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1. Introduction

Ten-dimensional type-IIB superstring theory is conjectured to possess an SL(2, Z) self-

duality [1]. This non-perturbative symmetry, which is a discrete subgroup of the SL(2, R)

symmetry of the low-energy effective action [2], transforms the various BPS branes in the

theory. While the D1-brane and D5-brane solutions belong to a doublet, and the D3-brane

to a singlet, the D7-brane solution of [3] transforms non-linearly with respect to Sl(2, Z). Its

charge matrix has vanishing determinant [4], while half-supersymmetric 7-brane solutions

in other conjugacy classes [5] can be obtained as bound states of the (anti-) D7-brane and

its S-dual. It turns out that the 7-branes transform as a nonlinear doublet under SL(2, Z).

Recently, the leading terms of a kappa-symmetric action for these 7-branes, involving their

tensions, have been derived [6].

Type-IIB string theory also possesses D9-branes, that identify the open sector of the

type-I theory, obtained from a projection of IIB [7] known as orientifold projection. In

the closed sector, this projection corresponds to the insertion of O9-planes, whose charge

has to cancel that of the D9-branes. Although the presence of D9-branes is not consistent

if the overall charge is not canceled, it is possible to write a kappa-symmetric effective

action for these objects, whose Wess-Zumino term contains a coupling to a RR 10-form.

The gauge and supersymmetry transformations for this form were derived in [8]. From

a careful analysis of the supersymmetry algebra, it was shown in [9] that this 10-form

belongs to a quadruplet of SL(2, R). Requiring the leading terms in the corresponding

effective action to be invariant under 16 linear supersymmetries leads to a constraint on

the charges, so that only a non-linear doublet of 9-branes remains. Furthermore, the theory

contains an additional linear doublet of 10-forms. The 10-forms in this linear doublet give

rise to supersymmetric effective actions without the need to impose constraints [6].
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One of the aims of this paper is to make for IIA supergravity the same analysis that was

done for IIB in [9]. In [10] a democratic formulation for IIA was given, in which all the RR

forms were considered together with their magnetic duals. The resulting supersymmetry

algebra has the feature of describing both the ‘massless’ IIA supergravity [11] and Romans’

massive theory [12], whose cosmological constant is treated as the dual of a 10-form field

strength, whose 9-form RR potential couples to D8-branes [13, 14]. This 9-form does not

carry propagating degrees of freedom, and is therefore not dual to propagating supergravity

fields. A further dualization, now also including the dilaton and the NSNS 2-form, was

performed in [15] (see also [16]). In [17] it was shown that the IIA supergravity theory

can be extended in order to include a 10-form. The corresponding spacetime-filling brane

has a tension scaling like g−2
S in the string frame, and it is the T-dual [17] of a similar

solitonic IIB 9-brane in the linear doublet. In order to determine all the possible 10-forms

in IIA supergravity, we perform an analysis analogous to the one in [9]. In particular, we

construct a completely democratic formulation, in which all the fields, and not only the

RR ones, are introduced together with their magnetic duals. The outcome of this analysis

will be that there are two independent 10-forms in the IIA theory. We also analyze which

of these 10-forms can give rise to a kappa-symmetric 9-brane action.

It turns out that the 10-forms implied by supersymmetry in both IIA and IIB super-

gravity are the ones that are predicted by E11 [18, 19], a conjectured infinite-dimensional

symmetry underlying string and M-theory [20 – 22]. Related approaches with extended

symmetry algebras have been discussed in [23 – 25]. In this paper we wish to further discuss

the intriguing relationship between the E11 approach and results derived from supersym-

metry. In particular, we will show that, after a suitable (field-dependent) redefinition of the

gauge fields and the gauge parameters, the gauge transformations of all the forms become

linear in the gauge fields, while the resulting bosonic gauge algebra is non-Abelian [15].

We perform this analysis for both IIA and IIB supergravity.

The structure of the paper is as follows. In section 2 we write IIA supergravity in

a completely democratic formulation, and we show that the IIA theory allows two inde-

pendent 10-forms. In section 3 we show that the two 10-forms can give rise to a single

kappa-symmetric IIA 9-brane. Section 4 is devoted to an analysis of the bosonic gauge

algebras of both IIA and IIB supergravity. In particular, we point out an intriguing rela-

tionship between the commutation rules for the gauge transformations and certain predic-

tions from E11. In section 5 we discuss E11 and M-theory. Finally, section 6 contains the

conclusions.

2. IIA supergravity and ten-form potentials

In this section we show that IIA supergravity allows two independent 10-form potentials.

We perform the same analysis as was done in [9] for the IIB case. We use the notations

and conventions of [10], so that we will work in string frame, with mostly plus signature.

