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Abstract

Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-
Dollard estuary vary considerably with particle size. The organic material in the fine fractions (<20 um) has con-
siderably higher '*C values ("*a~80%) than that in the coarse fractions (52%) and has higher §!3C values (average of
—23%0 and —25.6%o, respectively). This shows that OM in the fine and the coarse fractions has different sources. The
organic carbon in the fractions with particle sizes <20 um is mainly imported from the North Sea. The contribution of
material from the Ems river appears negligible. The carbon isotopic composition of the coarse fractions points to a
terrestrial contribution. Discrete organic fragments are found of both terrestrial and marine/estuarine origin. © 2002

Elsevier Science Ltd. All rights reserved.

1. Introduction

An important part of the global organic carbon cycle
is the flux of terrigenous organic carbon from the con-
tinents to the oceans (e.g. Hedges and Keil, 1995).
Estuaries form an important interface between marine
and fluviatile watermasses where fluviatile water is
flowing into the sea and complex processes affect the
transported substances (e.g. Burton and Liss, 1976).

A major organic carbon pool in estuaries is particu-
late organic matter (POM), both suspended in the water
column and in sediments. POM in estuaries has several
sources: marine, autochthonous and fluviatile primary
production and terrestrial detritus discharged by rivers.
It can cycle between the sediment and the water column

* Corresponding author. Tel.: +31-50-363-47-60; fax: +31-
50-363-47-38.
E-mail address: plicht@phys.rug.nl (J. van der Plicht).

by repeated settling and resuspension (Eisma, 1993). To
estimate the relative contributions of these sources,
measurements of the stable carbon isotopic concentra-
tions (expressed as §'3C relative to a standard) in POM
are frequently used based on the assumption that marine
organic matter in general has a higher '3C concentration
than organic matter derived from terrestrial plants using
the C3 carbon fixation pathway (e.g. Keil et al., 1997;
Godii et al., 1997,1998; Laane et al., 1990; Fry and
Sherr, 1984; Salomons and Mook, 1981).

Particulate matter is, however, not homogeneous in
terms of particle size or chemical characteristics (Keil et
al., 1994; Mayer, 1994; Bergamaschi et al., 1997). Fur-
thermore, the organic component consists of a wide
range of compounds with potentially different sources,
characteristics and stability. Certain biochemicals such
as polysaccharides and proteins are more labile than
other compounds (Laane, 1982; Laane et al., 1987;
Benner et al., 1987). Moreover, different classes of
compounds from the same source have different §'3C

0146-6380/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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values, as a consequence of their biosynthetic pathway.
For example, polysaccharides and proteins have sig-
nificantly higher §'3C values than lipids (Deines, 1980;
Hayes, 1993; Schouten et al., 1998). Thus, selective
degradation of the more labile components [e.g. (poly)-
saccharides and proteins] over time can change the
stable carbon isotopic composition of POM drastically
(Laane et al., 1990; Benner et al., 1987).

The normalized '*C abundance ('*a; Mook and van
der Plicht, 1999), however, is only dependent on the age
of the material, because by definition a correction is
made for isotopic fractionation, based on the generally
known relation that fractionation of '“C is twice that of
13C (e.g. Mook and Streurman, 1983). In this way, using
both 3C and '#C data, a distinction can be made
between fresh and old organic matter present in estuarine
POM (Raymond and Bauer, 2001; Masiello and Druffel,
2001; Megens et al. 2001). Mook and Tan (1991) sug-
gested that '“C could be a useful tracer of the origin of
POM in coastal waters because they assume that in
general POM discharged by rivers originates from ero-
ded peat or soil and therefore is relatively old. However,
radiocarbon data show that POM in the Amazon river
is rather fresh (Hedges et al., 1986). Trumbore (1993)
showed that organic matter in soils in the drainage basin
of the Amazon river has a very short residence time in
the soil, but in soils of temperate regions the residence
time is much longer.

Coarse and fine particles are usually not transported
in the same way (Eisma, 1993). Coarse particles are
mainly transported via bottom currents (saltation) while
finer particles can be reintroduced into the upper water
column and transported as suspended matter. This dif-
ference in transport behaviour can be the cause of a
difference in origin of the fine and coarse particles. Also
the minerals differ, causing different absorption char-
acteristics of organic compounds. For example amino
acids have a high affinity for clay minerals (e.g. Wang
and Lee, 1993). These differences between coarse and
fine particles might be reflected in the composition and
in the stable and radioactive carbon isotopic character-
istics of the organic matter in different size fractions of
POM (Bergamaschi et al., 1997; Keil et al., 1994).

