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1. Introduction

It is by now well-established that the D-instanton of IIB string theory [1] plays an im-

portant role in the calculation of non-perturbative contributions to the low-energy string

effective action [2]. Several attempts have been made in the literature to generalize this

D-instanton solution [3 – 7] to more general instanton solutions of Euclidean IIB supergrav-

ity. In a recent work [8] we showed that the extremal and non-extremal D-instantons in

(asymptotically) flat space fall under the three conjugacy classes of SL(2, R), the duality

symmetry of IIB supergravity. The role of the deformation parameter was played by the

determinant of the solutions’ SL(2, R) charge matrix. In some cases the non-extremal

instantons can be understood in terms of non-extremal black holes (or p-branes) in one

(or p + 1) higher dimension. In other cases, the solutions correspond to axionic Euclidean

wormhole geometries with two boundaries that asymptote flat space at infinity [8, 9].
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In this paper we extend our investigation of the non-extremal D-instantons to asymp-

totically Anti-de Sitter spaces. While our analysis can be done in any spacetime dimension,

we will focus on the case of AdS5. This allows us to study their dual description, via the

AdS5/CFT4 correspondence, in the N = 4 supersymmetric Yang-Mills theory. For ex-

tremal D-instantons in AdS5 × S5, the dual description in terms of self-dual Yang-Mills

instantons has been studied in great detail [10 – 17]. To go beyond extremality, this will

necessitate to generalize the work of [8] and construct non-extremal D-instantons in an

asymptotically AdS5 × S5 background. Such solutions were also discussed in [7]. In a

different context similar solutions were discussed in [18, 19].

After our construction of non-extremal D-instanton solutions in AdS5 × S5 we calculate

the dual operators in the N = 4 gauge theory. Since the supergravity solution is supported

by the dilaton and axion, the dual operators are TrF 2 and TrFF̃ respectively. We will

establish that, in contrast to the extremal case, these operators do not satisfy the self-

duality constraints for Yang-Mills instantons. The construction of explicit non-self-dual

instanton solutions for gauge group SU(2) is notoriously complicated. However, as we will

show, for gauge groups SU(N) this is easier and we will suggest that such non-self-dual

YM instantons are the holographic duals of certain non-extremal D-instantons.

Part of our motivation comes from applications to cosmology. As we will see, some of

the non-extremal D-instanton solutions have metrics that describe Euclidean wormholes

in Einstein frame. These can be Wick rotated to time-dependent backgrounds with a Big

Bang and Big Crunch singularity. A similar situation appeared in [20], whose authors were

motivated by the search of holographic duals of closed cosmologies. Moreover, albeit in

a slightly different context, non-extremal D-instantons have been discussed in relation to

FLRW cosmologies [21].

This paper is organized as follows. In section 2 we shortly review D=10 Euclidean IIB

supergravity and its relation, via compactification over S5, to the effective D=5 field theory.

In section 3 we construct extremal and non-extremal instantons in an AdS5 background of

this effective D=5 field theory. By construction each solution can be uplifted to a D=10

instanton solution in an AdS5 × S5 background. In section 4 we calculate the corresponding

instanton actions. Next, in section 5 we calculate, via the AdS5/CFT4 correspondence,

the operator expressions of the corresponding Yang-Mills 1-point functions. In section 6

we review the correspondence between extremal D-instantons and (anti-) self-dual YM

instantons. In the same section we generalize this to the case of non-extremal instantons

and propose a possible relation between one class of these instantons and non-self-dual YM

instantons. The other class of solutions, however, is less evident to discuss in the AdS/CFT

context, but yields interesting cosmological solutions after Wick rotation. In section 7 we

present our conclusions.

We have added two appendices. In appendix A, we present the path integral formu-

lation of the axion-dilaton system that leads to D-instantons in the semi-classical approx-

imation. In that formalism we can properly explain the ‘wrong’ sign of the axionic kinetic

term, the necessary boundary terms in the action and we will see how the analog of the

Yang-Mills θ-term arises on the gravity side. In appendix B, we present the D-instanton

solutions in D = 3, in which expressions can be found in closed form.
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2. D=10 Euclidean supergravity

Our starting point is D=10 Euclidean IIB supergravity (see for instance [22]). We only

need to consider the metric gµν , the dilaton φ, the axion χ, which is a pseudo-scalar, and

the 4-form potential whose 5-form curvature tensor F5 in Euclidean space is imaginary

self-dual i.e. ?F5 = iF5. Setting the fermions and the other bosonic fields equal to zero,

the equations of motion for these fields are given by:

∂µ(
√

g e2φgµν∂νχ) = 0 , (2.1)

∂µ(
√

g gµν∂νφ) +
√

g e2φgµν∂µχ∂νχ = 0 , (2.2)

Rµν − 1
2∂µφ∂νφ + 1

2e2φ∂µχ∂νχ − 1
6Fµ

µ1µ2µ3µ4Fνµ1µ2µ3µ4 = 0 , (2.3)

∂µ(
√

g Fµµ1µ2µ3µ4) = 0 , (2.4)

where g = det gµν and Rµν is the Ricci tensor. This subsector of IIB supergravity supports

Euclidean D(-1) and D3 brane solutions. Below, we briefly summarize some features of

both solutions. Note that χ has the ‘wrong’ sign in front of its kinetic term. We explain

this in detail in appendix A.

Taking the near-horizon limit of the Euclidean D3-brane, the metric becomes that of

Euclidean AdS5×S5 and F5 takes the form of the Freund-Rubin Ansatz [23]. In Poincaré

coordinates this is given by:

ds2 =

√
Q3

z2
(dz2 + d~y 2

4 ) +
√

Q3dΩ2
5 , (2.5)

F5 = − i Q3

z5
dz ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3 − ?

Q3

z5
dz ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3 , (2.6)

where Q3 is proportional to the D3-brane charge. From this expression we notice that the

radius l of the 5-sphere and of Euclidean Anti-de Sitter space (EAdS5) is related to Q3 via

l2 =
√

Q3.

On the other hand the solution for the D(-1)-brane, or extremal D-instanton, in string

frame reads:

ds2 = (H−1)
1/2(dρ2 + ρ2dΩ2

9), (2.7)

eφ = H−1 , (2.8)

dχ = ±d(H−1)
−1 , (2.9)

with the harmonic H−1 given by:

H−1 = gs +
Q−1

ρ8
, (2.10)

where the integration constant Q−1 is proportional to the instanton charge and gs ≡ eφ(∞).

Since D(-1)-branes correspond to D-instantons, and (stacked) D3-branes are the start-

ing point of the AdS5/CFT4 correspondence leading to a duality with N = 4 supersymmet-

ric Yang-Mills theory, it is a priori natural to consider intersections of a single D-instanton

– 3 –
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with a stack of Euclidean D3-branes, and, if possible, to extend this to the case of a non-

extremal D-instanton. However, we would like to consider localized intersections as opposed

to delocalized intersections involving the extremal D-instanton, which have been considered

in [13, 24]. Due to the technical complications with the construction of the appropriate

localized brane intersections (no explicit expressions are known, see for instance [25]) we

will only consider instanton solutions of the effective D=5 theory that follow after com-

pactification over S5, in the rest of this paper. By construction, each of these instanton

solutions can be uplifted to a D=10 instanton in an AdS5× S5 background. What we will

not consider is the (localized) brane intersection whose near-horizon geometry gives rise to

this D=10 instanton.

