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Abstract

The stored energy of cold work is calculated for planar single crystals under tensile loading with plastic deformation occurring
through dislocation glide. Superposition is used to represent the solution of boundary value problems in terms of the singular fields
for discrete dislocations and image fields that enforce boundary conditions. Constitutive rules are used which account for the effects
of line tension and three-dimensional dislocation interactions including dynamic junction formation. The stored energy is calculated
both under load and after load removal and methods are devised to estimate the local plastic dissipation and to separate out the
contribution of long-range stresses to the energy stored. Calculations are carried out up to imposed strains of 0.05–0.1 and the effects
of strain level, dislocation structure and crystal orientation on the evolution of the stored energy are investigated. Although the flow
stress and work hardening rate depend mainly on the dislocation density, the stored energy of cold work depends on details of the
dislocation structure that forms, with any long-range dislocation stress field playing a significant role. The calculations exhibit a
connection between the stored energy of cold work and the Bauschinger effect. It is also found that local energy storage values
can differ substantially from the average value.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A portion of the mechanical energy expended in plas-
tically deforming a solid is elastic and recoverable, while
the remainder is the plastic work. Generally most, but
not all, of the plastic working is converted into heating.
The plastic work not converted into heat is the stored
energy of cold work and, at least in crystalline metals,
is the energy stored in an evolving defect structure.

The partitioning of the plastic working into heat gen-
eration and energy storage is of interest in a wide range
of contexts. The defect structure in a ductile metal that

has been deformed and unloaded is generally unstable
so that, with time, it evolves so as to reduce the stored en-
ergy. For example, in polycrystalline metals the stored
energy of cold work plays a significant role in driving
recrystallization. Knowledge of the fraction converted
to heat is needed for prediction of thermoplastic coupling
phenomena such as the thermal softening behavior that
promotes mechanical instabilities, e.g., necking and
shear banding, and that affects the deformation mode
occurring in machining and penetration. Also, since the
stored energy is associated with an internal stress state,
there is a direct connection between it and the Bauschin-
ger effect. Because of the broad significance of the stored
energy of cold work, there is a large literature aimed at its
experimental determination, see, e.g., [1–6].

1359-6454/$30.00 � 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actamat.2005.07.011

* Corresponding author. Tel.: +1 979 845 1602.
E-mail address: benzerga@aeromail.tamu.edu (A.A. Benzerga).

Acta Materialia 53 (2005) 4765–4779

www.actamat-journals.com

mailto:benzerga@aeromail.tamu.edu


In general, the stored energy of cold work in metals
arises from the evolution of a variety of defects includ-
ing, for example, twins, stacking faults and grain or
sub-grain boundaries as well as dislocations. The rate
of accumulation of stored energy varies with the strain,
strain-rate and stress state. Thus, in order to determine
the evolution of the stored energy, the evolution of the
defect structure needs to be predicted for the given load-
ing conditions. Calculations of the stored energy, e.g.,
[7–10], are generally carried out within a continuum
framework with internal variables used to characterize
the defect evolution. Exceptions include [11] where a
method is developed to calculate the stored energy from
experimentally determined load–displacement responses
and [12] where the stored energy is specified through a
constitutive relation within the framework of multiple
evolving natural configurations.

Here, we confine attention to circumstances where
the only defects are dislocations and calculate the stored
energy of cold work using discrete dislocation plasticity,
e.g., [13–15]. Discrete dislocation plasticity calculations
give the dislocation positions and, correspondingly, the
spatial distributions of stress and strain at each time step
so that, within a purely mechanical framework, the
stored energy is obtained from the difference between
the internal energy associated with the dislocation struc-
ture in the current state and that in the initial state. Since
the work input is readily determined at any stage of the
loading history, the portion of the plastic work available
for heat generation is simply the input mechanical work
minus the stored energy of cold work. Thus, discrete dis-
location plasticity provides a framework for the direct
calculation of the stored energy of cold work.

The methodology is illustrated for single crystals sub-
ject to tensile loading. The calculations are carried out
for planar model crystals using physically based disloca-
tion constitutive rules that incorporate key three-dimen-
sional effects such as dynamic junction formation and
destruction, dynamic source production and line tension
[15]. The stored energy is calculated in both the loaded
state and the unloaded state. The effects of strain level,
dislocation structure and crystal orientation on the evo-
lution of the stored energy are explored.

2. Problem formulation and analysis

Calculations are carried out assuming small strains
and rotations for a planar model fcc crystal having
dimensions 2l · 2h, subject to plane strain uniaxial ten-
sion in the x1–x2 plane, Fig. 1(a). Deformation is im-
posed by prescribing a uniform displacement u1 = ±U

along x1 = ±l, where the shear traction vanishes. The
lateral surfaces at x2 = ±h are traction free. There are
two slip systems oriented at ±|u0| with u0 the angle be-
tween the tensile x1-axis and the ½1�12� direction; see

Fig. 1. The orientations analyzed are: (i) near ½�110� as
in [15] with u0 = 35.25�; and (ii) near [001] with
u0 = 125.25�.

The two-dimensional, plane strain discrete disloca-
tion formulation of [13] is used together with its recent
extension [15] to incorporate some key aspects of
three-dimensional dislocation interactions and line ten-
sion. Plastic flow arises from the glide of edge disloca-
tions, modeled as line singularities in an elastic
continuum, on specified slip planes. At time t, the body
is in equilibrium with the applied loads and displace-
ments, and the position of each dislocation in the body
is known. An increment of loading is applied and at
each time step obtaining the solution involves: (i) deter-
mining the displacement and stress fields for the current
dislocation arrangement; (ii) determining the forces on
the dislocations; (iii) determining the rate of change of
the dislocation structure.

The glide component of the Peach–Koehler force, fi,
on dislocation i is given by

f i ¼ mi � r̂þ
X
j 6¼i

rj

 !
� bi; ð1Þ

where rj is the stress field of dislocation j, in its current
configuration, but in an infinite homogeneous medium
[16], r̂ is the image stress determined from a finite ele-
ment computation, mi is the slip plane normal and bi

the Burgers vector having magnitude |bi| = b.

Fig. 1. Geometry of the tension problem for a planar model fcc crystal
oriented for double slip. (a) Definition of the crystal orientation with
Du = 109.5� and u0 referring to the angle between the loading x1-axis
and the ½1�12� direction. (b) Configuration for ½�110� tension with
u0 = 35.25�. (c) Configuration for [001] tension with u0 = 125.25�.
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The formulation of the constitutive rules follows that
in [15] where the physical background for the rules is gi-
ven along with additional references. A key event for the
creation of dynamic obstacles and sources is junction
formation. This is taken to occur when two dislocations
gliding on intersecting slip planes approach within a
specified distance dq from the intersection point of the
slip plane traces. Two types of junctions can form:
one, referred to as an obstacle, can be destroyed by
the local stress exceeding a specified value; the other, re-
ferred to as an anchoring point, can only be destroyed
by annihilation of one of the dislocations forming the
junction. Annihilation occurs between coplanar disloca-
tions having opposite signed Burgers vector when they
are within a prescribed critical distance Le. Whether a
junction acts as an anchoring point or an obstacle is
treated as a statistical event. The probability of forming
an anchoring point has the prescribed value p.