Therefore, to trace its origin, we have investigated the
relations between particle size and stable and radio-
active carbon isotope ratios in POM of a surface sedi-
ment from the Ems-Dollard Estuary, bordering the
Netherlands and Germany.

2. Materials and methods
2.1. Sampling area

The Ems-Dollard estuary (Fig. 1) receives fresh water
inflow from the river Ems (40-350 m3/s) and a smaller

inflow from the Westerwoldse Aa (ca. 30 m?/s; Helder
and Ruardij, 1982). The total length of the estuary is ca.
100 km with an area of 600 km?. In the inner part (the
Dollard) ca. 80% of the area consists of tidal flats, in the
outer part 40-50%. The tide in these waters is semi-
diurnal with a diurnal inequality and has an amplitude
from 2.5 m in the outer estuary and 3 m in the Dollard.
It is fully mixed over much of the estuary and partially
mixed only at low salinities in the Ems and the Southern
part of the Dollard. There is a net input of particulate
matter from the North Sea as a result of an accumula-
tion mechanism. Suspended matter transported inward
by the flood current starts to sink when the current
decreases. Since it takes time for the particles to sink,
they continue to be transported inward to a point where
they can not be resuspended again by the ebb current
(Postma, 1954, 1961).

The North Sea is estimated to contribute ~9x10°
tons of particulate matter per year to the estuary, com-
pared with a river input of ca. 1.4x103 tons per year
(Laane and Ruardij, 1988). The surface sediment stud-
ied here was collected in the “Bocht van Watum”, one
of the two main tidal channels in the middle part of the
estuary, close to the town of Delfzijl at a water depth of
4.5 m at low tide (Fig. 1). 2'°Pb profiles of sediments
from the area are homogeneous in the upper part, and
do not allow calculation of sedimentation rates, indi-
cating strong mixing of the sediment (unpublished
results RIKZ (National Institute for Coastal and Mar-
ine Management)). The average salinity at this location
is 16%o.

2.2. Samples

The surface sediment sample from the Ems-Dollard
Estuary (about 40 kg) was collected in February 1994 by
the RIKZ with a grab sampler, sampling the upper 10—
15 cm of the sediment. This sample was originally col-
lected and size fractionated to study different grain size
correction procedures for the determination of organic
micropollutants and heavy metals using various size
fractionation methods (cf. Klamer et al., 1990). Later,
this fractionated sample was used in this study of car-
bon isotopic composition. The sample was stored in a
50 1 PE container at 4 °C until further processing. An
aliquot of 6 kg of this sample, taken from the top of the
container, was passed through 2 mm nylon netting to
remove large fragments. This resulting sample (hereafter
named ‘total sample’; fraction 1, see Fig. 2) was size
fractionated by wet sieving and settling according to the
scheme shown in Fig. 2, based on the work of Klamer et
al. (1990). Sieves consisted of polycarbonate with nylon
netting. The water used for sieving and decantation was
pre-filtered sea water mixed with deionised water to a
salinity of 16%.. The water was first equilibrated with a
small portion of sediment in an ultrasonic bath for 20
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Fig. 1. Map of the Ems-Dollard estuary. Thin lines denote tidal flats. The sampling location is indicated by an asterisk.

min, and thereafter stored overnight at 4 °C to allow the
particles to settle. The decantate was used for sieving.
An aliquot of sample was put on a sieve placed over a
collector dish on a vibrating table and precooled (4—
10 °C) water was pumped onto the sieve. The water with
the particles that passed through the sieve was led from
the collector dish to a thermostated (10 °C) centrifuge
with a flowthrough rotor, rotating at 22,000 g. The
outflowing water was used for sieving again.

Four subsamples were obtained by using 20 and 63
pum sieves respectively (fractions 2, 3 and 4, 5 respec-
tively; see Fig. 2).

All fractions were freeze dried in containers covered
by a lid with a small hole to avoid contamination by
diffusion. The freeze dried fractions were homogenized
in a Retsch ball mill. This did not affect particle sizes.

