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7 . t Summary

In Automatic Test Assembly (ATA), tests are assembled by select ing i tems

from an i tem bank where the i tems are stored with their  character ist ics,  such as

word count,  I tem Response Theory ( IRT) parameter est imates, content,  etc.  With

Linear Programming Test Assembly (LPTA) techniques opt imal tests can be

assembled. A problem arises when the mathematical  model has no solut ion. I t  is

then said to be infeasible. Reasons for infeasibi l i ty can be a typing error,  a logical

error,  a wrong transcr ipt ion of a stated demand into mathematical  constraints,  or

an i tem bank that cannot ful f i l l  the demands. When the mathematical  model is

infeasible, then no solut ion is presented, leaving the test assembler empty-handed.

Infeasibi l i ty in LPTA models can be caused by a var iety of sources, which can

be di f f icul t  to track. Sometimes one is not real ly interested in the reasons for the

infeasibi l i ty,  but a fast remedy is needed. This is especial ly t rue i f  t ime is a factor,

e .9 . ,  in  Computer  Adapt ive  Tes t ing .  Some v io la t ions  o f  the  or ig ina l  demands are

then unavoidable, causing a loss of qual i ty,  and a test assembler wi l l  want to

minimize these, preferably in a smart way. We wi l l  refer to this as a short- term

strategy.

I f  there is more t ime, a test assembler might wish to invest igate the causes of

infeasibi l i ty and, i f  possible, repair  the defects in the model or shortcomings in the

i tem bank, Analyzing the causes of infeasibi l i tv caused by model shortcomings wi l l

be considered to be a short- term to medium-term strategy, whi le looking into i tem

bank def ic iencies, and possibly repair ing these, is thought to be long-term

plann ing .

Chapters 1 and 2 and Appendix 1 are introduct ion chapters to Test Assembly

and Linear Programming Test Assembly in which also infeasibi l i ty in ATA is

discussed. Chapters 3,4 and 5 treat short- term approaches and medium-term

approaches to infeasibi l i ty in LPTA models, whi le Chapter 6 presents a long-term

strategy for the solut ion /  prevent ion of infeasibi l i ty.  Appendix 2 discusses the

software program NuzLight,  specif ical ly programmed for this thesis,  with some

guidel ines on ut i l i ty and usabi l i ty of  software packages. Here we wi l l  g ive

summaries of Chapters 3, 4,  5 and 6.
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Ch. 3: Usino the Irreducible Inconsistent Sets of Constraints

This chapter offers a heurist ic,  cal led the I IS-Solver,  which is able to repair  an

infeasible LPTA model by use of I rreducible Inconsistent Sets of constraints ( I ISs),

powerful  analyzing tools for infeasibi l i ty.  By searching I ISs, i t  is possible to indicate

constraints which are crucial  to make the LPTA model feasible.

By means of the Delet ion Algori thm, an I IS is found and one of i ts constraints

is modif ied to make this subset of constraints ( i .e. ,  the I IS) feasible. Several  ways

are presented to make a choice on which constraint to adapt.  A loss funct ion that

calculates a percentage of v iolat ion is introduced, giving the test assemblers a

decision cr i ter ion. Once an I IS is f ixed ( i .e. ,  the set of  constraints is made

feasible),  but the model is st i l l  infeasible, the I IS-Solver wi l l  cont inue to search for

another I IS, repeat ing this procedure unt i l  the whole modif ied set of  constraints is

made feasible. The feasible set of  constraints can then be solved with a LP solver

using the or iginal  object ive funct ion.

The I IS-Solver is a short- term to medium-term approach to infeasibi l i ty in

LPTA in the sense that i t  modif ies the constraint bounds to force a solut ion. The

IIS-Solver can both be used as a stand-alone procedure (as a short- term strategy)

or interact ively (as a medium-term strategy).  Drawbacks of this heurist ic are also

studied in this chapter,  such as the computer t ime needed for the delet ion

algori thm to f ind an I IS. Another weak point is the heurist ic nature of the I IS-

So lver ,  wh ich  does  no t  guarantee  a  fas t  o r  Des t  so iu t ion  (e .9 . ,  in  te rms o f  number

of constraints violated or in terms of total  percentage violat ion).  However,  in the

numerical  examples, this theoret ical  problem does not seem to play a role of

impor tance.  F ina l l y ,  the  i IS-So lver  i s  compared to  a  Weigh ted  Goa l  Programming

(WGP)  mode l  so lved w i th  a  heur is t i c .  In  a  WGP mode l  a l l  the  cons t ra in t  bounds are

al lowed to be violated, but with a penalty.  By giving weights to the constraints

(where a larger weight represents a more important constraint bound to be met,

i .e. ,  not to be violated),  i t  can be more or less be control led which constraints are

violated. In an object ive funct ion the weighted sum of the deviat ions is minimized

Both the WGP model solved with a heurist ic and the I IS-Solver have their  meri ts.

The f i rst  method is fast and usual ly gives acceptable solut ions, but the I IS-Solver

has been real ly developed with the purpose of l 'orcing a solut ion in the case of

infeasibi l i ty with a lowest cost possible (al though a global minimum of the cost

cannot  be  guaranteed,  th is  be ing  on ly  a  heur is t i c ) .  We see tha t ,  in  te rms o f  to ta l
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percentage violat ions ( i .e. ,  by how much percent a constraint bound is exceeded,

summed over al l  constraints),  the I IS-Solver does much better,

Ch. 4: Set Covering with I tem Sampling and Infeasibi l i ty AnalYsis

As argued in Chapter 3, f inding I ISs can take much computer t ime. The Set

Covering with I tem Sampling (SCIS) procedure provides an al ternat ive for the

medium term. By sampl ing sets of i tems, represent ing the tests from the i tem

bank, and checking these against the constraints of the LPTA model,  one can see

which constraints are never satisfied and which are easy to satisfy. Moreover, by

means of a set-covering model,  tentat ive I ISs can also be ident i f ied. Because of

the fact that these tests are sampled and wi l l  usual ly not cover al l  the possible

combinat ions, such I ISs in the sampled i tem sets are not necessari ly I ISs in the

original  problem, but they can suggest "real"  I ISs and are indeed helpful  in

point ing to the constraints that are most inf luent ial  in causing the infeasibi l i ty of

the LPTA model.

