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Peierls instability due to the interaction of electrons
with both acoustic and optical phonons in metallic carbon nanotubes

Marc Thilo Figge, Maxim Mostovoy, and Jasper Knoester
Centre for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands
(Received 17 July 2001; published 13 March 2002

We consider Peierls instability due to the interaction of electrons with both acoustic and optical phonons in
metallic carbon nanotubes, resulting in a static twist in the nanotube lattice below the critical tempEfature
We study lattice excitations, the so-called solitwiston and polartwiston, over the ordered Peierls state for
different types of boundary conditions. Furthermore, we calculate the electrical resistivity and find that our
theory offers a possible explanation for the observed low-temperature rise in the electrical resistivity of carbon

nanotubes.
DOI: 10.1103/PhysRevB.65.125416 PACS nuni®er63.20.Kr, 05.45.Yv, 63.76:h, 72.80.Rj
I. INTRODUCTION and concentrate on the electron-lattice interaction which we

assume to govern the system’s low-temperature properties.
It is well known that a half-filled conducting chain is un- The Peierls transition in metallic carbon nanotubes arising
stable against a doubling of the unit cell, where the bondrom the interaction with optical phonons has been studied
length between neighboring lattice sites alternates along theefore? A general conclusion which has been drawn from
chain. The dimerization of the lattice results in an alternatiorfhese studies is that the opening of a Peierls gap is strongly
of the electron hopping amplitudes leading to the opening opuppressed for increasing nanotube diameters. This can be

a Peierls gap in the electron spectrum and turning the systeR'derstood as the consequence of the fact that the elastic
into a semiconductor. In this Peierls instability, the relevan€N€rgy cost of the Peierls distortion grows proportional to the
phonons are the optical ones with wave veotpr 2k . number of chains around the nanotube circumference. This

These phonons backscatter electrons from the left part of th%onclusmn remains valid when acoustic phon_ons are taken
into account, however, the character of the Peierls distortion

Fermi _surface with electron wave VeCteﬂ.(F o the ”ghf[ and topological excitation is new in this case, as we pointed
one with electron wave vectot-kg and vice versa. It is out in Ref. 3

usually assumed that above the phase-transition temperature In this paper, we give the detailed derivation of the model
T, these phonons have a finite frequensy and we will, 514 jts properties presented in Ref. 3. Moreover, we address
therefore, refer to them as optical phonons. Due to the Mixte open question whether this model may offer a quantita-
ing with the low-energy electron-hole excitations, thesetjye explanation for the observed low-temperature rise in the
phonons soften and ak. their frequency vanishefgiant  measured electrical resistivity of carbon nanotubes and, more
Kohn anomaly.? generally, to what extent one may expect the Peierls transi-
Recently, we have shown thatousticphonons of small  tion and the associated softening of the acoustic phonons to
wave vectorg and small frequency,(q) =v|q| may lead to  be observable in such nanotubes. Finally, we show how the
a similar instability in metallic carbon nanotubé$n fact,  choice of boundary conditions imposed on the atomic lattice
backscattering due to acoustic phonons always occurs if thef a nanotube affects the properties in the low-temperature
size of the system’s unit cell is the same above and below thphase.
transition temperatur@, . The reason is that in this case the  The outline of this paper is as follows: In Sec. Il we start
phonon wave vector is only conserved up to a multiple ofout by describing the nanotube lattice by the most general
2k, such that optical- and acoustic-phonon modes of theontinuum model that is compatible with the symmetry of
same symmetry do exist which cooperate in the opening othe hexagonal lattice. Next, we calculate the electron-lattice
the Peierls gap. As a specific example we considered theoupling for the long-wavelength phonon modes that result
Peierls transition in metallic carbon nanotubes where, in thén the backscattering of electrons and develop an electron-
presence of both optical and acoustic phonons, the acoustiattice continuum model for armchair carbon nanotubes.
ones are the first to soften, which in this case means a varihen, in Sec. lll, we calculate the renormalized phonon fre-
ishing of the phonon velocity at the Peierls transition tem-quencies at temperaturds>T. and study the phase transi-
perature. A great deal of work has been done, e.g., to undetion in the presence of both acoustic and optical phonons.
stand the role of electron-electron interactions in metallicMaking use of the thus obtained renormalized acoustic-
carbon nanotubes which are typical candidates for an experghonon frequency, we calculate in Sec. IV the temperature
mental realization of Luttinger liquid behavior. In this con- dependence of the electrical dc conductivity due to electron-
text the bosonization method has been apglieds well asa phonon scattering. Topological excitations in the ordered
mapping to a two-leg Hubbard model to describe the shortPeierls phaseT<T,) are studied in Sec. V and we perform
range Coulomb repulsich’ A different view is taken in our numerical simulations within an elastic spring model in Sec.
approach, where we, in fact, disregard electron correlation¥| for different types of boundary conditions on the atomic
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Kekule structure of the carbon nanotube. In addition, how-
ever, a second type of backscattering exists, which is caused
by long-wavelength phonons and leaves the electrons near
the Fermi poinf(solid arrow. In what follows we will solely
concentrate on the latter type of backscattering, which is re-
sponsible for the new type of Peierls distortion and topologi-
cal excitatior®
FIG. 1. Schematic picture of an armchair carbon nanotube. The To develop an electron-lattice continuum model for arm-
open (O) and closed @) circles denote the C ions of the two chair carbon nanotubes we first derive a continuum model of
triangular sublattices= A,B. The thick arrow points in the direc-  the armchair carbon nanotube lattice. We consider the lattice
tion along the nanotube axis and the definitions of the lattice disof the armchair nanotube as an arrayNofonnected rings at
placements;,Y; are indicated. a distancea/2 along the nanotube axisee Fig. 1. Each ring
contains N, carbon atoms, whend, carbon atoms belong to
shifts. We discuss our results in Sec. VIl and summarize andach of the two triangular sublattices that build up the hex-
conclude this paper with Sec. VIII. agonal nanotube lattice. We take into account lattice degrees
of freedom in the cylindrical nanotube surface and, keeping
in mind that the lattice distortion couples to electrons that
have zero transverse momentum, we can disregard the dis-
persion of the atomic displacements in the circumferential
Carbon nanotubes are well known for their unique elecdirection. Thus, the time-dependent atomic displacement in
tronic properties. Metallic carbon nanotubes can be subditheith sublattice,
vided in two classe&® (i) nominally metallic carbon nano- .
tubes that are in fact semiconducting due to a curvature- ui(x, 1) =[Xi(x,1),Y;(x,t)]", @
induced energy gap proportional to the inverse square of ) ) i
their diameter, andii) metallic carbon nanotubes for which a IS & function of thex coordinate along the nanotube axis only.
curvature-induced energy gap does not exist by symmetr)W'th'n the continuum model a ring of th(i nanotube lattice is
The latter class is formed by the armchair carbon nanotubegharacterized by the atomic displacemeanté the two sub-
to which we restrict our considerations in what follows. A latticesi=A,B and by their spatial and time derivatives, re-
so-called armchair carbon nanotube is shown in Fig. 1 andpectively,i/ andu; . It is convenient to introduce an eight-
can be considered as composed of a finite nunieof  gimensional ring vector
coupled two-leg ladders around its circumference. Each lad-
der consists of two coupled zigzag chains that are directed 3 _ / / , T
along the axis of the cgrbon E?wm%tube. An effective low- ROGE=(Xa Xa Ya Yo, Xe  Xe: Yo, V) @
energy model that describes the nanotube’s electronic progvhich combines all required information to describe the dis-
erties takes into account electrons that have zero momentutortion in a ring along the nanotube axis.
in the circumferential direction of the carbon nanotube and The total lattice energy is the sum of the kinetic and the
corresponds to a two-leg ladder tight-binding mdtiel. potential lattice energil,,;= T+ U. In terms of the ring vec-
The corresponding electronic energy spectrum is shownin_ - L . 1 Do
Fig. 2 for noninteracting electrons and is characterized b&or R, the_klnetlc lattice en§rgy rea_d'; 2JdxR7pR, where
two Fermi points. At each Fermi poinh& 1,2) two electron 2= (pim) is the mass density matrix ahdn=1,...,8. The
bands that have a linear dispersion close to the Fermi energgnly nonzero elementp,,, are the diagonal elements that

E=0, intersect. While the undistorted armchair carbon nanoeouple the time derivative§; of the atomic displacements.

tube is a half-filled metallic systerif;**two types of electron  The potential energy in terms of the ring vec®mreadsU

backscatteringreverting the sign of the electron velogity . . S

exist that can give rise to the opening of an energy gap in its= 2/ AXR KR, where the matriX = (kim) couples all ele-

electronic spectrum. ments ofR in a ring (,m=1,...,8). Wenote that the ma-
The dashed arrow in Fig. 2 indicates the usual backirix elementsp,,, and k;,, are real and have to satisfy the

scattering, taking place between two different Fermi pointsconditions that the total lattice energy is invariant undga