The D=5 field theory is obtained as follows. We split the 10-dimensional space into

the product of two parts, one with coordinates xµ , µ = 0, . . . , 4 , and the other part with

coordinates ya , a = 0, . . . , 4 . Next, we consider the following Ansatz:

ds2
10 = gµν(x)dxµdxν + gab(y)dyadyb , (2.11)

χ = χ(x), φ = φ(x) , (2.12)

Fµνρσδ(x) = − i

l

√

detg(x) εµνρσδ , (2.13)

Fabcde(y) = −1

l

√

det g(y) εabcde , (2.14)

where ε is the 5-dimensional Levi-Civita symbol and l is a constant. With this Ansatz

the self-duality and equation (2.4) is satisfied. The Einstein equation (2.3) is solved in the

ya-directions provided gab(y) is the metric of the 5-sphere S5 with radius l. At this point

we are left with the following equations for the metric and the scalars in the xµ-directions:

∂µ(
√

ge2φgµν∂νχ) = 0 , (2.15)

∂µ(
√

ggµν∂νφ) +
√

ge2φgµν∂µχ∂νχ = 0 , (2.16)

Rµν − 1
2 ∂µφ∂νφ + 1

2 e2φ∂µχ∂νχ − 1
3 gµνΛ = 0 , (2.17)

where Λ = −12/l2. These equations can be derived from the following effective action:

S = − 1

2κ2
5

∫

d5x
√

g
[

R− Λ − 1
2 ∂µφ∂µφ + 1

2 e2φ∂µχ∂µχ
]

. (2.18)

The 5-dimensional κ5 is related to the 10-dimensional κ10 via: 1/κ2
5 = l5π3/κ2

10.

In the next section we will construct instanton solutions, corresponding to this action.

3. Instanton solutions

We will present the instanton solutions such that one can read of how the SL(2, R) sym-

metry acts in the space of instanton solutions. This is done by constructing the SL(2, R)

Noether charges of the instanton, as explained in [8]. The charges transform under the

adjoint of SL(2, R) and by rewriting the integration constants of the solution as a func-

tion of the Noether charges, the transformation properties become clear. All the solutions

– 4 –
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will have at least SO(5) × SO(6) symmetry, where the SO(6) part is present from a 10-

dimensional point of view. The solutions have the property that in the limit l → ∞ they

reduce to the instanton solutions in a flat background constructed in [8], where l is the

characteristic radius of the asymptotically AdS5 metric.

3.1 The extremal instanton

In the extremal case we assume that the metric is that of EAdS5. This is only possible if

the scalars do not contribute to the Euclidean energy-momentum tensor. In such a case

one has a solution carrying half of the Euclidean supersymmetries [12]. Taking the trace

of (2.17) and using (2.16) we find:

∂µ(
√

ggµν∂νeφ) = 0. (3.1)

Therefore eφ is a harmonic function over EAdS5. For the axion χ we then find that:

χ = ±
[

e−φ + constant
]

, (3.2)

where the + (–) refers to an instanton (anti-instanton). In Poincaré coordinates, the

solution reads:

ds2 =
l2

z2
(dz2 + d~y 2

4 ) ,

eφ = |q−|H ,

χ =
1

q−

(

H−1 − q3

)

.

(3.3)

In this notation a positive (negative) sign of q− means that the solution is an (anti-)

instanton. The harmonic H reads

H(z, ~y) =
gs

|q−|
+

4
√

2
3

z3
0

+
2
√

2
3 (1 − 2f2

z2
0
)
√

1 + f2

z2
0

f3
, (3.4)

with f(z, ~y) defined as the following SO(1, 5) invariant function:

f(z, ~y) =

√

((z0 − z)2 + (~y − ~y0)2) ((z0 + z)2 + (~y − ~y0)2)

2z
. (3.5)

This harmonic function (3.4) has a singularity at (z = z0, ~y = ~y0) and this is interpreted

as the position of the D-instanton.

The SL(2, R) charge matrix of the solution is defined by integrating over a 4-sphere

inclosing the D-instanton 1:

Q =
1

2
√

6V ol(S4)

∫

S4

Jµηµ , (3.6)

1We use a slightly different normalization as compared to the definition of the charge matrix in [8]. This

difference in normalization can be traced back when one takes the limit l → ∞.
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where the vector Jµ is the SL(2, R) Noether current which is a 2×2 matrix, and ηµ is a unit

vector everywhere perpendicular to S4. The details are explained in [8], so we immediately

go to the result, namely:

Q =

(

q3 iq+

iq− −q3

)

. (3.7)

The number q+ is some function of the integration constants q− and q3. The determinant

det Q = q+q− − q2
3 , (3.8)

can be positive or negative. From now on we will use the symbol q2 = −detQ in our

solutions.2 The determinant of this matrix equals zero for the extremal instanton solutions

i.e. q2 = 0.

Next, we consider the non-extremal instantons that have non-vanishing q2. Since the

metric is SL(2, R) invariant we expect it to get deformed with the SL(2, R) invariant

charge parameter q2. The idea is to ‘guess’ a possible deformation for the metric and then

construct the whole solution, i.e. the dilaton and the axion. These deformations are most

easily found in radial coordinates (r, θ1, . . . , θ4):

ds2 =
dr2

1 + r2

l2

+ r2dΩ2
4. (3.9)

Partial properties of these solutions were already discussed in [7, 26]. It will be necessary

to discuss the cases q2 > 0 and q2 < 0 separately. We refer to them as the super- and

sub-extremal instanton respectively. The solutions will have the property that they reduce

to the extremal instanton (3.3) in the limit of q2 → 0.

3.2 The super-extremal instanton: q2 > 0

The solution reads:

ds2 =
dr2

1 + r2

l2
+ q2

r6

+ r2dΩ2
4,

eφ(r) =
|q−|
q

sinh[qH(r)] ,

χ(r) =
1

q−

(

q coth[qH(r)] − q3

)

,

(3.10)

where H(r) is a harmonic function on the asymptotically EAdS5 space, that satisfies

∂rH(r) = −
√

24

grr√g
. (3.11)

A compact explicit solution of this differential equation is not known in D = 5, whereas

in D = 3 the situation simplifies as is shown in appendix B. In the limit of vanishing

cosmological constant (l → ∞) everything can be solved explicitly and reduces to the

2Note that, in our notation, q2 can be positive or negative.
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Figure 1: For the class q2 > 0 the space looks like a one-sided wormhole which closes at r = 0.

The plane on the right symbolizes that the solution asymptotes to Euclidean Anti-de Sitter space.

results obtained in [8]. The three integration constants q, q−, q3 are related to the SL(2, R)

charge matrix as is given in (3.7). The integration constant for H gets fixed in terms of the

string coupling constant gs by defining gs = eφ(∞). Since the derivative (3.11) is strictly

negative we conclude that eφ > 0 for all r if we choose gs > 0, as it should be. The

harmonic function has a singularity at r = 0 which we identify with the position of the

instanton. This position corresponds to z = l and ~y = 0 in Poincaré coordinates. Since

the SO(1, 5) symmetry is broken by the deformation to an SO(5) symmetry, there exist

less bosonic collective coordinates, resulting in the fact that the singularity (position of the

instanton) cannot be moved around in this space.

The coordinate r runs from r = 0 to r = ∞ and this patch covers the whole manifold.

At r = 0 the Ricci scalar blows up (R ∼ 12q2/r8) and hence there is a genuine singularity.