In this formulation, all RR fields and their magnetic duals are included, together with the

RR 9-form, whose field strength is dual to the cosmological constant. This formulation
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describes both the ‘massless’ theory [11] and Romans’ theory [12]. We will generalise this

by including the fields dual to the dilaton and the NSNS 2-form, that we call B(8) and B(6)

respectively, and two 10-forms.

The propagating fields in the theory are the graviton gµν , the dilaton φ, the NSNS

2-form Bµν , the RR 1-form Cµ and the RR 3-form Cµνρ, together with a Majorana non-

chiral gravitino ψµ and a Majorana non-chiral dilatino λ in the fermionic sector. One

then introduces the 7-form and 5-form duals of the RR forms, together with a RR 9-

form, whose 10-form field strength is the dual of Romans’ cosmological constant. Finally,

supersymmetry allows the introduction of at least one 10-form to this set of fields [17].

In the rest of this paper, we will often denote n-forms Fµ1...µn
by F(n). Furthermore,

antisymmetrization (with weight one) of the indices is always understood. For instance,

the expression F(n)G(m) means F[µ1...µn
Gµn+1...µn+m]. The same notation will be used for

gamma matrices, while the vielbein will be denoted by ea, the gravitino by ψ and the

partial derivative by ∂. With Γ11 we denote the chirality matrix, defined as

Γµ1...µ10 = −εµ1...µ10Γ11 . (2.1)

The supersymmetry transformations of all fields to lowest order in the fermions are

δea = ε̄Γaψ , (2.2)

δB(2) = 2ε̄Γ11Γ(1)ψ , (2.3)

δφ = 1
2 ε̄ λ , (2.4)

δC(1) = −e−φε̄Γ11ψ + 1
2e−φε̄Γ11Γ(1)λ , (2.5)

δC(3) = −3e−φε̄Γ(2)ψ + 1
2e−φε̄Γ(3)λ + 3C(1)δB(2) , (2.6)

δC(5) = −5e−φε̄Γ11Γ(4)ψ + 1
2e−φε̄Γ11Γ(5)λ + 10C(3)δB(2) , (2.7)

δC(7) = −7e−φε̄Γ(6)ψ + 1
2e−φε̄Γ(7)λ + 21C(5)δB(2) , (2.8)

δC(9) = −9e−φε̄Γ11Γ(8)ψ + 1
2e−φε̄Γ11Γ(9)λ + 36C(7)δB(2) , (2.9)

δD(10) = e−2φ(−10ε̄ Γ(9)ψ + ε̄Γ(10)λ) , (2.10)

for the bosons, while the fermions transform according to1

δψµ = Dµε + 1
8HµνρΓ

νρΓ11ε + 1
8eφG(0)Γµε

+ 1
16eφGνρΓ

νρΓµΓ11ε + 1
8·4!e

φGµ1...µ4Γ
µ1...µ4Γµε , (2.11)

δλ = ∂µφΓµε − 1
12HµνρΓ11Γ

µνρε + 5
4eφG(0)ε

+3
8eφGµνΓ11Γ

µνε + 1
4·4!e

φGµ1...µ4Γ
µ1...µ4ε . (2.12)

The bosonic gauge transformations are

δB(2) = 2∂Σ(1) , (2.13)

δC(1) = ∂Λ − G(0)Σ(1) , (2.14)

δC(3) = 3∂Λ(2) − H(3)Λ − 3G(0)B(2)Σ(1) , (2.15)

1In the case of the fermions, we leave the index structure explicit since contractions are involved.
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δC(5) = 5∂Λ(4) − 10H(3)Λ(2) − 15G(0)B2
(2)Σ(1) , (2.16)

δC(7) = 7∂Λ(6) − 35H(3)Λ(4) − 105G(0)B3
(2)Σ(1) , (2.17)

δC(9) = 9∂Λ(9) − 84H(3)Λ(6) − 945G(0)B4
(2)Σ(1) , (2.18)

δD(10) = 10∂Σ(9) , (2.19)

and with respect to these, the field strengths

G(2) = 2∂C(1) + G(0)B(2) , (2.20)

H(3) = 3∂B(2) , (2.21)

G(4) = 4∂C(3) − 4H(3)C(1) + 3G(0)B2
(2) , (2.22)

G(6) = 6∂C(5) − 20H(3)C(3) + 15G(0)B3
(2) , (2.23)

G(8) = 8∂C(7) − 56H(3)C(5) + 105G(0)B4
(2) , (2.24)

G(10) = 10∂C(9) − 120H(3)C(7) + 945G(0)B5
(2) (2.25)

are invariant. The various RR field strengths satisfy the duality relations

G(2n)
µ1...µ2n

= (−1)n
1

(10 − 2n)!
εµ1...µ2n

µ2n+1...µ10G(10−2n)
µ2n+1...µ10

. (2.26)

In particular, the 10-form field strength is related to Romans’ cosmological constant G(0).