The relevant short-wavelength phonons correspond to thgonstant shift ofi, andug that leaves the distance between

the two sublattices unchanged, atig a transformatiorR

Il. DERIVATION OF THE ELECTRON-LATTICE
CONTINUUM MODEL

~kF E g —UR that is allowed by the symmetry of the hexagonal
\</~ - T \A k nanotube lattice. As can be seen from Fig. 1, the hexagonal
= —y \1, > lattice is invariant under the reflection in the plane containing
/\ r "\‘/\ the carbon nanotube axisl5§): y——Y, Xa—Xg, and
n=1 =2

Y, —Yg, and in the plane perpendicular to the axisX:

FIG. 2. Electron energy dispersion near the Fermi energy of &~ % Xi——X;, andY;—Y;. It then follows from the
half-filled armchair carbon nanotube and the two types of backcondition PpPT=p, where P= Py,Py, that the only non-
scattering processes distinguished in the text. zero elementy,, are given bypi1=pss=py and psz=p77
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=p,. Furthermore, the conditiofKPT=K, where again 92 , \/a\x
P=P,.P,, together with conditior(i) given above, reduce Euo(x’t):_“’ouo(x’t)' @o= N
the number of free coupling parametéys from 36 to a set

of eight parameters. It is convenient to define four new funcand i) an acoustic-phonon mode with amplitudg(x,t),
tions X ,Y . by the symmetric and antisymmetric combina-

tions X.. = (Xa*Xg)/v2 andY.=(Ya*Yg)/\2. The total 52 92

lattice energy is then given by the expression Eua(xyt)ngyua(th), (7)

(6)

1 . ) . . frequenc ~ , and phonon velocit
H|at=§f AXpe(K2 452 )+ py (Y2 +¥2) + X2 + Y2 quencyaq(a)=volal, and p Y

:8 52 1/2
, / By
FBX A+ BY A+ X 2+ Y2 +28X Y Vo (py pyax) : (8
+26,Y_X4], 3) On the other hand, the positive-parity mode describes a shift

. . of the two sublattices against each other in the circumferen-
which represents the most general continuum model of thgg| girection (4= —Yg andX,=Xg). This does not affect
armchair carbon nanotube lattice compatible with its symmene |ength of the bonds along the nanotube axis. To the

try and IS determined by the set positive-parity modeli+ belongs an optical-phonon mode

{ax,ay,Bx. By, ¥x: vy 6x, 0y} of coupling parameters. : m .
We can write Eq(3) in a more compact form, if we define with frequencywom‘/ay/p_yfnd an acoustic-phonon mode
w4(q) with phonon velocityv o=[ Bx/px— 55/(any)]1/2. In

a new ring vectorR= (X, ,Y. ,X_,Y_)T, and use the an- _ I .
satzﬁ(x,t)=1/\/ﬁzq7iq expigx—iawt). The total lattice en- what f(_)llows we will show _epr|C|tIy that the optlca_ll- and_
ergy is then obtained in the simple formH . acoustm-phonqn modes which belong_ to the negative-parity
e Ate . mode, respectively, Eqs6) and (7), will cause the back-
=32qRqMNaiRq, where the matri,,; reads scattering of electrons for smail
The effective low-energy model describing free electrons
w?py . in the armchair carbon nanotube corresponds to a two-leg
28, 0 19y ladder tight-binding modét” At all relevant temperatures,
the electrons have zero transverse momentum around the cir-
cumference of the carbon nanotube and can only propagate
in the x direction along its axis. Here, we generalize the
Hamiltonian of the two-leg ladder model and take into ac-
count that the electron hopping amplitudes depend on the
+ 0%y interatomic distances between the electronic orbitals on
neighboring atoms. Figure 3 visualizes the notation that is
—iqé, 0 0 5 used to write the two-leg ladder Hamiltonian in the compact
+0%yy form
4

—ig 6y 0

6
It is easy to check thab,, is invariant under the parity —Ham=— > >, T;(d},(nja+a;)dg.(na+b;+H.c).
transformation nj.oj=1
9
The fermionic operatod; ,(nja) [diTU(n“a)] annihilateqcre-
ateg an electron in sublatticeis= A,B with spin o at posi-
with p?=1, (5) tion x=nja along the nanotube axis. The electron hopping
amplitudes depend on the atomic displacements{Bgand
take the form

o>
Il
O O O -
o !
H
=
H
~ © O o

where | is the unit matrix. It thus follows that the four Q;
eigenmodes of the lattice Hamiltonidf,; can be classified Ti=t+ \/_W
by their parity pR.==*R., where R_=(0,Y, ,X_,0)" |
and R,=(X,,00Y_)T. The negative-parity mode Here.t; denotes the hopping amplitude in the absence of
describes a bond-length alternation along the nanotubglectron-lattice interactions, while; /Ny is the electron-
axis Xa=—Xg and Y,=Yp), which is out of phase in lattice coupling andéj is a unit vector which is oriented
neighboring zigzag chains of the armchair nanotube latticealong bondj. The explicit expressions of the electron hop-
The two eigenmodes that belong to the negative-parity modping amplitudesT; are summarized in the table of Fig. 3 and
R_ are(i) an optical-phonon mode with amplitudg(x,t)  Satisfy the condition thati,;, has to be invariant under the
and frequencyw,, reflection symmetrﬁy.

&-[Us(nja+bj)—us(na+a)]. (10

125416-3
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v J
He|:i_F % f dX\P:“I,U(X)U'Ela—X\Pn,U(X)’ (12)

where o3 is the Pauli matrix. The spinor¥, ,(x)
=[Yrino(X), ¥1n,(x)]" is given by

_ 11 (=° wA,n,c,(x))
q’”"’(x)_ﬁ(i —i(—1)“) ¥B.n,o(X) (13

in terms of the slowly varying functiong; , .. It describes
left-moving [ ¢ n ,(X)] and right-moving[ ¢/r , ,(X)] elec-
trons at the two Fermi pointa=1,2 with Fermi velocity
ve=atsink:a/2) and Fermi wave vectoke=(2/a)arccos
[—t, /(2t))]. Thus,H, describes the kinetic energy of elec-
trons in two electron bands that intersect with linear disper-
sion at each of the two Fermi pointsee Fig. 2

P X=ma For a finite couplinge;, we obtain from Eq.(9) the
electron-lattice Hamiltonian

ifuo|&falb Hetia= 2 f dxW ], ()71, o(X)
1ty ol & olarl B=3212 ' _
[0 (o] 6] 02| S=CA212 <3 (Ti‘ti)w' (14

—-»> €;=(0,-1) ]
31 o] el O 0 - - . . . . .

&4 =— G;€, which contains the Pauli matrix; and describes the back-

4t oy & l-ar| o & =-0:k, scattering of electrons at each Fermi paintin the deriva-

> 2 =—02 tion of this expression, forward-scattering contributions have
St o[ es[a”2] 0 ¢ } been omitted, as these processes are of the type
6 |t ol &laz2]ar lIfﬁyt,(x)\lf,w(x) and do not lead to an instability. After per-

forming the sum ovej we find

FIG. 3. The unrolled armchair carbon nanotube lattice corre-
sponds to a graphene shésolid grey line$ which is composed of _ \/6 @
el-lat™

a
kF E) ;}_ f dxqfl,a'(x)o.lq,n,(r(x)

a ladder repeat unit around the nanotube circumference as indicated \/—Wlsm

by the dashed black lines. The repeat unit of such a ladder in the

direction of the nanotube axis is drawn with solid black lines. The a JY,

two triangular sublattices=A,B are depicted by, respectively, X| X ———=—|, (15
“ @ and" O, and the hopping amplitudes; are obtained from 4\/5 X

the table in combination with E410). which shows that, as expected, the backscattering of elec-

trons only depends oX_ and Y, . The latter are linear
We now derive the continuum version of the Hamiltonian combinations of the optical- and acoustic-phonon modes de-
H ,:m Which will model the system close to the Fermi points. fined in Eqs.(6) and(7), respectively. The shiftX_ andY
This is done by interpreting as a continuous variable in the and the amplitudes, andu, are related by
direction of the nanotube axis and by representing the opera-

_ i Doi Sy 0 S d
tor d;,(x) close to each Fermi point as a product of two X,=—X—ua+ Ug: Y= U, _x&_uo (16)
factors, ay IX ay py IX
or
a . _
diy(X)~ \ﬁ(e'w-,l,,xx) +e MRy 5, (00). (1) x 120 oy, %9
' 2 I I Up=X_+ o, X Yy, U Y, ax py X

17

The exponential factor varies fast along the nanotube axis owe thus see that the optical- as well as the acoustic-phonon
the scale of the lattice constaat-kg*, while the second modes involve atomic shifts in both the directions perpen-

factor is the slowly varying functiow; ,, , at Fermi points  dicular and parallel to the nanotube’s axis. However, within a

n=1,2 and is related to the small deviation of the electronsomewhat simplified picture restricted to lowest order in the

momentum from the Fermi wave vectaikg . In the absence derivatives, the optical phonons correspond to a relative shift
of the electron-lattice coupling;=0, we obtain from Eq. of the nanotube’s two triangular sublattices against each
(9) the kinetic energy of the electrons, other along its axisu,~ (Xs— Xg)/+/2. This then leads to a

