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Excitation Energy Transfer between Closely Spaced Multichromophoric Systems: Effects of
Band Mixing and Intraband Relaxation†

C. Didraga, V. A. Malyshev,‡ and J. Knoester*
Institute for Theoretical Physics and Materials Science Centre, UniVersity of Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

ReceiVed: NoVember 29, 2005; In Final Form: April 5, 2006

We theoretically analyze the excitation energy transfer between two closely spaced linear molecular
J-aggregates, whose excited states are Frenkel excitons. The aggregate with the higher (lower) exciton band
edge energy is considered as the donor (acceptor). The celebrated theory of Fo¨rster resonance energy transfer
(FRET), which relates the transfer rate to the overlap integral of optical spectra, fails in this situation. We
point out that, in addition to the well-known fact that the point-dipole approximation breaks down (enabling
energy transfer between optically forbidden states), also the perturbative treatment of the electronic interactions
between donor and acceptor system, which underlies the Fo¨rster approach, in general loses its validity due to
overlap of the exciton bands. We therefore propose a nonperturbative method, in which donor and acceptor
bands are mixed and the energy transfer is described in terms of a phonon-assisted energy relaxation process
between the two new (renormalized) bands. The validity of the conventional perturbative approach is
investigated by comparing to the nonperturbative one; in general, this validity improves for lower temperature
and larger distances (weaker interactions) between the aggregates. We also demonstrate that the interference
between intraband relaxation and energy transfer renders the proper definition of the transfer rate and its
evaluation from experiment a complicated issue that involves the initial excitation condition. Our results
suggest that the best way of determining this transfer rate between twoJ-aggregates is to measure the
fluorescence kinetics of the acceptorJ-band after resonant excitation of the donorJ-band.

I. Introduction

The theory of Fo¨rster resonance energy transfer (FRET)
between two chromophores (molecules, ions) with dipole-
allowed optical transitions,1 and its generalization by Dexter2

to forbidden optical transitions and exchange interactions
between the chromophores, already have a history of more than
50 years. This celebrated theory gives an excellent description
of transfer rates for distant chromophores with rather broad
spectral lines.3-5 It describes these rates in terms of the overlap
integral of experimentally measured optical absorption and
luminescence spectra, which makes it of great utility. With minor
reformulations, the concept of FRET may also be applied
successfully to the description of nonradiative transitions in ions
and molecules in condensed phases,6 as well as to energy
transfer in the presence of a nonstationary bath relaxation.7

Finally, it has been shown that the Fo¨rster theory also explains
the efficient long-range energy transfer in assemblies of closely
packed CdSe quantum dots8-10 and CdSe nanocrystals as-
sembled with molecular wires,11 systems of possible use for
quantum computation.12,13

Despite its great success, it has been recognized since the
1980s that, in certain situations, standard FRET theory is not
applicable. In particular, this holds for chromophores with
narrow spectral lines and a small spectral overlap, such as rare-
earth ions embedded in a crystalline or glassy host.14-17 More
recently, another important situation in which FRET theory may

break down has been emphasized, namely energy transfer
between two systems that both contain many interacting
chromophores. This problem has drawn particular attention in
the context of excitation energy transfer from the B800 to the
B850 ring of the photosynthetic antenna system LH2.18-24 The
first complication when dealing with systems of strongly
interacting chromophores is that their excited states are excitons,
consisting of a coherent superposition of the excited states of
many molecules. Because of their spatial extent, which may
easily exceed the separation between the two systems, the
effective interaction between an exciton state on the donor
system and one on the acceptor system cannot be modeled as
the interaction between the transition dipoles of both states. As
a result, excitation energy transfer may occur from or toward a
dipole-forbidden (optically dark) exciton state, implying that a
description of the energy transfer in terms of overlap integrals
of optical spectra no longer holds. This breakdown of the point-
dipole approximation was first pointed out by Sumi and co-
workers.18,19Treating the electronic coupling between both rings
in LH2 as a perturbation, they derived a transfer rate between
the rings that strongly differed in magnitude from the Fo¨rster
result and that was in good agreement with experiment.25,26

It should be noted that LH2 is a rather special case of transfer
between two aggregates. The reason is that the molecules in
the B800 ring are weakly coupled to each other. Thus, the B800
excitations are almost monomeric,27 and they occur in a narrow
band just above the upper edge of the B850 band and far (965
cm-1) away from the optically dominant bottom of that band.19,28

Moreover, the intermolecular interactions between both rings
are weak, on the order of 20 cm-1.28 Given these special
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circumstances, it is not surprising that the perturbative treatment
of the interaggregate (inter-ring) interactions gives good results.

In many cases of closely separated aggregates, however, a
perturbative treatment of the interaction that causes energy
transfer between them will not be valid. An interesting example
is the case of nanotubular carbocyanineJ-aggregates that have
recently been developed by Da¨hne and co-workers29-31 and
which have been suggested as building blocks for synthetic light-
harvesting systems. These aggregates consist of two walls, which
are only a few nanometers apart. Each wall is responsible for
the formation of an exciton band; even though their optically
dominant lower edges are separated by a few hundred cm-1,
the two bands overlap over a large energy range (∼2000
cm-1).32 By using fluorescence and pump-probe experiments,
fast excitation energy transfer between both walls has been
observed.33 The strong overlap of the exciton bands makes it
doubtful that a perturbative treatment of the interwall interactions
holds for this example: (dark) states inside both bands may be
close to degenerate, thus falling outside the perturbative regime.
This observation also holds for the example of energy transfer
between two linear pseudoisocyanine aggregates studied by
Kobayashi and co-workers.34 Like Sumi and co-workers, these
authors focused on a breakdown of the dipole approximation;
they did not consider the limitations of a perturbative treatment.