This is drawn suggestively in figure 1. At this curvature singularity the harmonic has

a singularity too and hence the dilaton blows up and we cannot trust the supergravity

approximation. One might hope that string theory corrections resolve this singularity.

Nonetheless, the solution can be trusted away from the singularity.

For this super-extremal solution there exists an interesting limit for which one rescales

the integration constants and then let q− → 0. This induces a consistent truncation of

the axion [8], hence this solution reduces to a solution of a dilaton-gravity system. One

ends up with the same metric but now the dilaton reads φ = log(gs)+ qH, which is clearly

a solution of the dilaton equation 2φ = 0. This deformation of EAdS5 has been studied

before, for instance in [26].

3.3 The sub-extremal instanton: q2 < 0

Now we deal with solutions which have negative q2. These solutions share the same sym-

metry properties as the previous solutions where q2 was positive, namely they break the

SO(1, 5) symmetry of pure EAdS5 down to a SO(5) symmetry.

– 7 –
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Figure 2: For the class q2 < 0 the space is a wormhole with the neck of the wormhole at r = rc

and again the planes represent the fact the geometry asymptotes to pure Euclidean Anti-de Sitter.

Defining q̃2 = −q2 > 0, the sub-extremal instanton solution reads:

ds2 =
dr2

1 + r2

l2
− q̃2

r6

+ r2dΩ2
4,

eφ(r) = | q−
q̃

sin[q̃H(r)] |,

χ(r) =
1

q−

(

q̃ cot[q̃H(r)] − q3

)

,

(3.12)

where H(r) is an harmonic satisfying equation (3.11) and like in the previous case cannot be

obtained explicitly in D=5, whereas in D=3 explicit results are easy to obtain (appendix B).

Despite this, it is not hard to check (e.g. numerically) that contrary to the super-extremal

instanton, the harmonic is regular.

The coordinates run from r = rc to r = ∞, where rc is the unique root of

1 +
r2

l2
− q̃2

r6
= 0 . (3.13)

One can check that rc corresponds to a coordinate singularity because the Ricci scalar

R stays finite at r = rc > 0 since R = −12q̃2/r8
c − 20/l2 . It is possible to resolve this

singularity by making a coordinate transformation such that the metric takes the following

form:

ds2 = dρ2 + a(ρ)2dΩ2
4 . (3.14)

This implies the relation a(ρ) = r. The coordinate ρ goes from −∞ to +∞, and the

function a(ρ) can be thought of as the scale factor. From the relations between the two

frames we derive an equation for the scale factor 3:

(∂ρa)2 = 1 − q̃2

a6
+

a2

l2
. (3.15)

3This is exactly the same equation found by Gutperle and Sabra in [7]. Their number ‘c’ equals −24 q̃2

in our notation.
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The difficulties in D = 5 encountered in solving this equation explicitly are the same as

solving for the harmonic function for this space. Although we do not have an explicit

solution this is not a problem since all the necessary information is contained in this differ-

ential equation. The most relevant points that can be extracted are that this coordinate

system ‘doubles’ the original manifold, and that the scale factor a(ρ) reaches a minimum

at ρc ≡ ρ(rc), and that it is even about this point:

a(2 ρc − ρ) = a(ρ) . (3.16)

Therefore, the sub-extremal D-instanton has the geometry of a wormhole, with its neck at

ρc of size a(ρc). The harmonic function H will acquire the following anti-symmetry:

H(2 ρc − ρ) = −H(ρ) + 2H(ρc) , (3.17)

allowing us to easily relate the values of the scalar fields at both asymptotic regions of the

wormhole. We can read of from (3.12) that there is a singularity in the axion and in the

derivative of the dilaton whenever q̃H(ρ) equals a multiple of π. If the range spanned by

the image of q̃H is smaller than π we can always tune gs such that q̃H(ρ) never reaches a

multiple value of π (i.e the argument of the sine is on the same branch cut). This range R

is given by R = |q̃H(∞) − q̃H(−∞)|. Using (3.17) and (3.11) we find:

R = 2
√

24 q̃

∫ +∞

rc

1

r4

√

1 − q̃2

r6 + r2

l2

dr . (3.18)

By changing the integration variable to x = r/l one finds that the integrand and the domain

of integration only depend on the combination q̃2/l6 and therefore R only depends on that

variable. Numerical calculations show that there is no value for q̃2/l6 for which R < π.

Hence there is always a singularity in χ and in φ, but there is no singularity in e2φ. It can

be shown that, for models with a different coupling ‘b’ of the dilaton to the axion i.e.

LSCALAR ∼ (∂φ)2 − ebφ(∂χ)2 , (3.19)

there exist solutions which are regular in χ and φ, when b <
√

8/3. Such values for the

dilaton coupling constant could for instance be obtained from non-spherical compactifi-

cations. For the case of zero cosmological constant, this can be achieved in Calabi-Yau

compactifications of type II strings, as was demonstrated in [9].

3.4 Lorentzian solutions

Until now we presented three solutions (q2 > 0, q2 = 0 and q2 < 0) of the Euclidean IIB

action involving five-form flux, the dilaton- and the axion-field. But this subsector of IIB

supergravity also holds interesting solutions of the Lorentzian theory. One way to try to

obtain these solutions is by Wick rotating the Euclidean solutions and to check whether

they are solutions of the Lorentzian theory. As pointed out in [20] Euclidean wormholes can

Wick rotate to Big Bang/Big Crunch cosmologies and as we will show this is indeed what

happens in our case. The extremal and super-extremal solution cannot be Wick rotated

to real solutions of Lorentzian IIB supergravity.
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The Wick rotation proceeds by considering the sub-extremal solution in the ρ-coordina-

tes and taking ρ = iτ . We can always shift the ρ-coordinates such that the neck is located

at the origin. Doing so the Euclidean scale factor aE(ρ) is an even function and can be

Wick rotated to a real function i.e aL(τ) := aE(iτ) ∈ R. The metric Ansatz becomes

the following cosmology:

ds2 = −dτ2 + aL(τ)2dΩ2
4 . (3.20)

The function aL(τ) is called the Lorentzian scale factor. Wick rotating the fields is

somewhat more involved. One first has to notice that (up to an additive constant)

HE(ρ) → iHL(τ), where HE and HL are the harmonic functions over the Euclidean and

Lorentzian geometry respectively. One has the freedom to Wick rotate the integration

constants as long as one ends up with a real dilaton field φ(τ), and the axion field χ(τ)

should get an extra factor of i during the Wick rotation. These Wick rotation rules are:

q3 → iq3 , (3.21)

HE → iHL +
π

2
. (3.22)

The second rule is necessary to keep the dilaton field real and is to be interpreted as a

Wick rotation rule for the integration constant belonging to the definition of the harmonic

function HE. The solution we end up with reads:

ds2 = −dτ2 + a2
L(τ)dΩ2

4 ,

eφ(τ) =
|q−|
q̃

cosh[q̃HL(τ)] ,

χ(τ) =
1

q−

(

q̃ tanh[q̃HL(τ)] + q3

)

.

(3.23)

The l → ∞ version of this solution was studied in [27]. To check that this is a solution one

has to use the Lorentzian field equations which give for the scale factor (after combining

the Einstein equation with the scalar field equations) :

(∂τaL)2 = −
[

1 − q̃2

a6
L

+
a2

L

l2

]

, (3.24)

which differs with an overall minus sign from the equation for the Euclidean scale factor

aE(ρ) (3.15). One can check that the Wick rotated scale factor aL(τ) := aE(iτ) indeed

obeys this equation. The same holds for the scalar fields; straightforwardly putting them

in the Lorentzian field equations shows that (3.23) indeed is a solution.