125416-4
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lattice deformation with out-of-phase bond-length dimeriza-Ng=1 the Hamiltonian Eq(20) coincides with the Hamil-
tion in neighboring zigzag chains along the nanotube axistonian of the Takayama-Lin-Liu-MaKiTLM) model. This is
Similarly, the acoustic phonons which describe a twist disthe continuum version of the Su-Schrieffer-Heeger model for
tortion of the cylindrical nanotube latticeu,~ (Y,  trangpolyacetylend®!’ On the other hand, foA,=0 and
+Yg)/\/2 also result in an out-of-phase bond-length dimer-Ng=2, the Hamiltonian Eq(20) is equivalent to the Hamil-
ization. The electron-lattice interaction EEL5) is finally  tonian describing the electron-twiston interactions in the
written in the convenient form armchair carbon nanotub&$!® An order parameterA,
=const corresponds to a uniform twist deformation of the
_ + armchair carbon nanotube; such a twist was, in fact, recentl
He"'a‘[AOJFAa]_% f X5 o (X) (Aot Aa) 71 Wi, o(X). observed using scanning tunneling microscbpy. g
(18)

Here, we introduced the “order parameted’ for optical IIl. PEIERLS TRANSITION WITH ACOUSTIC AND
(i=0) and acoustic i=a) phonons, which to the lowest OPTICAL PHONONS

order in the derivatives of the phonon amplitugeare given We consider the Peierls transition in the electron-lattice
by system Eq.(20). The coupling of the phonons to electrons
has two effects which have to be taken into account in a
_ /6 N sin(k —)u self-consistent treatment of the system dynamigsa renor-
\/Wl Fo) "o malization of the optical- and acoustic-phonon frequencies,
and (i) a mixing of the two phonon modes due to electron-

5. 1 a & hole excitations. Applying a Fourier transformation, the
A= \/_\/_sm( sz) X+ 4 \/_ (19 Hamiltonian Eq.(20) in momentum space is given by
As is clear from Eq(18), the difference between the optical _ s T
and acoustic phonons is that is proportional to the ampli- % S—E 2 #n(P)Cns.o(P)Cns.o(P)
tude u,, while A, is proportional to the derivative of the
amplitudedu, /dx. Since in the ordered state this implies that sg(q) +
X_ is of the same order asY’. , one may doubt the validity +i§0 % JL — (bi@+bi(=a)c, Sa(p)
of the continuum approximation used above. Therefore, we
performed numerical calculations of the optimal lattice con- 1
figuration atT =0, which are presented in Sec. VI, and prove XCnoso(P=) |+ 2 2 wi(Q)( bl (@)bi(q) + >
this approach to be valid. ‘a0 d
To summarize, we study the Peierls transition due to both (23

optical and acoustic phonons starting from the continuu

electron-lattice Hamiltonian rT]—|ere, the fermionic operatocﬁys,(,(p) [Chso(P)] denotes

the creationannihilation of an electron with spin projection
H=Hg+Heopal Ao+ Aal+Hia Aol +Hial[Ag], (200 o and small momentunfip| <ke measured from the Fermi
point n. The indexs refers to right- 6=+) and left- (5=
—) moving electrons with linear energy dispersiof(p)
=svgp. The second term in the Hamiltonian is obtained
from the quantization of the atomic displacements and de-
scribes the backscattering of the electross: (- «s=F)
1 due to the interaction with acoustic and optical phonons. The
deAf+—f dxm?, (21)  creation (annihilation of an acoustic i(=a) or optical (
iVF 2pi =0) phonon with small momentury is represented by the
where the momentum density is given byr(x,t)  bosonic operatorb{(q) [bi(g)] and the corresponding
= p;du;(x,t)/at and contains the corresponding mass densi€lectron-lattice coupling constangs(q) are given by
ties (po=px and p,=py). We introduced in Eq(21) the _
factor N which denotes the number of Fermi points, Q. a I
=1,... Ng, at which two-electron bands cross with linear 90— \/E\/—Wan( Ke E) Ppows’

. . . . . I PoWo

energy dispersion. The dimensionless electron-lattice cou-

whereH., andH 5; are given by, respectively, E¢L2) and
Eq. (18). The last two terms in E20) represent the lattice
energy of the relevant optical €£0) and acoustic i(=a)
phonons,

Hia Aj]=

pling constant for the opticali €0) and acoustic i(=a) s 1 B
phonon modes is defined by Ja= \/g Y sin kp X4 a9 (24)
N 2lg? J_ 2l a2 3 2paan(@)
‘Eq-r_vi w? (22) It thus follows that the coupling,(q) to the acoustic pho-
1

non with frequency w,=vo|q| is proportional to q,
and absorbs a fact®: , while g; is the electron-lattice cou- whereas the coupling to the optical phorgytq) is approxi-
pling constant defined below by Eq4). For A,=0 and mately constant with finite frequency,. We note that,

125416-5
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-S
Gl‘l (p,lpm) . 2N|: ’)/W 1 1 i v,:q+w
RePI=- 1T 2 V2 g
V, =X X g = gi@g’; 1 veQ-ow 1 veQ-w
nzi’_ +v E+IW +v 5 | AT
G, (p+q, ip+ia,) 1 VEQtw| E
+¥ >t T 4v 5 (28
FIG. 4. Feynman diagram of the matrix eleméijt of the in-
teraction matrix Eq(26). for the real part and
though the coupling to acoustic phonaggq) is small for . ®
small g, the actual strength of the interaction is given by the . SN |57
dimensionless electron-lattice coupling E82) which is fi- ImP]=—-— (29
nite both for optical and acoustic phonons. The lattice energy UF cos)‘(i +cos)‘( U)
of the two modes is given by the third term in EG3). 2T 2T

Let us consider the temperature dependence of the , , ) )
optical- and acoustic-phonon frequencies at temperaftires for the imaginary part. Herey (z)=(d/d2)InI'(z) is the di-
above the critical temperatu,. The bare phonon propa- gamma functionW is the energy cutoff which is of the order

gatorD, is formally written in terms of a X 2 matrix, of the electron bandwidth~10 eV), and y=1.781072- -
denotes the exponential of Euler’s constant.
D2 0
DOZ

We proceed with the calculation of the renormalized
ol (25) acoustic- and optical-phonon frequencies using the random-
0 D, phase approximation. The propagation of phonons that are
dressed by the interaction with the electrons is described by
This matrix contains the bare acoustit=(@) and optical- the matrix
(i=0) phonon propagatoD?(w; ,i om) = —2w; /(w3 + w?)

with the bosonic Matsubara frequeney,=2m=T (mis an D.a Dao
integer numberand the bare phonon frequenay. Simi- D=l  p | (30
larly, the free particle Green’s function is defined by oa  Too
Gh(p,ipm)=Uipm—er(p)], with the fermionic Matsubara _
frequencyp,,= (2m+1)#T (mis an integer numbgrin the Vaa
matrix formalism, the coupling of the phonons to electronsis D,y = ---- + --- B ---
given by the interaction matrix Vio
Dy - - 4LV
9a0%  9a05 _ © _
= * * P(q!I Wm YT)l (26) VOO
909a Y909
Do = "W\ +
which contains the vacuum polarizatid®(q,i w,,T). The Voa
Feynman diagram of an interaction matrix elemeft is Doy - /\/\@_ __

shown in Fig. 4. The vacuum polarization describes an
electron-hole excitation and recombination by absorption with
and emission of a phonon with momentugrand (Matsub- Vi Vi V- v
ara frequencyi w,,. In terms of the particle Green'’s function Y Y 14

aj
G3(p,ipm) the vacuum polarization reads @ ® - éro + G6reo--¢ O

) .
P(@ion =2 F 2 T2 {Gy(PiPmGy (P+diPn . @7 OWTIR

. o n , .
Fiom) Gy (.IPm) G (P+A.iPmHT0m)} FIG. 5. Feynman diagrams of the matrix elemebtg of the
(27) dressed phonon propagation matrix E§0). The bare acoustic-
(optical) phonon propagatng (Dg) is represented by a dashed
The summation is over the internal variables at each Fermiyiggled line and the corresponding couplirg, (g,) by “®”
point n with p the particle momentum anigh,, the particle  (** O"). The diagramatic symbol for the elemeby; of the inter-
energy, while the factor 2 accounts for the spin degrees ddiction matrix was introduced in Fig. 4 and is the building block in
freedom. An elegant way to calculaf®(q,w,T)=Re€P]  the Dyson equation for the dressed elemipt, which contains
+i Im[P] is presented in Ref. 20, where we obtain the anaelectron-hole excitations that are coupled by all possible combina-
lytical expressions tions of acoustic- and optical-phonon lines.
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which is related to the bare phonon propagation mafkx 2 ¢
by D=Dy+DyVD,. In other words,D differs from D, by a

the interaction between the electrons and phonons denoted b
by V. Within the random-phase approximation this interac-
tion matrix is the solution of the Dyson equation=YV
+VD,V, which describes the renormalization of the bare in-
teraction matrix Eq.(26) due to the internal coupling of
electron-hole excitations by the acoustic and optical
phonons. The Feynman diagrams of the processes that are
included in the calculation of the dressed phonon propaga-
tion matrix are shown in Fig. 5. The renormalized optical-

and acoustic-phonon frequencies denoted day(q) and

w,(q), respectively, are found from the poles of de}( or, _Z ”
equivalently, by solving dei()gl—V)zo. This condition 0 . .