The aim of this paper is to study theoretically the energy
transfer between two molecularJ-aggregates carrying Frenkel
excitons. We will be inspired by the example of the double-
wall cyanine tubes, where the bottoms of both exciton bands
occur at different energies, but their central parts overlap. To
keep the problem computationally tractable, we will consider
two interacting linearJ-aggregates with different bandwidths,
leading to a crossing of both bands in their center. The chain
with the higher (lower) band bottom is considered the donor
(acceptor). By using this generic model, we will investigate the
breakdown of the perturbative approach by comparing to an
exact treatment in which both aggregates form one exciton
system and the energy transfer is associated with phonon-
assisted relaxation within this system. We thus find that the
crossover between the weak coupling (perturbative) and strong
coupling (nonperturbative) situations is determined by the
separation between both aggregates as well as by the temper-
ature.

Another important issue that we address is that fast intraband
relaxation (thermalization) between visible and dark exciton
states may obscure the observation of the actual energy transfer
process and thereby plays a crucial role in the proper definition
of the transfer rate as extracted from experiment. As a
consequence, also the initial excitation conditions strongly affect
the possibility to measure the transfer rate. This key role of
intraband relaxation in the process of energy transfer between
excitonic systems seems to have gone unnoticed thus far.

The outline of this paper is as follows. In Section II, we first
present our model of two homogeneous linearJ-aggregates,
interacting with each other as well as with a vibrational bath.
We then introduce the general issue of perturbative versus
nonperturbative treatment of interchain interactions by consider-
ing the various dynamic processes that can occur in and between
weakly coupled or strongly mixed exciton bands. The pertur-
bative approach is worked out in more detail in Section III,
where we derive the general expression for the one-phonon
assisted transfer rate between any two exciton states located on
different chains. In Section IV, we develop the approach for
the case of strong interchain coupling (nonperturbative case).
Results of numerical simulations of the fluorescence kinetics

in both the perturbative and the nonperturbative approach are
presented in Section V and are used to study the validity of the
former as well as the best way to extract the transfer rate from
experiment. Both the temperature and distance dependence of
the transfer dynamics are addressed and distinction is made
between resonant and off-resonant initial excitation of the donor.
A comparison to standard FRET theory is made as well. Finally,
in Section VI, we summarize.

II. Model and General Strategy

A. Model. We consider two parallel linear chains, each
consisting ofN equidistant two-level chromophores, with their
transition dipoles aligned to the chains (see Figure 1). The lattice
spacing within each chain is denotedh, while the distance
between the chains isd. One of the chains will be referred to
as the donor (D), the other as the acceptor (A) (see below). We
will assume that both chains are homogeneous, and we will
impose periodic boundary conditions in the chain direction (the
formalism may easily be extended to account for disorder and
open boundary conditions). The chromophores building up the
D chain are different from those of the A chain; in particular,
we will assume that the transition energies and dipoles of the
individual chromophores within the D chain all have the values
εD and µD, respectively, while in the A chain, they take the
values εA and µA. We will account for the dipole-dipole
interactions between all chromophores in both chains and also
include in the model a coupling of the electronic excitations to
a bath of vibrations. The latter coupling is derived from the
first-order change of the chromophores’ transition energies
caused by nuclear displacements in the environment. In the site
representation, the resulting Hamiltonian of system and bath
reads

with

Here,HD andHA denote the electronic (exciton) Hamiltonians
for the isolated donor and acceptor chains, respectively, while
HDA is the electronic interaction between both chains, composed
of all dipole-dipole interactions between molecules of one chain
and the other. In these terms,|n, D〉 (|n, A〉) denotes the state
in which the nth (n ) 1, ..., N) chromophore of the donor
(acceptor) chain is excited and all the other chromophores are
in the ground state. Furthermore, the hopping integralsJnm

D ,

H ) HD + HA + HDA + Hbath+ HD-bath+ HA-bath (1)

HD ) εD∑
n)1

N

|n, D〉〈n, D| + ∑
n,m)1

N

Jnm
D |n, D〉〈m, D| (2a)

HA ) εA ∑
n)1

N

|n, A〉〈n, A| + ∑
n,m)1

N

Jnm
A |n, A〉〈m, A|

(2b)

HDA ) ∑
n,m)1

N

Jnm
DA|n, D〉〈m, A| + h.c. (2c)

Hbath) ∑
q

ωqaq
†aq (2d)

HD-bath) ∑
n)1

N

∑
q

Vnq
D |n, D〉〈n, D| aq + h.c. (2e)

HA-bath) ∑
n)1

N

∑
q

Vnq
A |n, A〉〈n, A| aq + h.c. (2f)
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Jnm
A , andJnm

DA are the various dipole-dipole interaction matrix
elements between chromophores of the same or different
chains. For the geometry considered here, we haveJnm

D )
-JD/|n - m|3, Jnm

A ) -JA/|n - m|3, Jnn
D ) Jnn

A ) 0, and
Jnm

DA ) JDA[1 - 2(n - m)2h2/d2]/[1 + (n - m)2h2/d2]5/2,
with JD ≡ 2µD

2 /h3, JA ≡ 2µA
2 /h3, andJDA ≡ µDµA/d3.

Hbath describes the vibrational modes of the host, labeledq
and with the energy spectrumωq (we setp ) 1). The operator
a annihilates a vibrational quantum in modeq. Finally, HD-bath

andHA-bathrepresent the operators of the exciton-bath coupling
of the donor and acceptor, respectively, where the quantities
Vnq

D andVnq
A indicate their strength. We do not provide explicit

expressions for these quantities; rather we will consider them
on a phenomenological basis. Specifically, realizing that, in most
experimental studies of aggregates, the host is strongly disor-
dered, we will treat these strengths as stochastic variables with
correlation properties:

These relations imply that the surroundings of different chro-
mophores are not correlated.

B. Strategy. We now turn to a general discussion of a
perturbative versus nonperturbative approach to describe the
excitation energy transfer between both chains. Throughout this
paper, we will assume that the exciton-phonon coupling is weak
compared to the intrachain dipole-dipole interactions, in the
sense that the coherence length of the excitons within each chain
is not limited by the coupling to the bath. In that case, the Bloch
eigenstates ofHD and HA are a good starting point for our
considerations, and the main role of the bath is to make up for
energy differences in possible intraband energy relaxation. The
Bloch states read (X) D, A)

with energy

Here,k is the wavenumber of the state, which can take the values
0, 1, ...,N - 1.