For vanishing G(0), one recovers the massless IIA supergravity theory.

Imposing the closure of the supersymmetry algebra, one can then determine the su-

persymmetry transformation for the 6-form B(6), whose field strength is related to H(3) by

means of

Hµ1...µ7 = 1
6e−2φεµ1...µ7µνρH

µνρ . (2.27)

The result is

δB(6) = 6e−2φε̄Γ(5)ψ − e−2φε̄Γ(6)λ + 6C(5)δC(1) − 10C(3)δC(3)

−30C(3)B(2)δC(1) + 30C(3)C(1)δB(2) + 30B(2)C(1)δC(3) . (2.28)

The 7-form field strength reads

H(7) = 7∂B(6) + G(0)[−C(7) + 105
2 C(3)B

2
(2) − 105

2 C(1)B
3
(2)]

+G(2)[21C(5) − 105C(3)B(2)] + G(4)[−35
2 C(3) + 105

2 C(1)B(2)] , (2.29)

and gauge invariance implies that B(6) transforms according to

δB(6) = 6∂Σ(5) + G(0)[Λ(6) − 45
2 Λ(2)B

2
(2) + 15

2 ΛB3
(2) + 30C(3)Σ(1)B(2)

−45C(1)Σ(1)B
2
(2)] + G(2)[−15Λ(4) + 45Λ(2)B(2) − 30C(3)Σ(1)]

+G(4)[
15
2 Λ(2) − 15

2 ΛB(2) + 15C(1)Σ(1)]. (2.30)

Observe that if G(0) is non-zero, i.e. in the massive theory, one can use Λ(6) to gauge away

B(6). This is consistent with the fact that the 2-form becomes massive, because in 10

dimensions the dual of a massive 2-form is a massive 7-form, of which B(6) describes the

longitudinal components [26].
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Following the same strategy, we now determine the gauge and supersymmetry trans-

formations for the 8-form B(8) dual to the dilaton. The duality relation is

Hµ1...µ9 = e−2φεµ1...µ9ρ∂
ρφ , (2.31)

while the supersymmetry transformation turns out to be

δB(8) = 1
2e−2φε̄Γ(8)Γ11λ − 6C(7)δC(1) + 14B(2)δB(6) + 14C(5)δC(3)

−210B2
(2)C(1)δC(3) + 210B2

(2)C(3)δC(1) − 42C(5)C(1)δB(2) . (2.32)

The 9-form field strength we find is

H(9) = 9∂B(8) + G(0)[54C(9) − 18C(7)B(2) + 315C(3)B
3
(2) − 945

4 C(1)B
4
(2)]

+G(2)[−27C(7) + 378C(5)B(2) − 945C(3)B
2
(2)]

+G(4)[
63
2 C(5) − 315C(3)B(2) + 945

2 C(1)B
2
(2)] − 18H(7)B(2) , (2.33)

and the 8-form gauge transformation is

δB(8) = 8∂Σ(7) + G(0)[−5
4Λ(8) + 14Λ(6)B(2) − 105Λ(2)B

3
(2) + 105

4 ΛB4
(2)

−4C(7)Σ(1) + 210C(3)Σ(1)B
2
(2) − 210C(1)Σ(1)B

3
(2)]

+G(2)[21Λ(6) − 210Λ(4)B(2) + 315Λ(2)B
2
(2) + 84C(5)Σ(1)

−420C(3)Σ(1)B(2)] + G(4)[−35
2 Λ(4) + 105Λ(2)B(2) − 105

2 ΛB2
(2)

−70C(3)Σ(1) + 210C(1)Σ(1)B(2)] − 4H(7)Σ(1) . (2.34)

As for the 6-form, in the massive theory, in which G(0) is non-vanishing, this 8-form can be

gauged away by means of Λ(8). In this case this is related to the fact that in ten dimensions

the dual of a massive scalar is a massive 9-form potential.

Finally, we consider the inclusion of 10-forms. Since these objects are not related by

duality to lower-rank fields, we can only use the closure of the supersymmetry algebra

to determine their gauge and supersymmetry transformations. The final result is that,

besides the 10-form in eq. (2.10), another 10-form D(10) can be included in the algebra. Its

supersymmetry transformation reads

δD(10) = 1
2e−2φε̄Γ(10)λ − 15

2 C(9)δC(1) − 45B(2)δB(8) + 315B2
(2)δB(6)

+63
2 C(5)δC(5) − 315C(3)B(2)δC(5) + 315C(5)B(2)δC(3)

−315C(5)C(3)δB(2) + 945
2 C(1)B

2
(2)δC(5) − 945

2 C(5)B
2
(2)δC(1)

−945C(5)C(1)B(2)δB(2) − 4725C(1)C(3)B
2
(2)δB(2)

