7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Infeasibility in automatic test assembly
Huitzing, Hiddo Arnold

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Huitzing, H. A. (2003). Infeasibility in automatic test assembly: analysis, causes and solutions Groningen:
Stichting Drukkerij C. Regenboog

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018


https://www.rug.nl/research/portal/en/publications/infeasibility-in-automatic-test-assembly(b275ad61-c4fb-40c8-ba36-be690609817d).html

CHAPTER 7: CONCLUSION

7.1 Summary

In Automatic Test Assembly (ATA), tests are assembled by selecting items
from an item bank where the items are stored with their characteristics, such as
word count, Item Response Theory (IRT) parameter estimates, content, etc. With
Linear Programming Test Assembly (LPTA) techniques optimal tests can be
assembled. A problem arises when the mathematical model has no solution. It is
then said to be infeasible. Reasons for infeasibility can be a typing error, a togical
error, a wrong transcription of a stated demand into mathematical constraints, or
an item bank that cannot fulfill the demands. When the mathematical model is
infeasible, then no solution is presented, leaving the test assembler empty-handed.

Infeasibility in LPTA models can be caused by a variety of sources, which can
be difficult to track. Sometimes one is not really interested in the reasons for the
infeasibility, but a fast remedy is needed. This is especially true if time is a factor,
e.g., in Computer Adaptive Testing. Some violations of the original demands are
then unavoidable, causing a loss of quality, and a test assembler will want to
minimize these, preferably in a smart way. We will refer to this as a short-term
strategy.

If there is more time, a test assembler might wish to investigate the causes of
infeasibility and, if possible, repair the defects in the model or shortcomings in the
item bank. Analyzing the causes of infeasibility caused by model shortcomings will
be considered to be a short-term to medium-term strategy, while looking into item
bank deficiencies, and possibly repairing these, is thought to be long-term
planning.

Chapters 1 and 2 and Appendix 1 are introduction chapters to Test Assembly
and Linear Programming Test Assembly in which also infeasibility in ATA is
discussed. Chapters 3, 4 and 5 treat short-term approaches and medium—term
approaches to infeasibility in LPTA models, while Chapter 6 presents a long-term
strategy for the solution / prevention of infeasibility. Appendix 2 discusses the
software program Nuzlight, specifically programmed for this thesis, with some
guidelines on utility and usability of software packages. Here we will give

summaries of Chapters 3, 4, 5 and 6.




Conclusion

Ch. 3: Using the Irreducible Inconsistent Sets of Constraints

This chapter offers a heuristic, called the IIS-Solver, which is able to repair an
infeasible LPTA model by use of Irreducible Inconsistent Sets of constraints (IISs),
powerful analyzing tools for infeasibility. By searching IISs, it is possible to indicate

constraints which are crucial to make the LPTA model feasible.

By means of the Deletion Algorithm, an IIS is found and one of its constraints
is modified to make this subset of constraints (i.e., the IIS) feasible. Several ways
are presented to make a choice on which constraint to adapt. A loss function that
calculates a percentage of violation is introduced, giving the test assemblers a
decision criterion. Once an IIS is fixed (i.e., the set of constraints is made
feasible), but the model is still infeasible, the IIS-Solver will continue to search for
another IIS, repeating this procedure until the whole modified set of constraints is
made feasible. The feasible set of constraints can then be solved with a LP solver
using the original objective function.

The 1IS-Solver is a short-term to medium-term approach to infeasibility in
LPTA in the sense that it modifies the constraint bounds to force a solution. The
IIS-Solver can both be used as a stand-alone procedure (as a short-term strategy)
or interactively (as a medium-term strategy). Drawbacks of this heuristic are also
studied in this chapter, such as the computer time needed for the deletion
algorithm to find an IIS. Another weak point is the heuristic nature of the IIS-
Solver, which does not guarantee a fast or best soiution (e.g., in terms of number
of constraints violated or in terms of total percentage violation). However, in the
numerical examples, this theoretical problem does not seem to play a role of
importance. Finally, the iIS-Solver is compared to a Weighted Goal Programming
(WGP) model solved with a heuristic. In a WGP model all the constraint bounds are
allowed to be violated, but with a penalty. By giving weights to the constraints
(where a larger weight represents a more important constraint bound to be met,
i.e., not to be violated), it can be more or less be controlled which constraints are
violated. In an objective function the weighted sum of the deviations is minimized
Both the WGP model solved with a heuristic and the IIS-Solver have their merits.
The first method is fast and usually gives acceptable solutions, but the IIS-Solver
has been really developed with the purpose of forcing a solution in the case of
infeasibility with a lowest cost possible (although a giobal minimum of the cost

cannot be guaranteed, this being only a heuristic). We see that, in terms of total

136




i

Conciusion

percentage violations (i.e., by how much percent a constraint bound is exceeded,

summed over all constraints), the 1I1S-Solver does much better.

