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Abstract. This paper deals with the modeling of the key mechanisms involved in the fracture
of polymers: shear yielding and crazing. Along with the continuum model for shear yielding,
we will discuss a recently proposed cohesive surface model for crazing. Applications to be
presented include the study of the competition between the two mechanisms during growth of a
mode I crack, and a numerical investigation of the role of localized deformations in failure of a
polymer blend.
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1 Introduction

The materials literature on polymer behavior (e.g. [1]) usually recognizes two mechanisms for
failure: shear yielding and crazing. Shear yielding is what the solid mechanics community refers
to as plasticity, while crazing is a peculiar brittle failure mechanism of macromolecular materi-
als. Most solid polymers, such as polymethylmethacrylate (PMMA) or plexiglass and polycar-
bonate (PC), can exhibit both mechanisms, depending on stress state, temperature, strain rate
and other factors. Under tension, most polymers fracture in a brittle manner by crazing, but even
PMMA can be made to deform to strains on the order of 100% when crazing can be suppressed.
The competition between the two governs the brittle-ductile transition.

There has been much research devoted to the study of the two mechanisms; from a molecular
perspective by polymer materials scientists, and from an application point of view by engineers.
Though this has provided a lot of information on both sides of the spectrum, the link between
molecular characteristics and engineering properties are still largely unexplored. It is only quite
recently that this gap is beginning to be bridged using similar micromechanical modeling tech-
niques that have been successful in the study of metal fracture. This paper gives an overview of
recent computational work dealing with two important issues in polymer fracture.

The first part addresses some basic issues in the competition between plasticity (by shear yield-
ing) and crazing. Shear yielding is described here by a micromechanically-motivated continuum
model which captures the key characteristics of large strain plastic flow, namely rate and tem-
perature yield followed immediately by intrinsic strain softening and followed by anisotropic
re-hardening at continued plastic deformation (e.g. [2]). Then, we demonstrate how crazing can
be modeled using the concept of cohesive surfaces. The constitutive response, in terms of the
traction-separation law, incorporates the stress-state dependent initiation of crazing, the rate-
dependent widening of a craze caused by fibrillation as well as the final breakdown of crazes.
One of the examples shows how crazing and plasticity interact near the tip of an existing crack
under mode I loading conditions [3]. In this finite element model, a single cohesive surface is
laid out in front of the crack. A second application employs cohesive surface elements immersed
throughout the continuum elements in order to study the development of crazing around a hole
in a plastic plate [4].

In the second part, we consider failure of polymer-rubber blends. These typically consist of
a brittle matrix and a dispersion of small rubber particles, which are intended to toughen the
material. The toughening relies on the internal cavitation of the rubber particles, which is com-
monly believed to relieve the stress triaxiality so as to favor shear yielding over crazing of the
matrix [5]. We summarize the findings of a number of computational studies into these phenom-
ena [6, 7, 8]. The role of the initiation and propagation of shear bands in between the particles
will be highlighted [6]. We will also show how massive shear banding in between the cavitated
particles governs the macroscopic behavior [8].
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2 Viscoplastic flow in amorphous polymers

Plastic deformation is usually referred to as ‘shear yielding’ in the polymer community, which is
suggestive of the geometry of this deformation mechanism. The constitutive model that we have
adopted for it in all studies to be discussed later, is partly a phenomenological model and partly
based on micromechanical considerations. The original ideas in a one-dimensional context date
back to the 60’s, while the basis for the three-dimensional (3-D) theory was given by Boyceet
al. [9]. The specific theory to be used here though involves a number of modifications, which
have evolved over a number of years and has been summarized in [10].

2.1 Constitutive Model

The constitutive model is conveniently formulated in terms of the Cauchy stress tensor� and
the conjugate rate of deformation tensorD. The latter is the symmetric part of the velocity
gradient tensorL = _FF�1, D = 1

2
(L + LT), W = 1

2
(L � LT), F being the deformation

gradient tensor. The model is based on the usual split ofD into a thermoelastic partDe and an
inelastic partDp,

D = De +Dp : (1)

Thermal effects will not be considered in any of the examples to be presented later, so thatD
e

only governs the elastic behavior. Assuming the elastic strains to remain small, the elastic part
of the response is taken to be governed by

r

�= Le
D

e ; (2)

whereLe is the standard fourth-order isotropic elastic modulus tensor in terms of the Young’s

modulusE and Poisson’s ratio�. Furthermore,
r

�= _��W�+�W is the Jaumann derivative
of Cauchy stress based on the continuum spin tensorW .

