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Abstract We subjected methanol-grown cells of wild type
Hansenula polymorpha simultaneously to nitrogen depletion
and excess glucose conditions. Both treatments induce the
degradation of peroxisomes, either selective (via excess glucose)
or non-selective (via nitrogen limitation). Our combined data
strongly suggest that both processes occur simultaneously under
these conditions. The implications of these findings on studies of
autophagy and related transport pathways to the vacuole in yeast
are discussed.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In eukaryotic cells, organelle functions are specified by their

unique sets of resident proteins. Maintenance of organelle in-

tegrity, structure and function requires effective regulatory

mechanisms to balance biosynthetic and inactivation activities.

The ability to degrade and reuse cellular components is in-

strumental to maintain cellular homeostasis [1–3]. Yeast per-

oxisomes are favorable models for studies of organelle

homeostasis because both the proliferation and degradation of

these organelles can be readily manipulated [4].

Peroxisome degradation in the methylotrophic yeast Han-

senula polymorpha may occur via two morphologically distinct

machineries, namely microautophagy and macropexophagy

(see [4]). At nitrogen-limiting conditions portions of the cyto-

plasm – also including organelles like mitochondria and per-

oxisomes – are delivered via a phagocytosis-like mechanism to

the vacuole for degradation in a non-selective way, a process

called microautophagy [4,5]. The second mode – macropexo-

phagy – is induced at methanol-utilization repressing condi-

tions (e.g., after a shift from methanol to glucose or ethanol)

and involves the selective and sequential degradation of indi-

vidual peroxisomes via sequestration and subsequent fusion of

the sequestered compartments with the vacuole [6,7]. Earlier

studies have indicated that many protein transport pathways

to the vacuole, including microautophagy and macropexo-

phagy, partly overlap [8–11].

The mechanism by which the nutritional signal is transduced

into a specific machinery of organelle degradation is not

completely known. The mode of signaling strongly determines

the ultimate way by which the cargo is delivered to the vacuole.

As stated above, in H. polymorpha excess glucose/ethanol

conditions initiate peroxisome degradation via macropexo-

phagy, while nitrogen depletion results in microautophagy.

However, species related differences appear to exist. In Pichia

pastoris, for instance, ethanol and glucose bring about different

modes of peroxisome degradation namely either macropexo-

phagy (induced by ethanol) or a process morphologically

similar to microautophagy in which the vacuole engulfs clus-

ters of peroxisomes, designated micropexophagy (induced by

glucose) [12–14].

In baker’s yeast, however, peroxisome degradation has

generally been studied by applying excess glucose and ni-

trogen limitation conditions simultaneously [15–17]. This

implies that in this yeast species organelle degradation may

result from either macropexophagy or microautophagy,

while it remains unclear which one is in fact operative at

any given time point. To shed more light on this funda-

mental question, we investigated the response of methanol-

grown H. polymorpha cells simultaneously exposed to excess

glucose and nitrogen limitation conditions. H. polymorpha is

a model organism of choice for such studies, since the

morphological events accompanying these two autophagy-

related processes are much more pronounced relative to

baker’s yeast.

2. Materials and methods

2.1. Micro-organisms and growth conditions
Wild-type Hansenula polymorpha CBS4732 cells (Centraal Bureau

voor Schimmel cultures (CBS) culture collection, Utrecht, The Neth-
erlands) were grown in batch cultures on mineral media (MM) [18]
using glucose (0.5% w/v) or methanol (0.5% v/v) as carbon source and
0.25% ammonium sulfate as nitrogen source. In microautophagy ex-
periments, cells were grown in MM supplemented with methanol and
ammonium sulfate and subsequently shifted to MM supplemented
with methanol but lacking yeast extract and ammonium sulfate [5].
Macropexophagy was induced by adding 0.5% glucose to methanol-
grown cells [19]. Samples were taken at various time points for bio-
chemical and ultra structural analysis.
For biochemistry equal volumes of the cultures were taken per

sample in each individual experiment in order to correct for dilution of
proteins due to growth. Samples were TCA precipitated and stored at
)20 �C. After preparation of crude extracts, equal volumes of extract
were loaded per lane.
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2.2. Biochemical methods
Crude cell extracts were prepared as described elsewhere [20]. SDS–

PAGE andWestern blotting were performed by established procedures
[21].

2.3. Morphological analysis
Intact cells were prepared for electron microscopy and immunocy-

tochemistry as described elsewhere [22]. The average number of per-
oxisomes per cell was estimated by random counting of cell profiles in
thin sections of KMnO4-fixed cells [23].