Figure 2a shows the donor and the acceptor bands,Ek
D and

Ek
A, respectively, for chains ofN ) 150 molecules, withεD )

εA (we take this as zero of energy) andJA ) 1.14JD. Only half
of the Brillouin zone is plotted, as the dispersion relation is
symmetric aroundk ) N/2. We see two exciton bands that cross
at their center. The bottom of each band occurs atk ) 0, which
is the superradiant state that contains all oscillator strength to
the ground state; all other exciton states are optically forbidden.
Thus, as long as the interactions between the chains are weak,
the fluorescence spectrum consists if twoJ-bands, whose
positions are indicated by the dots on thek ) 0 axis. By
definition, we choose our labeling such thatEk)0

D > Ek)0
A . The

energy separation between both peaks will be denoted∆ and is
(for N . 1) given by∆ ) εD - εA + 2ú(3)(JA - JD), with ú(x)
the Riemann zeta function.

The two chains are coupled electronically by the interaction
HDA (eq 2c), which on the basis of Bloch states is diagonal,
i.e., HDA ) ∑k Jkk

DA|k, D〉〈k, A| + h.c., with

In general, this expression must be evaluated numerically (see
Figure 2c for an example). Only in the limiting (and rather
unphysical) case ofd , h it is easily seen thatJkk

DA ) JDA )
µDµA/d3, independent ofk.

As long as the interactionsJkk
DA are weak (large separation

d), it seems reasonable to apply the usual perturbative approach
to them by using the bands of the isolated donor and acceptor
chains as starting point. We will follow this route in Section
III, where we also will treat the exciton-phonon interactions
perturbatively. In this approach, the rate of energy transfer
between an arbitrary donor state and acceptor state is calculated
using second-order perturbation theory, involving two steps: (i)
The excitation is transferred from the donor to the acceptor;
(ii) A phonon-induced scattering occurs within the acceptor band
(scattering within the donor followed by transfer to the acceptor
is possible as well). The overall process should conserve the
total energy. Both steps are schematically indicated in Figure
2b, in which we zoomed in on the small-k part of the bands
given in Figure 2a. Because in our example the interchain
interaction is diagonal ink, the transfer step is a vertical
transition between both bands. We notice that, aside from energy
transfer between both chains, the interactions with the phonon
bath also give rise to relaxation of the exciton states within both
bands; details of this process are studied in ref 36.

If we focus on the optically dominant bottom states of both
bands, it seems that the perturbative treatment of the interchain
interactions is valid as long as|Jk)0,k)0

DA | , ∆. Generally
speaking, this criterion is not sufficient, however. Depending
on temperature and initial excitation condition, the transfer
process may involve the optically forbidden states higher in the
exciton bands. As near the band center the donor and acceptor
states get arbitrarily close in energy, a perturbative approach
necessarily fails there. For this situation, one has to resort to a
nonperturbative treatment in which both bands are mixed. As
long as|Jk)0,k)0

DA | , ∆, the amount of mixing will be weak for
the superradiant band bottoms, but strong near the center.

For our case of translational symmetry, the mixed eigenstates
of HD + HA + HDA read (see, e.g., ref 37)

Figure 1. The two linearJ-aggregates (D and A) considered in this
paper. Both chains containN chromophores, labeledn, which interact
with each other through their transition dipoles (indicated by arrows).
The scale of the interactions is set by the quantitiesJD, JA, andJDA,
which give the interactions between the various pairs of nearest
neighbors. The lattice spacing within each chain is denotedh, while
the interchain distance is given byd.

〈Vnq
D 〉 ) 〈Vnq

A 〉 ) 〈Vnq
D Vmq

A/〉 ) 0 (3a)

〈Vnq
D Vmq

D/〉 ) δnm|Vq
D|2 (3b)

〈Vnq
A Vmq

A/〉 ) δnm|Vq
A|2 (3c)

|k, X〉 ) ∑
n)1

N

ækn
X |n, X〉 )

1

xN
∑
n)1

N

exp[2πikn

N ]|n, X〉 (4)

Ek
X ) εX - 2JX ∑

n)1

N/2 1

n3
cos[2πikn

N ] (5)

Jkk
DA ) JDA + 2JDA ∑

n)1

N/2 1 - 2(nh/d )2

[1 + (nh/d )2]5/2
cos(2πkn

N ) (6)
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with energies

Here, ( labels the new (decoupled) exciton bands andηk )
4|Jkk

DA|2/(Ek
D - Ek

A)2 is the quantity that characterizes the
amount of mixing at wavenumberk. The new bands are plotted
in Figure 2c for the same parameters as in Figure 2a, accounting
for an interchain interaction of strengthJDA ) 0.535JD (which
corresponds to a small interchain separation ofd ) h). The
coupling Jkk

DA is depicted as well. As we see, at the band
bottoms, the coupling is very small compared to∆ and the states
are hardly mixed (ηk)0 ) 0.2). Hence, we may still refer to the
fluorescence coming from the bottom of the upper (lower) band
as the donor (acceptor) fluorescence. At the center of the bands,
the mixing is very strong and a band anticrossing occurs. Also
after mixing, the only states with oscillator strength occur at
the band bottoms.

After accounting for the band mixing, the only remaining
dynamics that can take place is phonon-assisted scattering of
the new exciton states, leading to intraband and interband
relaxation of the excitation energy (see processes indicated in
Figure 2d). In Section IV, this approach will be further specified,
using the Fermi golden rule to account for the exciton-phonon
interaction.

To end this section, we stress that the special conditions
imposed in our model, such as chains of equal length and
periodicity, periodic boundary conditions, and the absence of
disorder in the electronic part of the Hamiltonian, may be relaxed
without affecting the above formalism and the distinction
between the perturbative and nonperturbative approach. In fact,
in all expressions presented in Sections III and IV, we will use
a general notation for the exciton wave functions,ækn

D , ækn
A , and

φνn, so that these expressions keep their validity under general-
ized conditions, as long as the proper exciton eigenfunctions
of the generalizedHD, HA, andHD + HA + HDA are used as
input. In that case,k and ν refer to the appropriate quantum
numbers, which do not necessarily have the meaning of
quasimomenta.