2.3. Particle size determination

Particle size fractions were determined according to
the Dutch norm NEN 5753 (NNI, Delft, The Nether-
lands). Briefly, organic matter is digested with boiling
hydrogen peroxide, and carbonates are removed by
addition of dilute hydrochloric acid. In the remaining
mineral sample the fraction >63 pum is determined by
wet sieving. In the sample passing the sieve the <2 pm
and <16 um fractions are determined by the so-called
“pipette method”. In a glass cylinder the sample is
homogeneously suspended in water containing sodium
pyrophosphate to prevent aggregation. At defined set-
tling time and depth, calculated according to Stokes
law, samples are taken from the waterphase by means of

a volumetric pipette. The particle weight determined by
evaporation and corrected for the amount of sodium
pyrophosphate is a measure for the specific fractions <2
pm and <16 pm.

2.4. Microscopy

A number of samples were studied using optical light
microscopy. Aliquots in glycerol/water were used to
prepare standard palynological slides. The material was
examined using magnifications at 100x, 400x and
1000x to determine the identity of the various recog-
nizable particles (Fragments <10 pm can still be iden-
tified).

2.5. Organic carbon determination

Organic carbon concentrations were determined with
a Carlo Erba elemental analyzer. Prior to analysis inor-
ganic carbonates were removed by exposing the samples
to hydrochloric acid vapour overnight.

2.6. Carbon isotope measurements

For carbon isotope analysis of the organic matter,
aliquots of the fractions that contained ca. 1 mg organic
carbon were acidified with dilute hydrochloric acid to
remove inorganic carbonates, dried in vacuo over
potassium hydroxide and combusted in an oven at
900 °C in a flow of oxygen. The combustion gases were
led over silver in an oven at 400 °C to remove halogens
and sulfur dioxide, an oven with copper oxide (800 °C)
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Fig. 2. Schematic representation of the sieving and settling
procedure.

to oxidize carbon monoxide and through a cold trap
(dry ice/ethanol) to remove water. The CO, was col-
lected in a cold trap in liquid air. After the oxygen was
pumped away the gas was led over an oven with copper
(600 °C) to reduce nitrogen oxides. The CO, yields were
determined by expanding the gas in a known volume
and measuring the pressure. The '3C concentrations of
the purified carbon dioxide were measured with a VG
SIRA isotope ratio mass spectrometer (IRMS) and
expressed as 8'3C relative to the V-PDB standard. Sub-
sequently, the carbon dioxide was reduced to graphite
with an iron catalyst at 600 °C and a twofold excess of
hydrogen (Aerts-Bijma et al., 1997). The '“C activity
('*a) in the graphite was measured with the Groningen
14C-dedicated accelerator mass spectrometer (AMS;
Gottdang et al., 1995). The '#a values are defined as the
14C/12C ratio (corrected for fractionation using the '*C
fractionation) in the sample relative to the same ratio in
the oxalic acid standard and are reported in % (percent
of modern carbon) (Mook and van der Plicht, 1999).

To test blank levels, the procedure was performed
with a purified organic matter sample. No organic car-
bon was detected upon organic carbon determination
using the Carbo Erba analyser. The instrumental error
of the IRMS ('3C) was 0.02 per mil; for the AMS this is
5 per mil. Repeated sample treatment and analysis
showed that the total error for '3C was ca. 0.1 per mil in
813C, and ca. 1% in activity *a for '#C. Samples
made from natural gas are used as background
material; they have infinite age on the '*C timescale.
Background activities for all AMS runs (including
sample preparation) are very low, corresponding to
ages of 45 ka (activities '*a~0.4%). These background
activities are subtracted from the activities of the
samples.

3. Results

To study the effect of grain size distribution on the
stable and radioactive carbon isotopes and the applic-
ability of this combination of analytical methods, frac-
tions obtained by size fractionation procedures from a
surface sediment sample from a tidal channel in the
Ems-Dollard estuary were analyzed. Results of the ana-
lyses are summarized in Table 1. The total sample con-
tains ca. 20% material <20 pm on a mass base. About
70% of the total sample was separated as the > 63 um
fraction (No. 3). Particle size analysis of the fractions
showed that there is a considerable amount of mineral
particles larger than 63 um in the fractions obtained by
sieving over the 63 pum sieve.

Organic carbon concentrations (%OC) are, as expec-
ted, much higher in the fine fractions than in the coarse
fractions. Most of the organic carbon is associated with
fine grained material. The organic carbon in the frac-
tions obtained by sieving over 20 pm (Nos. 2 and 3) and
over 63 um (Nos. 4 and 5) is ca. 65% of the organic
carbon in fraction 1 (No. 1).