3. Results

3.1. Simultaneous exposure of H. polymorpha cells to excess

glucose and nitrogen limitation conditions induces enhanced

peroxisome degradation rates

Wild-type H. polymorpha CBS4732 cells were grown in

methanol/ammonium sulfate-containing media until the mid-

exponential growth stage (OD660 ¼ 1.5) and subsequently

shifted to the following fresh environments: (i) methanol in the

absence of nitrogen, (ii) methanol/ammonium sulfate supple-

mented with excess glucose (0.5% final concentration) and (iii)

methanol lacking nitrogen but supplemented with excess glu-

cose (0.5%) at the same time. Samples were taken at different

time points and prepared for Western blot analysis. Western

blots were decorated with specific antibodies against the per-

oxisomal matrix protein alcohol oxidase (AO). The results

(Fig. 1) indicate that simultaneous adaptation of the cells to

excess glucose and nitrogen-limitation conditions resulted in a

significantly stronger reduction of AO protein levels, relative

to conditions of excess glucose or nitrogen limitation alone.

3.2. Microautophagy and macropexophagy occur

simultaneously in H. polymorpha when both processes are

induced at the same time

Since the morphological events that accompany micro-

autophagy or macropexophagy in H. polymorpha differ

strongly, electron microscopy was used to determine the

morphology and the kinetics of both processes in cells under

conditions that these were induced simultaneously.

Inspection of ultrathin sections of KMnO4-fixed cells re-

vealed that in methanol/ammonium sulfate-grown H. poly-

morpha WT cells, exposed to excess glucose, individual

peroxisomes became sequestered from the cytosol by multiple

membrane layers, as described previously [6,7]. Sequestration

was already detectable after 15 min of incubation of cells in the

presence of glucose (Fig. 2A). Organelle degradation, dem-

onstrated by the accumulation of peroxisomal AO into vacu-

oles by immunocytochemistry, was evident already after 30

min of incubation (Fig. 2F). Additionally, exposure of cells to

nitrogen-limiting conditions showed the expected morphology

of organelle degradation (data not shown; [5]). Detailed ex-

periments on cells subjected to both nitrogen limitation and

glucose excess conditions, also including analysis of serial

sections, demonstrated the characteristic morphological events

of both macropexophagy and microautophagy occurring si-

multaneously. Thus, both specific organelle sequestration and

the typical phagocytosis-like characteristics of non-specific

cytoplasm uptake via microautophagy were frequently de-

tectable in one and the same cell (Fig. 2B). Apparently, initi-

ation of macropexophagy does not exclude degradation of

organelles by microautophagy. Furthermore, occasionally cells

have been observed in which organelles that were in the pro-

cess of being sequestered were also subject to microautophagy

(Fig. 2C and D). As a result, apparently intact peroxisomes

were regularly observed in autophagic vacuoles (Fig. 2E and

F). These findings are indicative for the novel view that tagging

of organelles for macropexophagy apparently does not exclude

them from the other degradation machinery. It should be

noted that organelle sequestration was never observed in cells

subjected to nitrogen limitation alone. Conversely, phagocy-

tosis-like uptake of organelles in the vacuole was not observed

in cells exposed to excess glucose.

To seek further quantitative evidence for the above finding,

morphological analyses were performed to analyze the kinet-

ics of peroxisome destruction at the three conditions (mac-

ropexophagy and microautophagy alone, and the two

processes simultaneously). As is evident from the data, sum-

marized in Fig. 3, already after 1 h of exposure to both

conditions simultaneously, the number of peroxisomes was

drastically reduced relative to each single condition separately.

These data strongly suggest that microautophagy and mac-

ropexophagy occurred at the same time in cells simultaneously

exposed to both nitrogen limitation and glucose excess con-

ditions, thus leading to enhanced uptake of peroxisomes in the

vacuole.

4. Discussion

We have shown that in H. polymorpha two modes of per-

oxisome degradation, namely glucose-induced selective per-

oxisome degradation (macropexophagy) and nitrogen

limitation-induced non-selective degradation (microauto-

phagy), can occur at the same time upon their simultaneous

induction. Our analysis took advantage of the fact that the

morphological events accompanying macropexophagy and

microautophagy differ significantly, allowing an easy discrim-

ination of the nature of the degradation events that take place.

In short, macropexophagy is morphologically characterized by

the sequestration of individual peroxisomes by multiple

membrane layers that precede the fusion process to the vacuole

membrane to facilitate degradation by vacuolar hydrolases

[6,7]. Microautophagy on the other hand does not require

organelle sequestration but is effectuated via uptake of a por-

tion of cytoplasm, including organelles, in a phagocytosis-like

manner [5].