The constitutive formulation forDp is based on the idea to represent the inelastic deformation
process by a parallel combination of a viscoplastic yield element and a hardening element.
Postponing the physical interpretations of these two for a moment, this idea leads to introducing
in 3-D of a back stress tensorb, so that the difference�� = � � b is the driving stress for yield.
Assuming that the corresponding yield response is isotropic and isochoric, the inelastic strain
rate tensorDp can be written as1

D
p =

_pp
2 �

��0 ; � =
q

1

2
��0 � ��0 ; _p =

p
D

p �Dp ; (3)

� and _p being the equivalent shear stress and equivalent inelastic shear rate, respectively, so
that the energy dissipation rate per unit volume is given by

��0 �Dp =
p
2 � _p : (4)

1The factor
p

2 in (3) and (4) is a consequence of the definition of_
p [see (3)] that was originally used [9] and

which is maintained here for consistency.
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Completion of the constitutive model requires specification of_p(�) and a constitutive equation
for the back stressb.

Although the physical understanding of yield in amorphous is still rather limited, there are a
number of theories in the literature. The one we have used is based on a theory by Argon [11]
which leads to the following expression for the plastic shear rate:

_p = _0 exp

�
�As

T

�
1�

��
s

�5=6��
: (5)

Here, _0 andA are material parameters, ands is the shear strength, which is specified in Argon’s
original theory in terms of the elastic molecular properties but which is considered here as a
separate material parameter. Even though plastic flow in amorphous polymers does not lead
to a significant plastic dilatation, the yield stress is known to bepressure sensitivein a linear
manner for many glassy polymers. This is incorporated in (5) by replacings with s+�p, where
� is the pressure sensitivity coefficient.

There is conclusive experimental evidence that glassy polymers exhibitintrinsic strain soften-
ing upon yield. As the physical mechanisms are not yet understood well, we adopt a purely
phenomenological description of softening ([9]) in which s in (5) is taken to evolve from the
initial values0 with plastic strain according to the first-order evolution law

_s = h(1� s=sss) _
p ; (6)

in whichh is an additional material parameter andsss is the final, steady-state value. It is known
that the softening in most polymers depends on temperature and, to a lesser extent, on strain-
rate, but there have only been few attempts to capture these effects (e.g. [12]). Since we shall
consider only isothermal processes here, and within a limited range of strain-rates, we make no
attempt here to account for these effects.

The strain hardeningin amorphous polymers is due to the stretching of their network-like
molecular structure during plastic flow. This network is usually regarded to be due to physi-
cal entanglements of the long molecular chains. Thus, it bears a definite resemblance to the
network structure of rubbers even though the nodes are formed then by chemical cross-links.
Plastic stretching of the entanglement network leads to the gradual alignment of the molecular
chains along the principal plastic stretch direction, accompanied by a reduction of the entropy of
the network; this is referred to asorientational hardening. In the 3-D theory [9], the back stress
tensorb is thus taken to be determined by the accumulated plastic stretch tensorV

p, through
its principal componentsb� with respect to the unit principal directionsep�, 2

b =
X
�

b�(e
p
� 
 ep�) : (7)

The principal components are taken to be direct functions of the principal plastic stretches. In
what follows, we shall assume that the elastic strains remain small enough to allow the plastic

2To avoid confusion, principal tensor components and the corresponding eigenvectors are denoted with Greek
indices, for which the summation convention is not implied
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stretch tensorV p to be approximated asV p � B
1=2, whereB = FF

T is the left Cauchy-
Green tensor.