This cosmology is a Big Bang/Big Crunch cosmology. This can be seen either by

analyzing the scale factor aL(τ) numerically or by deducing from (3.24) that a solution has

to obey

∂τaL =







−
√

−1 + q̃2

a6
L
− a2

L
l2

for τ > 0,

0 for τ = 0,

+

√

−1 + q̃2

a6
L
− a2

L
l2

for τ < 0.

(3.25)
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Figure 3: Pictorial description of the effect of Wick rotating a Euclidean wormhole.

Between the Big Bang and Big Crunch singularities the scalar fields are completely regular

as one can verify. However, at the singularities, the harmonic function blows up.

As noted at the end of the section on the super-extremal solution (q2 > 0), one can take

a limit in which the axion becomes a constant such that the geometry is carried only by a

dilaton. Although this is not possible for the Euclidean sub-extremal solution, it is possible

for the Lorentzian sub-extremal solution where again the dilaton becomes proportional to

the harmonic function. Such a solution has been discussed in [28].

4. Instanton actions

As explained in appendix A, in order to calculate the on-shell instanton action it is conve-

nient to use the Hodge dual formalism of the axion-dilaton sector of D = 10 Euclidean IIB

supergravity. This dual theory contains a 9-form F9 field strength instead of a 1-form field

strength dχ. The D-instanton is magnetically charged with respect to this 9-form. We use

the following Euclidean action:

S = − 1

2κ2
10

∫

d10x
√

g
[

R− 1
2 (∂φ)2 − 1

2e−2φF 2
9

]

. (4.1)

Reducing the theory over S5 and using the field equations one finds:

S = − 1

2κ2
5

(∫

M
d5x

√
g

(−8

l2

)

+ 2

∫

∂M
d4x

√
hK

)

︸ ︷︷ ︸

SGRAV

− 1

2κ2
5

∫

M
d5x ∂µ(

√
ggµν∂νφ)

︸ ︷︷ ︸

SSCALAR

(4.2)

We split the action in a part SGRAV which only contains the metric and a part only

involving the dilaton SSCALAR. In the gravitational part SGRAV we have included the

usual Gibbons-Hawking term, where hµν is the corresponding induced boundary metric

hµν = gµν −nµnν and K is the extrinsic curvature w.r.t. hµν . The gravitational part gives

an infinite answer and therefore needs to be regularized. For clarity we discuss SGRAV and

SSCALAR separately.

Since SSCALAR is a total derivative we use Stokes theorem. After integration over the

angles one finds the following term:

SSCALAR = − 1

2κ2
5

Vol(S4)ηrr4∂rφ |∂ , (4.3)
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where |∂ means that the expression is evaluated at the boundary ∂ and η is a unit vector

perpendicular to the boundary ∂. Using (3.11) this can be rewritten as:

SSCALAR =

√
24

2κ2
5

Vol(S4) e−φ(H)∂Heφ(H) |∂ . (4.4)

This formula is useful because it only requires the knowledge of the value of H at the

boundary and this is completely fixed by fixing gs on the boundary. When we have multiple

boundaries as for wormholes we have to subtract the values at different boundaries if the

fields are regular everywhere in the bulk.

If we assume that for the super-extremal instanton, the singularity gets resolved by

string theory effects, then there is only one boundary at r = ∞. This gives:

SSCALAR =

√
6Vol(S4)

κ2
5

√

(
q−
gs

)2 + q2 . (4.5)

To obtain the result for the extremal D-instanton we just put q2 = 0 in the above expression.

For the sub-extremal solution we find that the singularities in the fields are not inte-

grable. Hence SSCALAR formally diverges. The situation can again be improved by having

different values of the dilaton coupling parameter b. As mentioned in the previous section,

this can yield completely regular solutions also for the scalar fields which will result in a

finite-action instanton. For zero cosmological constant, this was shown in [8].

Now we focus on SGRAV. The correct way for calculating the on-shell action for

gravitational instantons in an asymptotically EAdS space requires infrared renormalization

[29, 30]. The reason is that the bulk action diverges because of the integration over a non-

compact space. Also the Gibbons-Hawking term diverges since there is a second order pole

in the induced boundary metric hµν . This means that one has to add counterterms on the

regulating surface ∂M defined by r = L. These counterterms cancel the divergences after

taking the regulator L to infinity. The action with the counterterms is given by:

SGRAV = − 1

2κ2
5

∫

M
d5x

√
g
(−8

l2

)

− 1

κ2
5

∫

∂M
d4x

√
hK

+
1

κ2
5

∫

∂M
d4x

√
h
(3

l
+

l

4
Rh

)

+
1

κ2
5

∫

∂M
d4x

√
ha4(h)L4 log

l

L
.

(4.6)

The last counterterm cannot be written in a covariant way and explicitly contains the

regulator. The coefficient a4 is a covariant function of the induced metric and gives rise to

the conformal anomaly of the dual field theory [30]. This dual field theory lives on a space

with a metric that is different from the induced metric h, namely the poles have to be

dropped such that we get the canonical S4 metric with radius l. If we would have carried

out the same procedure in Poincaré coordinates (instead of radial coordinates) where the

regulating surface is defined by z = 1/L we would find that a4 would be zero. The metric on

the dual field theory would be that of R
4 on which N = 4 SYM has no conformal anomaly.

The meaning of this is that the regularization procedure picks out a certain induced metric

which will give the metric on which the dual CFT is defined, after the poles of the induced

metric are dropped.
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This procedure shows that for the super-extremal solution we get some extra but finite

terms in the action on top of the finite term generated by pure EAdS5. These extra terms

of course vanish in the limit of q2 → 0. The finite term generated by pure EAdS5 can be

put to zero by making an explicit choice for the scheme dependence of the regularization

procedure. Finally notice that SGRAV does not depend on gs, so its contribution does not

interfere with the leading semiclassical (in gs) contribution from SSCALAR.

5. The AdS5/CFT4 correspondence

First we will give some basic facts about the AdS5/CFT4 correspondence which are needed

to understand what our solutions mean in the dual theory. More explanation can be found

in for example [31].

5.1 Generalities

On the string theory side we are working in the supergravity approximation. This means

that we assume that gsN is large, while gs stays small, i.e. 1 << gsN < N . The number

N is proportional to the 5-form flux and can be seen as the number of 3-branes sourcing

this flux. More specific, we have the relations:

l4 = Q3 = 4πgsNα′2 . (5.1)

According to the duality g2
Y MN = 4πNgs >> 1 hence we are dealing with a strongly

coupled Yang-Mills theory. The AdS/CFT duality equates the generating functions of the

dual theories :

Z[J = Φ∂ ] =

∫

d[A] exp (−SYM + J O[A]) ≈ e−SSUGRA[J ]. (5.2)

Here O[A] represents a gauge invariant SYM operator which couples to the boundary value

of the dual supergravity field J = Φ∂ . The boundary value Φ∂ then clearly acts as a source

in the SYM theory. The fact that the string (supergravity) partition function only depends

on J = Φ∂ is only correct for bulk configurations which are sufficiently regular. This duality

(5.2) allows us to find the 1-point functions of the strongly coupled SYM theory, since

− δ

δJ
SSUGRA[J ] = 〈O[A] 〉J . (5.3)

For the dilaton field φ and the axion field χ the dual operators are respectively TrF 2 +

. . . and Tr(FF̃ ). To be more specific, using the relations 4πgs = g2
Y M , χ∞ = θY M

2π and

conventions in which the Yang-Mills action looks like 4

SY M = − 1

4gYM
2

∫

d4xTr(F 2) + . . . − i
θ

32π2

∫

d4xTr(FF̃ ) , (5.4)

4These conventions are Tr(TaTb) = −δab and F a
µν = ∂µAa

ν − ∂νAa
µ + fa

bcA
b
µAc

ν .
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we conclude that:

δ

δφ∂
S =

1

4gYM
2
〈TrF 2〉 + . . . , (5.5)

δ

δχ∂
S = − 1

16π
〈Tr(FF̃ )〉, (5.6)

where the . . . in the first line can be dropped if no other fields then the vectors are excited.