Source operation is a process involving two junctions
on the same slip plane, one of which must be an anchor-
ing point. In plane strain, a dislocation dipole is nucle-
ated at source I if the value of the Peach–Koehler
force at the junction exceeds the value sInucb, during a
time tInuc. The nucleation stress is taken to be given by

sInuc ¼ b
lb

SI ; ð2Þ

whereSI is the distance to the nearest junction in any of
the two intersecting planes and b a factor of order unity.
The nucleation time is given by

tInuc ¼ c
SI

jsI jb ; ð3Þ

where sI is the current resolved shear stress at the loca-
tion of junction I and c is a material characteristic factor
taken here as a constant. Note that longer segments are
activated at lower stresses, but nucleation takes a longer
time. The nucleated dislocations form a dipole and are
located on either side of the activated segment.

Obstacle I is destroyed if the Peach–Koehler force
acting on either dislocation comprising the junction at-
tains or exceeds the breaking force sIbrkb specified by

sIbrk ¼ b
lb

SI ð4Þ

with b and SI as above. When the junction is destroyed,
the dislocations forming the junction, as well as those
pinned at the junction, are released and free to glide
on their respective slip planes.

In the calculations, two possibilities are considered:
(i) junctions are not destroyed by annihilation so that
an obstacle I can only be destroyed if sIbrk is reached
or exceeded but anchoring points cannot be destroyed;
and (ii) junctions, either obstacles or anchoring points,
can be destroyed by annihilation of one of the two dis-
locations forming it.

To represent the energy cost associated with loop
expansion in two dimensions, a configurational force
of magnitude jLibij is introduced that points from one
dislocation, i, comprising the dipole toward the other
and Li is written as

Li ¼ �a
ljbij
Si

d

; ð5Þ

where a is a proportionality factor, hereafter called the
line tension parameter, and Si

d is the algebraic distance
between the dislocations, members of the same dipole,
so that the sign of Li depends on the sign of Si

d. Note
that Li has units of a stress and that the work of the
restoring force, Libi, is the additional energy per unit
length alb2 [15,17].

The dislocation glide relation is written in the form

Bvi ¼ si þLi
� �

bi ð6Þ

with vi the glide velocity of dislocation i and B the drag
coefficient.

There are no mobile dislocations initially but a num-
ber of initial point sources and point obstacles, ran-
domly located on the slip planes, is specified. These
initial sources and obstacles do not evolve with the
deformation history so that their number is fixed
throughout a calculation.

Each initial source nucleates a dislocation dipole
when the resolved shear stress at the location of source
i, exceeds the value si0n for a prescribed time t0n. The size
of the generated loop, Li

0n, which corresponds to the di-
pole separation, is inversely proportional to the nucle-
ation stress [13]. Dislocations can get pinned at the
initial point obstacles and are released once the Peach–
Koehler force at the location of the obstacle attains
the value sobsb.

3. Calculation of the stored energy

Attention is restricted to quasi-static deformations in
the context of a purely mechanical theory, so that the
power balance can be written asZ
S
t � _udS ¼

Z
V

_/dV þ
Z
V
fdV ; ð7Þ

where the term on the left-hand side is the power
expended by the external loads in the absence of body
forces, _/ is the rate of change of the free energy den-
sity, f is the dissipation rate per unit volume, and V

and S are, respectively, the volume and surface of the
sample. In a more general thermodynamic framework,
Eq. (7) would contain additional heat flux and entropy
production terms but the purely mechanical calcula-
tions here provide no basis for including these
contributions.
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For the materials under consideration,

U ¼
Z
V
/dV ¼ 1

2

Z
V
r : edV ð8Þ

is the free energy of the sample, with

r ¼ L : e; ð9Þ
where L is the tensor of elastic moduli. The free energy
density / is a state function of the lattice strain e, so
that, when dislocations are present in V, the free energy
depends on the dislocation positions.

Using superposition, e.g., r ¼ ~rþ r̂ with the ð~Þ-fields
being the superposition of individual dislocation fields
in an infinite medium and the ð̂ Þ-fields image fields that
enforce the boundary conditions, Eq. (8) is written as

U ¼ 1

2

Z
V
ð~rþ r̂Þ : ð~eþ êÞdV . ð10Þ

Since the stress and strain fields associated with the indi-
vidual dislocations have a 1/r singularity, the value of U
is not finite. We exclude a region around each disloca-
tion core and attribute a finite energy to this region
which is therefore proportional to the dislocation line
length. Explicitly, from [18] and [13] with the core en-
ergy added,

U ¼ 1

2

Z
V
r̂ : êdV þ 1

2

Z
V
ðr̂ : ~eþ ~r : êÞdV

þ 1

2

XX
j 6¼k

Z
V
rj : ek dV

þ
X
i

1

2

Z
V̂
i
ri : ei dV þ 1

2

Z
Ci
ti � ui dS

� �
þ Ei

c

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Es

l

;

ð11Þ

where the sums are over all dislocations in V, Ci is the
surface of the excluded region around the core of dislo-
cation i and V̂

i ¼ V n V i, with Vi the excluded core vol-
ume. The term in curly brackets in Eq. (11) gives the
self-energy and core energy contributions which to-
gether are termed the line energy, Es

l . The remaining
terms in Eq. (11) include the dislocation interaction en-
ergy, the energy of the image field and the interaction
energy between the image field and the individual dislo-
cation fields. In a two-dimensional plane strain formula-
tion, the edge dislocation dipoles are regarded as a
planar cut through a dislocation loop. The separation
of the dislocation dipoles then corresponds to loop
expansion. The term Ei

c is a constitutive addition to ac-
count for the energy associated with the corresponding
core expansion, which is not accounted for in the elastic
representation of dislocations. The calculation of Es

l is
described in the Appendix.

Next consider two stages in a program of loading:
one at time t1, the other at time t2 and define,

D ¼
Z
V
fdV ; _W ¼

Z
S
t � _udS. ð12Þ

Integrating Eq. (7) givesZ t2

t1

_Wdt þ Uðt1Þ � Uðt2Þ ¼
Z t2

t1

Ddt. ð13Þ

The free energy change, U(t2) � U(t1), represents the en-
ergy stored in the sample. It is approximately equal to
the internal energy change at ordinary and low temper-
atures, because the entropy contribution is negligible
[19].