Various rubber theories are available for implementation in (7), including the physically moti-
vated Gaussian network theory or the more refined non-Gaussian theory [13]. Wu and Van der
Giessen [2] developed a model that accounts for the fully 3-D orientation distribution of molec-
ular chains in a network. Furthermore, they showed that their numerical results are captured to
high accuracy by

b = (1� �)b3�ch + �b8�ch ; (8)

with � being determined by the maximum principal plastic stretch�� = max(�1; �2; �3) through
� = 0:85��=

p
N ,N being the average number of molecular chains between entanglements. This

form expresses that the solution is in between the predictionb
3�ch of the classical non-Gaussian

three-chain rubber elasticity model [9] and the predictionb8�ch of the more recent eight-chain
model proposed by Arruda and Boyce [14]:

b3�ch� = 1

3
CR
p
N��L�1

�
��p
N

�
; (9)

b8�ch� = 1

3
CR
p
N
��

2

�c
L�1

�
�cp
N

�
; �c

2 = 1

3

3X
�=1

��
2 : (10)

with CR a statistical network parameter, andL the Langevin functionL(�) = coth � � 1=�.
SinceL�1(1)!1, a principal stretch equal to

p
N in (9) identifies the limit stretch�max.

The strong material rate dependence along with the intrinsic softening require due attention to
the numerical implementation of the model. To improve the numerical stability, Wu and Van
der Giessen [15] have developed a rate tangent formulation of the model based on the forward
gradient approach proposed by Peirceet al.(1984). In addition it has proved convenient to use a
heuristic adaptive time stepping procedure which ensures that sufficiently small steps are being
taken when the material passes the yield point and starts to soften. Details on the finite element
implementation used for most of the results to be presented in forthcoming sections can be
found in [15].

2.2 Localization and propagation of shear bands

The strain softening after yield, eq. (6), followed by the progressing strain hardening, eqs. (8)–
(10) is a key feature of plastic deformation in amorphous polymers. A typical response is shown
in Fig. 1, for a set of material parameters that are characteristic for styrene-acrylonitrile (SAN):
E=s0 = 12.6,� = 0:38, sss=s0 = 0:79, As0=T = 52:2, h=s0 = 12:6, � = 0:25, N = 12:0 and
CR=s0 = 0:033, s0 = 120MPa, _0 = 1:06 � 108 s�1. It is well-known that the characteristic
behaviour of softening followed by strain hardening leads to so-calledpropagating instabilities
[10].

Yielding of the material tends to trigger a shear band, in which the subsequent plastic deforma-
tion concentrates. The shear strain inside this band grows until it reaches a strain (of� � 1:2

in the example of Fig.1). Beyond that strain, the required shear stress would be larger than the
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Figure 1: Shear stress (�� ) response of SAN to simple shear at an applied shear rate of_� =

10�2 s�1.

yield stress. Therefore, neighboring unyielded material will start to yield and the material in the
original shear band is essentially locked. Plastic deformation thus progresses by the initiation
and subsequent propagation of shear bands. A number of numerical studies [16, 17, 15] have
demonstrated this in detail for elementary deformation processes as neck propagation.

From a computational point of view, it is pertinent to note that the shear bands referred to here
are in fact zones of highly concentrated plastic flow; this type of localization of deformation is
to be clearly distinguished from that associated with a discontinuity in shearing rate. In fact, the
shearing rate inside the shear band is always limited, by virtue of the intrinsic rate-dependency
of polymers through (5). This truly physical feature along with the above-mentioned limited
maximum strain due to locking ensure that shear bands have a finite thickness. As long as
the finite element mesh is fine enough to represent the variations across the shear band, the
numerical results converge and are independent of mesh size.

3 Cohesive surface model for crazing

From a macroscopic observation, crazes and cracks are geometrically similar: both are sharp
planar surfaces. However, a craze is not a crack, but consists of a web of interpenetrating voids
and polymer fibrils. The fibrils are preferentially oriented normal to the craze surface, as illus-
trated in Fig.2a. The fibrils bridge the craze surfaces so that load can be transmitted through
the craze structure.