In general when studying deformations of AdS5× S5 caused by the backreaction of

some matter fields, it affects the dual description in two possible ways. In one case the

deformation causes the dual field theory to gain certain vacuum expectation values for

Yang-Mills operators which are dual to these matter fields. This is sometimes referred

to as a ‘vev-deformation’. The other possibility is an ‘operator deformation’ in which

the theory is changed by adding certain operators to the lagrangian. It can be argued

as follows that the deformations we are considering are vev-deformations. We mentioned

that the boundary value of a bulk field acts as a source for an operator in the dual field

theory, so generically N = 4 SYM gets deformed by some operator which couples to that

source. However if the operator dual to the bulk fields is the lagrangian itself the situation

is different. This is of course the case here since the dilaton couples to the real part of the

lagrangian (∼ 1/g2
YMTrF 2 + . . .) and the axion to the imaginary part (∼ iθYMTrFF̃ ). The

above leads one to believe that axion-dilaton deformations do not alter the dual theory

but rather pick out a non trivial vacuum (background) which can spontaneously break

(parts of) the conformal symmetry and supersymmetry. These arguments are not sufficient

because they would imply that all axion-dilaton deformations of (E)AdS (with undeformed

S5) are dual to vev-deformations of N = 4 SYM. A well understood example where this

is not the case is the Janus solution [32]. This is a simple dilatonic deformation but the

dual theory is marginally deformed. There the reason was that the coupling constant on

the boundary makes a discontinuous step which for instance causes the dual theory to

lose supersymmetry [33]5. In our case the dilaton is constant at the boundary and this

phenomenon does not occur, but the example teaches us that one in general has to be

careful.

We shortly give an explanation on how to calculate a variation with respect to a

boundary value in order to calculate the expectation values. Consider a variation of the

action S =
∫

L(Φ, ∂Φ):

δS =

∫ [(
∂L

∂Φ
− ∂

∂L

∂∂Φ

)

δΦ + ∂

(
∂L

∂∂Φ
δΦ

)]

. (5.7)

The first part is the equation of motion for the field Φ and hence disappears on-shell. Using

Stokes on the second term we find:

δS =

∫

∂

[

η

(
∂L

∂∂Φ
δΦ

)]

, (5.8)

where η is a unit vector perpendicular to the boundary ∂. Expression (5.8) is clearly an

integral over the boundary of our space. Hence δΦ in the integrand can be replaced by its

5For another discussion on the holographic dual of Janus, see [34].
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value on the boundary δΦ∂ . From this we read of that,

δS

δJ(~y)
= ηµ

∂L

∂∂µΦ
(~y). (5.9)

How to do this properly for EAdS5 is explained for instance in [35]. In general one has to

use a regularization technique in order to get finite answers. In practice, this amounts to

making a series expansion of the supergravity field in the coordinate z[36]:

Φ(~y, z) ≈ z(4−∆)Φ(~y)∂ + . . . + z∆Φ(~y) (2∆−4) + . . . , (5.10)

where ∆ is the conformal weight of the dual operator which is related to the mass of the

supergravity field Φ. For massless fields such as the axion and the dilaton ∆ = 4. Φ∂

represents the source for the dual operator in the field theory, whereas Φ (2∆−4) is related

to the vacuum expectation value of the dual operator. So the presence of Φ∂ in general

signals an operator deformation, unless ∆ = 4 where the situation is more subtle. In fact,

our deformations are expected to be vev-deformations as explained above.

5.2 Calculation of the 1-point functions

Until now we gave the non-extremal solutions in radial coordinates but for this section

it becomes preferable to present the results in Poincaré coordinates6 since then the co-

ordinates of the dual field theory are the usual Cartesian coordinates. In the Poincaré

coordinate system we approach the boundary by taking small z values and then the Carte-

sian y-coordinates parameterize the surface approaching the boundary.

For the AdS5/CFT4 correspondence one needs to know how the dilaton and axion

behave near the boundary, i.e. near z = 0. For the non-extremal solutions there is no

explicit expression for the harmonic but since only the behavior near the boundary is of

importance we can use perturbation theory. For small z we find:

φ(z, ~y) ≈ log[gs] +
8
√

6l
√

q2
− + q2gs

2

gs(l2 + ~y 2)4
z4 + O(z6) , (5.11)

χ(z, ~y) ≈ gs
−1

√

1 +
q2gs

2

q2
−

− q3

q−
− 8

√
6lq−

(l2 + ~y 2)4gs
2

z4 + O(z6) . (5.12)

In order to understand the holographic dual of these instantons we have to take the

quantization of the axion shift symmetry into account. It will turn out that the dual

statement is the fact that the winding number of the YM instanton is an integer. The

Noether current associated to the shift symmetry of the axion is

Jµ = e2φ∂µχ . (5.13)

Since the exact duality group of type IIB string theory is expected to be SL(2, Z), the R

shift symmetry of χ is broken to a Z shift symmetry, i.e. χ is periodically identified. As

6The explicit transformation from radial coordinates to Poincaré coordinates is given by r(z, ~y) =√
((l−z)2+~y 2) ((l+z)2+~y 2)

2z
.
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we show in appendix A, this leads to the following quantization of the axionic charge:

2πn =
π3l5

2κ2
10

∫

dΣµe2φ∂µχ , (5.14)

resulting in

q− =

√

3/2κ2
10

4π4l5
n . (5.15)

Now we can apply the formula for the 1-point function to the super-extremal (q2 > 0) and

extremal (q2 = 0) instanton, to obtain:

〈TrF 2〉 = − 192 l4

(l2 + ~y 2)4

√

n2 +
32π8q2g2

s l
10

3κ4
10

,

〈TrFF̃ 〉 = − 192 l4

(l2 + ~y 2)4
n .

(5.16)

These expressions show that when q2 > 0 we have a field strength F which is not (anti-)

self-dual.

For the sub-extremal solution we could naively use (5.5) on both sides of the wormhole

to obtain a result like (5.16) but now for q2 < 0. That result is simply impossible since

it violates the Cauchy-Schwarz inequality −TrF 2 ≥ −TrFF̃ . The reason for this could

be twofold; for multiple boundaries one has to calculate 1-point functions differently or

another reason could be that the singularity in the axion and dilaton are responsible for

this result.