can be rewritten in the formef,,— — i) 0 1 2 3
VEqQ /Te

(1073 eV), @, (107! eV)
\
\
\

o
\

w0*— 0% (03f .+ 02f )+ w20(fa+ f,—1)=0, (31) FIG. 6. Numerical results for the renormalized phonon frequen-
ciesw,(q) andw, as a function of the phonon momentupive set

Na=M\,=0.05 and plot the dispersions for various values of the
where the vacuum polarization is hidden in temperatureT. (a) The bare optical-phonon frequenégashed is
shifted towards lower frequencidb) at T=1000T, and (c) at T
=T.. (d) The bare phonon velocity of the acoustic mddashegl

TUE is decreasede) at T=100T. and(f) at T=T, even vanishes in the
fi=l+Nis-P@.oT), (32 limit g—0.
F
_ YW
and \; is the dimensionless electron-lattice coupling of the -~ 5 1_()‘°+)‘a)lnﬁ
optical- ((=0) and acoustic-i(=a) phonon modes as de- w3(q) = 03(q) W
fined by Eq.(22). We plot in Fig. 6 the numerically obtained 1-Xx, In—T
solutions of EQq.(31) for various different temperatureb - 7
=T.. We take the fullo andq dependencies d®(q,w,T)
into account in these calculations. Furthermore, welsget veq 2
=\,=0.05, the Fermi velocitwr=5.3 eVA, the band- B B TN (34)
width W=10 eV, while the frequency of the bare optical- T( 1_)\0|an__|_

phonon modew,=0.18 eV, and the bare acoustic-phonon
velocity v,=0.09 eVA. As can be seen in Fig. 6, the for the acoustic-phonon mode. The optical-phonon frequency

optical-phonon frequency is found to be shifted towardsig hardly affected ifw,(q)>T as is the case for the param-
lower frequencies but does not change qualitatively as @yers in the simulation that yielded Fig. 6, while in the op-
function of . In contrast, the acoustic-phonon velocity is osite limit[@o(q) <T] it becomes

[0}

seen to change qualitatively relative to the phonon veIocit)P

of the bare acoustic mode and to vanish for small phonon ~ YW veq) 2

momentumq at the transition temperatufie=T,. wi(q)= w§< 1—)\0[ In— —c(—) ] ) (35)
Analytical expressions for the renormalized phonon fre- a T

quencies are obtained in the limits,(q)<T and w,(q)  We thus see that the expression for the renormalized optical

<w,(q), where the static expression of the vacuum polarfrequency is independent af, and is the same as in the

ization for phonon momenta-q<T can be used, absence of the coupling to acoustic phonons. On the other
hand, the renormalized acoustic-phonon frequency depends
on the sum
2Ne [ YW [veq)? _
__ AP i A=A+, (36
P(q,0,T) 77_UF:In - c( - , (33 at Ao

As a result, the acoustic phonons soften first at the critical
temperature given by
with the constantc=7¢(3)/(167%) containing Riemann’s
zeta function. In this limit we obtain from Eq31) the Y p( 1)
solution

(37
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for q—0. As w,(q=0)=0 at all temperatures, the “soften- Scattering of electrons on the acoustic phonons with the

ing” in this case means vanishing of the acoustic-phonorfémperature-independent bare phonon dispersion has re-
velocity v(q) at T=T,, cently been used to explain the linear temperature depen-

dence of the resisitivity of an armchair carbon nanottibe.
do,(q) Here, we _briefly recons[der the tempergture dependence of
= «q, (380  the electrical conductivityo(T), taking into account the
9q renormalization of the acoustic-phonon frequency due to the
as follows from Eq.(34). Thus, no matter how much the €leéctron-phonon interactions. _
optical coupling constant is larger than the acoustic coupling The electrical conductivity for an armchair carbon nano-
constant, it is always the velocity of the acoustic phonon tha%Ube is calculated using the Kubo formula
becomes zero aT=T., whereas the optical-phonon fre-

v(q

2
guency stays finite at this temperature, o(T)=— 4e UFJ dka%’ (40)
~ Na wherery is the electron transport lifetime, which depends on
0o(4=0)=wo\/ - (39 : Ky
N the electron wave vectds; andng[ (k)] is the Fermi distri

) ) bution with the linear electron energy dispersiatik)
The fact that aff; the velocity of the acoustic phonon be- —, i The factor 4 in Eq(40) accounts for the spin degrees
comes zero while the optical-phonon frequency stays finite i freedom and the number of Fermi poirts-=2. The
a consequence of the mixing of the optical and acousti¢ransport lifetime is calculated from the imaginary part of the
phonons due to their interations with electrons, which resultg,|ectron self-energy describing the backscattering off the
in the repulsion betweer_1 the frequenu_es of the two modes,cqystic phonon& 7= 1(AIM{S o[k, e(K)}]). We take
Because of that, the optical and acoustic branches can nevglg account one-phonon scattering processes for which the

cross and the singularity &t always occurs in the lower, eypression of the electron self-energy becdthes
i.e., acoustic, branch. A similar effect takes place in some

ferroelectrics, in which the sound velocity vanishes at the X (k,iw,,)

transition temperature because of the mixing of the soft 1

mode, describing the ferroelectric displacement of ions to __ = 2 i i i

acoustic phonon&: L zq: T2 102/Da(@/iom) Gkt ot i),
We also note that, at first sight, E37) resembles the

result for the Peierls temperature obtained in Ref. 9. It should (41)

be kept in mind, however, that in that paper the various cou

pling constants\; correspond to contributions from scatter- Matsubara frequencies, is the phonon momentum, and we

ing within different electron bands and are not associate(éethzll The Green’s function for the electron with energy
with the presence of several phonon modes. The additivgispersion (—k—q) is denoted byG(K+q.iwy+idy)
E\—K— W @),

effect of the number of electron bands is implicit in our hil he d 4 oh is d 4 b
result through the fact that boity and\ , are proportional to while the dressed phonon propagator Is denote y

N . D.(q,i ®y,). It describes the acoustic phonons with renormal-

Finally, it is worthwhile to mention here that our results ized frequency]a(q) and is obtained from a diagonalization
also hold if phonons of momentum~ 2ke are included. of the propagation matri© given by Eq.(30). The contri-
Electron backscattering between different Fermi points is inbution of the optical phonons to the resistivity can be ne-
dicated by the dashed arrow in Fig. 2 and the accompaniegected for temperatureb<w,. For A<\, this inequality
lattice dIStOI’tI'On resembles a Kekud;@ucture of the carbon' may not be fulfilled close td., as the renormalized optical-
nanotube lattice. We checked that this type of backscatteringhonon frequency Eq39) at T, may then be small. How-
cooperates with the considered acoustic- and optical-phonagver, since the optical phonon frequency is known to be as
modes. This means that the opening of the Peierls gap mayrge asw,~2000 K?*?*and assuming that, and\, are
take place at an even higher critical temperature,(86), as  of approximately the same order in armchair carbon nano-
A is the sum of the three dimensionless electron-lattice couppes (see Sec. VI, no dramatic softening of the optical

iom

where w,,, and o, are, respectively, fermionic and bosonic

pling constants in this case. phonon is to be expected and the conductivity clos tts
dominated by the electron backscattering off acoustic
IV. ELECTRICAL CONDUCTIVITY OF AN ARMCHAIR phonons.
CARBON NANOTUBE It is straightforward to obtain the imaginary part of the

. ) retarded self-energyi w,,— ¢ (k) +1i6 and 6—0],
The acoustic phonons that correspond to a twist deforma-

tion of the nanotube lattice couple right- and left-moving Im{= ¢ [k,e(k)]}

electrons at each Fermi point. Since the velocity of the twist-

ons is orders of magnitudes smaller than the Fermi velocity TNy (+* . ©3 ~

of electrons, these modes are always heavily thermally popu- T dqz)—[ZnB(wa) +1]6(2k+q),
lated and, in contrast to the high-energy optical phonons, a

these phonons are effective at backscattering electrons. The (42
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2 resulting self-consistency equations have the following prop-
erties: (i) The sum of the optical and acoustic order param-
_1s eters corresponds to a generalized order parameter
£
=1 A(X)=Ao(X) +A5(x), (45)
h 0.5 which satisfies the same Bogoliubov—de Gennes equations as
the order parameter of the TLM modélwith a single pho-
0 non mode, but with the dimensionless electron-lattice cou-
1 5 10

pling constant\=X\,+\,, as given by Eq(36). (i) The

optical (i=0) and acoustici(=a) order parameters are pro-
FIG. 7. Numerical calculation of the electrical resistivifyac-  portional toA (x):

cording to Eq.(44). The resistivity is plotted as a function of the

temperature and the dimensionless electron-lattice couplings are _ A

chosen to be\,=\,=0.05. Aix) = YA(X)' (46)

T/T,

It thus follows that the stationary minimal-energy lattice con-
{iguration of the continuum model E¢20) can be equally
educed from that of the Hamiltonian

whereng(w,) is the Bose-Einstein distribution. In the deri-
vation of this expression we used the fact that the velocity o
acoustic phonons is much smaller than the Fermi velocit
v(Q)<<vg, and took elastic-scattering processes into ac- v 9