Crazes in amorphous polymers generally reach lengths in the order of tenths of millimeters,
whereas the width of the craze remains in the order of several micrometers. When one can
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cross-tie fibril
Cohesive surface
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(a)

�

main fibril

Bulk material

Figure 2: Schematic of modeling a craze (a) by a cohesive surface (b) characterized by a traction
T and a separation� over this surface.

neglect the thickness of the craze relative to the other relevant dimensions in the problem under
consideration, one can replace a craze by a cohesive surface, as illustrated in Fig.2b where the
length dimension is scaled down for illustration purposes. The separation between two initially
adjacent material points, one situated in the upper bulk-craze interface and the other in the
bottom bulk-craze interface is described by a separation vector� with normal component�n

and tangential component�t with respect to the midplane of the cohesive surface. The traction
vectorT is energetically conjugate to� and has componentsTn andTt. The properties of the
craze matter are thus collapsed in the traction vs separation law, which will be specified below.

Multiple crazing in heterogeneous materials can be represented by embedding many potential
cohesive surfaces throughout the volume, following the original ideas of Xu and Needleman
[18]. The constitutive behavior of the bulk material and the craze matter are thus separated by
separate constitutive laws for the cohesive surfaces and for the continuum. Crack propagation
and fracture of the material as a whole then becomes independent of criteria for crack advance
and only based on the micromechanical description of the crazing process.

Generally, crazing is thought to proceed in three stages (see e.g. [19]): (i) initiation, (ii) widen-
ing, (iii) breakdown of the fibrils and creation of a crack. The traction–separation law that we
have developed for the cohesive zone model of a craze [4, 3] thus comprises three parts.
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The physical mechanism for craze initiation is not yet clearly identified and various criteria have
been proposed. From those, [4, 3] have chosen to use an empirical initiation criterion established
by Sternstein and Myers [20], which is practically similar to a theoretical criterion by Argon
and Hannoosh [21]. According to [20], craze initiation in a plate occurs once

Tn � 3

2
�m � A0

2
+

B0

6�m
(11)

with A0 andB0 temperature-dependent material parameters. Note the dependence on the local
hydrostatic stress�m = 1

3
tr�. The criterion can be generalized to plane strain conditions by

replacing the factor3=2 with unity [3].

Once a craze has initiated, widening of the craze (_�n > 0) occurs by a process of drawing-in
new polymer material from the craze-bulk interface to form the highly oriented fibrils [19]. This
process is accompanied by intense viscoplastic deformations in the bulk-craze interface region.
Assuming that this is the rate-limiting process, we [4, 3] have argued that it can be described
in a phenomenological way by a relationship between the (plastic) widening rate_�c

n and the
normal tractionTn that is similar to Argon’s viscoplasticity law (5), i.e.

_�c
n = _�0 exp

��Ac�c

T

�
1� Tn

�c

��
; (12)

where _�0 characterizes the time dependency of the craze widening process,Ac controls the
temperature dependency and�c represents the athermal stress for craze widening. These could
in principle be determined from detailed studies of craze widening at a smaller scale, but are
here considered as separate material parameters.

Although crazes tend to form normal to the maximal principal stress direction, they may suffer
from tangential loading at later stages of the process. As the morphology of a craze (Fig.2a)
suggests a coupling between the tangential separation and the normal separation, we propose
the following viscoplastic tangential separation law, similar to (12):

_�c
t = _�0

�
exp

�
�Ac� c

T

�
1� Tt

� c

��
� exp

�
�Ac� c

T

�
1 +

Tt
� c

���
(13)

in which _�0 and � c are material parameters. Note that in contrast to the normal viscoplastic
widening law (12) an extra term is included that is necessary to ensure that_�c

t is an odd function
of Tt.

Although the ultimate breakdown of a craze is not well understood, the current viewpoint [19]
seems to be that craze widening continues until the craze/bulk interface encounters a flaw suffi-
cient for critical loss of entanglements and subsequent failure of the fibrils. A statistical descrip-
tion of this leads to a critical craze width, independent of the growth rate of the craze, which
is consistent with many experimental observations. Within the framework of a cohesive surface
model for a craze, we therefore define a critical craze width�c cr

n . When this limit is reached,
the craze widening process ends and a microcrack is formed.

