surprising, because in the diffusive regime,
high (close to unity for y(t)y<1, decreasing linearly with the excitation makes steps towards the periphery that slow
¥(t)n, and exponentially small in the opposite limi(t)y down the process of reaching the trap, allowing for a larger
>1. We note that Eq(40) implies that in the larg®¥ limit ~ effect of excitation decay before trapping may occur.
with k<1, (exd — yt])=exf — %t)], which is due to the fact Finally, the effective trapping rat®Vy starts from the
that under these conditions the trapping time distributiorvalue (t)y* in the limit of slow decay ¥(t)y<1] and re-
tends to asd function at the mean trapping time, as we haveveals the same behavior ag for y(t)y>1.
found in Sec. IVB.

Using the definitions, Eq47) and (8), we can also cal- 3. Total bias towards the periphery, «>1
culate the mean survival timg, and the effective trapping
rate Wy . They are given by

ENT

In a certain sense, this is the simplest case sFoy, Eq.
(37) yields for the efficiency of trapping

1
1
= [1—exp— ()], (419 - =
4 on 1+ ¥(n (46)
Y for any ratio of (t)y=«""1/(x—1)?> and y 1. Conse-

(41b

WN:exp( YN —1 quently, the relationshifVy=(t),* holds in general.
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