There is a marked difference in the '*C activities of
the fractions <20 pm and > 20 pm (Fig. 3). The coarser
fractions have a '#a value of around 50% and the fine
fraction around 80%. The §'3C values of the fractions
<20 pm are ca. —23.0%o, the 8'3C of the coarse frac-
tions ranges from —24.9 to —26.2%o. There is a clear
correlation (r>=0.80) between the '*a and the §'3C
values of the fractions (Fig. 4a). The correlation
between the carbon isotopic composition and the
organic carbon concentration is less significant (Fig. 4b).

Organic carbon mass balances can be calculated from
8'3C and '#a values, since these parameters in a bulk
sample are the weighted average of the same parameters
in its components. For example, in a mixture consisting
of component A and B, the fraction A (x4) in the mix-
ture M can be calculated from the §'3C values of the
fractions and the mixture by solving the equation:
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Table 1
Overview of measured and calculated data

949

No. Description Fm >63pum <63 pum <l6um <2um CaCO; % OC 8"3C (%o) 143 (%) OCgOC, CB-13 CB-14
mass%
1 <2000 pum 1.00 45.9 19.4 15.6 10.8 21.8 0.98 —2391+£0.07 70.9+1.0
upper part
of sample
2 0-20 pm 0.18 0.5 59.2 57.4 38.5 17.9 291 —23.08+£0.07 80.1+1.0 49.0 69 68
3 20-2000 um 0.82 62.4 1.7 1.7 1.2 22.8 0.24 —25.60+£0.07 51.7£1.0 15.7 31 32
4 0-63 um 0.29 18.0 51.7 32.5 21.9 15.1 1.72 —23.47+£0.07 74.24+1.0 54.0 74 86
5 63-2000 pm 0.71 68.3 1.3 1.3 0.9 23.4 0.14 —25.08+£0.07 50.1£1.0 10.6 26 14

Weight portions relative to the total sample (Fm) and results of mineral particle size analysis of the fractions after removal of OM and
carbonates, Calcium carbonate content, organic carbon content, §'3C values (vs. V-PDB) and '“C normalized relative abundance ('“a)
of the organic carbon. In the last three columns the distribution of organic carbon over the respective fractions calculated from weight
portions and organic carbon percentage (OCy/OC,; OC;is%OC * Fm of the fraction and OC, is the OC concentration of sample 1, the
‘total sample’), §'3C values (CB13) and !“a values (CB14). Absolute errors in CB13 and CB14 are approximately £10%.

1. total
70.9 %
-23.9 %o
2.0-20 um | 3.20-2000 um
80.1 % 51.7 %
-23.1 %o -25.6 %o
4. 0-63 um 4. 63-2000 um
74.2 % 50.1 %
-23.5 %o -25.5 %o
0 20 40 60 80 2000

particle size (Um)

Fig. 3. Carbon isotopic compositions of OM in fractions obtained by sieving of the surface sediment. Numbers in bold are the frac-
tion numbers (corresponding to those in Fig. 2). The upper number is the '#C activity '*a (in%), the lower number is the §'3C (in %o).

xA-8Ca + (1 — x4)-8"3Cp = 8Cy

Comparison of organic carbon mass balances calcu-
lated from %OC and weight fraction, §'3C and !%a thus
gives an indication of the quality of the analyses and
separation procedure. The carbon mass balance calcu-
lations based on §!3C and !a (with an absolute error of
ca. 10%) are in reasonable agreement with the balance
calculated from the weight portions and the organic
carbon concentrations (Table 1). The calculations based
on 83C and '#a show that 70% of the total organic
carbon is associated with particles smaller than 20 um
and 90% with particles smaller than 63 pm.

3.1. Microscopy

Microscopic inspection of the coarse fraction > 63 pm
(fraction 5) shows that this fraction consists mainly of
large mineral particles and large pieces of organic material
which are identified as fragments of soft tissue of higher
plants (parenchyma), copepod eggs, diatom fragments,
Pediastrum (a fresh water alga) and cuticle fragments. The
fine fraction (<20 pm), fraction 2, is quite homogeneous,
consisting mainly of mineral particles with brown entities
attached (most probably organic matter). Recognizable
discrete organic fragments include spores, pollen grains
and possibly small algae.
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Fig. 4. a) relation between §'*C and '“a of OM in the fractions
and (b) '“a vs. organic carbon concentration (%OC). Errors
indicated are ca.1% for #a and ca. 0.1%o for §'3C, based on
repeated analysis of samples (see materials and methods sec-
tion).