8
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The final constitutive model for a craze is obtained by writing

_T� = k�( _�� � _�c
�) ; � 2 fn; tg ; (14)

wherekn andkt are the elastic cohesive surface stiffnesses in normal and tangential direction.
Prior to craze initiation, they only have a numerical significance and should have large enough
values to suppress any significant opening. After craze initiation, they should represent the
stiffness of the fibrillar structure [3] until the craze breaks down.

4 Numerical implementation

The numerical solution of problems of viscoplastic flow in polymers, with or without crazing
by embedded cohesive surfaces, is carried out within a Total Lagrangian framework. The finite
element representation is based on the rate form of the principle of virtual work,

�t

Z
V

( _� ij��ij + � ik _uj;k�uj;i)dV +�t

Z
Si

_T����dS =

�t

Z
Su

_ti�uidS �
�Z

V

� ij��ijdV +

Z
Si

T����dS �
Z
Su

ti�uidS

�
(15)

in whichV andSu are the volume and outer surface of the body in the reference configuration.
The � ij are the components of the second Piola-Kirchhoff stress tensor andT i are the corre-
sponding traction vector components; the components of the dual Lagrangian strain-rate tensor
are _�ij.

The Si in (15) denotes the collection of all cohesive surfaces contained inV . They may be
confined to a single surface in the material (if the craze location is knowna priori, as in Sec.6)
or may be scattered over the entire volume (as in the example of Sec.5). In the latter case we
use linear triangular elements to discretize the continuum with cohesive surface elements as
interface elements between adjacent elements. In applications with a single cohesive surface
(Sec.5) we use quadrilateral elements for the continuum, each element being built-up by four
crossed triangles.

The term in (15) between square brackets is the equilibrium correction which is zero for a state
of perfect equilibrium. This term is included to prevent drifting of the solution from the true
equilibrium path due to the finite time increments. The finite element equations are obtained by
eliminating the stress rates_� ij using the continuum constitutive equations (1)–(10) and eliminat-
ing the cohesive surface traction rates using (12)–(14). The numerical integration of the stiffness
contributions of the cohesive surface elements is carried out with Newton-Cotes integration.

5 Crazing vs plasticity near crack tips

Simple pictures of failure of polymers consider crazing and shear yielding as two independent
mechanisms, and classify failure as being either brittle due to crazing or ductile due to shear
yielding. Detailed experiments by Ishikawa and co-workers [22, 23] however have shown that
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crazing can occur subsequent to shear yielding in materials such as PC and PMMA. Also in
polymer-rubber blends, such as acrylonitrile-butadiene-styrene (ABS), crazing and shear yield-
ing can occur simultaneously.

In order to develop a basic understanding of this, we [3] recently performed a study of the
interaction between plasticity and crazing near crack tips under plane strain, mode I conditions.
This work continues from a numerical analysis of the near-tip fields caused by shear yielding
only [24]. In the latter it has been shown that the crack-tip fields are quite different from the
HRR fields developed for metals which were often just assumed to hold for polymers as well
(see, e.g., [1]). The underlying reason for this is the characteristic softening and re-hardening
of amorphous polymers seen in Fig.1, which gives rise to localized plastic deformations in the
form of shear bands that propagate as the load continues to increase.

Using the material parameters for viscoplasticity in SAN mentioned in Sec.2.2, this shear
banding is demonstrated in Fig.3a. This figure shows the distribution of the instantaneous
plastic shear rate in the region around the tip of a blunted crack (tip radiusrt = 0:1 mm). The
calculation was carried out under the assumption of small-scale yielding, with the boundary
conditions on a circular arc of radius200rt according to the elastic mode I crack tip field. The
stress intensity factor is applied from stress-free initial conditions at a constant loading rate_KI .
At the particular loading shown in Fig.3a, the current plastic activity takes place in a number
of shear bands that emanate from the free notch surface.