−4725C(1)B
3
(2)δC(3) + 4725C(1)B

4
(2)δC(1) , (2.35)

while the gauge transformation is

δD(10) = 10∂Σ′
(9) + G(0)[−2Λ(10) + 225

4 B(2)Λ(8) − 315B2
(2)Λ(6) − 1575

4 B3
(2)Λ(4)

+4725
2 B4

(2)Λ(2) − 945
2 B5

(2)Λ − 25
2 C(9)Σ(1) + 180B(2)C(7)Σ(1)

+945
2 B2

(2)C(5)Σ(1) − 6300B3
(2)C(3)Σ(1) + 4725B4

(2)C(1)Σ(1)]
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+G(2)[
135
4 Λ(8) − 945B(2)Λ(6) + 23625

4 B2
(2)Λ(4) − 14175

2 B3
(2)Λ(2)

+270C(7)Σ(1) − 4725B(2)C(5)Σ(1) + 14175B2
(2)C(3)Σ(1)]

+G(4)[
1575

4 B(2)Λ(4) − 4725
2 B2

(2)Λ(2) + 4725
4 B3

(2)Λ

−315
2 C(5)Σ(1) + 3150B(2)C(3)Σ(1) − 14175

2 B2
(2)C(1)Σ(1)]

+G(6)[−105
4 Λ(4) + 315

2 B(2)Λ(2) − 315
4 B2

(2)Λ − 105C(3)Σ(1)

+315B(2)C(1)Σ(1)] + 180H(7)B(2)Σ(1) + 10H(9)Σ(1) . (2.36)

The gauge parameter Λ(10) (see the second term in the first line2) plays a crucial role

in closing the algebra, and can be interpreted as the gauge parameter of an 11-form. If

we allowed the dimension of spacetime to change from d = 10 to d > 10 the 10-form

D(10) generically would describe propagating degrees of freedom which would convert the

11-form into a massive 11-form analogous to the massive 7-form and 9-form we obtained

above. Since an 11-form is trivial in ten-dimensions, we are only left with the 10-form

potential D(10). A similar phenomenon occurs in the IIB case [9]: the field-strength of the

(quadruplet of) 10-forms, considered formally in d > 10 dimensions, contains non-trivial

information about the gauge transformations of potentials with rank higher than ten. These

observations hint at an underlying algebraic structure which might be independent of the

dimensionality of space-time. We will discuss this structure in section 4.

A natural question to ask is whether the supersymmetry algebra allows for the inclusion

of additional 10-forms. The only freedom we have in the transformations to ψµ and λ is

to change the dilaton factor, or to include an additional Γ11 in the transformation rule.

The last possibility leads to 10-forms for which the dilaton factor is not restricted by the

supersymmetry algebra: these are all proportional to the ten-dimensional volume form and

therefore not independent. The possibility of changing the power of e−φ without including

Γ11 in the transformation rules is ruled out by checking closure of the algebra. This

analysis shows that there are indeed only two independent 10-forms in the IIA supergravity

multiplet.

3. Nine-branes of IIA

In [6] we discussed the relation between the 1/2 BPS p-branes and p + 1-form potentials

in IIB supergravity. In particular, we obtained the tensions as well as the operator which

projects onto the unbroken linear supersymmetry. In this section we will do a similar

analysis for IIA supergravity, using the results of section 2.

As an example we can work out the case of a 10-brane. We start from the action

(see [6])

Lbrane = τbrane
√
−g + xεµ1···µ10 Dµ1···µ10 . (3.1)

Here we have assumed the existence of a (gauge-fixed) kappa-symetric action, in static

gauge. Since τbrane will depend on the dilaton, the background fields present in the Nambu-

Goto term are metric and dilaton, the Wess-Zumino term depends on the background

2Observe that due to the presence of this term, the 10-form D(10), like the 6-form and the 8-form, can

be gauged away in Romans’ theory.
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potential. World-volume fields play no role in this analysis. The action should exhibit

16 linearly realized supersymmetries. Therefore, if we perform an N = 2 supersymmetry

transformation of the background fields in (3.1), we should find that half of the supersym-

metry parameters are projected out. It is sufficient to consider the transformation from

the bosonic fields to the gravitino and dilatino. If τbrane is chosen correctly, the variation

to the gravitino will give a projection operator if the relative constant between Nambu-

Goto and Wess-Zumino terms is appropriately chosen. The variation to the dilatino is the

consistency check of this procedure.

In the present case the complete supersymmetry variation of D(10) is (2.10):

δDµ1...µ10 = e−2φ
(

−10ε̄ γ[µ1...µ9
ψµ10 + ε̄ γ[µ1...µ10

λ
)

. (3.2)

This determines the tension to be e−2φ. The variation to the gravitino then fixes x = 1/10!,

while we find for the projection operator P = 1
2 (
�

+ Γ11). Using the same value for x the

variation of D(10) and dilaton to λ produces the same projection operator.