. ~ ~ ~ _ t F
count. Furthermore, sinceng(w,) + 1~2T/w, for T>,, H=2 f dX‘I’s(X)(i—UaaﬂLA(X)Ul V()
we finally obtain the transport lifetime *

~ N
wa(Zk))zl w3 + MZJ dxA(x)2 (47)

w(2K)

) 2 _in terms of the generalized order paramefgix) and the
In Flg 7 we plOt the temperature dependence of the eleCtr|CQJOup|ing constant\. Here, we introduced the indes
resistivity p(T)=o(T) %, which is calculated numerically = n), which is a combination of the electron’s spin de-

2
k= NG T

for T=T, from grees of freedomr==1 and the number of Fermi points
_— ~ om 1 n=1,... Ng. In other words, an effective internal degen-
p(T)= NamT f d w4(2K) eracy Ng=2Ng is ascribed to the electrons and each one-
2€2v,2: vek electron level can be occupied by up K electrons. The
“’a(ZK)COS"( ﬁ) advantage of relating Eq20) to Eq. (47) is that formally,

(44)  Ed. (47) is equivalent to the Hamiltonian of the TLM

. o model}’ where electrons interact with one optical-phonon
At temperature§>T,, the electrical resistivity Eq44) de-  mode [A(x)=A,(x)] and Ne=1. The solutions of this
creases linearly with the temperaturg(T>Tc)=xohaT,  model can be used to study the ordered state of our model
where ko= °/(8€%v¢). However, close tdT., due to the Egq. (20).
vanishing of the acoustic-phonon velocity at the critical tem- |n particular, the value of the homogeneous solution
perature, the resistivity Eq44) strongly increases up 10 A(x)=A, at zero temperature is given by the mean-field
some finite valuep(T.) = kov2(A4/\)?T¢. This behavioris  resylt
very similar to the one observed for bundles of single-wall
carbon nanotubée$, where the crossover between the linear 1\ =
decrease and the sharp upturn of the electrical resistivity oc- AO:WGXF‘( Y :;Tc' (48)
cur atT* ~10-100 K. In Sec. VIl we discuss the relevance o ) N
of phonon softening to this observed upturn, as well as thavhich coincides with the critical temperature E@Q7) as
general possibility of observing the Peierls instability in car-obtained within the random-phase approximation. A homo-

bon nanotubes. geneous optical order parametéy=const is a “frozen”
phonon mode corresponding to a lattice deformation with
V. TOPOLOGICAL EXCITATIONS o;:t-'of—pk:ase br:)nd—lengtrllj dimerization |rr1] naghbormgggzag

IN THE PEIERLS PHASE chains along the nanotube axis, as is shown in Fig. ®n

the other hand, for acoustic phonoms,= const describes a

We study the ordered Peierls stafE<{T.) in the pres- static twist of the cylindrical nanotube lattice and corre-
ence of optical- and acoustic-phonon modes. Because thsponds to ionic displacements that grow linearly along the
lattice distortions, corresponding to the optical and acoustimanotubeu,(x) =tan(#)x (6 is the twist anglg As is clear
phonons, are coupled due to electron-lattice interactions, twom Fig. 8b), this distortion also leads to out-of-phase
order parametera (x) andA,(x) should appear below the bond-length alternation in neighboring chains, explaining
transition temperature. In the mean-field treatment of the latwhy the optical and acoustic modes cooperate in opening the
tice the total free energy of the model EG0) is minimized  Peierls gap. It should be stressed that the distoridgn
with respect to the two order parameters. The solutions of the= const is not a “frozen” phonon mode, as it would corre-
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(a) to be equal to a value of a discrete set that is characterized by
n,,. We note that lattice configurations with different wind-
ing numbers belong to different topological classes that clas-
sically cannot be continuously transformed into each other.
The trivial solutionn, =0 corresponds to a ground-state lat-
tice configuration withA =0, while the condition Eq(51)
for a homogeneous ground-state lattice configuration with
A=const is most easily realized in long carbon nanotubes
FIG. 8. (a) A homogeneous optical distortia, = const results ~ for which C/L—0. To gain energy from the lattice distortion
in a lattice deformation with out-of-phase bond-length dimerizationand, at the same time, to satisfy the periodic boundary con-
in neighboring zigzag chainé) A homogeneous twist deformation ditions f'(;dan(X):O, it is possible that an inhomogeneous
A,=const corresponds to a shear of the graphene sheet, and leagiound-state lattice configuration becomes energetically
to the same type of bond alternation. The thick arrow points in themore favorable. Theny,(x) has to change sign at least two
direction along the nanotube axis. times along the electronic chain and the minimal-energy
lattice configuration contains one solitwiston and one
spond to large deviations of ions from their equilibrium po- antisolitwiston.
sitions in the high-temperature phase. It follows from Eq. (47) that the creation energy of a
Furthermore, as is known from the TLM model, kinks solitwiston is formally the same as for the usual soliton in the

(solitong in the order parameter, corresponding to a changefLM model taking into account the internal electron
of sign of the lattice dimerization along the chain, constitutedegeneracyN,:

an interesting class of excitatiohs'” The analytical expres-
sion for the kink is given bYy NgAo 4Aq
M: = —

(52)
A(X)=Agtanh(x/ &), (49) ™ 7
The dynamical properties of the kinks in our model are, how-

e e O™ 12,5259, ever, quite iferet rom those in the TLW mocel wity
9 i g =0. In the latter, the soliton can propagate with veloeity

der parameter in our model corresponds to the optical and . . C . .
acoustic lattice distortions given by along the chain, without changing its profile. This results

from the independence of the soliton energy of its position
and the fact that the kinetic-energy density of the moving
soliton u,(x,t) =u, tant (x—ovt)/&] decays exponentially at

= distances larger than the correlation lengghaway from the
Ua(X) = Ua In COSHX/&o). (50 soliton position. Thus, the mass of the soliton is finite and for
Near the kink, which we call a solitwiston, both the lattice trangpolyacetylene was estimated to besm, (with m, the
dimerization, described [].yo(x)7 and the derivative Qﬁa(x) electron I'T]aSS16 On the other hand, the motion of the kink
change sign. in the model with acoustic phonons{=0) would result in

In the TLM model (1,=0), the soliton is the minimal- @ constant kinetic-energy density at distances larger fgan

energy lattice configuration in a chafnf connected carbon from the kink. This follows from the substitution ef,(x) in
rings) with antiperiodic boundary conditions on the atomic Ed.(50) by uy(x—wt) and a calculation of the kinetic energy
shiftsug(x+L)=—u,(x) (L is the system lengihThe cor- E<=(M2)v?. We then find for an armchair carbon nano-
responding discrete model is that of a closed chain with afube consisting of carbon atoms with madg
odd number of lattice sites, where the dimerizatidg 5
changes sign around the soliton position. If the number of MM J”z d—xtan X1 M L (53
lattice sites in the closed chain is even, however, the sTMC] _pa & Ca
minimal-energy lattice configuration contains no soliton, cor-
responding to the continuum model for a chain with periodicand, thus, that the mass of a kink is proportional to the sys-
boundary conditiongu,(x+L)=u,(x)]. The situation is tem lengthL. It follows that isolated solitwistons cannot
different in the presence of a twisti{#0): For a homoge- Propagate. This relates to the fact that a translation of the
neous ground-state lattice configuration with acoustic distorsolitwiston configuration Eq:50) changes the coordinates at
tion ua(x):tan(g)X’ periodic boundary conditions require the boundaries of the system, so that its shift induces a mo-

Uo(X) =U, tank(x/ &),

that tion of the entire system. Solitwistons can propagate without
affecting the boundaries of the system only together with
IUg(X) C antisolitwistons and the mass of such a pair is proportional to

o @ang=ny . (5D its pair sizeR (> &).

We now turn to a discussion of the solitwiston’s spin-
Here, we introduced an integer winding numbgr, whileC ~ charge relations: Similar to the case tadingpolyacetylene,
andL denote, respectively, the circumference and the lengtthe single-particle electronic spectrum of the armchair car-
of the carbon nanotube. In other words, the optimal value obon nanotube follows from Eq47) to consist of a con-
the twist angled, which follows from Eqs(48) and(46), has  tinuum of plane-wave conduction- and valence-band states
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that are separated by an energy gap2The presence of a VI. NUMERICAL SIMULATION:
solitwiston Eq.(49) gives rise to a localized midgap state ELASTIC SPRING MODEL
that can be either unoccupied or occupied by uiNie-4
electrons. The solitwiston’s spin-charge relations differ from
those of the soliton inranspolyacetylene, where the midgap
state of the soliton can be occupied by oNy=2 electrons
(Ng=1), and are, instead, equivalent to those expected f
the topological excitation in polyyn@. In the (undoped
armchair carbon nanotube the neutral solitwistQr=0) can
have spinS=0 or S=1 since two electrons occupy the mid-
gap states at the two Fermi points. The spin-charge relatio
of the charged solitwiston in armchair carbon nanotubes a
seen to be quite usual, in contrast to the exotic spin-char
relations of solitons inranspolyacetylend®

We should mention here that the model Ej7) also pre-
dicts the existence of a nontopological excitation correspon
{he polaron in conjugated polymelins excitation s calied  €19Y CONSiLS Of tree s =Ug + Uny - Ugs, wihere

U 5p refers to the coupling between carbon atoms of the two

a polartwiston as it describes a local indentation of the different sublatticess andB. while U » » andU .« denote the
; ; ; ; ; ; ) AA BB
acoustic and optical lattice distortions in the carbon nanoy .o i |-ice energy within sublattice’s and B, respec-

tube. The energy spectrum for this type of excitation contains. i

two localized intragap states with energies depending on Ively. Explicitly, we have
the electron occupancy.. of the intragap states. Both the
creation energy of the polartwiston

In this section we present the results of numerical simu-
lations which we performed to study the appearance of solit-
wistons and polartwistons in the Peierls state of armchair
0carbon nanotubes with different types of boundary condi-
fions on the atomic shifts. We impose free boundary condi-
tions to describe the straight carbon nanotube with open
ends, while periodic boundary conditions correspond to the
carbon nanotube of seamless toroidal stfipe.

