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1. Introduction

It is well-known that the duality group of the classical IIB string theory is SL(2, R) and

that this group of duality transformations gets broken to SL(2, Z) at the quantum level.

At the level of the low energy limit of IIB string theory the SL(2, R) symmetry manifests

itself as a (non-linear) symmetry that acts on the fields of the IIB supergravity multi-

plet [1 – 3]. In particular, the two scalars ( the dilaton and the axion) parametrize the

coset SL(2, R)/SO(2) ≡ SU(1, 1)/U(1).

When the Dp-branes of IIB supergravity were discovered [4] a somewhat unsatisfac-

tory situation arose: the formulations of the worldvolume actions for the Dp-branes broke

the SL(2, R) symmetry of the theory. This applies for instance to the actions of [5 – 7].

For special cases there have been attempts to rectify this situation. For instance, an

SL(2, R)-invariant formulation of (p, q)-strings [8] has been given [9] even including kappa-

symmetry [10]. This formulation made use of the fact that in two spacetime dimensions

the Born-Infeld vector is equivalent to an integration constant describing the tension of a

string. Similarly, the case of 3-branes has been discussed [16]. In this case one makes use of

the fact that in 4 spacetime dimensions the electric-magnetic dual of a Born-Infeld vector
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is again a vector. Such special properties do not occur for the branes with p > 3 and indeed

constructing an SL(2, R)-invariant formulation of 5-branes turns out to be problematic [17].

In this paper we will fill this gap and provide an SL(2, R)-invariant expression for all

the branes of IIB string theory. In doing this we make crucial use of the fact that only

recently the supersymmetry and gauge transformations for all p-form fields compatible with

the IIB algebra have been derived [18].1 These fields are a doublet of 2-forms, a singlet

4-form, a doublet of 6-forms, a triplet of 8-forms, a quadruplet of 10-forms and a doublet

of 10-forms:

Aα
(2) , A(4) , Aα

(6) , Aαβ
(8) , Aαβγ

(10) , Aα
(10) . (1.1)

Here we have used the SU(1, 1) notation with α = 1, 2.2 In [19] the gauge transformations

and supersymmetries of these p-form fields were given in a manifestly SU(1, 1)-invariant

form.

These results opened up the possibility of formulating, for all p, p-brane actions in an

SL(2, R)-invariant way. A first step in this direction was taken in [20], where all possible

branes for IIB were classified and their tensions determined in an SL(2, R)-covariant way.

In particular, it was found that the D7-brane and D9-brane belong to nonlinear doublets

of SL(2, R). This is unlike the (p, q)-strings that form a linear doublet [8].

In this paper we continue the construction of the brane actions by including the Born-

Infeld worldvolume vector. This vector is part of a doublet of vectors:

V α
(1) , (1.2)

where the existence of the two different worldvolume vectors corresponds to the fact that

either an F-string or a D-string (or, more generally, a (p, q)-string) can end on the brane.

The challenge is now to construct a WZ term that at the same time involves a single

worldvolume vector and p-form fields that are in non-trivial representations of SU(1, 1). In

particular, at first sight the triplet of 8-forms and the quadruplet of 10-forms suggest that

we introduce corresponding charges that transform as a triplet qαβ and quadruplet qαβγ of

SU(1, 1), respectively. Assuming that the worldvolume vector that occurs on the brane is

given by the combination qαV α
(1) for certain constants qα we will show in this paper that,

given certain requirements, a Wess-Zumino (WZ) term can only be constructed for the

restricted charges given by

qαβ = qαqβ , qαβγ = qαqβqγ . (1.3)

These charges include those of the standard D7-brane and D9-brane. Note that, in the

case of the D7-brane, the above restriction is equivalent to the condition that

det qαβ = 0 . (1.4)

For charges that belong to the other conjugacy classes of SL(2, R), with det (qαβ) 6= 0, it

is not possible to construct a brane action of the required form.

1The same has been done for the IIA case [19].
2We use both (complex) SU(1, 1) and (real) SL(2, R) notation. The connection between the two is

explained in appendix A which also contains our further conventions.
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In this paper we will derive a universal formula for the WZ term valid for all branes.