4. Discussion and conclusions

The carbon isotopic compositions of the size fractions
within this single sediment sample show considerable
variability. The fractions with particle size larger than
20 pm, accounting for 30% of the total organic carbon,
have 8'3C values ranging from —25 to —27%o and '“a
values around 52%. The fractions finer than 20 um have
813C values around —23%o and have considerably higher
143 values (78-84%). These fine fractions are similar in
their carbon isotopic composition when compared to
suspended organic matter at this site that has average
813C values of —23.240.4%0 and average '“a values of
75+3% (Megens, 2000) indicating the close relation
between the small particles in the sediment and in the
watercolumn as far as the organic matter is concerned
(e.g. Eisma, 1981).

The §'3C value of organic carbon in the Ems river in
surface sediments is about —27%o (Salomons and Mook,
1981) and in suspended matter it ranges from —25 to
—28 %o (Eisma et al., 1983, 1991). Typical §'3C values of
organic carbon in sediments and suspended matter in
dutch coastal waters of the North Sea are around —23%o

(Laane et al., 1990). The '“a values of suspended matter
in the Dutch coastal waters ranges from 82 to 88%.
Therefore, the organic matter in the fine fraction
appears to consist entirely of material imported from
the North Sea.

Suspended POM from the Ems river has a similar 4a
value (77%; Megens, 2000), but a lower §'3C value
(—25.3%0, Megens, 2000; —25 to —28%o, Eisma et al.,
1991). Therefore the OM in this fraction is not a simple
mixture of OM from the Ems and the North Sea. Based
on mineralogical investigations it was determined that
no small particles from the Ems reach this point (Eisma,
1981; Favejee, 1960). Thus, the older component prob-
ably does not originate from fluvia POM. Exchange with
dissolved organic matter (DOM) has been proposed as
an explanation for the lower '4a values in detrital
aggregates at the deep ocean sea floor compared with
sinking POM (Wang et al., 1996). Macromolecular
DOM (>1000 dalton) from the Ems-Dollard has “a
values of 87% (Van Heemst et al., 2000), and is there-
fore not the source of the old component. The '#a of low
molecular weight DOM in the Ems-Dollard is not
known. At this stage it cannot be excluded that this
fraction contains a small contribution of old, so-called
black or fossil carbon (Hedges et al., 2000).

The lower §'3C values of the coarser fractions indi-
cate, using the simple two end member mixing model of
marine and terrestrial organic matter, a higher con-
tribution of terrestrial organic matter to the coarse
fractions than to the fine fractions. However, the §!3C
values of phytoplankton in the estuary can cover a
range from a marine value of —17%o to values around
—30%o, due to the gradient of §'3C of dissolved inor-
ganic carbonate (DIC) in the Ems-Dollard estuary,
which ranges from —11%o in the river to + 1% in the sea
(Megens, 2000). Therefore, the lower §'3C values could
be related to upstream produced phytoplankton derived
OM as well. The considerably lower #a values (ca. 50%,
corresponding to a '*C age of about 5500 yr BP) is an
indication for a terrestrial source, because the Ems river
flows through an area with large peat deposits that
started to form ca. 7000 years ago (Dupont, 1986). The
lower 8'3C, however, can also indicate selective degra-
dation of compounds with relatively high §!3C values
like carbohydrates and proteins.

Microscopy showed the presence of remains of higher
plant in these fractions, but also fresh water algae and
discrete organic particles associated with a marine or
estuarine environment. We did not determine how much
these discrete organic particles contribute to the total
organic carbon in these fractions. In total sediment
usually less than 10% of the organic matter is present as
discrete organic debris (Hedges and Keil, 1995), but in
coarse fractions (> 38 um) of sediment from the delta
of the Amazon river more than 60% was present as low
density discrete organic particles (Keil et al., 1997).
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Our study of the stable and radioactive carbon iso-
topic compositions of one size fractionated surface
sediment from the Ems-Dollard estuary shows that
large differences exist in the stable and radioactive car-
bon isotopic composition of OM in fractions of this
sediment with particle sizes <20 pm and >20 pm. The
average “a (80%) and 8'3C (=23 %o) values of the fine
fractions are much higher than those of the coarse frac-
tions (52% and —25.6 %o). The main and possibly only
source of OM in the fine fractions of this sediment
sample is POM from the North Sea. The OM in the
coarse fractions appears to be mixture of terrestrial and
estuarine or marine material. The low '*a and §'3C
values in combination with the presence of fragments of
soft tissue of higher plants indicate a contribution of
eroded peat. The lower §'3C values can also be
explained partly by the selective degradation of carbo-
hydrates and proteins.

Associate Editor—M. Altabet
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