III. Perturbative Approach

In this section, we follow the perturbative approach outlined
in Section II.B. In this approach, the Hamiltonian of the
unperturbed system readsH0 ) HD + HA + Hbath, while H′ )
HDA + HD-bath+ HA-bathrepresents the perturbation that induces
transitions between the eigenstates ofH0. On the basis of exciton
eigenstates of the noninteracting chains (eq 4), the interchain
coupling and the exciton-bath interactions take the form

with Jkk′
DA ) ∑n,m Jnm

DAækn
D æk′m

A/ and

Figure 2. (a) Exciton bands for donor (solid) and acceptor (dashed) chains ofN ) 150 molecules in the absence of interchain coupling for the case
JA ) 1.14JD and settingεA ) εD ) 0. Note that we have only plotted half of the Brillouin zone, as it is symmetric with respect tok ) N/2. The
dots atk ) 0 indicate the positions of the absorption peaks of donor and acceptor band, respectively. (b) Enlarged view of the small-k part of panel
(a), with schematic indication of the two-step perturbative view of the interchain energy transfer described in the text. (c) Exciton bands for the
same system as in panel (a), but now after accounting for the mixing between the eigenstates of both chains due to the interchain interaction with
strengthJDA ) 0.535JD (corresponding to an interchain separationd ) h.) Thek-dependence of the interchain couplingJkk

DA is depicted as well. (d)
Enlarged view of the small-k part of the panel (c), with schematic indication of the various phonon-assisted intraband and interband relaxation
processes that together are responsible for the exciton dynamics within the nonperturbative picture.

|k,(〉 ) 1

x2 [(1 ( 1

x1 + ηk
)1/2 |k, D〉 ( (1 -

1

x1 + ηk
)1/2 |k, A〉] (7a)

Ek
( ) 1

2
(Ek

D + Ek
A) ( 1

2
(Ek

D - Ek
A) x1 + ηk (7b)

HDA ) ∑
k,k′)1

N

Jkk′
DA|k, D〉〈k′, A| + h.c. (8a)

HX-bath) ∑
k,k′)1

N

∑
q

Vkk′q
X |k, X〉〈k′, X| aq + h.c. (8b)
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with Vkk′q
X ) ∑n Vnq

X ækn
X/ æk′n

X and X ) D, A.
We aim to consider the energy transfer between any donor

state|k, D〉 and any acceptor state|k′, A〉. Because the transfer
operatorH′ does not produce such transitions within first-order
perturbation theory, we have to resort to the second-order term.
The corresponding expression for the transfer rate reads

Here,|i〉 ) |k, D〉|{nq}i〉 and |f〉 ) |k′, A〉|{nq}f〉 are the initial
and final states, respectively, where{nq} denotes the set of
occupation numbers of the vibrational modes.Ei ) Ek

D + Ωi

andEf ) Ek′
A + Ωf are the corresponding energies, withΩi and

Ωf denoting the energies of the bath in the initial and final states,
respectively. Furthermore,s labels the intermediate states|s〉,
with energiesEs and the quantityF(Ei) is the equilibrium density
matrix of the bath’s initial state. Finally, the angular brackets
indicate that we average over the stochastic realizations of the
surroundings of donor and acceptor chromophores.

By evaluating the expressions in eq 9 and accounting for the
stochastic properties of the exciton-bath couplings (eqs 3), we
obtain

whereD(ω) is the vibration spectral density of the bath, which
we assume to be identical for the donor and acceptor. It is given
by

where X ) D, A. The quantityOkk′
X denotes the probability

overlap of the donor states|k, D〉 and|k′, D〉 for X ) D and of
the acceptor states|k, A〉 and |k′, A〉 for X ) A:

Finally, nj(ωq) ) [exp(ωq/T) - 1]-1 is the mean occupation
number of the vibrational modeq (the Boltzmann constantkB

) 1).
The transfer rate, eq 10, reflects the two-step processes

introduced in Section II.B. The first term corresponds to the
process in which the initial exciton of wavenumberk on the
donor chain is scattered into the exciton statek′′ on the donor
under the creation or annihilation of a phononq, followed by
the transfer of the excitonk′′ to an excitonk′ on the acceptor
chain. Likewise, the second term in eq 10 derives from the
process, in which the donor’s initial excitonk is first transferred
to the acceptor chaink′′, followed by a phonon-induced
scattering to the final acceptor statek′.

Equation 10 clearly indicates that, in general, the energy
transfer may occur between any pair of donor and acceptor
states, independently of whether those states are optically

allowed or forbidden: neither the probability overlapOkk′
X nor

the transfer interactionsJkk′
DA vanish for generalk and k′.

Equation 10 reduces to Fo¨rster’s formula only if the distanced
between the chains is larger than their lengthsNh. Indeed, in
that case, the interchain interactions are well-approximated by
Jkk′

DA ) (µDµA/d3) ∑n)1
N ækn

D/ ∑m)1
N æk′m

A , where the sums cor-
respond to the dimensionless transition dipole moments of the
states|k, D〉 and |k′, A〉. For our ordered chains, these dipole
moments are giant fork ) k′ ) 0, while they vanish for all
other states. Thus, the termJk)0,k′)0

DA is dominant. The energy
transfer between the chains may then be viewed as Fo¨rster-
type due to the overlap of the donor’s sideband fluorescence
and the zero-phonon acceptor absorption and vice versa.

The importance of the forbidden exciton states in the energy
transfer between excitonic systems was mentioned for the first
time by Sumi and co-workers18,19and later on received attention
from several authors.20-24,34 We note that, in refs 18 and 19,
the problem was treated in a more general way than we did
above: only the transfer interactionsJnm

DA were considered as
perturbations, while the exciton-bath couplings were accounted
for by a self-consistent second-order evaluation of the self-
energy. We do not use such a self-consistent treatment of the
exciton-bath interaction in this paper, as it turns out that it is
impossible to combine it with the nonperturbative treatment of
the transfer interactions, which we will investigate in the next
section.