Here, we consider tension of the plane strain strip of
Fig. 1 for which, per unit thickness,

W ¼ A
Z t2

t1

r_edt; ð14Þ

where r and _e are the overall axial stress and strain rate,
and A = (2h)(2l) is the in-plane area of the specimen.
Thus, W=A is the area under the overall stress-strain
curve between t1 and t2. Since the overall response is
an outcome of the boundary value problem solution,
and U(t1) and U(t2) can be calculated directly from
Eq. (11), the dissipated energy

R t2
t1
Ddt is readily deter-

mined by Eq. (13).
Now, consider loading from an initial (t1 = 0) stress-

free state so that U(0) = 0. Then,Z t2

0

Ddt ¼
Z t2

0

_Wdt � Uðt2Þ. ð15Þ

Suppose, in addition, that the state at t2 corresponds
to an unloaded state after some program of loading,
i.e., when the strip is traction free on all external sur-
faces. Then U(t2) is the free energy associated with a
residual self-equilibrated stress state. If dislocations
remain in the body in the unloaded state U(t2) > 0
and the dissipation will be less than the area under
the stress strain curve (U is strictly positive unless r

vanishes everywhere).
In the loaded state, there is a contribution to U from

the work of the loads (i.e., the macroscopic elastic strain
energy) in addition to the energy associated with the dis-
location structure. For plane strain tension, the elastic
energy associated with the applied stress r is

We ¼ A
2�E

r2; ð16Þ

where �E is the plane strain tensile modulus,
�E ¼ E=ð1� m2Þ, with E Young�s modulus and m Pois-
son�s ratio. From Eqs. (14) and (16), the plastic work,
Wp, is

Wp ¼ W�We. ð17Þ

The stored energy is defined as

Es ¼ Uðt2Þ �We. ð18Þ
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When the specimen is unloaded, say at t = tu,
WeðtuÞ ¼ 0 so that the stored energy in the unloaded
state, Es

u is simply

Es
u ¼ UðtuÞ. ð19Þ

In general, the stored energy, Es, in the loaded state
(r 6¼ 0) is not equal to its value, Es

u, after removal of
the loads (r = 0). Thus, part of the energy stored in
the dislocation structure may be recovered on unloading
due to a rearrangement of the dislocation structure. At
any stage of loading, Es can be calculated from
Eq. (18) with U computed from Eq. (11) while the total
work of deformation, W, is computed from Eq. (14).

In addition to the overall stored energy, we also pres-
ent spatial distributions of stored energy and dissipation
rate. Analogous to Eq. (10), the local rate of change of
the specific stored energy is written as

_/ ¼ r : _e ¼ ~rþ r̂ð Þ : _~eþ _̂e
� �

; ð20Þ

except at points within the core radius of a dislocation.
Since in discrete dislocation plasticity, the plastic part of
the deformation is associated with the evolution of dis-
placement jumps across the slip planes, the displacement
gradient field involves delta functions which need to be
accounted for to compute the plastic dissipation di-
rectly. Here, to simplify the calculation, an approxima-
tion is used to calculate the plastic dissipation. A
smooth strain rate field, _es, is introduced in each finite
element that is computed by differentiating the total dis-
placement rate field _u in that element using the finite ele-
ment shape functions. Then, within an element, r : _es is
the local working and f is calculated from

f ¼ r : _es � _/ ¼ _w� _/. ð21Þ

4. Results

Attention is mainly focused on three sets of parame-
ters, which were also considered in [15] and denoted by
crystal A, crystal B and crystal C. For all three crystals,

m = 0.3, E = 70 GPa, b = 0.25 nm and B = 10�4 Pa s.
The annihilation distance is taken to be Le = 6b =
1.5 nm, the critical distance for junction formation is
dq = 6b and the core cut-off radius is 2b. The initial, sta-
tic obstacles have a uniform strength, while the strengths
of the initial, static sources are taken to follow a Gauss-
ian distribution. Initially unsymmetric slip is considered
by assigning the initial sources of the two slip systems
unequal mean strengths. Reference parameters for each
crystal analyzed are given in Table 1. The motivation for
the range of parameters used here is discussed in [15]. In
particular, a representative range for a is 0.2–0.4; see e.g.
[20]. The effect of the line tension parameter a, Eq. (5),
on the evolution of the dislocation structure is analyzed
for crystal A. For crystals B and C a is taken equal to
zero in order to focus attention on the effects of dynamic
junctions and sources. However, when calculations of
the dislocation evolution are carried out with a = 0 in
Eq. (5) some results are shown with a = 0.2 in the
expression for Es

l given in Eq. (29) of the Appendix in
order to indicate the relative contributions of the inter-
action energy and the line energy for a given dislocation
configuration.

Some key features exhibited by the results in [15] for
the same crystals analyzed here are: (i) a transition from
stage I to stage II hardening, initiated by an increase in
the number of dynamic junctions and in dislocation
source activity; (ii) scaling of the flow strength in stage II
with the square root of the dislocation density; and
(iii) the formation of dislocation structures that refine
with increasing deformation. The value of the pre-fac-
tor, a, in the expression

T ¼ alb
ffiffiffi
q

p ð22Þ
for the flow stress T was found to fall within the range
0.4–0.5, in keeping with experiments (see [15] and refer-
ences therein). The value of the computed work harden-
ing rate and the rate at which dislocation structures
form depended sensitively on whether or not anchoring
points could be destroyed by annihilation. The stage II
hardening rate was as low as 2 · 10�3l when destruction
by annihilation was allowed, and as high as 2 · 10�2l if

Table 1
Properties of the three crystals analyzed

Crystal Orientation Size 2l · 2h (lm2) d Static initial sources Static initial obstacles Dynamic junctions

q0 (m
�2) �s0n ðMPaÞ SD (MPa) t0n (ns) qobs (m

�2) sobs (MPa) p a b c (Pa s)

A ½�110�S 12 · 4 100b 1.2 · 1013 50 15 10 1.8 · 1013 150 0.05 0.4 1 0.2
A ½�110�S 12 · 4 100b 1.2 · 1013 50 15 10 1.8 · 1013 150 0.05 0 1 0.2
B ½�110�U 6 · 2 50b 4.9 · 1013 50(1) 10(1) 10 4.9 · 1013 150 0.05 0 1 0.1
B ½�110�S 6 · 2 50b 4.9 · 1013 50 10 10 4.9 · 1013 150 0.05 0 1 0.1
B [001]S 6 · 2 50b 10 · 1013 50 10 10 10 · 1013 150 0.05 0 1 0.1
C ½�110�U 6 · 2 25b 4.9 · 1013 75(2) 15(2) 10 9.7 · 1013 150 0.02 0 5 0.1

The labels S and U refer to initially symmetric slip and initially unsymmetric slip, respectively. (1) These values pertain to the slip system at u0; the slip
system at u0 + Du has �s0n ¼ 75 MPa and a standard deviation of 15 MPa. (2) These values pertain to the slip system at u0; the slip system at u0 + Du
has �s0n ¼ 50 MPa and a standard deviation of 15 MPa. Some values given in Ref. [15] for q0 and qobs were not correct.
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not. The higher work hardening rate was associated with
dislocation structure formation at smaller strains. In the
results presented here for crystals A and B dynamic
obstacles can only be destroyed if the obstacle strength
is attained, while for crystal C dynamic obstacles also
can be destroyed by annihilation of one of the disloca-
tions forming the junction.