NS The potential energy of the hexagonal nanotube lattice

" calculated within a discrete elastic spring model where

9€arbon atoms are connected by “springs” which are charac-

terized by elastic spring constants. We derive an expression
of U under the assumption that it depends only on the change
in the distance between the carbon atoms. The potential en-

1 T (v T (v B 2
Uij=5 2 K(Rim)([Ui(X) = Uj(xm)]-Rim)®, (57)
Mp=2u SiNg (549)
whereK(Ry,,) denotes the spring constant as a function of
and the maximal change of the generalized order paramet&f€ distanceR,, between two carbon atoms that are located
associated with the local indentation around the polartwistort sitesx, and X, in sublattices andj, respectively, while
position R is the corresponding unit vector. The displacement of a
carbon atom from its equilibrium position aﬁ in the ith
SA=(2 cosp—1)A, (55  sublattice is denoted by;(x;).
The summation over,m in Eq. (57) accounts for all pairs

which is hidden in the definition of the angle calculate the potential lattice energy E§7) accounting for
a carbon atom’s three nearest neighbors by three different

spring constant¥,, K,, and K5. Furthermore, as we ex-
plained in Sec. I, it is sufficient to consider the two-
dimensional atomic displacement vector in tiie sublattice
to be a function of thex coordinate along the nanotube axis
only, Gi(x=na/2)=[Xi(na/2),Yi(na/2)]T. The armchair
nanotube lattice is again considered as consistiny obn-
nected rings at a distan@?2 along the nanotube axisee

=+ 3e has spinS=1/2, while a polartwiston that is neutral _. . . o
or has a charg®=+ 2e can have spirs=0 or S=1. Note F|g. 1), such that a lattice configuration is completely deter-

that the neutral polartwiston in the system with internal de-Mined by the sefu}={ua(na/2),ug(na/2)} of atomic dis-
generacyN,=4 does not have a counterpart in tNg=2  Placements. o _ _ _
system. Its creation energy,= \/E,LL is less than that of a We compute the mlnlmal-_energy lattice configuration us-
neutral solitwiston-antisolitwiston pair. However, since two N9 @ steepest-descent algorithm, where we start from a ran-
neutral polartwistons are unstable and decay into domly chosen lattice cAonf|gurat|on and calculate the total
solitwiston-antisolitwiston pair, the latter will be the lowest- ground-state energ¥[{u}]=(0|H,.,/0)+ U, for the elec-
lying thermal excitation in armchair carbon nanotubes. It istronic ground stat¢0) of the discrete two-leg ladder Hamil-
also interesting to note that the creation energy of a potonian Eq.(9) associated with this lattice configuration. Next,
lartwiston with chargeQ=*e in the Ny=4 system is We compute the gradient

smaller than that of a solitwistom,~0.77u. This difference

with the Ny=2 system has important consequences for the 5E[{l]}]

creation of topological excitations as will be further dis- VE,=———— (58)
cussed in the next section. " S{u(na/2)}

b= 5 (56)

The spin-charge relations of a polartwiston are summa:
rized as follows: A polartwiston with charg®@=*e or Q
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02 (@) Na=0 0.2(b) Ne = +1,42,+3,+4 obtainY, =0 and a finite value foX_, corresponding to a
SO — T 01 \ | relative shift of the two triangular sublatticédsandB. The
>*‘, 0 >* 0y _/’ \ absence of a twist in the ground state, which is in obvious
<o < :8:;\74 contradiction with the result of the continuum model Eq.
20 40 60 80 100 20 40 60 80 100 (47), is a finite-size effect: The uniform twist is simply in-
n n compatible with the periodic boundary conditions for the
02 (€) Ny =+5 02 (d) Na =46 given carbon nanotube Iength_ and model p_arametgrs. In_ Fig.
T o1l = oo N /\’__ 9(b) we show the effect of doping on the lattice configuration
0 / SINAN N [Fig. 9@)] by addingNg=1, . . . ,4electrons to the initially
s 0.1 \7£—J N s —0.1 \/—" N half-filled system. As we discussed in Sec. V, for an addi-
0. 20 40 60 80 100 02 30 40 60 80 100 tional electron the creation of a polartwiston is, in principle,
n n energetically more favorable than the creation of a solit-
(©) Ny = +7 () Ny = +8 wiston. However, since in the finite chdiRig. 9(a)] there is
" 8-% < 8-? no twist at half-filling, the energy is minimized by creation
S 0 \\ /,N— S ol ST\ 7 of a solitwiston-antisolitwiston paliFig. 9b)]. This is a con-
) —0.1\)/—J N o 0.1 N N sequence of the condition that in order to create a po-
-0.2 50740 65 §0 100 -02 50 40 €0 80 100 Iart\Nl_ston the sign an(x)_ has to bg _dlfferent to the left and
n n the right of the polartwiston positiomn,(X<<xg) = —Uu,(X

. ) , ) . >Xg), which cannot be satisfied in the lattice configuration
FIG. 9. Minimal-energy lattice configuration of the armchair [Fig. 9a)] with Y, =0. As the antibonding superposition of
carbon nanotube in the Peierls phase for periodic boundary condjy, midgap states of the two solitwistons can accommodate
tions imposed on the shift& _ (dashed lingand Y, (solid line). b to Ny=4 electrons, the lattice configuratidfig. a(b)]
N, denotes the number of electrons that is added to the half_ﬂ"e(#lemainsdthe same ch,|=2 34 Then. on adding.the fitth
e ' " 1
system. up to seventh electron, a charged polartwiston appears in the

in each ringn for both sublattices=A,B leaving the atomic  carbon nanotube lattidsee Figs. &)-9(€)]. This excitation

displacements in all the other rings unchanged. We determin istorts the lattice locally with an indentation that depends on
. = . . oo ' .. the number of added electrons and which we find to be even
from the sign of VE, ; in which direction the atomic dis-

A . in quantitative agreement with the relative change calculated
placement vecto(na/2) is to be shifted such th&{u}]is  according to Eqs(55) and (56). Finally, we plot in Fig. 9f)
decreased. In this way, we obtain a new lattice configuratiofhe minimal-energy lattice configuration obtained with eight
{u’} which is only accepted if the total ground-state energyextra electrons for which the periodic boundary conditions

E[{u’'}]<E[{U}]. The same procedure is repeated until therequire a second solitwiston-antisolitwiston pair to appear.

gradient Eq.(58) is equal to zero within the required accu-  1he appearance of topological excitations in the minimal-
racy of the computation. energy lattice configuration depends on the imposed bound-

We now turn to the discussion of the results for theary conditions for the atomic shifts. This can be readily un-
minimal-energy lattice configurations, which are presented irflérstood within the two-leg ladder model and is illustrated in
terms of the shifts Fig. 10. If periodic boundary conditions are imposed on the

shifts, the numbeN of rings in the armchair carbon nano-
1 1 tube has to be even. The out-of-phase dimerization of the
Yi=—=(Ya+Yp), X_=—=(Xa—Xp), (59 minimal-energy lattice configuration is depicted by thick and
V2 V2 thin lines in the two-leg ladder. No topological excitations

in Fig. 9 and Fig. 11(below), respectively, for periodic and are present if the twist deformation is homogeneous with
free boundary conditions. To obtain a qualitative picture oftané=n,C/L [Fig. 10a)], while otherwise the lattice con-
the Peierls state for a general armchair carbon nanotube thiguration contains (for a sufficiently large systema
precise values of the parameters involved (t;, «;, Ky, solitwiston-antisolitwiston paifFig. 10b)]. The latter con-

K,, andK3) are not important and are, instead, chosen tdiguration is schematically shown by four unpaired electrons
satisfy the following two convenient condition§) For a  Which give rise to the two doubly occupied midgap states. If,
system of N=100 rings, the correlation length is much On the other hand, the boundary conditions on the shifts are
smaller than the system sizg=vg/A,<Na/2. (i) The cou-  fré€, the numbeN of rings in the armchair carbon nanotube

pling between the shift¥, andX_ is negligibly small, so ¢an be either even or odd. The corresponding minimal-
that the numerical results are directly related to the corre®nergy lattice configurations are then quite similar in both
sponding acoustic and optical order parameters by cases, since the system has the freedom to minimize its en-

ergy by a relative shift of the two triangular sublattideand

9 B against each other and by a static twist deformation. This is
Ay FASE A X (60)  depicted in Figs. 1@) and 1Gd) by the out-of-phase dimer-
ization in the two-leg ladder. It is, however, important to
[see Eqs(19) and(17)]. notice the difference between periodic and free boundary