Figure3b now shows the situation at the same applied stress intensity factor when crazing is
accounted for by means of a cohesive surface laid out in front of the crack. The material param-
eters assumed for the crazing model areA0 = 82 MPa,B0 = 20000 MPa2, Ac = 400 K=MPa,
�c;cr

n = 10 �m, _�0 = 10 mm=s and�c = 100 MPa (T = 293 K). For this case, the craze
initiated at the root of the notch and quickly propagated forward. Notice that the development
of the craze has reduced the amount of plastic deformation necessary to accommodate the same
applied stress intensity factor as in Fig.3a. The instant shown in Fig.3b is chosen because this
is when the first breakdown of crazes is taking place. Once this has happened, a crack is quickly
formed inside the craze and rapid crack propagation takes place, so that the load at this stage can
be considered as the critical stress intensity factor. As one can see from the craze profile, craze
breakdown in this case occurs at the point where the currently most active shear bands intersect,
thus providing an example of how the interaction or competition between shear yielding and
crazing can take place.

The detailed parameter study in [3] has demonstrated that this competition can emerge in var-
ious forms depending on loading rate and temperature. An example of this is given in Fig.4,
which shows similar results but at a120 times higher applied loading rate_KI . In the absence
of crazing, Fig.4a, shear banding is more localized than in Fig.3a. This can be understood
from the fact that a higher deformation rate would require higher stresses for accommodation
by viscoplasticity to be possible; hence, plasticity is somewhat suppressed. This also occurs in
the presence of crazing, but then there is also a rate dependency of the widening of the craze,
since this also occurs by a viscous process, Eq. (12). As a consequence of both effects, we ob-
serve significantly less plastic activity in Fig.4b than at the lower loading rate of Fig.3b. This
also affects the profile of the craze. In fact, also this situation corresponds to the instant of first
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Figure 3: Distribution of instantaneous plastic shear rate_p near notch tip in SAN under mode
I loading at _KI � 3:10�2MPa

p
m=sec whenKI=(s0rt) � 1:71, (a) without accounting for

crazing; (b) with crazing.
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Figure 4: Distribution of instantaneous plastic shear rate_p near notch tip in SAN under mode
I loading at a rate that is120 times larger than in Fig.3 whenKI=(s0rt) � 1:56, (a) without
accounting for crazing; (b) with crazing.
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Cohesive surfaces

Continuum elements

Figure 5: Illustration of the arrangement of continuum elements and embedded cohesive sur-
faces.

fibril breakdown in the craze, but in this case it occurs at the tip of the notch. The corresponding
critical stress intensity factor is reduced relative to the lower loading rate shown in Fig.3b.

6 Multiple crazing around notches

The original experiment that led Sternstein and Meyers [20] to their craze initiation criterion
(11) was on a PMMA plate with a central hole loaded in uniaxial tension. After load application,
zones with a high density of crazes around the hole were observed. From the size of these zones,
(11) was deduced.

Tijssenset al. [4] simulated this experiment, by application of the embedded cohesive surface
methodology. Within wedge shaped regions of45� above and below the equatorial plane of the
hole, cohesive surface elements are immersed between all triangular continuum elements (see
Fig. 5). No viscoplasticity is accounted in the analysis, and the elastic properties are taken to be
E = 3240 MPa and� = 0:35. The material parameters for the crazing model areA0 = 42 MPa,
B0 = 3000 MPa2 (T = 313 K), Ac = 100 K=MPa,�c;cr

n = 2:7 �m, _�0 = 10 mm=s and
�c = 60 MPa. Just as in [20], the dimensions of the plate are2 � 1=2 inch with a hole of
diameter1=16 inch.

Figure6 shows the stress distribution after loading at a remote stress rate of5:52 MPa=s up to
16 MPa. Craze initiation has started obviously at the elastic stress concentration at the equator
of the hole. While the early crazes propagated laterally into the plate, the craze zone also ex-
panded in the direction of loading. No breakdown of the crazes has taken place yet at the instant
shown, so that the crazes still transmit stresses while they widen according to (12). The overall
load versus displacement curve showed no deviation from the perfectly elastic response. As the
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Figure 6: Craze zone and effective stress distribution around a hole in a PMMA plate at a global
stress level of16 MPa in the vertical direction atT = 313 K. The displacements are multiplied
by a factor of 20 to visualize the crazes, i.e. the white fringes near the equator.

applied load increases beyond the value shown in Fig.6, the craze zone further expands and the
stress redistributions away from the elastic solution become more significant [4].