The expression forWk′A,kD obtained above allows one to
calculate the energy transfer rate between any pair of donor
and acceptor states. From the occurrence of the energy
denominators in eq 10, however, it is clear that the perturbative
approach of the interchain interactions is restricted to situations
where the donor and acceptor bands do not cross. A band
crossing or (for disordered systems) a band overlap will lead to
small denominators, breaking the result of perturbation theory
and giving rise to rates that are large compared to the energy
spacing of the states involved. This motivates the nonpertur-
bative approach presented in the next section.

IV. Nonperturbative Approach

In this section, we work out in more detail the nonperturbative
approach outlined in Section II.B, in which the interchain
interactions are accounted for exactly through mixing of the
exciton bands of the isolated chains. We will label the 2N mixed
eigenstates ofHex ) HD + HA + HDA with a Greek indexν )
1, ..., 2N; they take the form

where|n〉 ) |n, D〉 for n ) 1, ...,N and |n〉 ) |n - N, A〉 for
n ) N + 1, ..., 2N. The corresponding energy is denotedEν.
For the special highly symmetric model considered in this paper,
the explicit forms of the eigenstates and energies have been
given in Section II.B already, where theν index should be
identified with the k( labeling. In the current section, the
notation is kept general.

In the new representation, the exciton-bath coupling, which
is the perturbation that causes the exciton dynamics, reads

with Vµνq ) ∑n)1
2N Vnqφµn

/
φνn, where, as before, the coupling

|ν〉 ) ∑
n)1

2N

φνn|n〉 (13)

HD-bath+ HA-bath) ∑
µ,ν)1

2N

∑
q

Vµνq|µ〉〈ν|aq + h.c. (14)

Wk′A,kD ) 2π ∑
f

∑
i

F(Ei)〈| ∑
s

〈f|H′|s〉〈s|H′|i〉
Ei - Es

|2〉
× δ(Ef - Ei) (9)

Wk′A,kD )

D(|Ek
D - Ek′

A|)[∑k′′

|Jk′k′′
DA |2

(Ek′
A - Ek′′

D )2
Ok′′k

D + ∑
k′′

Ok′k′′
A

|Jk′′k
DA|2

(Ek
D - Ek′′

A )2]
× {1 + nj,(Ek

D - Ek′
A), Ek

D > Ek′
A

nj(Ek′
A - Ek

D), Ek
D < Ek′

A (10)

D(ω) ) 2π ∑
q

|Vq
X|2δ(ω - ωq) (11)

Okk′
X ) ∑

n)1

N

|ækn
X |2|æk′n

X |2 (12)
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strengthVnq is considered a stochastic function of the site index
n with properties similar to those given by eqs 3:〈Vnq〉 ) 0
and 〈VmqVnq

/ 〉 ) δmn|Vq|2.
As discussed in Section II.B, the dynamics of the excitons

in the new representation is caused by their scattering on
phonons. To describe this process, we will use a Pauli master
equation for the populationsPν(t) of the exciton states:

Here,γν ) γ0Fν is the radiative decay rate of the state|ν〉, where
γ0 is this rate for a single chromophore (for simplicity, taken
identical for donor and acceptor) andFν ) |∑n)1

2N
φνn|2 denotes

the dimensionless oscillator strength of the exciton. Furthermore,
the scattering ratesWµν are obtained by using Fermi’s golden
rule, taking into account the stochastic properties of the exciton-
bath coupling strengthVqn. They are given by35,36

whereD(ω) is the spectral density of the bath, given by eq 11
with Vq

X replaced byVq. Furthermore,Oµν is the probability
overlap of statesµ andν,

The explicit expression forOµν in the case of homogeneous
chains of equal length is given in the Appendix.

To end this section, we note that, in general, the best way to
probe the excitation energy transfer is to follow the fluorescence
kinetics of donor and acceptor. Even if we allow for inhomo-
geneity, two coupled aggregates with a clear separation between
their individualJ-bands will lead to a mixed system that still
has twoJ-bands, possibly renormalized in magnitude and shifted
somewhat (see Figure 2 for the special case of ordered chains).
In terms of the energies of the mixed eigenstates and the solution
to the Pauli master equation, the time-dependent fluorescence
spectrum reads

where the brackets denote the average over disorder, if present.
One may then define the total donor (acceptor) fluorescence as
the integral over the highest (lowest) peak in the spectrum. These
two quantities will be analyzed in Section V as a function of
time following some initial excitation of the donor chain.

V. Results and Discussion

We now apply the formalism developed in the previous
sections to study the energy transfer rates and fluorescence
kinetics for the model introduced in Section II, namely two
parallel homogeneous chains ofN chromophores with periodic
boundary conditions. In all examples, we will chooseN ) 150,
εA ) εD, andJA ) 1.14JD, which implies thatµA ) 1.07µD; the
value of JDA depends on the interchain distanced, which we
will vary. Given the above parameters, we haveJDA ) (µA/
µD)(h/d)3JD/2 ) 0.535(h/d)3JD.

For the spectral density of the bath, we choose

which represents a model function with Ohmic (i.e., linear)
behavior38 for frequencies up to a cutoff frequencyωc. The
overall prefactorW0 is a measure of the exciton scattering
amplitude imposed by the phonons. A spectral density similar
to eq 19, withωc on the order of 100 cm-1, has been used
successfully to fit the optical dynamics in photosynthetic antenna
complexes.39-42 Also, eq 19 without a cutoff has been used to
explain the optical dynamics of aggregates of the dye 3,3′-bis-
(sulfopropyl)-5,5′-dichloro-9-ethylthiacarbo-cyanine (THIATS)
measured between 0 and 100 K.43 In the remainder of this paper,
we will useωc ) 0.2JD, which is reasonable forJ-aggregates,
whereJD typically lies in the range 500-1000 cm-1. W0 and
JD will be kept arbitrary, whereW0

-1 will serve as unit of time
andJD as unit of temperature. For example, forJD ) 800 cm-1,
the choiceT/JD ) 0.25 agrees with room temperature.