We first discuss the results for periodic boundary condi-conditions. For the latter, the half-filled system contains two
tions which are summarized in Fig. 9. At half-filling), we  unpaired electrons, independent of whetNes even or odd,
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(a) periodic boundary conditions: N even 03 (@) Ng =0 03 (b) Ny = +1
02 02
:\: o] g :\: o /
r 0.1 \74___, r 0.1 \74———/
" 263 =03
~ 20 40 60 S0 100 ~ 720 40 60 80 100
n n
(b) periodic boundary conditions: N even 03 (©) Ny = +2 03 (@ Ny = +3
02 02
§ of / :? of
- —0.1 N— —_— - —0.1 M— ——7
- o :8'%/ o 02 e
20 40 60 80 100 720 40 60 80 100
n n
(c) free boundary conditions: N even
03 (e) Ney =+4 03 (f) Ng = +5
g 02 + 02
ja80NESENaNN! LN s
e i
720 40 60 80 100 720 40 60 80 100
(d) free boundary conditions: N odd n n
0.3 (8) N =+6 03 (h) Ny =+7
< 1 < 4
S 0PSO pd ORI yd
) A N F =01 N A~
" 263 " 263
FIG. 10. The minimal-energy lattice configuration for periodic 20 40n60 80 100 20 40n60 80100

and free boundary conditions on the lattice distortions. The dashed

rectangle indicates the unit cell of the lattice that consists of the two FIG. 11. Minimal-energy lattice configuration of the armchair
sublattices ®” and “ O”. An unpaired electron is indicated by the carbon nanotube in the Peierls phase for free boundary conditions
shaded circle. See the text for details. imposed on the shiftX_ (dashed lingand Y, (solid ling). N,

. ) denotes the number of electrons that is added to the half-filled sys-
which are located at the left and right ends of the systenem.

These electrons give rise to edge states that appear in the
middle of the Peierls gap. On doping the system the first twahe midgap state associated with this solitwiston is com-
electrons will occupy the midgap electronic level associategletely occupied by four electrons. Therefore, on adding the
with the two edge states and, therefore, the lattice configufifth electron[Fig. 11(f)], again a charged polartwiston with
ration will remain unchanged. Q= —e is formed that is located at théeft) boundary. This
That this picture is, in fact, correct can be seen in Fig. 1Jis similar to the situation in Fig. 18l and together with Figs.
where we plot the results of numerical simulations for free11(g) and 11h) for, respectively, six and seven extra elec-
boundary conditions on the shifts. The minimal-energy lattrons we obtain the following general pattefi): A charged
tice configuration of the half-filled systefiig. 1Xa)]is, as  polartwiston Q= —e) is located at the system’s boundary if
expected, characterized by a lattice dimerization associatafle numberN,, of added electrons is odd and larger than
with a relative shift of the two triangular sublatticeX (  two. (ii) The number of charged solitwiston® € — 2e) in-
=const) and a homogeneous twist deformatiofi. ¢x).  creases by one if the numbh, of added electrons is even
This lattice configuration does not change when the first an@nd larger than two.
second electrons are added in Figs(blland 11c). Inspec-
tion of the electron energy spectrum reveals that the two VII. DISCUSSION
added electrons occupy, in fact, a midgap state associated
with the edge states that arise as a consequence of the im- As we mentioned already, the Peierls transition is com-
posed boundary conditions. A relaxation of the lattice is onlymonly believed to be irrelevant for carbon nanotubes, be-
seen on adding the third electron to the sysf&gy. 11(d)].  cause the transition temperatuFg is estimated to be negli-
As pointed out at the end of Sec. V, the creation of a pogibly small. This smallness results from the fact that
lartwiston with chargeQ= —e is energetically more favor- depends exponentially on the electron-lattice coupling con-
able than the creation of a solitwiston. This polartwiston isstantk [Eq.(37)] and\ is inversely proportional to the num-
seen to be located at ti{gght) system boundary, where the ber of zigzag chains around the circumference of the arm-
presence of the edge state gives rise to a level splitting thahair carbon nanotube. We note, however, that while usually
minimizes the system’s total energy. In Fig.(@1 we plot N is taken to be the coupling with just one optical-phonon
the minimal-energy lattice configuration containing four ex-mode, we have seen above that optical and acoustic modes
tra electrons. A charged solitwiston witQ=—2e is now cooperate in the opening of the Peierls gap:A,+ X\, [EQ.
seen to be located in the middle of the armchair nanotubé36)]. As a result of the exponential behavior ©f, this
lattice and, beside the two completely occupied edge stateadditive dependence on the two coupling constants may
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grea;ly enhancé’c, especially fc_)r nanotubes with; small.  tubes (,~10), T, is indeed negligibly small <10 ° K)

In this section, we present estimates fomnd T., we ad-  an( the associated softening of the acoustic phonons, leading

dress the_ relevance of the Peierls instability to experimentsy the upturn of the resistivity at low temperatufg. 7),

and we discuss the role of electron-electron interactions. iy not he relevant to the explanation of the observed uptum

TO. estimatel andx,, we use th_e elastic sprmg_model for these large nanotubé&¥in fact, it has been shown that for

considered f'n SG.’C' V:; ;hehcalculayon of the coupling gon'such large-radius nanotubes, the temperature dependence of

SKta?;S ?\?9?1 ?nn(t:::gnAo ter? dtixrelfosrr)'[rrlmre]gocc'iilj:sz;fqhtsoﬁgnarr]no dethe resistivity can be well explained using a Luttinger model

wg ob?ain PP ' P P that describes the forward scattering due to electron-electron
interactions, in addition to electron scattering on acoustic

phonons, without accounting for possible phonon
2 i a {0 4.5,28,29
12af sin ke softening°28
A= (61) At the same time, it is clear that for nanotubes with
thng cN, smaller values olN,, the Peierls instability becomes more

) ) . important. Recent examples of small-radius nanotubes that
where M¢ is the mass of t_he carb(_)n atom. Using typical ;e been prepared experimentally are those With 4:%
values for the electron hopping amplitudes along and Perpenpe possible technological interest in such narrow nanotubes

ldl;:tylar o tr;g nangtzlie a>\</ %,Elwzastﬁv’ the _electrtor|1|- has been emphasized in Ref. 31. While, to the best of our
attice coupiing,a;=2.1 € » an € expenimentally knowledge, transport measurements on such narrow nano-

and numerically determined value for the optical-phonon fre o :
quencywe~0.18 eV we find x,~0.24N, . For the di- tubes have not yet been reported, it is of interest to assess the

onl I latti i  th ic-ph relevance of the Peierls instability for them. Using the above
mensionless electron-fattice coupling of the acoustic-poNORymater ~0.31N,, we armve aff,~0.1 K for Nj=4 and
T.~3 K for N;=3. The steep increase relative to the case
N, =10 reflects the exponential dependence\oifhis same

N 27K3a? (62 dependence makeS, extremely sensitive to the precise

a °16Méw§u§’ value of X and calls for caution, as the prefactor 0.3 in our

expression foin is only an order-of-magnitude estimate. To
which is finite only for a nonzero spring constafg. This illustrate this, we note that if this factor is increased by 50%,

reflects the fact that a twist distortion depends crucially orthe above estimates changeTig~9 K for N;=4 and T,
the elastic coupling between distant atomic neighbors, as-80 K for N;=3. These numbers clearly indicate that the
also the corresponding twist angleis related to the deriva- Peierls transition and the associated phonon softening may
tive of the distortion amplitude taf=[u,(x+a) indeed be relevant for small-radius carbon nanotubes.
—uy(x)]/a. From the above discussion, it is also clear that the accu-

In order to estimate the value of,, we first have to rate determination of the electron-phonon coupling constants
determine the values of the three spring constants. Two coris of paramount importance when assessing the effect of the
ditions are given by the optical-phonon frequency E&j7)  electron-lattice coupling in detail. While here we have given
and the sound velocity EqA8), which we require to yield theoretical estimates fot, and \,, one may, in principle,
the experimentally and numerically obtained valueg  also attempt to determine them from the resistivity curve. As
~0.18 eV(Refs. 23 and 24andv,~14 km/st*?**respec- we have found in Sec. I\§ , determines the slope p{ T) at
tively. A third condition is imposed by fitting the value of the high T, while T, depends o\ =A,+\,. The problem in
acoustic-phonon frequency gt=m/a, where the acoustic using this approach lies in our neglect of electron-electron
branch deviates from its lineay dependence and the fre- interactions. Both forward scatteririguttinger modet®) and
guency is known to be approximately umklapp scattering, modeled by the on-site Hubbard model
wa(ma)~0.07 eV}*?* The expression forw,(w/a) in  at half filling,>’ affect the shape of the resistivity curve. In
terms of the three coupling constants is given by @§). In  particular, the contribution of umklapp scattering to the re-
this way we obtairk;~25 eVA~2 K,~1.1 eVA~2 and sistivity is also expected to result in a linekdependence at
K3~8.1 eVA~2 It thus turns out thaK;>K, is required  temperatures larger than the charge &gp associated with
in order to fulfill all three conditions. This counterintuitive double occupation of a lattice sitélthough its contribution
result probably is a consequence of the fact that our moddb the slope of the resistivity in the regime of linédepen-
with only three spring constants is the minimal model thatdence vanishes asl\]ﬁ’,6 while electron-phonon interaction
leads to a finite value ok, and should be viewed as an enters the slope through,c<1/N;, it is to be expected that
effective description of the complicated lattice dynamics. Inattributing the slope to either one of the two scattering
fact, it is known that more involved force-constant modelsmechanisms alone will be impossible. We finally note that
are required to accurately describe the phonon spectrum dfie charge gap arising in the Hubbard model gives rise to an
the graphene sheet and carbon nanotébés. activated behavior of the resistivity fdr<E,,° which may