Here, unloading as well as loading calculations are
carried out and the stored energy is computed both un-
der load and at zero load. All calculations are carried
out with j _U j ¼ 2� 103 lm s�1 so that the strain rate is
of the order of 102 s�1. The total work of deformation,
W in Eq. (14), the plastic work, Wp in Eq. (17), the
stored energy in the loaded state, Es in Eq. (18), and
the stored energy in the unloaded state, Es

u in Eq. (19),
are computed per unit thickness. Two energy storage ra-
tios are of interest: (i) Es

u=W for comparison with most
experiments, e.g. [1,3,4]; and (ii) Es=Wp. The latter will
be compared to the rate of energy storage, _E

s
= _W

p
,

which is measured in dynamic experiments [2,5,6] and
often enters formulations of thermomechanical constitu-
tive relations.

The applied strain, e, the overall plastic strain, ep, and
the average tensile stress, r, are given by (see Fig. 1(a)),

e ¼ U
‘
; ep ¼ e� r

�E
; r ¼ 1

2h

Z þh

�h
r11ð�‘; x2Þdx2.

ð23Þ
Results are first presented for crystal C with initially

unsymmetric slip which has a relatively low, but repre-
sentative, hardening rate. In this case, a distinct disloca-
tion pattern does not form over the strain range
computed. Then, results are presented for crystal B with
initially unsymmetric slip and for crystal A with initially
symmetric slip using parameter values that give rise to
increased dislocation storage leading to high hardening
and dislocation patterning. This permits the effect of a
more fully developed dislocation structure on the energy
storage to be investigated. For crystal B, the evolution
of the energy storage for the configurations with initially
symmetric and initially unsymmetric slip are then com-
pared. Finally, again for crystal B (with initially sym-
metric slip), the energy storage evolution for the two
orientations in Fig. 1 is considered.

4.1. Low dislocation storage

Fig. 2 shows curves of r versus ep for crystal C with
initially unsymmetric slip. In this crystal, an obstacle
can be destroyed by annihilation of one of the two dis-
locations forming it as well as by its strength being
reached. Calculations unloading to r = 0 are carried
out at strain intervals of about 0.01. The unloading re-
sponse remains essentially elastic for all pre-strains.
The dislocation density varies only slightly during
unloading (the evolution of the dislocation density

during loading is shown in Fig. 11 of [15]), consistent
with the absence of significant reverse plasticity.

Fig. 3(a) shows the evolution of the stored energy
normalized by the plastic work, Es=Wp, while
Fig. 3(b) shows the evolution of the stored energy after
unloading normalized by the total work of deformation,
Es
u=W. The calculation of the dislocation evolution is

carried out with a = 0 in Eq. (5) but results are shown
both with a = 0 and with a = 0.2 in Eq. (29) of the
Appendix. Thus the dotted line (a = 0) shows only the
interaction energy while the solid line (a = 0.2) includes

Fig. 2. Stress, r, normalized by the plane strain tensile modulus, �E,
versus plastic strain, ep for crystal C in tension and with unloading to
r = 0 from several strain levels (slip is initially unsymmetric).

Fig. 3. Evolution of the energy storage with strain for crystal C.
(a) Ratio of stored energy, Es, to plastic work, Wp, versus imposed
strain, e. (b) Ratio of stored energy after unloading,Es

u, to the total work
of deformation, W, versus the strain eu at the beginning of unloading.
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the line energy contribution from Eq. (29). The plastic
work, Wp, and the total work, W, essentially coincide
so that any difference between the ratios Es=Wp and
Es
u=W in Fig. 3 is due to the difference between Es and

Es
u, which is small since the dislocation structure does

not change much during unloading. In both Figs. 3(a)
and (b), after an initial transient, the energy stored in
the dislocation structure represents less than 8% of W
(Fig. 3(a)) and Wp (Fig. 3(b)) up to e � 0.09. The energy
storage ratios decrease at first (e < 0.02) and then slowly
increase. With the line tension contribution accounted
for in computing Es and Es

u (solid lines) the energy stor-
age ratios are higher, as expected. The effect of line ten-
sion is greater at small strains because with a low
dislocation density the elastic interaction energy is small
so that the line energy contribution is more significant.
This low hardening crystal has low energy storage ra-
tios, an absence of reverse plasticity on unloading, low
dislocation densities and no dislocation organization
over the range of strain computed.

4.2. High dislocation storage

We now consider calculations giving a high harden-
ing rate by letting the obstacles be destroyed only if
the obstacle strength is attained. This results in an in-
crease in the number of dislocation sources which leads
to a more rapidly increasing dislocation density. As a
consequence, dislocation patterning is seen [15]. The ef-
fect of this increased dislocation activity and organiza-
tion on the evolution of the stored energy is
considered in this section.

Figs. 4 and 5 show results for crystal B, with initially
unsymmetric slip, both with line tension accounted for
in computing the energy stored (a = 0.2 in Eq. (29)
but a = 0 in Eq. (5)) and with line tension neglected
(a = 0 in both Eqs. (5) and (29)). In Fig. 4, which shows
the computed curves of r versus ep, there is a strong
Bauschinger effect with reverse yielding occurring while
r > 0. The magnitude of the Bauschinger effect increases
with increasing strain. On unloading from ep > 0.02, the
dislocation density increases at a rate roughly equal to
the rate of increase during loading.

The evolution of the normalized stored energy under
load, Es=Wp, and in the unloaded state, Es

u=W, is shown
in Figs. 5(a) and (b), respectively. Both ratios increase
with strain at a much faster rate than for the low dislo-
cation storage case in Section 4.1, Fig. 3. Even with
a = 0, Es=Wp and Es

u=W are above 15% at eu = 0.05;
by contrast, at eu = 0.05 in Fig. 3 both Es=Wp and
Es
u=W are less than 5%. Moreover, the difference be-

tween Es=Wp and Es
u=W is larger than in Fig. 3 since

the dislocation structure changes significantly during
unloading. Fig. 5 also shows that with only static
sources and obstacles (denoted by SI) the energy storage
ratios in the loaded and unloaded states, Es=Wp and

Es
u=W, are less than 2% over the entire strain range com-

puted. This behavior is associated with the absence of
hardening mechanisms when only static sources and
obstacles are used, which leads to saturation of the dis-
location density to a value one order of magnitude smal-
ler than that reached at e � 0.035 in the simulations
allowing for dynamic junctions and source production.

Fig. 4. Stress, r, normalized by the plane strain tensile modulus, �E,
versus plastic strain, ep, for crystal B in tension and with unloading to
r = 0 from several strain levels (slip is initially unsymmetric).