The above specifies all input necessary to determine the
transfer rateWk′A,kD (eq 10) between arbitrary states in the
perturbative approach, as well as the relaxation ratesWµν (eq
16) in the nonperturbative treatment. In the latter case, the
transfer from the donor to the acceptor involves the relaxation
rateWk′-,k+.

A. Nonperturbative-to-Perturbative Crossover.To assess
the validity of the perturbative approach, we calculate the total
transfer rate from donor to acceptor chain within both ap-
proaches, assuming that the initial exciton populations of the
donor manifold are in thermal equilibrium, i.e., we assume that
the intraband relaxation is fast compared to the energy transfer
process. For the nonperturbative approach, this means that we
use as an initial conditionPk+(t ) 0) ) Z+

-1 exp(-Ek+/T),
whereZ+ ) ∑k exp(-Ek+/T), while the acceptor band is not
populated,Pk-(t ) 0) ) 0. Then, the effective quantity

may be associated with the energy transfer rate from the donor
to the acceptor band at the initial stage of the transfer when the
back transfer is negligible. In the perturbative treatment, the
analogue of this effective transfer rate is given by

with ZD ) ∑k exp(-Ek
D/T). By construction,W-+ f WAD in

the limit of large interchain distanced, i.e., small interchain
interactions (ηk , 1).

Figure 3 shows the results of our calculations forW-+ (thick
lines) andWAD (thin lines) as a function of the interchain
distance d. From this figure, it is clearly seen that the
perturbative approach strongly overestimates the energy transfer
rate for smalld, as expected. It is also seen that in the limit of
large d, both treatments indeed are in perfect agreement.
However, the value ofd below which the perturbative approach
fails, increases for growing temperature. This finds its natural
explanation in the band mixing. Let us first consider the situation
at T ) 0. Then, only relaxation from the donor band edge state
|0 +〉 to states in the acceptor band below the donor band edge
contribute to W-+. For our choice of parameters, even at
distances as small asd ) h, these states in the vicinity of the
band edges are only weakly coupled (ηk≈0 is rather small, see

Ṗν ) -γνPν + ∑
µ

(WνµPµ - WµνPν) (15)

Wµν ) D(|Eµ - Eν|)Oµν

× {1 + nj(Eν - Eµ), Eν > Eµ

nj(Eµ - Eν), Eµ > Eν
(16)

Oµν ) ∑
n)1

2N

|φµn|2|φνn|2 (17)

I(E, t) ) 〈∑
ν

γνPν(t) δ(E - Eν)〉 (18)

D(ω) ) W0
ω
ωc

exp(- ω
ωc

) (19)

W-+ )
1

Z+
∑
k,k′

exp(-
Ek+

T )Wk′-,k+ (20)

WAD )
1

ZD
∑
k, k′

exp(-
Ek

D

T
)Wk′A,kD (21)
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Section II.B). This explains why the difference between the
perturbative and nonperturbative results quickly vanishes ford
> h. This difference only is considerable ford < h because the
interchain interactions then quickly grow (∼1/d3), increasing
the band mixing even for the band edge states.

Upon increasing the temperature, the initial population will
spread to higherk states in the donor band. For these states,
the band mixing becomes increasingly more important, even
for growing values of the distanced. This effect finds its origin
in the fact that the energy separation between the isolated donor
and acceptor bands decreases with growingk, while the
interchain interactionJkk

AD grows (cf. Figure 2). This explains
why the range ofd over which the perturbative approach fails
increases with growing temperature.

It is of interest also to compare the above-derived energy
transfer rates with Fo¨rster’s formula, which is obtained from
eq 21 under the assumption thatJkk

DA ) (µDµA/d3) Nδk0, i.e., by
viewing the donor and the acceptor chain as two giant dipoles,
irrespective of their separation. Here, we limit ourselves to the
rate at T ) 0, for which Förster’s rate reduces toWAD

F )
1911W0(h/d)6. This result is plotted as a function ofd in Figure
4, together withW-+ andWAD at T ) 0. Clearly, the Fo¨rster
result gives an enormous overestimation of the exact as well as
the perturbative rate for interchain distances smaller than roughly
the chain length. This is not surprising because, at distances
small compared to the chain size, theJkk′

DA defined below eq 8a

does not reduce to the interaction between the excitons’
transition dipoles.

B. Fluorescence Kinetics.In the above, we characterized
the excitation energy transfer by a single rate, which is possible
if we assume fast equilibration inside the donor and the acceptor
band and neglect the back transfer from the acceptor to the
donor. In general, one cannot rely on these assumptions. As
we mentioned in Section II.B (also see Section IV), the most
straightforward way to characterize the energy transfer between
donor and acceptor in experiment is to follow the fluorescence
kinetics of both subsystems. In this section, we will use this
approach. In all cases, the calculations were done using the
nonperturbative method, i.e., accounting for band mixing and
for relaxation within and between the mixed bands. We will
not assume a priori that equilibration takes place on a time scale
shorter than the one for energy transfer. As only the bottom (k
) 0) states of the mixed bands have oscillator strength, both
the absorption and the fluorescence spectrum consist of a single
δ peak. Thus, the total donor and acceptor fluorescence intensity
as a function of time are given byID(t) ) γ0+P0+(t) and IA(t)
) γ0-P0-(t), respectively. These are the quantities that will be
analyzed in the following and related to the intraband relaxation
and excitation energy transfer.

1. Resonant Excitation.We first study the fluorescence
kinetics for resonant excitation, i.e., assuming that initially the
superradiant state|0+〉 of the donor band is excited by the pump.
Following this excitation, the population of this state has two
channels to relax, namely scattering to higher states in the donor
band (intraband relaxation) or scattering to the acceptor band
(energy transfer). Once transferred to the acceptor band, the
excitation may undergo relaxation within that band, or it may
transfer back to the donor. Figure 5 shows the donor fluores-
cence kineticsID(t) resulting from the interplay of these
processes at different temperatures and interchain distances,
calculated by solving eq 15 with the above initial condition. In
doing so, we neglected the radiative decay ratesγν of the exciton
states, assuming this relaxation channel to be much slower than
all the others. As a result, at nonzero temperatures,P0+(t)
eventually reaches a finite value, which is in accordance with
the Boltzmann equilibrium over donor and acceptor states. We
notice that even the neglect of the superradiant emission rate
for chains on the order of 100 molecules (10-100 ps lifetime)
does not limit the validity of the results presented in this section.
Typical values for 1/W0 are in the 1-10 fs time scale,43 so that
at all times considered in Figures 5 and 6 the radiative decay
indeed has a negligible effect.