The case of the 10-forms is particularly interesting because there is a second 10-form,

D(10), whose supersymmetry variation is (2.35)

δDµ1...µ10 = 1
2e−2φ (ε̄ γµ1...µ10λ + gauge − field dependent terms) . (3.3)

D(10) by itself cannot couple supersymmetrically to a 9-brane, because there is no gravitino

contribution to match the variation of
√−g in (3.1). The result is therefore that it is

precisely D, the only combination which does not transform to gauge-field dependent terms,

that might correspond to a kappa-symmetric 9-brane.

In the IIB case we have a similar 10-form potential, which supersymmetrically cou-

ples to a solitonic (1/gS)2 brane, and also does not transform to gauge-field dependent

terms [6]. The absence of gauge fields in the supersymmetry transformation implies that

these potentials have trivial bosonic gauge transformations. This implies in turn that the

Wess-Zumino term in (3.1) is gauge-invariant as it stands.

For completeness and further reference we present in table 1 a list of all the BPS

branes, their tension, potential and projection operator. Note that also the NSNS-form

B(8) is absent from the table, the reason being that like D(10) it does not transform linearly

to the gravitino.

4. The bosonic gauge algebras

In this section we will analyse the algebra of bosonic gauge transformations which is con-

tained in the supersymmetry algebra. We will first do this for IIB supergravity, then for

IIA supergravity.

Our analysis will reveal a surprising structure and a relation to results from the E11

approach [20 – 22, 18]. It may also be seen as an extension and derivation from supersym-

metry of the results of [15].
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potential brane tension projection operator

C(1) D0 e−φ 1
2(
�

+ γ0)

B(2) F1 1 1
2 (
�

+ γ01Γ11)

C(3) D2 e−φ 1
2 (
�

+ γ012)

C(5) D4 e−φ 1
2(
�

+ γ01...4Γ11)

B(6) NS5 e−2φ 1
2(
�

+ γ01...5)

C(7) D6 e−φ 1
2(
�

+ γ01...6)

C(9) D8 e−φ 1
2(
�

+ γ01...8Γ11)

D(10) NS9 e−2φ 1
2(
�

+ Γ11)

Table 1: Potentials, branes, tensions and projection operators for all IIA supersymmetric branes.

4.1 The IIB algebra

Our starting point is the set of bosonic gauge transformations of IIB supergravity in Ein-

stein frame we obtained in [9] where we used a mostly minus signature:

δAα
(2) = 2∂Λα

(1),

δA(4) = 4∂Λ(3) − i
4εγδΛ

γ
(1)F

δ
(3),

δAα
(6) = 6∂Λα

(5) − 8Λα
(1)F(5) − 160

3 Fα
(3)Λ(3),

δAαβ

(8) = 8∂Λ
(αβ)
(7) + 1

2F
(α
(7)Λ

β)
(1) −

21
2 F

(α
(3)Λ

β)
(5),

δAα
(10) = 10∂Λα

(9),

δAαβγ
(10) = 10∂Λ

(αβγ)
(9) − 2

3F
(αβ

(9) Λ
γ)
(1) + 32F

(α
(3)Λ

βγ)
(7) . (4.1)

The field-strengths, which are invariant under the bosonic gauge transformations, are

given by:

Fα
(3) = 3∂Aα

(2),

F(5) = 5∂A(4) + 5i
8 εαβAα

(2)F
β
(3),

Fα
(7) = 7∂Aα

(6) + 28Aα
(2)F(5) − 280

3 Fα
(3)A(4),

Fαβ

(9) = 9∂Aαβ

(8) + 9
4F

(α
(7)A

β)
(2) −

63
4 F

(α
(3)A

β)
(6),

Fα
(11) = 11∂Aα

(10) = 0,

Fαβγ
(11) = 11(∂Aαβγ

(10) −
1
3F

(αβ

(9) A
γ)
(2) + 4F

(α
(3)A

βγ)
(8) ) = 0. (4.2)

It is clear that the bosonic transformations commute, because the transformations

δA(2n) contain only parameters and gauge invariant curvatures. In other words, we have

nonlinear transformation rules and an Abelian gauge algebra. Following [15] we write out

the curvatures in (4.1), using (4.2). Next, we redefine the parameters Λ and Σ of the gauge

transformations such that the transformations only depend on dΛ, dΣ, and not on Λ,Σ.
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After that, we redefine the bosonic gauge fields to make the bosonic gauge transforma-

tions linear in the gauge fields. Finally, we suitably rescale the fields and parameters to

simplify the form of the transformations. This leads to the following form for the gauge

transformations:

δAα
(2) = Λα

(2),

δA(4) = Λ(4) + iεγδΛ
γ

(2)
Aδ

(2),

δAα
(6) = Λα

(6) + Λ(4)A
α
(2) + γΛα

(2)A(4),

δAαβ
(8) = Λαβ

(8) + Λ
(α
(6) A

β)
(2) + εΛ

(α
(2)A

β)
(6),

δAαβγ

(10) = Λαβγ

(10) + Λ
(αβ

(8) A
γ)
(2) + µΛ

(α
(2)A

βγ)
(8) ,

δAα
(10) = Λα

(10) (4.3)

with

γ = −2 , ε = −3 , µ = −4 . (4.4)

Note that, even though we have rescaled both fields and gauge parameters we use the same

notation as for the original fields in (4.1), to avoid an excess of complicated notation. Also,

in this subsection we use the notation Λ(2n) ≡ ∂Λ(2n−1), following [15]. The three coeffi-

cients γ, ε, µ can either be derived directly from the supersymmetry algebra as explained,

or be obtained by closure of the bosonic gauge algebra. In either case we find the values

given in (4.4).

So the structure we find is very rigid and, with our requirements (parameters appear

only with derivatives, linearity in fields, non-trivial transformations), unique. The bosonic

gauge algebra in this form is given by the following commutation relations:

[δΛ̃(2)
, δΛ(2)

] = δΛ(4)

(

Λ(4) = −2εγδΛ̃
γ
(2)Λ

δ
(2)

)

,

[δΛ̃(2n)
, δΛ(2)

] = δΛ(2n+2)

(

Λ(2n+2) = −(n + 1)Λ̃(2n)Λ(2)

)

for n > 1 . (4.5)

In this formula we have suppressed the SU(1, 1) indices.

Note that, again, we use the same notation as for the original fields in 4.1, to avoid

an excess of complicated notation. Thus the bosonic gauge algebra is rather special. In

a sense, the starting point is also rather special, because it is commutative. In [15] it is

suggested that nonabelian algebras, such as the one we obtained above are always related

to commutative algebras, as in our starting point.

The above results suggest that it might be possible to find a basis for the fields of IIB

supergravity, in which the supersymmetry transformations of the gauge fields are linear in

the gauge fields. This is indeed the case. In fact, the supersymmetry transformations, as

presented in [9], already are in this form. To show this it is convenient to denote the terms

in the supersymmetry transformations of the bosonic gauge fields that explicitly contains

the gravitino or dilatino with δF . Using this notation we can write out the supersymmetry

rules given in formulae (5.1) to (5.11) in [9] as:

δAα
(2) = δF Aα

(2) ,
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δA(4) = δF A(4) − 3i
8 εγδA

γ
(2)δF Aδ

(2) ,

δAα
(6) = δF Aα

(6) + 40A(4)δF Aα
(2) − 20δF A(4)A

α
(2) ,

δAαβ
(8) = δF Aαβ

(8) + 21
4 A

(α
(6)δF A

β)
(2) −

7
4A

(α
(2)δF A

β)
(6) ,

δAαβγ
(10) = δF Aαβγ

(10) − 12A
(αβ

(8) δF A
γ)
(2) + 3A

(α
(2)δF A

βγ)
(8) , (4.6)

so, there are no terms nonlinear in the gauge fields.

Note that the relative coefficients in (4.6), i.e., between A(4)δF Aα
(2) and δF A(4)A

α
(2) etc.,

are −2, −3 and −4. The same coefficients occur in the corresponding curvatures (4.2), if

the F(n) on the right-hand side are replaced by n∂A(n−1).

The absence of terms of higher order in the gauge fields in (4.6), and the numerical

correspondence with (4.2), can be understood from the requirement that (4.2) can be

extended to a set of supercovariant curvatures. The appearance of the same coefficients

in (4.3) is not surprising considering the close correspondence between (4.3) and (4.2).

4.2 The IIA algebra

Our starting point for the IIA algebra are the bosonic gauge transformations3 and field-

strengths given in section 2. As in the IIB case, we write out the curvatures in the variations

of the potentials explicitly, and redefine the parameters Λ and Σ of the gauge transforma-

tions such that the transformations depend on ∂Λ and ∂Σ,4 but not on Λ and Σ. The

second step is to redefine the bosonic gauge fields to make the bosonic gauge transforma-

tions linear in the gauge fields. The last step is to suitably rescale fields and parameters

to simplify the form of the transformations. We find:

δB2 = ∂Σ(1),

δC(1) = ∂Λ(0) − G(0)Σ(1) ,

δC(3) = ∂Λ(2) − C(1)∂Σ(1) ,

δC(5) = ∂Λ(4) − C(3)∂Σ(1) ,

δC(7) = ∂Λ(6) − C(5)∂Σ(1) ,

δC(9) = ∂Λ(8) − C(7)∂Σ(1) ,

δB(6) = ∂Σ(5) + G(0)Λ(6) + 1
2

(

− C(1)∂Λ(4) + C(3)∂Λ(2) − C(5)∂Λ(0) + G(0)C(5)Σ(1)