Fig. 5. Evolution of the energy storage with strain for crystal B.
(a) Ratio of stored energy, Es, to plastic work, Wp, versus imposed
strain, e. (b) Ratio of stored energy after unloading,Es

u, to the total work
of deformation, W, versus the strain eu at the beginning of unloading.
The response with only static sources and obstacles is denoted by SI.
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The results for crystal A are shown in Fig. 6. In this
case slip is initially symmetric so that no stage I occurs
and the onset of stage II is concurrent with yielding.
Here, a computation is carried out with a = 0.4 in both
Eqs. (5) and (29) so that the effect of line tension on the
evolution of the dislocation structure is seen. Without
line tension accounted for (a = 0) the average work-
hardening rate is nearly the same as with a = 0.4 but
there are strain intervals around 0.005 and 0.025 where
the work hardening rate with a = 0 is significantly re-
duced so that the flow strength falls below that with
a = 0.4.

Fig. 7 shows the effect of line tension on the evolution
of the stored energy for crystal A. In Fig. 7(a), results
are also shown where a = 0 in Eq. (5) but the line ten-
sion contribution in Eq. (29) is included. A comparison
of this curve with those for a = 0.4 (in both Eqs. (5) and
(29)) and a = 0 shows that accounting for line tension in
the evolution of the dislocation structure mainly affects
the stored energy in the early stages of deformation
but for e � 0.035 and greater, accounting for line tension
just adds a constant value to Es=Wp and Es

u=W. In
Fig. 7(b), the difference in stored energy in the unloaded
state between the calculations with a = 0 and with line
tension accounted for (a = 0.4) increases with increasing
strain indicating an increased difference in the internal
stress state.

It is worth noting that the ratios Es=Wp or Es
u=W

vary more slowly for crystal A than for crystal B
(Fig. 5) even though the work hardening rates are sim-
ilar. In addition to the statistical effect of different ini-
tial conditions, the relatively small variations of Es=Wp

and Es
u=W with applied strain in crystal A may be

associated with a higher degree of dislocation organiza-
tion, as was noted in [15]. Also, Fig. 7(a) shows that
Es=Wp tends to decrease at strains larger than 0.04.
This trend did not occur for crystal B where stage II
was shorter.

The rate of change of Es=Wp is related to _Es= _Wp by

d
dt

Es

Wp

	 

¼

_Wp

Wp

_Es

_Wp
� Es

Wp

 !
ð24Þ

so that Es=Wp is increasing when Es=Wp is smaller than
_Es= _Wp. On the other hand, from Eq. (7), the incremen-
tal storage ratio is

_U
_W
¼

_U
_UþD

ð25Þ

so that, if over some interval of applied strain,D increases
more than _U, _U= _W can decrease. For crystal B the incre-
mental storage ratio decreases with increasing strain.

4.3. Energy release and long-range stresses

Fig. 8 shows the evolution of the ratio Es
u=E

s, which is
a measure of the stored energy recovered on unloading,
with pre-strain for all three crystals. The results shown
for crystal A have a = 0 in both Eqs. (5) and (29). For
crystal C, where unloading is nearly elastic, Es

u=E
s is near

unity for all pre-strain levels. For crystals A and B, the
dislocation density increases during unloading for a
sufficiently large pre-strain, while the stored energy

Fig. 6. Stress, r, normalized by the plane strain tensile modulus, �E,
versus plastic strain, ep, for crystal A in tension and with unloading to
r = 0 from several strain levels (slip is initially symmetric). For clarity
only one unloading curve is shown for a = 0.

Fig. 7. Evolution of the energy storage with strain for crystal A.
(a) Ratio of stored energy, Es, to plastic work, Wp, versus imposed
strain, e. For the curve marked a = 0.4 only in Eq. (29), the line tension
does not affect the dislocation dynamics but is accounted for in
calculating the stored energy. (b) Ratio of stored energy after
unloading, Es

u, to the total work of deformation, W, versus strain at
the beginning of unloading, eu.
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decreases. There is a significant Bauschinger effect (see
Figs. 4 and 6) and the ratio Es

u=E
s increases with pre-

strain. The recovery ratio, 1� Es
u=E

s, is larger at small

strains with the fraction of released energy ranging be-
tween �10% and �35%. For example, for crystal A,
Es
u=E

s increases from 0.67 at eu = 0.01 up to 0.9 at
eu = 0.05. For crystal B, Es

u=E
s slightly exceeds unity

for eu = 0.04 so that the stored energy in the unloaded
state is greater than the stored energy under load.

The energy release predicted here is consistent with
available experimental results [21] as is the increase in
dislocation density after load reversal [22]. It is also
worth noting that the decrease in stored energy on
unloading together with the increase in dislocation den-
sity on unloading indicates that the dislocation density
does not completely characterize the state of the mate-
rial because both a strain increase and a strain decrease
can give rise to the same value of the dislocation density,
but with different internal stress states.

Part of the energy stored in the dislocation structure
is due to the long-range stresses associated with that
structure. Hence, the question arises as to what extent
the short-range stress fields of the dislocation structure
contribute to the internal energy. Calculations of the
stored energy were carried out for representative states
of both crystals A and B where each dislocation in the
distribution was replaced by a dipole that only had a
short-range 1/r2 field. For these calculations, the image
field contributions were updated according to the

Fig. 8. Ratio of stored energy after load removal and before, Es
u=E

s,
versus strain at the beginning of unloading, eu for the three ½�110�
crystals analyzed: crystals C and B with initially unsymmetric slip and
crystal A initially symmetric slip. For crystal A and crystal B dynamic
obstacles can only be destroyed if the obstacle strength is attained
while for crystal C dynamic obstacles also can be destroyed by
annihilation of one of the dislocations forming the junction.

Fig. 9. Distributions at e = 0.01 of (a) the local stored energy rate _/, and (b) the local plastic dissipation f, in crystal B. Both local variables are
normalized with their respective global quantities per unit of specimen area A. Slip is initially unsymmetric. (c) Local dissipation rate f with the
current locations of dynamic junctions superposed.
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dipolar configuration. In all cases analyzed, including
states with high dislocation densities, the stored energy
with the long-range fields removed was found to be less
than 5% of the stored energy with the long-range fields
accounted for. Hence, up to the strains reached in the
simulations, most of the energy stored in the disloca-
tions is associated with their long-range fields.

In an attempt to better characterize the cold-worked
state of the material, several states having the same dis-
location density but different values of the stored energy
were analyzed. One such example for crystal A corre-
sponds to a pre-strain of eu = 0.02 where the dislocation
density is nearly the same in the loaded and unloaded
states and equal to 1.5 · 1014 m�2. The unloaded state
has a stored energy about 40% smaller than the loaded
state (see Fig. 8). The stored energy associated with
the short-range fields is approximately the same in both
the loaded and unloaded states, but the two states have
different long-range fields. Thus, when long-range stres-
ses are present the dislocation density does not charac-
terize the state of the material.