Furthermore, given the above restrictions on the charges we will show that the brane

tension that occurs in the kinetic terms of all brane actions can also be given by an elegant

universal formula. In this way we obtain a unified expression of all p-brane actions. These

brane actions are SU(1, 1)-invariant provided we also rotate the constants qα at the same

time we rotate the worldvolume and target space fields. In other words, we propose an

SU(1, 1)-covariant family of actions.

This paper is organized as follows. In section 2 we derive the general SU(1, 1)-invariant

expression for all IIB brane actions. We will do this first for the Wess-Zumino terms and,

next, for the kinetic terms. Special cases will be discussed in section 3 where we will

compare with other results in the literature. We give our conclusions in section 4. In

appendix A we give our conventions and in appendix B we list the gauge transformations

and invariant field strengths of the different IIB p-form gauge potentials.

2. SL(2, R)-invariant IIB brane actions

The standard branes of IIB string theory, that is a doublet of strings, a singlet of three-

branes, a doublet of five-branes, a nonlinear doublet of 7-branes and a non-linear doublet

of 9-branes [20], all carry a world-volume vector-field. The need for this can easily be

seen by counting (bosonic and fermionic) worldvolume degrees of freedom and requiring

supersymmetry. The fact that only one vector field is involved is related to the fact that only

one type of string can end on these branes. Since this string belongs to a doublet of strings

it is natural to introduce an SU(1, 1) doublet of worldvolume vectors V α
(1), see eq. (1.2),

and next require that only a particular combination occurs on the brane. Motivated by

the case of D-branes we define a gauge-invariant field strength Fα
(2) as follows:3

Fα
(2) = Fα

(2) + Aα
(2) , Fα

(2) = 2∂V α
(1) , (2.1)

where Aα
(2) denotes the pull-back of the target space 2-form field. Whenever that does

not cause confusion we will use the same symbol for the target space fields and their pull-

backs. In particular, we do not indicate the worldvolume scalars that are involved in the

pull-backs. The worldvolume curvature (2.1) is invariant under the gauge transformations

δgV
α
(1) = ∂Σα − Λα

(1) , δgA
α
(2) = 2∂Λα

(1) , (2.2)

where Σα is the worldvolume gauge parameter and Λα
(1) is the (pull-back of the) gauge

parameter of the target space two form Aα
(2).

To characterize which type of string ends on the brane we require that only the combi-

nation qαV α
(1) occurs on the brane. In the following two subsections we will derive expres-

sions for the WZ terms and for the kinetic terms.

3In this paper we use the notation of [19], denoting n-forms Fµ1...µn
by F(n). Antisymmetrization (with

weight one) of the indices is always understood.
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2.1 Wess-Zumino terms

The WZ-term of the brane actions are determined by writing down the most general Ansatz

for a WZ-term and then demanding4

1. Target space gauge invariance

2. A single worldvolume vector field (p 6= 1)

The second requirement is needed to have worldvolume supersymmetry. As we already

discussed the requirement of a single worldvolume vector is satisfied by requiring that only

the combination qαV α
(1) occurs on the brane. By convention we assume that the case of

D-branes, i.e., an F-string ending on the brane, is covered by taking qα′ = (0,−1) where we

work in the SL(2, R)-basis,5 see appendix A. All the other cases, i.e., a general (p, q)-string

ending on the brane, are then covered by an SL(2, R) transformation of the D-brane case

and are obtained by taking a general q-vector.

Our aim is to find a unified and SU(1, 1)-invariant WZ term for all IIB p-branes. In

order to do this it is useful to recall the universal formula for WZ terms in the case of the

(non SU(1, 1)-invariant) D-branes:

LWZ(Dp-brane) = C eF(2) , (2.3)

where C is defined as the formal sum6

C =
∑

n

C(n) = C(0) + C(2) + C(4) + C(6) + C(8) + C(10) , (2.4)

and C(n) are the usual RR n-forms. It is understood here that after expanding the expo-

nential in eq. (2.3) in each term that particular C(n) is chosen such that the product of

forms adds up to a (p + 1)-form. Using this notation one can check that the WZ term is

invariant under the gauge transformations

δC = dλ + F(3) λ , (2.5)

where F(3) is the curl of the NS-NS 2-form field B and λ is the formal sum

λ =
∑

n

λ(n) = λ(1) + λ(3) + λ(5) + λ(7) + λ(9) . (2.6)