)

,

δB(8) = ∂Σ(7) − G(0)Λ(8) + 2
5B(6)∂Σ(1)

+1
5

(

2C(1)∂Λ(6) − C(3)∂Λ(4) + C(7)∂Λ(0) − G(0)C(7)Σ(1)

)

,

δD(10) = ∂Σ(9) + G(0)Λ(10) + 5
8B(8)∂Σ(1) + 1

16

(

− 5C(1)∂Λ(8) + C(3)∂Λ(6)

+C(5)∂Λ(4) − C(7)∂Λ(2) − C(9)∂Λ(0) + G(0)C(9)Σ(1)

)

.

Note that, even though for simplicity our notation does not indicate it, the fields and gauge

parameters have been redefined and are not the same as those of section 2. This leads to

3Note that in the IIA case we work in string frame and use a mostly plus metric.
4We treat the mass parameter G

(0) like a derivative for this purpose, so G
(0)Λ would, for example, also

be of the desired form. However, this makes the notation Λ(2n) ≡ ∂Λ(2n−1) which we used in the previous

subsection unpractical.
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the following algebra. On the RR forms we find only:

[δΣ̃(1)
, δΣ(1)

] = δΛ(2)
(Λ(2) = −G(0)Σ̃(1)Σ(1)), (4.7)

[δΛ(2k)
, δΣ(1)

] = δΛ(2k+2)

(

Λ(2k+2) = −Λ(2k)∂Σ(1)

)

, (4.8)

[δΛ(2k)
, δΛ(2l)

] = 0 . (4.9)

This algebra is extended once we consider the action on the NSNS forms. For example,

the commutator (4.7) must also be realized on the NSNS fields. This is indeed the case.

The commutator (4.8) is extended with a δΣ(2k+1)
transformation:

[δΛ(2k)
, δΣ(1)

] = δΛ(2k+2)

(

Λ(2k+2) = −Λ(2k)∂Σ(1)

)

+δΣ(2k+1)

(

Σ̄(2k+1) = x2k G(0)Λ(2k)Σ(1)

)

, (4.10)

with x6 = 1, x8 = −3/5, and x10 = 6/16. We also have:

[δΣ(2k+1)
, δΣ(1)

] = δΣ(2k+3)

(

Σ̄(2k+3) = y2k+1 Σ(2k+1)∂Σ(1)

)

, (4.11)

with y5 = 2/5, y7 = 5/8. Finally, many of the commutators between two Λ transformations

become nonzero and give a Σ(2k+1) transformation for k > 1. We write these as

[δΛ(2k)
, δΛ(2l)

] = δΣ(2k+2l+1)

(

Σ̄(2k+2l+1) = z2k,2l (Λ(2k)∂Λ(2l) − Λ(2l)∂Λ(2k)

)

, (4.12)

with z4,0 = −1/2, z6,0 = 3/10, z8,0 = −3/16, z4,2 = 1/10, z2,2 = 1/4, z4,4 = 1/32. Other

combinations vanish.

Having established the form of the IIA and IIB bosonic gauge algebras we are now

in a position to discuss an intriguing relation between these algebras and the Kac-Moody

algebra E+++
8 , which is also called E11. We first consider the IIB algebra, see (4.5). Using

an obvious notation this algebra has the following schematic form:

IIB : [2,2] = 4 , [2, 4] = 6 , [2, 6] = 8 , · · · (4.13)

We thus see that the gauge transformation Λα
(2) of the 2-form, indicated by 2 above,

acts like a raising operator in the sense that all the 2n-form gauge transformations Λ(2n)

with n > 1 can be obtained as multiple commutators of the 2 transformation. This is

reminiscent to a similar structure that occurs in E11 in a rather different context. For

instance, in [18] the algebra E11 was decomposed in a particular way with respect to

SL(10), which should be thought of as the spacetime symmetry group. This leads to the

Dynkin diagram in figure 1.

The nine black dots represent the SL(10) sub-algebra on which the gravity sector is

embedded. It can be shown that the ”lowest” irreducible representations arising for this

decomposition coincide with the fields of IIB supergravity including the 10-form potentials,

see table 3 in appendix A.1 of [18]. The way this works is that the two white dots act as

two raising operators and the number of times they act corresponds to the “level” of

the representation. In this way all representations can be obtained. In our supergravity

approach a similar thing happens in the bosonic IIB gauge algebra where the two white
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1 3 4 5 62 7 8 11

10

9

Figure 1: The IIB decomposition of the E11 Dynkin diagram.