6. The D-instanton / YM instanton correspondence

In this section we will discuss the correspondence between D-instantons and Yang-Mills

instantons. We explain this correspondence from the point of view of the expectation values

for the operators TrF 2 and TrFF̃ as was done for extremal instantons in [35]. We first

discuss this for an extremal single-centered D-instanton with charge q−, and then extend

this to the non-extremal case where q2 > 0. The case of q2 < 0 is more subtle since the

bulk geometry has two boundaries. Holography with multiple boundaries is much less well

understood; we comment on it at the end of this section.

6.1 The extremal case: q2 = 0

From (5.16) we have for q2 = 0:

〈TrF 2〉 = − 192 l4

(l2 + ~y 2)4
|n| = ±〈TrFF̃ 〉 . (6.1)

However (5.16) can be generalized for extremal D-instantons since one can place the po-

sition at an arbitrary point of EAdS5 whereas this is not possible for the non-extremal

solutions. If we take the harmonic as in (3.4) then this results in the more general expres-
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sion:7

〈TrF 2〉 = − 192 z4
0

(z2
0 + (~y − ~y0)2)4

|n| = ±〈TrFF̃ 〉 . (6.2)

For n = 1 (n = −1) this exactly equals the expression for a classical (anti-)self-dual Yang-

Mills instanton with size z0 placed in flat Euclidean space at a position ~y0 in Cartesian

coordinates. For n > 1, the expression in (6.2) corresponds to a particular self-dual multi-

instanton configuration, which we specify below. Observe first that this expression is only

the result for the one-point function TrF 2 in the large N limit of the gauge theory at strong

’t Hooft coupling. For large values of N , it was shown in [15, 16] that to leading order in

the saddle-point expansion:

• The n-instanton configuration becomes dominated by n single instantons living in n

mutually commuting SU(2) subgroups of SU(N).

• Each of these single instantons are driven to sit at the same point in moduli space,

i.e. their positions and sizes are equal.

The expression in (6.2) is completely consistent with these results. Based on this, we can

schematically write down the gauge field

ASU(N)
µ (n) =












A
SU(2)
µ (1) 0

A
SU(2)
µ (1)

. . .

0 A
SU(2)
µ (1)

. . .












, (6.3)

where A
SU(2)
µ (1) stands for a self-dual SU(2) connection with instanton number one.

Notice that also the values of the action coincide since combining (4.5) with (5.15) we

find that (when θYM = 0):

SSUGRA = SYM =
8π2

g2
Y M

|n| . (6.4)

For θ 6= 0 the YM action gets a contribution of the form i θ n, and in appendix A we

will see that the SUGRA action gets a contribution of the form i χ∞ q−, which can be

regarded as the AdS/CFT partner of the YM topological term, since χ∞ is identified

with θ and q− with n. As a final remark we like to emphasize that the matching of D-

instanton configurations with self-dual Yang-Mills configurations is actually a surprising

result. This is because the D-instanton result yields quantities in the gauge theory at

strong ’t Hooft coupling. Instantons in the gauge theory however, are semiclassical objects

that are only useful in the weakly coupled regime. The fact that we get results for the

7Strictly speaking, the expressions for TrF 2 and TrFF̃ need to be integrated over the collective coor-

dinates z0 and ~y0 that appear in the instanton measure in the path integral. Furthermore, the instanton

measure also contains an integration over fermionic collective coordinates. These need to be saturated by

inserting the appropriate number of fermionic operators. We have suppressed these subtleties here, which

also appears on the supergravity side. For more details on this, see [11, 14, 37].
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one-point function (6.2) that are easy to interpret in the weakly coupled gauge theory,

hints toward a non-renormalization theorem that protects the (semi-) classical value for

TrF 2 from perturbative quantum corrections [38].

6.2 The non-extremal case: q2 > 0

We now consider the case of the super-extremal deformation, with q2 > 0. This D-instanton

solution is not BPS, and hence we must be careful interpreting the corresponding operators

and correlation functions on the gauge theory side, since there is no reason to expect any

mechanism that protects quantities from receiving quantum corrections. The strategy we

follow here is to stay close to the BPS point, and to consider the case where q2 is very

small. This is somewhat similar to the description of near-extremal black holes. In fact,

in [8] we showed that when the q2 > 0 instanton solution in asymptotically flat space can

be uplifted to one higher dimension, it corresponds to a black hole with charge Q and mass

M with 4q2 = M2 − Q2. The near-extremal black hole then indeed corresponds to taking

q2 << 1. One might hope that for q2 very small, the result will not differ too much from

the extremal point where the gauge theory interpretation is well understood in terms of n

single Yang-Mills instantons sitting at the same point in moduli space.

In the presence of a non-vanishing q2, we have seen in (5.16) that the result for TrFF̃

remains the same whereas TrF 2 does get deformed. Consequently, these operators do no

longer obey the self-duality relation as for extremal instantons. Stated differently, the field

strength still has boundary conditions belonging to the same topological class, labelled by

the instanton number n, but it has an anti-self-dual component proportional to q2. Using

(5.15) as a definition of n, the deviation from self-duality can be written as

〈TrF 2〉 − 〈TrFF̃ 〉 = − 192l4

(l2 + ~y 2)4
n

(
√

1 +
q2g2

s

q2
−

− 1
)

,

≈ − 192l4

(l2 + ~y 2)4
n q2

( g2
s

2q2
−

+ O(q2)
)

, (6.5)

where in the second line we have expanded for small q2. This is the result of the supergravity

approximation. We now attempt to give an interpretation in the gauge theory. As already

stressed before, one must be careful in giving an interpretation in the weakly coupled

gauge theory, since we do not expect that (6.5) can be extrapolated from strong to weak

’t Hooft coupling, unless perhaps for very small values of q2. Because in the non-extremal

case there is a (small) anti-self-dual part of the field strength, it is tempting to associate

the deformation with the presence of anti-instantons. The description of instanton - anti-

instanton configurations in gauge theory is difficult, as there are no known analytic solutions

of the second order equations of motion that are not self-dual, at least for gauge groups

SU(2) and SU(3). One can work in the dilute gas approximation where instantons are

widely separated, but this approximation is not valid for the AdS/CFT correspondence,

already in the extremal case. Luckily, for higher rank gauge groups, the situation simplifies.

For large values of N one can still consider the configuration (6.3), but we can deform it by

bringing in SU(2) anti-instantons on the diagonal. Such configurations satisfy the second
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order equations of motion, but are not self-dual. The total instanton charge is still given

by n, but we distribute it over k+ instantons and k− anti-instantons with n = k+ − k− and

k− small:

ASU(N)
µ (n) =









A
SU(2)
µ (1) 0

. . .

A
SU(2)
µ (1)

0 A
SU(2)
µ (−k−)









. (6.6)

Here A
SU(2)
µ (−k−) stands for an anti-self-dual SU(2) connection with instanton number

−k−. We have taken all the instantons and anti-instantons at the same point and with the

same size, say at ~y0 = 0 and z0 = l, where the (partial) annihilation between instantons

and the anti-instanton takes place. One could further distribute the anti-instanton sector

into k− single charge anti-instantons, but we will not do so in order to avoid notational

complications and because we take k− small w.r.t. n = k+ − k− (e.g. k− = 1). The

presence of an anti-instanton in a background of instantons of course leads to an instabil-

ity. The solution corresponding to (71) is only a saddle point in the path integral, and

the annihilation of anti-instanton charge will result in perturbative fluctuations around a

local minimum consisting of instanton charge only. We expect a similar instability on the

supergravity side.