The λ(n) are the different RR gauge parameters. To prove that the WZ term is gauge-

invariant requires a one line calculation where one uses that dF(2) = F(3). For this to

work it is important that the gauge transformation of C is of the above form, i.e., it

4Note that the case p = 1 is special since in 2 spacetime dimensions a vector does not carry any

worldvolume degree of freedom. Instead, it can be integrated out to yield an integration constant. Indeed,

the action of [9], for instance, contains two worldvolume vectors. The p = 1 case will be treated separately,

see below.
5To distinguish we use α = 1, 2 in the SU(1, 1) basis and α′ = 1, 2 in the SL(2, R) basis.
6Note that this sum also contains a term involving C(0) ≡ ` which is not required by gauge invariance.
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contains the usual dΛ term and terms that are all proportional to F(3). This is not the

case for the SU(1, 1)-covariant gauge potentials we have introduced in [18]. Their gauge

transformations are listed in appendix B and it can be seen that they contain dΛ terms,

terms proportional to Fα
(3) but also additional terms proportional to Λα

(1).

Inspired by the case of D-branes we make the following field redefinitions to remove

the extra terms from the gauge transformations:

Cα
(2) = Aα

(2) , (2.7)

C(4) = A(4) −
3
8 q̃αqβAα

(2)A
β
(2) , (2.8)

Cα
(6) = Aα

(6) + 20A(4)A
α
(2) −

15
2 qβ q̃γAα

(2)A
β
(2)A

γ
(2) , (2.9)

C
αβ
(8) = Aαβ

(8) + 7
4A

(α
(6)A

β)
(2) + 35A(4)A

α
(2)A

β
(2) −

105
8 qγ q̃δA

α
(2)A

β
(2)A

γ
(2)A

δ
(2) , (2.10)

C
αβγ
(10)

= Aαβγ
(10)

− 3A
(αβ
(8)

A
γ)
(2)

− 21
4 A

(α
(6)

Aβ
(2)

A
γ)
(2)

− 105A(4)A
α
(2)A

β
(2)

Aγ
(2)

+315
8 qδq̃εA

α
(2)A

β
(2)A

γ
(2)A

δ
(2)A

ε
(2) , (2.11)

where q̃α is another doublet that satisfies

q̃[αqβ] = i
2εαβ . (2.12)

We choose a basis such that for the case of D-branes we have q̃α′ = (1, 0) and qα′ = (0,−1).

Note that in this case q̃ is the S-dual of q, see appendix A.

We have not included the doublet of 10-forms since they do not seem to fit in this

family of potentials and require a separate discussion, see below. After these redefinitions

we end up with the desired form of the gauge transformations:

δgC = dΛ + F(3) Λ , (2.13)

where F(3) = 3∂C(2) and C,Λ are defined by the formal sums7

C =
∑

n,α

C
(α)
(n) = C(0) + Cα

(2) + C(4) + Cα
(6) + C

αβ
(8) + C

αβγ
(10) , (2.14)

Λ =
∑

n,α

Λ
(α)
(n) = Λα

(1) + Λ(3) + Λα
(5) + Λαβ

(7) + Λαβγ
(9) . (2.15)

Eq. (2.13) applies to all the forms of rank higher than 4, while for C(4) it has to be replaced

by

δC(4) = 4∂Λ(3) + 1
2qαFα

(3)q̃βΛβ
(1) . (2.16)

The notation in (2.13) indicates that all SU(1, 1) indices in the second Λ term are sym-

metrised with the α index of F , and all the terms have the same rank and the same number

of SU(1, 1) indices. Special cases are worked out in detail in section 3.

We find that in the new basis the WZ term can be cast into the following universal

form

LWZ(p-brane) = q · C eqF(2) , (2.17)

7Note that in the expression for C the first term in the sum, which will be discussed at the end of this

subsection, is not required by gauge-invariance of the WZ term.
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where qF(2) stands for qαF
α
(2) and q · C denotes contraction of all SU(1, 1) indices of the

C(n) with as many q’s as are required, except for C(2) that must be contracted with q̃.