Ch. 4: Set Covering with Item Sampling and Infeasibility Analysis

As argued in Chapter 3, finding IISs can take much computer time. The Set
Covering with Item Sampling (SCIS) procedure provides an alternative for the
medium term. By sampling sets of items, representing the tests from the item
bank, and checking these against the constraints of the LPTA model, one can see
which constraints are never satisfied and which are easy to satisfy. Moreover, by
means of a set-covering model, tentative 1ISs can also be identified. Because of
the fact that these tests are sampled and will usually not cover all the possible
combinations, such 1ISs in the sampled item sets are not necessarily 1ISs in the
original problem, but they can suggest “real” IISs and are indeed helpful in
pointing to the constraints that are most influential in causing the infeasibility of
the LPTA model.

In Chapter 4 it also shown that one can use item sampling to search for
indications of Maximum Feasible Subsets (MFSs) of constraints or Minimum
Cardinality IIS Set Covers (MCISCs). A MFS in an infeasible LPTA model! is a largest
set of constraints that together is still feasible. There can be several MFSs which
differ in one or more constraints, but have the same number of constraints. Its
complement is the Minimum Cardinality Set Cover of IISs (MSISC), which is a
smallest set of constraints that has to be deleted from the infeasible LPTA model so
that the remaining set of constraints is a feasible set. A MFS can then be regarded
as the set of constraints that can all be set as hard (i.e., they are not allowed to be
violated) while only the constraints of the MCISC are set as soft constraints (i.e.,
they can be violated if need be). This presents an advantage in terms of the
number of soft constraints and more security for the test. Setting all constraints as
hard is not helpful in analyzing an infeasible LPTA model but one would like to
restrict the set of soft constraints as much as possible. In a large numerical

example these methods are then further exptored.

137




€

Conclusion

Ch.5: A Case Study of Short to Medium-Term Strateqgies for Infeasibility
Here the methods introduced in Chapters 3 and 4 are applied to two real cases

coming from the Cito Group in The Netherlands (National Institute for Educational
Measurement). The methods researched are the 11S-Solver of Chapter 3, the SCIS
of Chapter 4, and a WGP model solved either with a Greedy Heuristic, or with a LP
solver. For the LP solver two situations are distinguished. In the first situation only
one objective function is used, which is to minimize the total unweighted sum of
violations, and in the second situation a second objective function is added, which
is to maximize the test information function (the original objective function).
Furthermore, two versions of the Deletion Algorithm (DA) are used. The Relaxed
Ordered Deletion Algorithm (RODA) is a version of the DA programmed in CPLEX
(Ilog, 2001) to detect an IIS, but uses the relaxed LPTA model (i.e., the binary
variables are relaxed and can take on any real value between 0 and 1). The
Integer Randomized Deletion Algorithm (IRDA) is also capable of finding an IIS
using the binary LPTA model.

Two types of methods are distinguished: analyzing methods, which have as
function to find the causes of infeasibility; and forcing methods, which have as
primary goal to offer a solution to the infeasible model by forcing (i.e., violating)
some of the constraints. In each of the two cases from the CITO group, two causes
of infeasibility are introduced and it is checked whether the methods are able to
detect those causes and how they deal with the situation. The goal of this chapter
is to see how well the newly developed short-term and medium-term methods
perform in practice. Methods using a combination of an analyzing method and a
forcing method, such as the IIS-Solver of Chapter 3, gave very good results in
terms of a high objective function value and a small number of constraints
violated. However, there appeared to be a trade-off between a good result and

forcing a solution.

138




Conclusion

Ch. 6: Adding Hypothetical Items to the Item Bank to Prevent Infeasibility

A long-term strategy to prevent infeasibility in LPTA is explored in this chapter
by focusing on item bank deficiency, i.e., infeasibility caused by the shortcomings
of the item bank. It is argued that in the long run the main issue is not to act upon
the symptoms of the problem which appears in the form of infeasible LPTA models,
but upon the real causes of infeasibility, which is (in almost all cases) a deficient

item bank.

The Item Bank Extension Model works as follows. Hypothetical items are
added to the item bank and the (previously infeasible} LPTA model. If the model
has become feasible, we have an idea of which type of items might be added to
the item bank to prevent infeasibility. The difficulty is how to define these
hypothetical items, i.e., which characteristics they must have.

A first suggestion is to have the hypothetical items resemble the real items as
much as possible, without being actual copies. Therefore of each real item, to be
called original item, an imitation item is constructed, which has the same
numerical characteristics (e.g., word count, IRT parameter estimates, etc.), but a
different content (e.g., while the original content is a question on Napoleon, the
imitation is a question on Louis XIV). The reason to have the imitation items
resemble the original items is that we know that such items have been written in
the past and are likely to be written again. In a second step the item
characteristics are allowed to vary within certain bounds. A numerical example
concludes the chapter and also shows some of the problems encounterad. Special
attention should be paid to how the item characteristics in the IBE model can vary
to be of practical value. For example, if the solution of the IBE model is to add
several items with only one or two words to the item bank, to solve the infeasibility

problem, such a solution is unrealistic.

139




