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Disorder-induced neutral solitons in degenerate ground state polymers

Marc Thilo Figge1, Maxim V. Mostovoy, and Jasper Knoester
Institute for Theoretical Physics and Materials Science Center

University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Abstract

We study the effects of weak off-diagonal disorder on π-conjugated polymers with a doubly degenerate ground-state.
We find that disorder induces a finite density of neutral solitons in the lattice dimerization of a polymer chain. Interchain
interactions result in a linear potential between the solitons and, if sufficiently strong, bind them into pairs resulting in
an exponential suppression of the soliton density. As neutral solitons carry spin 1/2, they contribute to the polymer’s
magnetic properties. We calculate the magnetic susceptibility and suggest measurements of the magnetic susceptibility in
trans-polyacetylene at low temperatures.

Keywords: Polyacetylene and derivatives, Magnetic measurements, Ising models, Order-disorder phase transitions

1. Introduction

Conjugated polymers belong to a large class of quasi-
one-dimensional Peierls materials, in which the lattice dis-
torts due to its interaction with itinerant electrons. Much
attention has been devoted to trans-polyacetylene, which
has a doubly degenerate ground state. The degeneracy al-
lows for topological excitations, solitons, which are kinks in
the lattice dimerization accompanied by a local distortion of
the electron density. Solitons survive the presence of on-site
Coulomb repulsion. Although solitons are usually associ-
ated with excited states, we show in this contribution that
off-diagonal disorder may induce a finite density of kinks
in the ground state of trans-polyacetylene. We discuss the
effects on the magnetic response.

2. Mapping on the Random-Field Ising Model

We describe the polymer chains by a Peierls-Hubbard
model, which accounts for both a static electron-lattice in-
teraction and electron-electron interactions. The lattice
dimerization at position n of the chain is given by:

∆(n) = ∆lat(n) + η(n). (1)

Here, ∆lat(n) describes the Peierls distortion and corre-
sponds to the alternating part of the electron hopping am-
plitude along the chain direction. The second term, η(n),
represents the disorder and stems from the small fluctua-
tions in this amplitude. While in the absence of disorder
the ground state energy does not depend on the sign of the

dimerization ∆(n) = ±∆0, the weak-disorder correction to
the energy,

δE ∝ −
∑

n

∆lat(n) η(n) , (2)

removes this degeneracy. As we explained in Ref. [1], the
energy correction Eq. (2) stabilizes neutral solitons in the
lattice dimerization of a chain’s minimal-energy lattice con-
figuration.

As a consequence of the form Eq. (2), the statistics
of neutral solitons in a weakly disordered Peierls-Hubbard
chain can be described by the random-field Ising model
(RFIM) [2,3]:

E{σm} =

M
∑

m=1

[

µ

2
(1 − σmσm+1) − hmσm − Bσm

]

. (3)

The Ising variable σm = ±1 corresponds to the two possi-
ble values of the lattice dimerization ∆lat = ±∆0 between
neighboring kinks. Thus, the first term in Eq. (3) is the
energy cost related to the occurence of kinks, where µ is
the kink creation energy. As the RFIM Eq.(3) is an effec-
tive model, obtained by integrating out small lattice fluctua-
tions, µ weakly depends on temperature and is renormalized
by electron-electron interactions [2]. Comparing Eq. (3) to
Eq. (2) reveals that the role of the disorder is taken over
by the random “magnetic” field hm, which we assume to
have a Gaussian distribution with zero mean and correlator
〈hmhn〉 = ǫδm,n with the disorder strength ǫ ≪ µ2.

Finally, the third term in Eq.(3) describes the inter-
chain interactions, which tend to establish a coherence be-
tween the phases of the order parameter on different chains.
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These interactions are taken into account in the chain mean-
field approximation, so that the homogeneous “magnetic”
field B is proportional to the average order parameter:
B = W 〈〈σ〉〉. Here, the double brackets denote both the
thermal and the random-field average. The validity of the
chain mean-field approximation requires the interchain in-
teraction energy to be sufficiently weak, W ≪ µ, which
holds in quasi-one-dimensional materials such as conjugated
polymers.
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Fig. 1. Phase diagram of the RFIM.

We have analytically solved the model Eq. (3) by notic-
ing that the disorder averaged free energy of its contin-
uum version has the form of a matrix element of the Green
function describing the relaxation of a spin 1/2 in a time-
dependent magnetic field. The coordinate along the chain
plays the role of the (imaginary) time in which the relax-
ation takes place. The Green function was found by solving
the corresponding Fokker-Planck equation [2,3].

For a single chain (B ∝ W = 0) the ground state den-
sity of solitons is then found to be proportional to the dis-
order strength,

ns = ǫ / µ2 . (4)

The solitons occur randomly positioned along the chain and
destroy the long-range order in the lattice dimerization at
any temperature [2-4]. This turns out to be the same for
interacting chains (W 6= 0), as long as the disorder strength
is larger than the critical value ǫc = 2Wµ/3. However,
for ǫ < ǫc, the long-range bond order (LRBO) in the lat-
tice dimerization is re-established as solitons are bound into
pairs by the interchain interactions (soliton confinement).
As a consequence, the density of neutral soliton pairs np is
found to be exponentially suppressed at low temperatures:

np = 2
W 2

ǫ
exp

(

−2
Wµ

ǫ

)

. (5)

In Fig. 1 we plot the phase diagram for the existence of
LRBO in the RFIM Eq. (3) using parameters typical for
trans-polyacetylene. The result of a numerical calculation
(stars) and our analytical result (solid line) are seen to be

in excellent agreement.

3. Magnetic Susceptibility in the Ordered Phase

As neutral solitons carry a spin 1/2, they contribute
to the polymer’s magnetic properties. For ǫ ≪ ǫc, solitons
only occur in isolated pairs. Within the RFIM Eq. (3), we
have analytically calculated the pair size distribution p(R),
which turns out to be sharply peaked around a typical pair
size R = R∗. As the antiferromagnetic exchange between
the neutral solitons of a pair is a known (exponentially de-
caying) function J(R) of the pair size [6], knowledge of p(R)
allows us to calculate the magnetic susceptibility due to the
disorder-induced solitons.

At temperatures T larger than the typical exchange
value J∗ = J(R∗), we find the magnetic susceptibility
to obey the Curie law, χ(T ) ∝ 1/T . At temperatures
T ≪ J(R∗), however, most of the spin pairs are in the
singlet state, and the magnetic susceptibility (up to loga-
rithmic corrections) reads [5]:

χ(T ) ∝
(

1

T

)1−α

(6)

with α ∝ W 2/ǫ. Thus, the interplay between interchain
interactions (W ) and disorder (ǫ) determines the low-
temperature behaviour of the magnetic susceptibility.

4. Conclusions

Off-diagonal disorder induces neutral solitons in the
ground state of trans-polyacetylene. These solitons con-
tribute to the magnetic susceptibility. At low temperatures
their magnetic response shows deviations from Curie behav-
ior, and the thermal behavior of the susceptibility strongly
depends on disorder and interchain interactions [Eq. (6)].
Our theory may explain the observed deviation from Curie
behavior in Durham polyacetylene below 30K [7]. To get
better insight into the parameter α, experiments should be
extended to temperatures of the order of 1K.
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