4.4. Distributions of stored energy and dissipation

The temperature rise during an adiabatic process is
known to be heterogeneous and so are processes such

as recovery and recrystallization. The spatial fluctua-
tions of the stored energy are therefore worth investigat-
ing. Figs. 9 and 10 show spatial distributions of the rate
of change of stored energy, _/, and of the dissipation, f,
in crystal B at e = 0.01 and e = 0.04, respectively. The
contribution of the core energy term, Es

l in Eq. (11), is
not included in _/. The values of _/ and f are normalized
by the corresponding global values _U=A and D=A. The
current dislocation distributions are shown in Figs. 9
and 10(a) and (b) while the locations of the dynamic
junctions are shown in Figs. 9(c) and 10(c). Since the en-
ergy values are computed as element averages via Eq.
(21), the values of _/ and f represent averages over a
small area. Such averages are thus defined over a length
scale that is much smaller than that of the long-range
stresses, which dominate the stored energy. While both
the stored energy and the dissipation are nonuniformly
distributed over the sample, the dissipation is more
localized, particularly during stage I deformation
(e = 0.01). Large variations in _/ are seen in regions with
high dislocation density (Fig. 9(a)) but regions with high
dissipation rate are not necessarily densely populated
with dislocations (Fig. 9(b)). At e = 0.01, the dissipation
is localized in an inclined band where glide is occurring.

Although the rate of change of global stored energy _U
is positive at both strain levels, there are regions in the

Fig. 10. Distributions at e = 0.04 of (a) the local stored energy rate _/, and (b) the local plastic dissipation f, in crystal B. Both local variables are
normalized with their respective global quantities per unit of specimen area A. Slip is initially unsymmetric. (c) Local dissipation rate f with the
current locations of dynamic junctions superposed.
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crystal where the rate of change of the local stored en-
ergy decreases, _/= _U < 0. The size of the regions with
_/ < 0 increases with increasing straining. In these re-
gions, which have high dislocation densities, dynamic
recovery processes take place as early as in stage I
(e = 0.01) and become prominent in well-developed
stage II (e = 0.04). The incremental storage ratio,
_U= _W, decreases from 0.27 at e = 0.01 down to 0.17 at
e = 0.04. However, the rate of energy storage _E

s
= _W

p

(with _E
s ¼ _U� _W

e
) is found to increase from 0.045 at

e = 0.01 up to 0.23 at e = 0.04, which is similar to the
trend seen in Fig. 5(a) for Es=Wp. The ratio _E

s
= _W

p

was found to be larger than the ratio Es=Wp for
0.01 6 e 6 0.04, consistent with the steady increase of
Es=Wp over that strain range as predicted by Eq. (24).

Fig. 11 shows the distribution of the rate of energy
storage, _/= _w, and the dislocation positions at both
e = 0.01 and e = 0.04, where _w is defined in Eq. (21).
In regions that remain elastic, _/= _w is about unity as ex-
pected1 but even in regions with a high dislocation den-
sity this ratio has peak values much higher than the
overall ratio, _U= _W. As a consequence, the fraction of
work dissipated can be as low as 30–50% over regions
of significant size. Hence, local values of the energy stor-
age rate can differ significantly from global values.

4.5. Symmetric versus unsymmetric slip

Fig. 12 shows a comparison between calculations with
initially symmetric and initially unsymmetric slip for
crystal B. As seen in Fig. 12(a) for the calculation with

initially symmetric slip, stage I is almost, but not com-
pletely, suppressed because the low probability of form-
ing junctions at small strains permits some easy glide.
However, the stage II hardening rate is nearly the same
in both calculations. In addition, for both the calcula-
tions with initially unsymmetric slip and with initially
symmetric slip, the evolution of the dislocation density
q remains the same up to a strain of about 0.008, but then
q is greater for the calculation with initially symmetric
slip, Fig. 12(b). A cross plot of the data in Figs. 12(a)

Fig. 11. Distributions of the ratio of the local stored energy rate, _/, to the local rate of working, _w, in crystal B. Slip is initially unsymmetric.
(a) e = 0.01. (b) e = 0.04.

Fig. 12. Initially symmetric versus unsymmetric slip for crystal B.
(a) Stress, r, normalized by the plane strain tensile modulus, �E, versus
imposed strain, e. (b) Dislocation density, q, versus imposed strain, e.
(c) Stored energy, Es, per lm thickness, versus dislocation density, q.

1 The values of _/= _w differing significantly from unity in the regions
near the boundaries where displacements are prescribed are a
numerical artifact associated with extrapolating ratios of small
numbers.
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and (b) (not shown) to give r as a function of dislocation
density q shows that the curves for the initially symmetric
and initially unsymmetric slip calculations coincide be-
cause the flow strength scales with

ffiffiffi
q

p
, see Eq. (22).

When the stored energy Es is plotted against the
strain e then Es at a given value of e is greater for initially
symmetric slip. On the other hand, when Es is plotted
against the dislocation density q, Fig. 12(c), the stored
energy with initially symmetric slip is less than that with
initially unsymmetric slip, for a sufficiently large value of
q. Therefore, the stored energy depends on the disloca-
tion structure that forms, not just on the dislocation
density.

4.6. Effect of crystal orientation

The two orientations sketched in Fig. 1 are investi-
gated using the data for crystal B. The calculated
stress–strain response of the [001] crystal is compared
with that of the ½�110� crystal in Fig. 13(a). Within the
strain interval of the simulations, the rate of linear stage
II hardening is essentially the same for both orienta-
tions, but with a tendency for stage II to set in earlier
in the [001] crystal. Although the latter effect is small,
it is consistent with published results on the effect of
crystal orientation on the extent of stage I hardening;
see e.g. [23].

Also, the rate of increase of the dislocation density is
greater in the [001] crystal than in the ½�110� crystal,
Fig. 13(b). This is due to the combined effect of a larger

number of active slip planes and a larger value of the
density of static sources in the [001] crystal (q0 for the
[001] crystal is about twice its value for the ½�110� crys-
tal). Because of the geometry there are more slip planes
in the [001] crystal for fixed crystal dimensions and slip
plane spacing, which increases the probability for junc-
tion formation. Thus, the accumulated density of dy-
namic dislocation sources is also found to be larger in
the [001] crystal. The dislocation density, q, normalized
by the initial source density q0 is a measure of the aver-
age dislocation density per slip plane (the number of sta-
tic sources per slip plane is the same for both
orientations). If q/q0 is plotted against the applied strain
then the trend seen for the total dislocation density is re-
versed for the average dislocation density per slip plane,
with q/q0 being smaller in the [001] crystal. These same
trends are observed for the mobile dislocation densities.

Interestingly, the difference between the two crystal
orientations in terms of the stored energy Es,
Fig. 13(c), shows that there is no simple scaling between
Es and the dislocation density. The stored energy in the
[001] crystal is smaller than in the ½�110� crystal at a given
dislocation density. These results, together with those in
Fig. 12(c), indicate that the energy stored in the crystal is
affected by the higher order moments of the dislocation
pattern whereas the flow stress and the work hardening
rate are not. Both the geometry of slip and the develop-
ment of a dislocation structure during stage II play
important roles in determining the features of the dislo-
cation distribution that affect the energy storage.