Mesh sensitivity studies were carried out [4] to show that mesh refinement leads to a converged
craze zone development with increasing load. As the crazes line up with the element boundaries,
see Fig.6, there will be dependence on the mesh orientation however.

7 Failure mechanisms in polymer-rubber blends

It is a well established fact that the fracture toughness of polymers can be greatly enhanced by
adding a dispersion of rubber particles, of typically between20 and40vol. %. The toughening is
commonly assumed to involve a number of mechanisms: crazing, cavitation and shear yielding
(see, e.g., [5]). Cavitation of the rubber particles relieves the stress triaxiality in the matrix
polymer. This suppresses the likelihood of matrix crazing and promotes plastic deformation in
the matrix by shear yielding. The toughening effect is generally enhanced when a region of
large plastic deformation spreads out over a large volume in the material.

Toughening in blends involves a range of length scales. The ‘macroscopic scale’ is the scale at
which plastic deformation and crazing take place in the neighborhood of a propagating crack
in a blend. The next smaller, ‘mesoscopic’ scale is the size scale at which the individual rubber
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particles can be distinguished. This is a crucial scale for our understanding of toughening in
blends since it is at this size scale that rubber cavitation, crazing and shear yielding compete
with each other and determine which one(s) of them dominate(s).

In a series of papers, Steenbrinket al. and Pijnenburget al. (e.g. [6, 7, 8, 25]) investigated
some basic issues at this scale related to cavitation and plastic flow around cavitated particles.
The interest here is mainly directed towards ABS blends, consisting of an SAN matrix and
polybutadiene rubber particles. Basically, these are studies for blends with periodic arrays of
particles so that the computations can be carried out for a unit cell containing a single rubber
particle. Moreover, it was shown in [7] that once the rubber particle has cavitated internally, it
is mechanically equivalent to a void for realistic rubber properties. Three-dimensional models
have been used for spherical rubber particles under axisymmetric stressing, but also planar
studies have been performed. Planar computations allow for unit cell and associated boundary
conditions that are less constrained than axisymmetric ones.

Figure7 shows a typical result of such cell calculations under axisymmetric conditions. The
rubber particle has been assumed to have cavitated, leaving a void with initial radiusa0 and
half-spacingb0 of a0=b0 = 0:5 (corresponding to a particle/void volume fraction off0 = 0:083).
The material parameters for the SAN matrix are the same as mentioned in Sec.2.2and used in
the Sec.5. The overall, macroscopic loading is applied under strain control, with all cell bound-
aries remaining straight. Loading is primarily in thex2 direction, but is applied such that the
macroscopic stress triaxiality (overall hydrostatic stress�m relative to effective Mises stress�e)
remains constant. The results in Fig.7 are typical for many other materials studied [6, 7]. Local
plastic deformation starts from the equator of the void. At sufficiently low triaxiality, as is the
case here, plasticity initiates in the form of shear bands at about45� to the principal loading di-
rection (Fig.7a). With increased overall loading, these shear bands propagate, until macroscopic
yield occurs. Just as in the local response, the overall behavior then shows softening which is
due to the formation of a different type of shear bands, as shown in Fig.7b. This type has been
referred to as ‘dog-ear’ shear bands in [7] and is found to be present from the beginning under
higher stress triaxiality. The main characteristic of the shear bands formed at macroscopic yield
is that they connect two neighboring voids. As macroscopic straining continues, these bands
propagate as well, leading essentially to necking and neck propagation of the ligament between
voids (Fig.7c).