In Chapter 4 i t  also shown that one can use i tem sampling to search for

indicat ions of Maximum Feasible Subsets (MFSs) of constraints or Minimum

Cardinal i ty I IS Set Covers (MCISCS). A MFS in an infeasible LPTA model is a largest

set of  constraints that together is st i l l  feasible. There can be several  MFSs which

dif fer in one or more constraints,  but have the same number of constraints.  I ts

complement is the Minimum Cardinal i ty Set Cover of I ISs (MSISC), which is a

smallest set of constraints that has to be deleted from the infeasible LPTA model so

that the remaining set of  constraints is a feasible set.  A MFS can then be regarded

as the set of  constraints that can al l  be set as hard ( i .e. ,  they are not al lowed to be

violated) whi le only the constraints of the MCISC are set as soft  constraints ( i .e. ,

they can be violated i f  need be).  This presents an advantage in terms of the

number of soft constraints and more security for the test. Setting all constraints as

hard is not helpful  in analyzing an infeasible LPTA model but one would l ike to

restr ict  the set of  soft  constraints as much as possible. In a large numerical

example these methods are then further explored.
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Ch.5: A Case Studv of Short  to Medium-Term Strateqies for Infeasibi l i ty

Here the methods introduced in Chapters 3 and 4 are appl ied to two real cases

coming from the Cito Group in The Netherlands (Nat ional Inst i tute for Educat ional

Measurernent).  The methods researched are the I IS-Solver of Chapter 3, the SCIS

of Chapter 4, and a WGP model solved ei ther with a Greedy Heurist ic,  or with a LP

solver.  For the LP solver two si tuat ions are dist inguished. In the f i rst  s i tuat ion only

one object ive funct ion is used, which is to minimize the total  unweighted sum of

violat ions, and in the second si tuat ion a second object ive funct ion is added, which

is to maximize the test information funct ion ( the or iginal  object ive funct ion).

Furthermore, two versions of the Delet ion Algori thm (DA) are used. The Relaxed

Ordered Delet ion Algori thm (RODA) is a version of the DA programmed in CPLEX

( I1o9,2001)  to  de tec t  an  I IS ,  bu t  uses  the  re laxed LPTA mode l  ( i .e . ,  the  b inary

variables are relaxed and can take on any real value between 0 and 1).  The

In teger  Randomized De le t ion  A lgor i thm ( IRDA)  is  a lso  capab le  o f  f ind ing  an  I IS

using the binary LPTA model.

Two types of methods are dist inguished: analyzing methods, which have as

funct ion to f ind the causes of infeasibi l i ty;  and forcing methods, which have as
primary goal to offer a solut ion to the infeasible model by forcing ( i .e. ,  v iolat ing)

some of the constraints.  In each of the two cases from the CITO group, two causes

of infeasibi l i ty are introduced and i t  is checked whether the methods are able to

detect those causes and how they deal with the si tuat ion. The goal of  this chapter

is to see how wel l  the newly developed short- term and medium-term methods

perform in pract ice. Methods using a combinat ion of an analyzing method and a

forcing method, such as the I IS-Solver of Chapter 3, gave very good results in

terms of a high object ive funct ion value and a smal l  number of constraints

violated. However,  there appeared to be a trade-off  between a good result  and

forc ing  a  so lu t ion .
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Conc lus ion

A long-term strategy to prevent infeasibi l i ty in LPTA is explored in this chapter

by focusing on i tem bank def ic iency, i .e. ,  infeasibi l i ty caused by the shortcomings

of the i tem bank. I t  is argued that in the long run the main issue is not to act upon

the symptoms of the problem which appears in the form of infeasible LPTA models,

but upon the real causes of infeasibi l i ty,  which is ( in almost al l  cases) a def ic ient

i tem bank.

The I tem Bank Extension Model works as fol lows. Hypothet ical  i tems are

added to the i tem bank and the (previously infeasible) LPTA model.  I f  the model

has become feasible, we have an idea of which type of i tems might be added to

the i tem bank to prevent infeasibi l i ty.  The di f f icul ty is how to def ine these

hypothet ical  i tems, i .e. ,  which character ist ics they must have.

A f i rst  suggest ion is to have the hypothet ical  i tems resemble the real i tems as

much as possible, without being actual copies. Therefore crf  each real i tem, to be

cal led or iginal  i tem, an imitat ion i tem is constructed, which has the same

numerical  character ist ics (e.9.,  word count,  IRT parameter est imates, etc.) ,  but a

di f ferent content (e.9.,  whi le the or iginal  content is a quest ion on Napoleon, the

imitat ion is a quest ion on Louis XIV).  The reason to have the imitat ion i tems

resemble the or iginal  i tems is that we know that such i tems have been wri t ten in

the past and are l ikely to be wri t ten again. In a second step the i tem

character ist ics are al lowed to vary within certain bounds. A numerical  example

concludes the chapter and also shows some of the problems encountered, Special

attent ion should be paid to how the i tem character ist ics in the IBE model can vary

to be of pract ical  value. For example, i f  the solut ion of the IBE model is to add

several  i tems with only one or two words to the i tem bank, to solve the infeasibi l i ty

problem, such a solut ion is unreal ist ic.
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