In Figure 5b, c, and d, one can distinguish two stages in the
donor fluorescence kinetics prior to reaching the Boltzmann
equilibrium. These stages are characterized by different time
scales. The first stage, indicated by I in Figure 5c, is a fast
intraband relaxation. Here, the initially created population of
the superradiant donor state|0, +〉 rapidly scatters to the higher-
lying dark states|k, +〉, resulting in a fast decay of the donor’s
fluorescence intensity. Obviously, this process gets more
pronounced with increasing temperature. The second stage,
indicated by II in Figure 5c, is noticeably slower. This stage is
associated with the interband relaxation, i.e., with the energy
transfer between the donor and acceptor bands. We note that at
T ) 0 the upward intraband relaxation is absent and the
monoexponential fluorescence decay directly reflects the transfer
rate calculated through eq 20 atT ) 0.

As is seen, stages I and II are easily separated as long as the
interchain distanced > h; it is then possible to determine a
meaningful effective energy transfer rate from the stage II decay

Figure 3. Donor to acceptor energy transfer rate in the nonperturbative
approach (thick lines) and the perturbative approach (thin lines) as a
function of the interchain distanced for various temperaturesT. These
rates are given byW-+ (eq 20) andWAD (eq 21), respectively. All
parameters as given at the beginning of Section V.

Figure 4. Energy transfer rate as a function of interchain distance at
T ) 0 according to Fo¨rster’s formula (dashed line, see text for
definition) compared to the exact result (solid, eq 20) and the
perturbative one (dotted, eq 21). All parameters as given at the
beginning of Section V. The inset shows the convergence to Fo¨rster’s
result for very large distances.
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of the donor fluorescence. Atd ) h (Figure 5a), it is hardly
possible to distinguish the two stages; the fluorescence kinetics
only exhibits a fast initial drop, almost directly followed by the
Boltzmann plateau. The reason is that, ford j h, the bare donor
and acceptor bands are strongly mixed (see Figure 3). As a
result, the intra- and interband relaxation rates are of the same
order, making it impossible to distinguish their signatures in
the fluorescence kinetics. We also observe that the intraband
relaxation is much more sensitive to changing the temperature
than the energy transfer process. This is due to the fact that
this relaxation is directly sensitive to the number of thermally
accessible dark states in the donor band.

The above statement that the stage II part of the donor kinetics
indeed yields a meaningful measure for the energy transfer rate
to the acceptor is corroborated by Figure 6, in which for three
different separations at two different temperatures, the donor
fluorescence kinetics is plotted again (thick solid curves) and
is compared to the monoexponential decay obtained through
eq 20 at the same temperature (dashed line). In Figure 6b, c, e,
and f, stage II can be distinguished, and this part of the kinetics
is (roughly) parallel to the monoexponential curve. The agree-
ment deteriorates with decreasing separationd and with growing
temperature. In panel (e), stage II already is rather hard to see,
and the agreement with the monoexponential curve is only fair.

Figure 5. Kinetics of the donor fluorescenceID(t) following resonant excitation [Pk+(0) ) δk0] for different temperaturesT and distancesd between
the chains, as indicated in the panels. All other parameters as given at the beginning of Section V. The thick line in panel (c) separates the two
kinetic stages (I and II) distinguished in the text.

Figure 6. Kinetics of the donor fluorescence for resonant excitation (thick solid curve) and off-resonant excitation (thin solid curve) calculated for
various distances (d/h ) 1, 2, and 5 from left to right) and temperatures (T ) 0.05JD and 0.25JD for top and bottom rows, respectively). All other
parameters as given at the beginning of Section V. The thick dash-dotted curve shows the difference between the acceptor’s fluorescence intensity
and its thermal equilibrium value (see text). Finally, the straight lines represent the donor decay assuming fast equilibration over the donor band
in the nonperturbative case (dashed curve, eq 20) and the perturbative limit (dotted curve, eq 21).

Energy Transfer between Multichromophoric Systems J. Phys. Chem. B, Vol. 110, No. 38, 200618825



In panels (a) and (d), stage II cannot be distinguished, and no
part of the fluorescence kinetics shows a reasonable agreement
with the monoexponential decay line.

From the above, it may be concluded that in the case of strong
interchain coupling, under conditions of resonant excitation, the
kinetics of the donor fluorescence is not a good tool to determine
the energy transfer rate. One may expect that, under these
conditions, the acceptor fluorescence yields a better tool because
this quantity is influenced less directly by the upward relaxation
within the donor band. For this reason, we also plotted in Figure
6 the acceptor fluorescence as a function of time (thick dash-
dotted curves). These curves representγ0-[P0-(t f ∞) -
P0-(t)], whereP0-(t f ∞) equals the thermal equilibrium value.
We observe that, even in the case of strong coupling and high
temperature, the acceptor fluorescence indeed seems to be
affected less by the initial thermal relaxation part and more
directly reflects the energy transfer rate as calculated assuming
equilibration (dashed lines).

2. Off-Resonant Excitation.We next turn to the case of off-
resonant excitation. To this end, we also plotted in Figure 6
(thin solid curve) the donor fluorescence after the system has
been brought (artificially) in the initial state withPk+(t) ) δk,N/2

andPk-(t) ) 0, i.e., the center state of the donor band is excited.
As for the case of resonant excitation, we observe that, at low
temperatures and (or) large interchain separations, the kinetics
exhibits two stages prior to reaching the Boltzmann plateau.
The first stage, intraband relaxation, now manifests itself through
the increase of the donor fluorescence from its initial value zero
because the donor population needs time to reach the superra-
diant bottom state of the donor band. We note that, despite the
many relaxation steps needed to reach the bottom, for low
temperatures, this first stage occurs on the same time scale or
even faster than for the case of resonant excitation. As a result,
the stage II process, related to the energy transfer, reflects the
same time scale as for resonant excitation.