1 3 4 5 62 7 8 9

11 10

Figure 2: The IIA decomposition of the E11 Dynkin diagram.

dots should be identified with the Λα
(2) transformations. The fact that Λα

(2) is a 2-form

follows in the Dynkin diagram from the presence of the two black dots 8 and 11. The fact

that the 2-form gauge transformations transform as a doublet under SL(2, R) follows from

the presence of the two white dots 9 and 10. The analogy is that in the same way as all

relevant SL(10) representations can be obtained by a multiple action of the two raising

operators all bosonic gauge transformations can be obtained as a multiple commutator of

the basic Λα
(2) transformation.

We next consider the IIA algebra, see subsection 3.2, where a similar thing happens.

Schematically the IIA bosonic gauge algebra is given by

IIA : [1,1] = 0 , [1,2] = 3 , [1, 3] = 0 , [2, 3] = 5 , [1, 5] = 6 , · · · (4.14)

We thus see that in this case the gauge transformations Λ(0) and Σ(1), indicated by 1

and 2 above, act as two raising operators in the sense that all other gauge transformations

can be obtained as multiple commutators of 1 and 2. This corresponds to the level structure

in another decomposition of the E11 Dynkin diagram with respect to SL(10) (see figure

2) [18].

Like in the IIB case the two white dots indicate the two raising operators. However,

in this case, they correspond to a 2-form Σ(2) (the 11 white dot) and a 1-form Λ(1) (the

10 white dot). The calculation of the SL(10) representations leading to the fields of IIA

supergravity including the 10-form potentials can be found in table 2 and the corresponding

table in appendix A.1 of [18]. An explicit construction of the gauge algebra from the E11

point of view has been given in [19] and earlier works (see references in [19]) .

Although the similarities between the IIA and IIB bosonic gauge algebras and the

predictions by E11 are intriguing there are also striking differences. The most important one

is that the E11 symmetries predict many more SL(10) representations whose interpretation

from the supergravity point of view are unclear at the moment. Nevertheless we consider it
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1 3 4 5 62 7 8 9

11

10

Figure 3: The M-theory decomposition of the E11 Dynkin diagram.

remarkable that there is so much overlap between the predictions of IIA/IIB supersymmetry

and the bosonic E11 symmetry.

5. M-theory

It is natural to consider our results from an M-theory perspective. It turns out that none

of the two IIA 10-form potentials has a d = 11 origin. It is well-known that the same is

true for the RR 9-form potential. This is related to the fact that massive IIA supergravity

has no known d = 11 origin at the field theory level. We have independently verified that

the d = 11 superalgebra does not allow the inclusion of an 11-form potential.

It is interesting to see what happens with the bosonic gauge algebra of M-theory which

was investigated in [15]. The fields of the d = 11 supergravity multiplet consist of a graviton

gµν , a 3-form potential C(3) and a dual potential C(6). Using the same notation as above

the bosonic gauge algebra has the following schematic form:

[3,3] = 6 , [3, 6] = 0 . (5.1)

In order to produce the E11 structure we would like a rank 9 symmetry to occur at the

right-hand side of the [3, 6] commutator. However, there is no 9-form potential available in

d = 11 supergravity. Instead, the [3,6] commutator can also give rise to a (8, 1)-form which

one could identify at the linearized level with the d = 11 dual graviton [27, 20, 28]. This is

in fact predicted by E11 [20].5 These representations follow from yet another decomposition

of the E11 Dynkin diagram in terms of an SL(11) bosonic subalgebra.

The ten black dots correspond to the SL(11) subalgebra and the white dot indicates

a single raising operator. The fact that the gauge transformation is a 3-form follows from

the three black dots 8, 9, and 10. The specific representations predicted by E11 can be

found in [18, table 1].

Extending dual gravitons to the nonlinear level seems to be problematic [29]. It would

be interesting to reconsider this issue in the context of (linearised) d = 11 supergravity and

the underlying E11 structure.

6. Conclusions

We have presented the supersymmetry and gauge transformations of a completely demo-

cratic IIA supergravity theory. This has led to the insight that IIA supergravity admits

5Actually, similar dual gravitons are predicted to occur in the IIA and IIB case [18].
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two distinct 10-form potentials. In the massive version of the theory, which is naturally

included in our completely democratic formulation, one of the 10-forms, as well as the 6-

and 8-forms can be gauged away. The natural role of the 10-forms is to couple to 9-branes.

We have shown that the IIA theory may contain a kappa-symmetric 9-brane. The consis-

tency of such a 9-brane would require the presence of a corresponding orientifold plane,

along the lines of [30].

The second part of this paper was concerned with the bosonic gauge algebras, which

are contained in the IIA and IIB theories. We have presented a formulation in which

the transformation rules are linear in the gauge fields and the bosonic gauge algebras are

Non-Abelian. These algebras turn out to be the bosonic algebras of [15], extended with

10-forms. These algebras also play a role in the conjectured E11 symmetry, which might

underly M-theory [20, 21].
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