Therefore, all terms in the WZ term (2.17) are either independent of q̃ or at most linear in

q̃ where q̃ always occurs in the combination q̃αC
α
(2). Note that the formula (2.17) implies, as

anticipated in the introduction, that in the leading term of the WZ terms the restrictions

on the charges given in (1.3) hold. We will show in subsection (3.4) that without these

restrictions on the charges it is not possible to construct a WZ term that satisfies the

criteria given in (2.1).

We close this subsection with two comments. First, we have not yet specified the first

term C(0) in the formal sum C. This term leads to an expression in the WZ term that is

gauge-invariant by itself. For Dp-branes with p odd this expression is given by `F
(p+1)/2
(2) .

To reproduce this expression we must take

C(0) = −
qαq̃βM

αβ

qγqδMγδ
, (2.18)

where the matrix M is given, in the SL(2, R) basis, in (A.9). Secondly, the doublet of

10-forms Aα
(10) is not included by the universal formula (2.17). The reason is that the

construction of a WZ term for these 10-forms does not require the introduction of a world-

volume vector field. This is due to the fact that their gauge transformations only contain

the leading term δAα
(10) = dΛα

(10) and therefore a WZ term of the form

qαAα
(10) (2.19)

is already gauge-invariant by itself. However, without a worldvolume vector it is not clear

how to obtain an equal number of bosonic and fermionic worldvolume degrees of freedom

and establish worldvolume supersymmetry. We will not consider this case further in this

paper.

2.2 Kinetic terms

We next discuss the construction of the kinetic terms. It is convenient to work in Einstein

frame, since the metric gE is SU(1, 1)-invariant. The action for a p-brane in Einstein frame

can be written as

Lkinetic( p-brane) = τp,E

√

det (gE + s qF) , (2.20)

where τp,E is the brane tension for the p-brane in Einstein frame and s is a scalar function

of the scalar fields. Using the expressions for the tensions, already obtained in [20] from

supersymmetry, together with our universal formula for the WZ term (2.17) we find the

following general formula for the p-brane tensions:8

τp,E =
(

qqM
)

p−3
4 p 6= 1 , (2.21)

τ1,E =
(

q̃q̃M
)

1
2 p = 1 , (2.22)

8For the p = 1 case, see subsection (3.2).
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where qqM stands for qαqβM
αβ .

Further, we find we can write the kinetic terms as

Lkinetic( p-brane) = τp,E

√

det

(

gE +
qF

(qqM)1/2

)

. (2.23)

Summarizing, we find that the SU(1, 1)-invariant Lagrangian for general IIB p-branes is

given by (p 6= 1)

L( p-brane) = τp,E

√

det

(

gE +
qF

(qqM)1/2

)

+ q · C eqF(2) , (2.24)

with the tension given by eq. (2.21), the scalar matrix M given by (A.9) and the formal

sum C defined in (2.14). The case p = 1 is special in the sense that in that case the

worldvolume vectors can be integrated away, see subsection (3.2).

Note that all factors of qα, q̃α in (2.24) are such that, if we assign a dimension ∆ =

1,∆ = −1 to qα and q̃α, respectively, all terms in a given p-brane action have dimension

∆ = 1
2 (p − 3).

3. Special cases

In this section we give explicit details for special cases and compare with the literature.

3.1 (-1)-branes

This case corresponds to the orbit of D-instantons and is special in the sense that we now

work with Euclidean IIB supergravity. The SU(1, 1)-invariant instanton action is given by

L(-1)-brane = (qqM)−1 −
qq̃M

qqM
. (3.1)

For qα′ = (0,−1) and q̃α′ = (1, 0) we recover the standard D-instanton Lagrangian L D-instanton ∼

e−φ + `.

3.2 1-branes

The brane action for strings is [8]

L1-brane = (q̃q̃M)1/2
√

det gE + q̃αC
α
(2). (3.2)

We use here a form of the Lagrangian where there are no Born-Infeld vectors. Unlike all

other branes, we use q̃α instead of qα for the leading term in the WZ terms. This fits

with the fact that the dimension of the Lagrangian for strings is given by ∆ = −1. The

constants qα are absent. Note that the construction of a p = 1 gauge-invariant WZ term

does not require the introduction of a worldvolume vector, unlike the p > 1 branes. The

p = 1 Lagrangian is equivalent to the one given in [9] if we identify q̃α′ = (p, q) with the

two integration constants that follow from integrating out the two worldvolume vectors

that occur in the formulation of [9].