With this instanton configuration, we can compute the operators

TrF 2 = − 192z4
0

(z2
0 + (~y − ~y0)2)4

(k+ + k−) ,

TrFF̃ = − 192z4
0

(z2
0 + (~y − ~y0)2)4

(k+ − k−) . (6.7)

Using the fact that n = k+ − k−, for z0 = l, ~y0 = 0, the operator TrFF̃ matches with the

supergravity prediction, while TrF 2 matches if we identify

k−
n

=
q2g2

s

4q2
−

, (6.8)

to leading order in the small q2 expansion. The left hand side is a rational number. For

this identification to make sense, we must understand better the quantization condition on

q2g2
s . This issue can however not be addressed in the supergravity approximation that we

are working in. It would be interesting to have a better string theory description of the

non-extremal D-instanton where we can address this issue.

6.3 The non-extremal case: q2 < 0

For q2 = −q̃2 < 0, the bulk space is a (Euclidean) wormhole with two disconnected

boundaries. Holography and the AdS/CFT correspondence in the presence of multiple

boundaries is not well understood. If the AdS/CFT correspondence makes sense for such

cases, the conformal field theory lives on the union of the disjoint boundaries, and so one

expects this to be the product of the theories on the different boundaries. For a recent
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discussion on this, see [39]. This becomes particularly problematic for the Euclidean version

of the AdS/CFT correspondence, since then the two boundaries cannot be separated by

horizons that causally separate and disconnect them.

The problem somehow was set aside, after Witten and Yau [40] formulated some general

criteria under which (Euclidean) wormholes cannot exist in this context. It applies to the

case of pure gravity when the bulk space is Einstein with negative cosmological constant

and the boundary has non-negative 8 scalar curvature. More recently, however, Maldacena

and Maoz [20] found examples where wormholes do appear; the Witten-Yau theorem could

be avoided by switching on additional supergravity matter fields, besides only the metric.

For further explanation on how to avoid the Witten-Yau theorem, see [44], where the case

of axionic matter is discussed. This is precisely the situation we are dealing with.

The wormhole solution we described below suffers from singularities in the fields. If

we for a moment ignore the difficulty of discussing holography for solutions with sin-

gular fields (by for instance choosing a different value of the dilaton coupling parame-

ter b ), we can make some remarks. From the results obtained in section 3, we find

that the coupling constant gY M of the theory would be different on the two boundaries

since:

g+
s = |g−s cos[R] +

q−
q̃

sin[R]

√

1 − q̃2 g−s

q2
−

| , (6.9)

where g+
s and g−s denote the values of the string coupling on the left (+) boundary and

the right (−) boundary respectively. The parameter R is related to the range of the

harmonic function appearing in the supergravity solution, see (3.18). This is a bit sim-

ilar to the dual of the Janus solution, where also two regions with different coupling

constants appear [32, 33]. However for the wormhole the boundaries are disconnected

with different couplings on each side. It seems that, in the approximation we are work-

ing, there is some correlation between the two gauge theories living on the two bound-

aries. In a full quantum gravity treatment, where one sums over all geometries with

fixed boundaries, this correlation might disappear again. For some related discussions, see

[45, 20].

It seems that the case with q2 < 0 has more applications in the Lorentzian theory,

where the solution describes a closed cosmology. It would be interesting if some version of

the AdS/CFT correspondence can still be applied to this case, in particular to the physics

close to the singularities. We leave this for future research.

7. Conclusions

In this paper we have investigated instanton and cosmology solutions to the (compactified)

gravity-axion-dilaton system with a non-zero cosmological constant. The extremal instan-

ton solutions have a well-established relation, via the AdS/CFT correspondence, with the

8The case of boundaries with negative scalar curvature leads to instabilities, as was demonstrated in

[20, 41]. This case seems not to apply in our situation, although instabilities might still occur. For zero

scalar curvature, the Witten-Yau theorem was shown to hold in [42]. Related results are also found or

summarized in [43].
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self-dual N=4 Yang-Mills instantons. The (non-extremal) instanton solutions represent

interesting deformations of the D=5 Euclidean Anti-de Sitter space.

There exist two classes of non-extremal instantons solutions, depending on the value

of the SL(2, R) Noether charge q2. For the dilaton coupling that we have chosen, only

the ones with q2 > 0 have a finite action and hence can be considered as true instan-

tons having a dual description in the N = 4 Yang-Mills theory. We have shown that the

holographic dual operators of these non-extremal D-instanton configurations do not corre-

spond to self-dual Yang-Mills instantons, and we have computed explicitly the deviation

from self-duality in terms of q2. We have suggested an interpretation of this result as a

specific instanton/anti-instanton configuration where the different (anti-)instantons take

values in mutually commuting SU(2) subgroups of SU(N).

The other class of solutions, i.e. the ones with q2 < 0, only yield regular and finite

action solutions for restricted values of the dilaton coupling. They describe Euclidean

wormhole solutions which, after an appropriate Wick rotation, correspond to exact closed

cosmology solutions. We hope that these Euclidean wormhole solutions allow for a holo-

graphic description of cosmological singularities.
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A. Path integral formulation of axion-dilaton gravity

In this appendix, we will establish the path integral formulation of axion-dilaton gravity

that leads to D-instanton solutions in the semiclassical approximation. Through this for-

mulation, we will be able to explain the ‘wrong’ sign of the axionic kinetic term in (2.18)

and the presence of non-gravitational boundary terms needed to properly evaluate the ac-

tions of our solutions. As a bonus, we will see how the analog of the Yang-Mills θ-term

arises on the gravity side. This discussion is based on explanations found in [46 – 48] and

references therein.

In Euclidean field theory, one is usually interested in computing the partition function:

Z = 〈φF , χF |e−H T |φI , χI〉, in the limit T → ∞ , (A.1)
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where φI,F and χI,F are the dilaton and axion evaluated at the initial and final spacelike9

surfaces ΣI,F . This can be written in path integral language as follows:

Z =

∫

b.c.
d[φ] d[χ] exp

[

−1
2

∫

M
(dφ ∧ ∗dφ + eb φ dχ ∧ ∗dχ)

]

, (A.2)

where Dirichlet boundary conditions are imposed on all fields. For practical purposes, we

will omit the gravitational sector in this discussion, as it is not relevant to this discussion.

We will also temporarily omit the integration over the dilaton and its kinetic term to keep

formulae short and will reinsert everything when we are finished. Although formula (A.2)

gives us in principle all the information we need, it can only be computed in the semiclassical

approximation, where instanton contributions will be highly suppressed and sub-leading

compared to perturbation theory terms. Therefore, in order to see any instanton effects, it

is useful to reorganize this calculation by inserting complete sets of momentum eigenstates

of the axion [48]. The latter are defined as follows:

|π〉 ≡
∫

d[χ] exp

(

i

∫

Σ
π χ

)

|χ〉 , (A.3)

where the integral is a functional integral over χ, and π is the ‘timelike’ component of

a one-form (i.e. transverse to Σ). This is completely analogous to the relation between

momentum and position eigenstates in quantum mechanics. Inserting two complete sets of

momentum states at t = tI and t = tF , we rewrite our path integral as follows:

Z =

∫

d[πI ] d[πF ]〈χF |πF 〉 〈πF | e−H T |πI〉〈πI |χI〉

=

∫

d[πI ] d[πF ] exp

(

i

∫

ΣF

πF χF − i

∫

ΣI

πI χI

)

〈πF | e−H T |πI〉 . (A.4)

We will discuss the interpretation of the surface term we just generated later on. In (A.4),

we have Fourier transformed the boundary data of our path integral with respect to the

axion field. Instead of computing an amplitude between two axion field states χI and χF ,

we now have to compute an amplitude between two momentum states πI and πF . To do so,

we need to Fourier transform the initial and final states back to the original field variables.