An important drawback of these kind of cell analyses is that their symmetries imply rather
strong constraints on the local deformation. Since polymers have the tendency to deform plas-
ticity by propagating shear bands, such constraints may suppress localized modes that would
form in realistic systems [26]. Therefore, we recently carried out cell analyses [25] in which the
symmetries in loading are removed and the kinematic boundary conditions are replaced by the
more general periodic boundary conditions. Figure8 shows how plastic deformation then pro-
gresses under macroscopic simple shear. In this case the model is a planar one, with cylindrical
voids but the same ratioa0=b0 = 0:5 as in Fig.7 (yet a different volume fraction off0 = 0:2).
Prior to macroscopic yield, Fig.8a, dog-ear shear bands are formed normal to the principal
tensile stress direction (which is roughly at45� to the shear direction). At macroscopic yield
(Fig. 8b), new shear bands are formed which link up adjacent voids in the shear direction. Upon
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Figure 7: Distribution of instantaneous plastic shear rate near a spherical void in a SAN matrix
under a macroscopic stress triaxiality of�m=�e = 1 at three stages of deformation: (a) just
prior to macroscopic yield; (b) just after yield; (c) after continued macroscopic straining.

continued macroscopic shearing, these shear bands widen by propagation of the active shear
regions through the same mechanism as discussed previously (Fig.8c).

It is noted that the deformed void (or particle) shape that develops under macroscopic shear is
quite different from that under predominant tension. Under tension, Fig.7c, we observe a sig-
nificant increase of the volume of the void with a somewhat bulgy surface. Although the details
in a random stacking of particles will be different, there is some qualitative correspondence with
the shapes of cavitated rubber particles found ahead or at some distance from cracks in ABS
experimentally. The S-like void shape found under simple shear, Fig.8c, is also found exper-
imentally, but only quite near and below the fracture surface. We have conjectured in [8] that
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Figure 8: Distribution of instantaneous plastic shear rate near a cylindrical void in a SAN matrix
under macroscopic simple shear at three stages of deformation: (a) prior to macroscopic yield;
(b) just after yield; (c) after continued macroscopic straining.
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this indicates that shearing takes place in the blend at a macroscopic level while a crack moves
by. Ahead of the crack tip, high triaxial tension is apparently dominant, while shearing occurs
in the wake. This would have important consequences for the understanding of how toughening
by the rubber particles takes place. This is the subject of continued research.

8 Conclusions

The examples of recent computational studies given in this paper serve to demonstrate that
plasticity and fracture in polymeric systems have particular features that distinguish them from
those in metals. Both in plasticity and fracture, the physical mechanisms involve localization.
Plasticity, or shear yielding, leads to the initiation and propagation of shear bands, which are a
consequence of intrinsic softening after yield followed by orientational hardening. Fracture is
commonly caused by crazing, which involves localization of deformation in the craze, which
widens because of local plastic flow at a very small size scale.

The development of a constitutive model for plasticity and a cohesive surface model for craz-
ing that capture these essential features has taken place quite recently. This is especially true
when compared to the time frame over which metal plasticity and fracture have been studied.
Thus, there are still many open issues in polymer fracture — there is much that computational
mechanics can contribute to help resolve them.

References

[1] J.G. Williams:Fracture Mechanics of Polymers, Ellis Horwood, Chichester (1984).

[2] P.D. Wu and E. Van der Giessen:On improved network models for rubber elasticity and
their applications to orientation hardening in glassy polymers.J. Mech. Phys. Solids,41,
(1993), 427–456.

[3] R. Estevez, M.G.A. Tijssens and E. Van der Giessen:Modeling of the competition between
shear yielding and crazing in glassy polymers.in preparation.

[4] M.G.A. Tijssens, E. Van der Giessen and L.J. Sluys:Modeling of crazing using a cohesive
surface methodology.submitted to Mech. Mater.

[5] C.B. Bucknall:Toughened Plastics.Applied Science Publ., London, (1977), 177–179.

[6] A.C. Steenbrink, E. van der Giessen and P.D. Wu:Void growth in glassy polymers.J.
Mech. Phys. Solids,45, (1997), 405–437.

[7] A.C. Steenbrink and E. van der Giessen:On cavitation, post-cavitation and yield in amor-
phous polymer-rubber blends.J. Mech. Phys. Solids,47, (1999), 843–876.

[8] K.G.W. Pijnenburg, A.C. Steenbrink and E. van der Giessen:Shearing of particles during
crack growth in polymer blends.Polymer (in press).

18
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