– 7 –
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3.3 3-branes

The brane action for the p = 3 case is given by

L3-brane =

√

det

(

gE +
qF

(qqM)1/2

)

+ C(4) + 3
4 q̃αqβC

α
(2)F

β
(2) + C(0)(qF(2))

2 , (3.3)

with C(0) defined in (2.18). This is precisely the action that one obtains by dimensional

reduction of the PST action [11, 12] for a self-dual tensor in six dimensions [13 – 15]. It

is interesting to apply an electric-magnetic duality transformation to the worldvolume

vector qαV α
(1) and to compare with [16]. We find that after an electric-magnetic duality

transformation we end up with the same action but with the electric potential qαV α
(1)

replaced by a magnetic one, say M(1), and with everywhere else qα replaced by q̃α. On the

other hand, in our basis (A.7) the effect of an S-duality transformation is to replace qα by

q̃α everywhere, including the term qαV α
(1). Identifying

M(1) = q̃αV α
(1) (3.4)

we see that the two operations coincide, i.e., an S-duality acts on the worldvolume vector

like an electric-magnetic (Hodge) duality transformation. This agrees with [16].

3.4 5-branes

The action for 5-branes is given by

L5-brane = (qqM)1/2

√

det

(

gE +
qF

(qqM)1/2

)

(3.5)

+qα

(

Cα
(6) − 60C(4)F

α
(2) −

45
2 q̃βqγC

β
(2)

F
γ
(2)

Fα
(2)

)

+ C(0)(qF(2))
3 .

Gauge invariance of the WZ term implies that the 6-form transforms as

δgC
α
(6) = 6∂Λα

(5) − 80Fα
(3)Λ(3) , (3.6)

which is indeed like in eq. (2.13).

A different attempt to construct an SU(1, 1)-invariant 5-brane action was undertaken

in [17]. Although the formula of [17] is not complete, it would be interesting to see whether

there is any relation between the result of [17] and (3.5).

3.5 7-branes

The case of 7-branes is more subtle due to two reasons. First of all there are different

conjugacy classes of 7-branes solutions which are distinguished by the value of det (qαβ).

Secondly, to define 7-branes globally, one needs to consider other 7-branes at different

positions in space.9 The det (qαβ) = 0 conjugacy class contains the D7-brane. Ignoring

9For a careful discussion of the global properties and the role of the three different conjugacy classes,

see [21].
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global properties, i.e., restricting to the dynamics of small fluctuations, this class has the

following brane action:

L7-brane = qqM

√

det

(

gE +
qF

(qqM)1/2

)

(3.7)

+ qαqβ

[

C
αβ
(8) − 7Cα

(6)F
β
(2) + 210C(4)F

α
(2)F

β
(2) + 105

2 q̃γqδC
γ
(2)F

δ
(2)F

α
(2)F

β
(2)

]

+ C(0)(qF(2))
4 .

The gauge transformation of the 8-form is

δCαβ
(8) = 8∂Λαβ

(7) − 14F
(α
(3)Λ

β)
(5) , (3.8)

which again is of the form (2.13).

The above WZ-term has a 7-brane “charge” matrix qαβ = qαqβ. The determinant of

this matrix is, by construction, zero (the matrix has two linearly dependent columns). It is

natural to ask whether brane actions for the other conjugacy classes, i.e., with det (qαβ) 6= 0

can also be constructed. Assuming such a charge matrix we write down the first few terms

for the most general ansatz for a WZ-term:

WZ(8) = qαβ

[

Aαβ
(8)

+ a1A
α
(6)A

β
(2)

+ a2A
α
(6)F

β
(2)

+ . . .
]

(3.9)

where a1, a2 are to be determined. Demanding that there be only one vector field on the

brane requires a2 = 0. This can be seen by assuming a2 6= 0. Then the second column of

the matrix qαβ must be zero, because otherwise we would introduce two gauge fields in the

a2-term. But the second column being trivial implies det (qαβ) = 0, in contradiction to our

assumption, and so we must have a2 = 0. We now take a look at the gauge transformation

of (3.9). The terms of the type ∂Aα
(6)Λ

β
(1) and of the type ∂Aα

(2)Λ
β
(5), both of which are

produced by the Aαβ
(8) and the Aα

(6)A
β
(2)-terms in our ansatz (remember that we already

have eliminated the last term in (3.9), which would also have been a source of such terms),

cannot be canceled at the same time for any choice of a1. This shows that it is not possible

to construct a brane action containing a single Born-Infeld vector, for any 7-brane with

det (qαβ) 6= 0.