5. Discussion

The parameters characterizing the three crystals con-
sidered are chosen so that a variety of responses are
obtained over the range of strain covered in the calcula-
tions (up to 0.1). The work hardening rate of crystal C is
representative of some ductile metal crystals (�2 · 10�3l
where l is the elastic shear modulus). The parameters
characterizing crystals A and B give rise to increased dis-
location storage over the strain levels analyzed, leading
to a hardening rate about an order of magnitude larger
than for crystal C, but this permits responses to be ex-
plored that would require calculations to much larger
strains with a lower work hardening rate.

The calculations here are purely mechanical with any
entropy contribution to the free energy ignored. Cottrell
[19] has estimated the entropy contribution to the free
energy in a dislocated crystal and concluded that at
low temperatures, this entropy contribution is small so
that the elastic energy can be identified with the free en-
ergy. The elastic energy stored is directly associated with
the evolution of the dislocation structure. As discussed
in [15], the key to the development of a dislocation struc-
ture in these simulations is accounting for dynamic junc-

Fig. 13. Effect of crystal orientation using the parameter values for
crystal B. (a) Stress, r, normalized by the plane strain tensile modulus,
�E, versus imposed strain, e. (b) Dislocation density, q, versus imposed
strain, e. (c) Stored energy, Es, per lm thickness, versus dislocation
density, q.
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tion formation. This is clearly seen in Fig. 5 where the
stored energy evolution for calculations with and with-
out the formation of dynamic junctions are compared.
On the other hand, although accounting for line tension
does not qualitatively affect the predicted behavior, ex-
cept at very small strains, there can be a significant
quantitative contribution (Figs. 5 and 7). An additive
contribution of line tension to the free energy similar
to that in Eq. (11) has been adopted by several authors;
see e.g. [24] and references therein.

The ratio of the stored energy associatedwith the inter-
nal stress state, Es

u, to the total expended work, W, is
appropriate for comparisons with most experimental re-
sults in the review by Bever et al. [1] and, e.g., in [4],
whereas the ratio of the stored energy under load, Es, to
the plastic work,Wp, may be more appropriate for com-
parison with the data in [6,10] where the stress and the
temperature rise, which is related to the dissipation, were
measured and then, assuming an adiabatic process, the
energy storage inferred. The values calculated here for
both Es

u=W and Es=Wp are between 0.04 and 0.30, which
is a representative range for values measured in tension
[1]. The evolution of the storage ratio with strain varies
significantly for the three crystals considered. Similarly,
a wide range of behaviors is seen experimentally. Bever
et al. [1] show behavior similar to that obtained here for
crystal B in their Fig. 28 (based on data from Williams
[25]). An evolution of Es=Wp qualitatively similar to that
for crystal A was measured by Rosakis et al. [10] for
a-titanium (their Fig. 8). Note that in Fig. 7(a) there is a
strain range with little variation of Es=Wp with strain,
which suggests that _E

s
= _W

p � Es=Wp by virtue of
Eq. (24), and then Es=Wp increases at larger strains. The
curve ofEs=Wp versus strain in Fig. 7(a) is consistent with
the existence of a maximum in the overall Es=Wp versus
strain curve, first noticed in [25] and later also seen in [2,3].

Interestingly, Rosakis et al. [10] also report that, for
polycrystalline aluminum, the percentage of plastic
work dissipated in heating is only between 25% and
60% of the total plastic work up to a strain of 0.15.
Thus, in [10] the stored energy is a much greater fraction
of the work of deformation than in most other investiga-
tions. As noted in discussing the energy plots in Figs. 9–
11, the dissipation caused by plastic deformation, and
therefore the temperature rise, can be very localized.
Hence, it is possible that the dissipation values in [10],
which were inferred by measuring an area-averaged tem-
perature rise, underestimate the energy dissipation. On
the other hand, in [6] values of the ratio of plastic work
dissipated in heating to total plastic work up to 0.95
were reported for strains above 0.3 so that another pos-
sibility is that the behavior reported in [10] pertains to a
small strain regime (e < 0.3) involving a dislocation
structure with substantial long range stresses.

The calculations in this study were carried out at a
relatively high strain rate (of the order of 102 s�1) to lim-

it the computation time, with the dislocation constitu-
tive parameters chosen to represent behavior in the
relatively rate independent quasi-static loading regime.
The effect of strain rate on the evolution of the stored
energy is not explored here. Indeed, there are only lim-
ited experimental studies of the effect of strain rate on
the stored energy. Those reported in the review by Bever
et al. [1, pp. 56–59] and in Hodowany et al. [6] suggest
that the effect of strain rate may vary with the material
and is not necessarily monotonic for a given material.

The dependence of the stored energy on dislocation
density is summarized in Fig. 14 for all three crystals
A, B and C (the results do not include the line energy).
In order to facilitate comparison with the experimental
data in [4], energies are here given per unit mass using
the mass density of aluminum (2700 kg/m3). The value
of the stored energy corresponding to the highest dislo-
cation density attained in crystal B, which is 8 ·
1014 m�2, is in good quantitative agreement with that
measured by Verdier et al. [4] at the same dislocation
density (see their Fig. 5) but at a measured strain level
one order of magnitude higher than in crystal B. Thus,
the calculations with a high work-hardening rate permit
a regime with relatively large dislocation densities to be
investigated.

The calculations clearly show that the stored energy is
not simply a function of a single parameter, the disloca-
tion density. Furthermore, there is no simple relation-
ship between work-hardening rate and energy storage.
The energy stored in crystal C is higher at any given dis-
location density than in crystal B although crystal B has
a higher hardening rate. This may be a consequence of
stronger dislocation interactions in crystal C due to

Fig. 14. Energy stored per unit mass versus dislocation density for the
three ½�110� crystals analyzed: crystals C and B with initially unsym-
metric slip and crystal A with initially symmetric slip. In all cases
a = 0. For crystal A and crystal B dynamic obstacles can only be
destroyed if the obstacle strength is attained while for crystal C
dynamic obstacles also can be destroyed by annihilation of one of the
dislocations forming the junction.
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the smaller spacing between active slip planes. More
generally, the elastic energy associated with a dislocation
density strongly depends on how the dislocations are ar-
ranged in the material. Thus, at a given dislocation den-
sity, the stored energy can vary with material, for
example the energy per unit dislocation length Es/q is
found to be smaller in crystal B than in crystal A and,
for a given material, can vary with the imposed loading
history (stress state, loading rate, etc.).

Since the stored energy is associated with an internal
stress state, it is not surprising that there is a correlation
between Es and the Bauschinger effect. Such a correlation
is seen in the results obtained here. For crystal C, where
Es=Wp is less than 0.05, unloading is nearly elastic, while
for crystal B, the Bauschinger effect increases with
increasing strain and there is a particularly rapid increase
in the later stages of deformation calculated. For crystal
A, a similar Bauschinger effect is seen for the last three
unloading curves (the curves are approximately parallel)
consistent with the nearly constant value of Es=Wp.