To maintain a consistent analysis, we proceed by usinge hard to distinguish from the upturn associated with pho-
the above values fd{, K,, andK;. We then find from Eq. non softening.
(62) that A;~\ /4, leading toA=X\,+\,~0.3/N;. It then We conclude that unequivocal evidence for the occurrence
follows from Eq.(37) with W=10 eV that for large nano- of the Peierls transition in narrow carbon nanotubes is prob-
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ably hard to obtain from measuring the electrical resistivityelectron scattering mechanisms. More generally, electron-
alone. Other experimental evidence could be provided bylectron interactions make it hard to estimate the electron-
observing the vanishing of the phonon velocityTat(as has  phonon coupling constants from temperature-dependent
been done for the ferroelectric transitithbut not, to our  transport measurements alone.

best knowledge, for small-radius nanotubes ged by using We have studied the occurrence of topological excitations,
microscopic and spectroscopic techniques to directly obseng@flitwistons and polartwistons, in the ordered phase of an
a twist deformation of an armchair carbon nanontibe. armchair carbon nanotube. We find that the electronic energy
Similar techniques can, in principle, be used to probe théPectrum of the minimal-energy lattice configuration de-

energies and shapes of the intragap states associated wiffnds qualitatively on the applied boundary conditigpe-

solitwistons and polartwistons that occur in the Peierls phas EOd'C and freg, as can be understood in terms of the_ tW_O"eg
as introduced in Sec. V. adder model. It follows that the appearance of solitwistons

and polartwistons is qualitatively different for the two types

of boundary conditions. As carbon nanotubes can be exam-

ined individually and also exist in a seamless toroidal
Viil. SUMMARY AND CONCLUSIONS shapée®® it will be an interesting challenge to use microscopy

An interesting feature of the Peierls scenario in the pres@nd spectroscopy techniques to probe the energies and
ence of both optical and acoustic phonons is that independefif'@pes of the intragap states associated with solitwistons and
of the electron-lattice coupling constants the acousticolartwistons.
phonon velocity vanishes at the critical temperature, whereas
the optical-phonon frequency remains finite. In contrast to ACKNOWLEDGMENTS

the conventional Peierls scenario, in which the optical pho- ) )
non softens at the critical temperature in the absence of We gratefully acknowledge financial support from the

acoustic phonons, a level repulsion takes place between thfichting Fundamenteel Onderzoek der Mat¢FOM).

optical- and acoustic-phonon modes due to their coupling by

electron-hole excitations. In this way, the acoustic-phonon APPENDIX

velocity is reduced to zero at the temperatilirewhich is )

higher than the critical temperature of the conventional We calculate the couplingd,, A, and the frequency
Peierls transition. Structural phase transitions resulting fron?a(7/@) within the elastic spring model of Sec. VI in terms
electron-lattice interactions are of broad interest and ouPf the spring constants,, K,, andK;. For this purpose we
theory is not limited to one particular system. In fact, back-Write Eq.(57) using the Fourier representation of the atomic
scattering due to acoustic phonons always occurs if the sizdisplacement Eq(1),

of the system’s unit cell is the same above and below the

transition temperatur@.. The phonon wave vector is only - - 1 - - -

conserved up to a multiple ofk2 in this case and optical- Ui(xl)z\/ﬁ 2 €9NXi(a), Yi(@)]T, (A1)
and acoustic-phonon modes of the same symmetry cooperate P

in the opening of the Peierls gap. In this paper we consideregare N is the number of sites in theth sublattice and
an armchair carbon nanotube where the unit cell contalnNA:NB in armchair carbon nanotubes. Let us choose the

two carbon atoms above and beldw due to its zigzag- . . . -

chain structure. The Peierls state contains both a static twiSt'9" of theltrhsuglatttlce tct) b?hfhcatted EF_O fg?rg_w_hgre
of the carbon nanotube along its axis and a lattice dimeriza c Measure the _'S anTce 0 a gm In subla .'CQ y
tion due to the relative shift of the two triangular sublatticesRm=|Rml|(C0S6y, siné,)". If we combine the Fourier com-

in the carbon nanotube. ponents of the atomic displacements in a single vector
While we have attempted to reach more than just a quali- R R R
tative picture of this Peierls transition and its consequences, J(q)=[Xi(ﬁ),Yi(ﬁ),xj(q),Yj(q)]T, (A2)

it should be stressed that our quantitative predictions have

large error bars. This is a consequence of the fact that quaRve obtain Eq(57) in the formU;; = %zdﬁ(a)’fkijﬁ(a)_ The
tities of interest, like the transition temperature, depend eXp4trix elementsK; = (k,z); (with @,8=1---4) are given
ponentially on the electron-lattice coupling constants in-y, 17\l ’

volved, which are hard to estimate with high precision. In

addition, the interactions with other carbon nanotubes or

with the substrate may complicate the situation in practice. A Ki1=Kgs= 2 K(Ry)COS O,

link was made to experiments on carbon nanotubes by cal- m

culating the temperature dependence of the electrical resis-

tivity due to electron scattering on acoustic phonons with ]

renormalized frequency. We have found that the softening of kao=Kaa= % K(Rpy)Sin’ 6y,

the acoustic phonons close 1q@ gives rise to an upturn in

the electrical resistivity. This upturn will only be observable

for small-radius carbon nanotubes and in general competes Kyo=Koy=kag= k43=2 K(R,,)c0S0,,Sin b,

with similar upturns that derive from various electron- m

125416-15



MARC THILO FIGGE, MAXIM MOSTOVOY, AND JASPER KNOESTER PHYSICAL REVIEW B5 125416

given in Sec. Il. In terms of the three spring constants the

kis=k3=— % K(Rp)e'd Rmcos6,,, parameters are given by

- 3
kia= K} =Koa=K5,= — > K(Ry,) €' Rmcosb,, sinb,,, Ax= Qy= 2a(K1+ Ks),
m

koe=kip= =2 K(Rp)eT Rosito,.  (A3) Bx=3ﬁy=97aKz+32—a %K1+K3 :
We now disregard the transverse momentum corrlp(inent in %a 3a/1
the matrix elements Eg.(A3) and writ'e 9-Rn yx=37y=7K2— > ZK1+ K3),
=gRy cosé,,, whereq denotes the momentum in the direc-
tion along the nanotube axis. Furthermore, it is convenient to
use a transformatiot) with OTU=1, such that the vector 8=~ 8,=—\3 EKI_ Ks)- (AB)
with the Fourier components of the atomic displacements Eq. 2

(A2) becomes with Eq(59)

U(A)—Re=0u(@)=(X; .Y, X, Y )T (A4)

The potential lattice energy Eq57) takes the formU
=33 qRikqRq With xq=U(Kag+Kaa+Kgg)UT. We note
that U contains the matrix elements EGA3) and is, thus,
still valid for all values ofq.

In the limit of long wavelengthg1—0, we expand the
exponentials in Eq(A3) up to second order ig and obtain

the matrixx, in the form

a’8x O 0 iqd,
R a 0 qzﬁy _iq‘Sx 0
Ka=% 0 08,  ayxtg%yy 0
—iq(Sy 0 0 ay—l-qzyy

(A5)

As expected, the potential lattice energyis formally iden-
tical to the potential lattice energy in the Hamiltonibi,,

Using these relations we obtain from Ed6) and (8) the
optical-phonon frequency

3(K1+Kj)

T (A7)

Wao=

whereM is the mass of the carbon atom, and the acoustic-
phonon velocity

3(4K Ko+ 3K Kyt 4K K
UO:a\/( 12 173 2 3) (A8)

16K +K3)Mc

The dimensionless electron-lattice coupliRg is now ob-
tained according to its definition E¢R2) together with Eq.
(24). The resulting expressions for the optical=(@©) and
acoustic- {=a) phonon modes are given by, respectively,
Eqg. (61) and Eq.(62). The third condition to determine the
three spring constants is obtained from the acoustic-phonon
frequency atq=m/a where the acoustic branch deviates
from its linearq dependence. It reads

T

2K+ 16K 5+ K3— AKZ+ 2K 1 (4K, — K3) + (K3 — 4K )

2\ 1/2

w
al a

2M¢ (A9)
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