Of course, the above analysis does not exclude non-standard brane actions. For in-

stance, recalling that the monodromy of a det (qαβ) > 0 brane can be obtained as the

product of monodromies corresponding to two det (qαβ) = 0 branes one could view a

det (qαβ) > 0 brane as a bound state of two det (qαβ) = 0 branes. This suggests that we

might consider a (non-Abelian) brane action containing two vector fields.10

3.6 9-branes

Finally, we consider the case of 9-branes. The 9-branes related to the D9-brane (the

10We thank Jelle Hartong for a discussion of this possibility.
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nonlinear doublet of 9-branes) have the following brane action

L9-brane = (qqM)3/2

√

det

(

gE +
qF

(qqM)1/2

)

+ qαqβqγ

[

C
αβγ
(10) + 15Cαβ

(8)F
γ
(2) −

105
2 Cα

(6)F
β
(2)F

γ
(2)

+ 1050C(4)F
α
(2)F

β
(2)F

γ
(2) + 1575

8 q̃δqεC
δ
(2)F

ε
(2)F

α
(2)F

β
(2)F

γ
(2)

]

+ C(0)(qF(2))
5 . (3.10)

The WZ term is gauge invariant provided that

δCαβγ
(10) = 10∂Λαβγ

(9) + 40F
(α
(3)Λ

βγ)
(7) , (3.11)

which is of the form (2.13). Note that, unlike the case of 7-branes, the other conjugacy

classes, not containing the D9-brane, are not supersymmetric [20].

4. Conclusion

In this paper we have presented an elegant SU(1, 1)-invariant expression for all p-brane

actions of the IIB theory, see eq. (2.24). We only considered the bosonic terms in the

action. It is natural to also consider the fermionic terms and require kappa-symmetry.

This requires a SU(1, 1)-covariant superspace formulation of IIB supergravity.

Concerning the 7-branes, it would be interesting to perform a zero mode analysis on

the 7-brane solutions for all conjugacy classes and from that point understand why only

the 7-brane solution belonging to the det (qαβ) = 0 conjugacy class has a single vector field

zero mode. Furthermore, one could then determine what the zero modes are, if any, for

the other conjugacy classes.

As far as the 9-branes are concerned, it remains unclear what the interpretation is of

the doublet of 10-form potentials. We have seen that a gauge-invariant WZ term does not

contain a worldvolume vector field. One would therefore expect that also the kinetic term

does not contain such a vector field. Nevertheless, if kappa-symmetry is going to work we

expect to have 8 fermionic worldvolume degrees of freedom like all the other branes and

they need to be matched by 8 bosonic degrees of freedom. In ten dimensions such bosonic

degrees of freedom can only be described by a vector belonging to a vector multiplet.

Finally, to construct our central formula (2.24) it was crucial to perform the field

redefinitions (2.7). These field redefinitions involve the vectors qα and q̃α. It would be

interesting to obtain a better understanding of these redefinitions and of the role of the

SU(1, 1)-covariant C-potentials in IIB string theory.
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A. Conventions

We raise and lower SU(1, 1) indices with the two-dimensional Levi-Civita tensor ε:

qα = εαβqβ , qβ = qαεαβ . (A.1)

A SU(1, 1)-doublet qα satisfies the following reality condition:

(q1)
? = q2 . (A.2)

Instead of using the SU(1, 1)-basis, with complex components qα, it is sometimes convenient

to use the SL(2, R)-notation with real components qα′ . The two bases are related via the

following transformation:

q1′ = 1√
2
(q1 + q2) , q2′ = i√

2
(q1 − q2) . (A.3)