The extent to which the stored energy depends on the
boundary conditions was explored by explicitly calculat-
ing the contribution of the image forces. With Es

no img

denoting the stored energy computed with the image field
contribution in Eq. (11) neglected, we calculated
(Es � Es

no img)/E
s at various strain levels for all three crys-

tals, both in the loaded and unloaded states. The value of
(Es � Es

no img)/E
s varied between�+1.2 and��1.2, with

the smallest values for crystal C (between �0.2 and +0.2
for e > 0.04). Crystal C has the lowest ratio of stored en-
ergy to plastic work and does not exhibit a Bauschinger
effect. This suggests that when the energy of the disloca-
tion structure is low, either due to a low density of dislo-
cations or a well-shielded dislocation structure, the image
contribution is small. However, when there are disloca-
tion structures with a relatively high internal energy
(say 5% or more of the plastic work as for crystals A
and B), the image force contribution can be substantial.

The evolution of the energy storage is of interest in
the formulation of continuum models of plastic defor-
mation. The dissipation associated with plastic deforma-
tion can induce a significant temperature rise and an
input to thermo-plasticity calculations is the fraction
of plastic work converted to heat. This is typically taken
to be a constant equal to 0.9, as indicated by the exper-
iments of Taylor and Quinney [26]. Consistent with the
preponderance of experimental data, the calculations
suggest that assuming a constant value of 0.9 could lead
to an incorrect prediction of the temperature rise, at
least over the range of straining considered here. In cal-
culations based on phenomenological plasticity theories,
the fraction of plastic work converted into heat is gener-
ally taken to be independent of the stress state induced
by the imposed loading. The sensitivity of the ratio
Es=Wp to the dislocation structure formed suggests that
this assumption is not valid.

6. Conclusions

Discrete dislocation plasticity analyses of the energy
stored and dissipated have been carried out for planar
single crystals subject to tension. Although the calcula-
tions are two-dimensional, constitutive rules that incor-
porate aspects of the physics of three-dimensional
dislocation interactions [15] have been used. As a conse-
quence, the dislocation density increases with increasing
deformation and it is the elastic energy associated with
the dislocation structures that represents the stored en-
ergy of cold work.

� The predictions of the energy stored and dissipated
are consistent with published experimental results
regarding the magnitude and evolution of the ratio
of energy stored to the work of deformation, the
decrease of the incremental rate of energy storage
for sufficient strain and the partial energy release on
loading reversal.

� Although the flow stress and work hardening rate
depend mainly on the dislocation density, the stored
energy of cold work depends on details of the disloca-
tion structure that forms.
– The dislocation density does not fully characterize

the state of the material because a given disloca-
tion density can correspond to different internal
stress states.

– The formation of dislocation patterns with long-
range stress fields increases the energy storage
and dislocation patterns that enhance dislocation
screening reduce the energy storage.

� Even in a state of macroscopically ‘‘homogeneous’’
tension, local values of the energy storage and dissi-
pation can differ significantly from global values.

� There is a connection between the stored energy of
cold work and the Bauschinger effect.

� Discrete dislocation plasticity provides a framework
for investigating the role of material and loading
parameters that affect the fraction of plastic work
converted to heat.
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Appendix

The line energy term in Eq. (11) is defined by

Es
l ¼

X
i

1

2

Z
V̂
i
ri : ei dV þ 1

2

Z
Ci
ti � ui dS

� �
þ Ei

c. ð26Þ
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Here, Es
l , is calculated assuming a statistically homoge-

neous distribution of dislocation loops across the thick-
ness of the strip. Thus, per unit thickness

Es
l ¼

X
i

1

Si

Z
Ci
Edl; ð27Þ

where the summation is on loops in the plane of analy-
sis, Si refers to the out-of-plane loop spacing averaged
over a ‘‘row’’ of loops, Ci is the dislocation line and E is
the line energy per unit length, which is taken to be inde-
pendent of position around the dislocation loop and
equal to alb2 [17,15] with a the same factor used in
Eq. (5).

In plane strain, the dislocation loops will expand in
the plane of deformation much more than out of plane
and we neglect the out-of-plane loop size. This assump-
tion is further justified by the fact that edge segments
move faster than screws and, in the configuration con-
sidered here, the out-of-plane segments would be screws.
Hence, assuming a prismatic shape, the line integral in
Eq. (27) is 2Si

dE where Si
d is the in-plane loop size

(the factor two arises because the dislocation loop has
two segments of length Si

d). The line energy is then gi-
ven by

Es
l ¼

X
i

2
Si

d

Si E. ð28Þ

The value of Es
l thus depends on the ratio of the in-plane

loop size to the out-of-plane loop spacing. For simplicity
we take Si

d=S
i ¼ 1 and Es

l is then 2NpE ¼ 2Npalb
2

where Np is the number of paired dislocations (including
dislocation–exit point pairs) in the plane of analysis. Note
that any deviation of Si

d=S
i from unity can be incorpo-

rated into the value of the line tension coefficient a.
Among the Np pairs there are N

0 dislocations coupled
with a step representing half-loops and N 0 0 pairs of cou-
pled dislocations (i.e., dipoles) representing full loops;
thus, Np = N 0 + N 0 0 and the total number of disloca-
tions is N = N 0 + 2N 0 0. This gives the number of pairs
in Eq. (27) as Np = (N + N 0)/2 and the line tension per
unit thickness then becomes

Es
l ¼ 2NpE ¼ ðqþ q0ÞAalb2; ð29Þ

where A = (2h)(2l) is the area of the specimen, q is the
dislocation density and q 0 is the density of dislocations
coupled with a step. A nonzero value of q 0 indicates a
non zero net Burgers vector. To compute Es

l at any
increment, one must keep track of partners in dipoles
in order to determine q 0.
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Scripta Mater 1997;37:449–54.
[5] Kapoor R, Nemat-Nasser S. Mech Mater 1998;27:1–12.
[6] Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P. Exp Mech

2000;40:113–23.
[7] Rice JR. J Mech Phys Solids 1971;19:433–55.
[8] Germain P, Nguyen QS, Suquet P. J App Mech 1983;50:1010–20.
[9] Chaboche J-L. J App Mech 1993;60:822–8.
[10] Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J. J Mech

Phys Solids 2000;48:581–607.
[11] Aravas N, Kim K-S, Leckie FA. J Eng Mat Tech 1990;112:

465–70.
[12] Mollica F, Rajagopal KR, Srinivasa AR. Int J Plasticity 2001;17:

1119–46.
[13] Van der Giessen E, Needleman A. Modelling Simul Mater Sci Eng

1995;3:689–735.
[14] Weygand D, Friedman LH, Van der Giessen E, Needleman A.

Modelling Simul Mater Sci Eng 2002;10:437–68.
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