Fig. 1. Western blot experiments to show the kinetics of AO turnover
at different autophagy conditions. Western blots were prepared from
samples taken at the indicated time points of methanol-grown cells
grown to the mid-exponential growth stage (OD660 ¼ 1.5) and exposed
to (i) methanol media that lack any nitrogen (N) source, (ii) 0.5%
glucose and (iii) N-limitation and excess glucose simultaneously. Equal
volumes of cultures were loaded per lane. The blots, decorated with a-
AO antibodies show that the reduction of AO protein is enhanced at
conditions of concurrent excess glucose and N-limitation conditions,
relative to exposure of cells at either of these conditions alone.
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In the related methylotrophic yeast, P. pastoris, the mode of

selective peroxisome degradation is dependent on the carbon

source added. Excess glucose induces engulfment of clusters of

peroxisomes, a process designated micropexophagy, while eth-

anol leads to removal of individual peroxisomes by amechanism

similar to that described above forH. polymorpha [12–14,24]. In

baker’s yeast, selective peroxisome degradation has been studied

in cells pre-grown on oleic acid to induce peroxisome prolifer-

ation that was subsequently transferred to excess glucose con-

ditions in the absence of a nitrogen source [15].

The above observations on H. polymorpha and P. pastoris

suggest that different stimuli can induce at least two morpho-

logically distinct mechanisms of peroxisome turnover. This

raises the question which of these is operative in organelle

degradation in baker’s yeast cells when these are exposed to

excess glucose and nitrogen limitation simultaneously (cf. [15]).

Hutchins et al. [15] concluded, based on their findings that the

removal of various cytoplasmic marker proteins – Pho8D60p
as cytosolic marker, F1b as mitochondrial marker and the

Golgi marker Kex2p – occurred at a slower rate relative to the

peroxisomal marker protein Fox3p, that peroxisome degra-

dation in S. cerevisiae was a specific process. Our results,

however, show that in H. polymorpha concurrent excess glu-

cose and nitrogen limitation conditions speed up peroxisomal

degradation because macropexophagy and microautophagy

occur simultaneously. These results are consistent with the

possibility that also in S. cerevisiae, the enhanced level of

Fox3p degradation may actually be the result of the combined

action of these two distinct autophagy-like processes, rather

than exclusively a specific uptake of microbodies.

Fig. 2. (A) A sequestered peroxisome in a methanol-grown cell, shifted for 30 min to glucose. The inset shows a high magnification of the sequestering
membrane layers. (B) A detail of a cell exposed for 30 min to glucose and N-limitation at the same time; shown is an organelle that is being, but not
yet completely, sequestered and an adjacent one that is engulfed by a vacuole profile. (C) and (D) Two stages of the uptake of sequestered per-
oxisomes by vacuole engulfment that is typical for microautophagy. (E) and (F) Examples of the uptake of peroxisomes in autophagic vacuoles,
showing the morphology (E) and immuno cytochemical demonstration of AO protein in the incorporated peroxisomes (*) as well as the autophagic
vacuole (glutaraldehyde-a-AO antibodies-GAR gold). Electron micrographs are taken from KMnO4-fixed H. polymorpha cells unless otherwise
stated. Abbreviations: AV, autophagic vacuole; M, mitochondrion; N, nucleus; P, peroxisome; SP, sequestered peroxisome; V, vacuole. The marker
represents 0.5 lm (unless otherwise stated).
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It has been demonstrated in a number of yeast species that

the various protein sorting pathways to the vacuole (e.g., au-

tophagy, the Cvt pathway, pexophagy, endocytosis) share the

function of various proteins [10,25–27]. However, recent stud-

ies have indicated that many of these proteins are not required

for all processes, and that some are unique for a single process,

in particular those that specify cargo selection such as Atg191

[28], Pex14 [29], Pex3 [30], Atg11 [31,32] and Atg23 [17].

Clearly, this challenges the approach that selective peroxisome

degradation can be studied in S. cerevisiae using two different

stimuli – excess glucose together with nitrogen depletion – si-

multaneously. This argument is stressed by the finding that in

specific cases absence of one peroxisome degradation pathway

actually induces the alternative pathway [4,33].

In conclusion, our data clearly indicate that two different

autophagy-related pathways can proceed at the same time in

H. polymorpha. If this property is also valid for other yeast

species, this may severely hamper the analyses of the specific

function of a single gene product in one particular process.

This argues to search for conditions that specifically block

either of the two pathways to allow in depth studies on these

pathways separately.
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Fig. 3. Relative peroxisome numbers in cells subjected to various au-
tophagy conditions. The average number of peroxisomes per cell was
estimated by random counting of cell profiles in ultrathin sections of
KMnO4-fixed cells. For growth conditions see legend to Fig. 1. Error
bars denote standard errors (S.E.; N ¼ 115). The data show that the
relative reduction of peroxisome numbers is significantly enhanced in
cells exposed to excess glucose and N-limitation simultaneously rela-
tive to N-limitation and excess glucose conditions alone. These dif-
ferences (>3 S.E. difference) become prominent after 1 h of cultivation
in the new environment.
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