With these conventions we have that εαβqαrβ = εα′β′

qα′rβ′ with ε12 = 1 and ε1′2′ = i. Note

that under S-duality we have

q1
S
→ −iq1 , q1′

S
→ −q2′ , (A.4)

q2
S
→ +iq2 , q2′

S
→ +q1′ . (A.5)

In the text we have also defined a doublet q̃α that satisfies the relation

q̃[αqβ] = i
2εαβ . (A.6)

We use an SL(2, R)-basis where the case of D-branes is recovered by making the choices:

q̃α′ =

(

1

0

)

, qα′ =

(

0

−1

)

. (A.7)

Then we have under S-duality

qα′

S
→ q̃α′ . (A.8)

In our basis the 2 × 2 scalar matrix M is given by

Mα′β′

= eφ

(

`2 + e−2φ `

` 1

)

. (A.9)

For the convenience of the reader we give the value of some general SU(1, 1)-invariant

expressions for the choices (A.7):

q̃αAα
(2) → C(2) , qαAα

(2) → B(2) , (A.10)

q̃αAα
(n) → B(n) , qαAα

(n) → C(n) , n 6= 2 . (A.11)
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B. The p-form gauge fields of IIB supergravity

For convenience, we provide the gauge transformations and field strengths for all IIB p-form

gauge fields as they were determined in [18].

The p-form gauge fields of IIB supergravity are a singlet 4-form, a doublet of 2-forms,

6-forms and 10-forms, a triplet of 8-forms and a quadruplet of 10-forms. The gauge trans-

formations of these gauge fields are:

δAα
µ1µ2

= 2∂[µ1
Λα

µ2] , (B.1)

δAµ1...µ4 = 4∂[µ1
Λµ2µ3µ4] −

i
4εγδΛ

γ
[µ1

F δ
µ2µ3µ4] , (B.2)

δAα
µ1...µ6

= 6∂[µ1
Λα

µ2...µ6] − 8Λα
[µ1

Fµ2...µ6] −
160
3 Fα

[µ1µ2µ3
Λµ4µ5µ6] , (B.3)

δAαβ
µ1...µ8

= 8∂[µ1
Λαβ

µ2...µ8] + 1
2F

(α
[µ1...µ7

Λ
β)
µ8] −

21
2 F

(α
[µ1µ2µ3

Λ
β)
µ4...µ8] , (B.4)

δAα
µ1...µ10

= 10∂[µ1
Λα

µ2...µ10] , (B.5)

δAαβγ
µ1...µ10

= 10∂[µ1
Λαβγ

µ2...µ10]
− 2

3F
(αβ
[µ1...µ9

Λ
γ)
µ10]

+ 32F
(α
[µ1µ2µ3

Λ
βγ)
µ4...µ10]

. (B.6)

The expressions for the corresponding field strengths are given by:

Fα
µ1µ2µ3

= 3∂[µ1
Aα

µ2µ3] , (B.7)

Fµ1...µ5 = 5∂[µ1
Aµ2...µ5] + 5i

8 εαβAα
[µ1µ2

F β
µ3µ4µ5] , (B.8)

Fα
µ1...µ7

= 7∂[µ1
Aα

µ2...µ7] + 28Aα
[µ1µ2

Fµ3...µ7] −
280
3 Fα

[µ1µ2µ3
Aµ4...µ7] , (B.9)

Fαβ
µ1...µ9

= 9∂[µ1
Aαβ

µ2...µ9] + 9
4F

(α
[µ1...µ7

A
β)
µ8µ9] −

63
4 F

(α
[µ1µ2µ3

A
β)
µ4...µ9] , (B.10)

Fα
µ1...µ11

= 11∂[µ1
Aα

µ2...µ11] = 0 , (B.11)

Fαβγ
µ1...µ11

= 11
(

∂[µ1
Aαβγ

µ2...µ11] −
1
3F

(αβ
[µ1...µ9

A
γ)
µ10µ11] + 4F

(α
[µ1µ2µ3

A
βγ)
µ4...µ11]

)

= 0 . (B.12)

Note that all curvature terms that occur at the right-hand-side of the above equations

(both the gauge transformations and the expressions for the curvatures) are related to the

doublet of 2-form gauge fields, i.e. they are proportional to Λα
µ, Aα

µν or Fα
µνρ.
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