By contrast, at higher temperatures, the distinction between
the first and second stage of the kinetics is less clear: there is
a more gradual change between the two, which also creates the
impression of a longer time scale for the intraband relaxation.
We explain this as follows. As near the band center the mixing
of donor and acceptor bands is very strong, the intraband and
interband relaxation there happen at the same time scale. As a
result, off-resonant excitation is followed by very fast distribu-
tion of the excitation over donor and acceptor bands, in both of
which the population relaxes to the bottom. Thus, as opposed
to the case of resonant excitation, the energy transfer problem
at the bottom of the band takes place in a situation where a
large part of the population already has ended up in the acceptor
band. In this situation, the back transfer from the acceptor to
the donor, which takes place at temperatures on the order of
the band edge detuning∆, feeds the donor fluorescence after
the initial relaxation, which prolongs the time during which the
donor fluorescence increases and slows down its overall kinetics.
By comparing to the dashed lines in Figure 6, we observe that,
at the higher temperatures, no part of the kinetics curve for off-
resonant excitation reflects the energy transfer rate calculated
through eq 20. Thus, at high temperatures (comparable to∆ or
higher), off-resonantly excited donor fluorescence seems not
to be a good ruler for the energy transfer rate. At low
temperatures, this technique is more useful and then yields the
same transfer rate as donor or acceptor fluorescence after
resonant excitation of the donor.

Without showing details, we mention that, in the case of off-
resonant excitation, the kinetics of the acceptor fluorescence

suffers from the interplay between intraband and interband
transfer and therefore does not yield a proper tool for measuring
the energy transfer rate either.

VI. Summary and Conclusions

We theoretically studied the excitation energy transfer
between two linear chains of dye molecules, whose primary
excitations are Frenkel excitons. The superradiant band bottoms
of both chains were detuned by a value∆; the chain with the
higher (lower) band bottom was considered as the energy donor
(acceptor). In addition to electronic interchain interactions, our
theory accounts for weak exciton-phonon coupling. Two
methods were investigated. In the perturbative method, we used
the common approximation of treating the interchain interactions
as a perturbation, which also is the basis for the standard FRET
formalism. In the nonperturbative approach, we allowed for
mixing of the donor and acceptor exciton bands and considered
the various phonon-induced relaxation mechanisms in and
between these bands to describe the energy transfer process.

By using the perturbative approach, we have confirmed that
energy transfer between multichromophoric systems can occur
from and toward dipole-forbidden states.18-24,34 We have
focused, however, on two other aspects specific to multichro-
mophoric systems, namely the effects of band mixing and
intraband relaxation on the energy transfer. The first has been
studied by comparison of the perturbative and the nonperter-
bative method. Not surprisingly, we find that the perturbative
approach loses its validity when the interchain distance decreases
(and the interchain interactions grow). The perturbative result
for the energy transfer rate then strongly overestimates the exact
one that accounts for band mixing. The distance at which the
perturbation theory breaks down increases with temperature
because the effect of band mixing is larger for the states inside
the bands, which get populated upon heating. We also compared
our results to the standard FRET theory, which turns out to lose
its validity as soon as the interchain separation falls below the
chain length (or exciton delocalization length, in case one
considers disordered chains).

From our study it turns out that the process of energy transfer
between multichromophoric systems is strongly affected by
intraband relaxation. This is most obvious in the kinetics of the
donor and acceptor fluorescence after pulsed excitation. As these
quantities are natural choices for probing energy transfer, it is
important to realize that this kinetics does not only reflect the
actual transfer process of interest, but also is affected by thermal
relaxation inside the donor and acceptor bands. Only if both
processes can be separated, due to different time scales, one
may extract the energy transfer rate from such experiments. Our
results suggest that the best way of determining the transfer
rate between twoJ-aggregates is to measure the fluorescence
kinetics of the acceptor’sJ-band after resonant excitation of
the donor band. Under these conditions, the acceptor’s fluores-
cence intensity grows toward its equilibrium value almost
monoexponentially, allowing for a meaningful definition of the
transfer rate. We also found that the thus extracted rate agrees
well with the transfer rate obtained when assuming equilibration
over the donor band. If, because of relaxation to the ground
state, measuring the acceptor’s equilibrium fluorescence intensity
turns out to be a problem, one may also resort to analyzing the
decay of the time derivative of this intensity. The first
component of that decay should then reflect the transfer rate,
while the second reflects the relaxation to the ground state.

We note that, throughout this paper, we have neglected the
homogeneous line widthsΓk of the individual exciton transitions.
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Within our model, these widths result from exciton-phonon
scattering.35 It may be estimated that, within the context of
excitation energy transfer, these widths may indeed be neglected
(i.e., Γk , Jkk

DA) as long asW0 , 2πJD
2/ωc.

The results of this paper were derived by using the simplest
possible model of two interacting homogeneous chains with
periodic boundary conditions. The same issues of band mixing
and intraband relaxation will play an important role for more
general systems where one allows for energy and interaction
disorder and (or) for different geometries. In fact, all expressions
in Sections III and IV also hold for such more general situations,
provided that the various wave functionsækn

D , ækn
A , or φµn as

well as the energiesEk
D, Ek

A, or Eµ are replaced by the
eigenvectors and eigenenergies of the corresponding exciton
Hamiltonian. An example of great interest to analyze next is a
pair of concentric cylindrical aggregates. As explained in the
Introduction, our model of two parallel linear aggregates was
inspired by this experimentally realized situation.32,33 Varying
the distance between both walls in this system is possible by
altering molecular side groups and (or) changing the solvent.
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Appendix A: Some Explicit Expressions for
Homogeneous Chains

In this Appendix, we present analytical expressions for the
probability overlap functions valid for the ordered case.

By substituting the eigenfunctions eq 4 into eq 12, the
probability overlapOkk′

X is obtained as

Likewise, from eqs 7a and 17, we obtain the probability overlap
Oµν (with µ and ν chosen from (k, +) or (k, -)) in the form
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