KE(πF , πI , T ) ≡ 〈πF | e−H T |πI〉 =

∫

d[χ̄I ] d[χ̄F ]〈πF |χ̄F 〉〈χ̄F | e−H T | χ̄I〉〈χ̄I |πI〉 , (A.5)

where χ̄I and χ̄F should be thought of as ‘dummy’ variables that have nothing to do

with the boundary conditions χI and χF in our original path integral (A.2). If we now

write 〈χ̄F | e−H T | χ̄I〉 as a path integral, with χ̄I,F as boundary conditions, and combine

the integration over the bulk field χ with the integrations over χ̄I,F , we are left with the

following path integral, which has no boundary conditions:

KE =

∫

no b.c
d[χ] exp

(

−1
2

∫

M
eb φ dχ ∧ ∗dχ − i

∫

ΣF

πF χ + i

∫

ΣI

πI χ

)

. (A.6)

9Note that in order to give an instanton interpretation to the solutions in this paper, one must not choose

‘r’ as the Euclidean ‘time’ direction since RR-charge is conserved with respect to it. A good candidate is

the y0-direction in Poincaré coordinates.
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This is the path integral we would like to approximate. Note that the boundary term

here has nothing to do with the boundary term in (A.4), because the boundary values

of χ here are ‘dummy’ variables that we are integrating over, whereas in (A.4), they are

the true boundary conditions of the original problem. Instanton effects contributing to

KE will then be interpreted as tunnelling processes that cause axionic charge conservation

violation. However, if we try to compute KE via the standard saddle point approximation,

we immediately run into a contradiction. Varying w.r.t. χ, we find the following two

equations:

d
(

eb φ ∗ dχ
)

= 0 and eb φ ∗ dχ − i π
∣
∣
∣
ΣI,F

= 0 . (A.7)

The first looks like a normal bulk equation of motion. The second equation, however,

is a boundary term, which we cannot throw away because no boundary conditions have

been imposed in our path integral. This equation contradicts the assumption that χ and

π are real. Hence, we conclude that there are no non-trivial real saddle points for (A.6).

Therefore, we need to find a different method to approximate KE . We will now show

that we can rewrite the path integral for KE in terms of a dual variable to χ, namely a

(D − 1)-form. This dual formalism will allow us to perform a saddle point approximation

for (A.6). Let us define the dual path integral as follows:
∫

d[F ] d[χ] exp

(∫

M
−1

2 e−b φ F ∧ ∗F + i χ dF

)

, (A.8)

where F is a (D − 1)-form. We impose the following Dirichlet boundary conditions on the

‘magnetic’ part of F , (i.e. on the ‘spacelike’ components, which are the components along

ΣI,F ):

F||,I,F = ∗πI,F , (A.9)

and we impose no boundary conditions on χ. Through a simple integration by parts, a

shifting of variables and a Gaussian integration, we can easily eliminate F from (A.8), and

the result will be (A.6). This is analogous to the path integral in quantum mechanics.

Usually, one derives from first principles a path integral where both x and p are variables

of integration, and then one eliminates p in favor of x. In this case, however, we want

to compute an amplitude between momentum eigenstates, therefore, it is more natural to

eliminate the ‘position’ variable in favor of the momentum, i.e. eliminate χ in favor of F .

The integral over χ in (A.8) yields a δ-functional: δ[dF ]. This imposes the constraint that

F be closed. Neglecting global issues for simplicity, this means that we can write F as a

field-strength F = dCD−2. Then it is easy to perform the semiclassical approximation for

this system. We can derive the following equation of motion:

d(e−b φ ∗ F ) = 0 , (A.10)

which means that, locally, one can rewrite the field-strength as follows:

F = eb φ ∗ dλ , (A.11)

where λ is a scalar. The equation of motion of the dilaton is the following:

d ∗ dφ +
b

2
e−b φ F ∧ ∗F = 0 . (A.12)
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Substituting the definition of λ into this yields the following:

d ∗ dφ +
b

2
ebφ dλ ∧ ∗dλ = 0 . (A.13)

This equation of motion has the wrong sign in front of the λ term. One can similarly show

that the Einstein equation also ‘sees’ an axion with the wrong sign. Hence, the remaining

equations of motion of the resulting system are the ones we have been solving in this

chapter; i.e. those of a system with a wrong sign kinetic term for the axion. At the end of

the day, the result of solving the F equations and substituting the solution into (A.8) is

effectively the same as performing a saddle point approximation of a ‘would-be’ imaginary

scalar field λ with the following action:

S =

∫

M

1
2

[

dφ ∧ ∗dφ − eb φ dλ ∧ ∗dλ + 2 d
(

λ eb φ ∗ dλ
)]

, (A.14)

and with the following Neumann boundary conditions for the axion current:

eb φ dλ
∣
∣
∣
ΣI,F

= πI,F . (A.15)

To summarize, we start by setting up a path integral for a transition between eigenstates

of the conjugate momentum to the axion field χ, and we generate a boundary term that

implies that no real saddle points can be found. By studying the system in its dual

formulation, we are able to perform the semiclassical approximation and find that the result

can be effectively obtained by defining an imaginary axion field with Neumann boundary

conditions. Let us now reinsert KE into our original path integral (A.4), and elucidate the

nature of the remaining boundary term:

Z = 〈χI |e−H T |χF 〉 =

∫

d[πI ] d[πF ] exp

(

i

∫

ΣF

χF πF − i

∫

ΣI

χI πI

)

KE(πI , πF , T ) .

(A.16)

If we restrict the path integral to axion fields with equal constant parts at ΣI and ΣF , and

we call that part χ∞, then the surface term has the following contribution:

i χ∞ ∆Q , where ∆Q ≡
∫

ΣF

πF −
∫

ΣI

πI . (A.17)

In terms of the parameters in the solutions we discuss in this paper, ∆Q corresponds to

q−. In the AdS/CFT dictionary, χ∞ translates to the vacuum angle θ in super-Yang-Mills,

and, as we saw in section 5.2, q− translates to k, the instanton number. Hence, this term

in the SUGRA action seems to be the AdS/CFT partner of the topological term i θ k in

super-Yang-Mills. Since the invariance of the action under constant R-shifts of the axion

is expected to be broken by string theory effects to Z-shift invariance, the appearance of

this contribution (A.17) in our SUGRA action implies that q−, or ∆Q is quantized. The

argument is as follows: χ is periodically identified. Hence, in order to have a single valued

path integral, ∆Q must be quantized, which is consistent with the AdS/CFT relation

between k and ∆Q.
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B. Explicit solutions in D = 3

In D = 3 the harmonic function is a compact expression and hence things can be shown

more explicitly compared to D = 5, it can also be useful for AdS3/CFT2. This system

can be seen as a compactification of IIB supergravity on a 7-dimensional space of the form

AdS3 × S3 × M4, where M4 is a compact hyperKhäler manifold (T 4 or K3). The dilaton

coupling b is left as a free parameter, since its value may differ from two via the above

mentioned compactification. The super -extremal solution reads:

ds2 =
dr2

1 + r2

l2
+ q2

r2

+ r2dΩ2
2 ,

H(r) =
arcsinh[ qg

b/2
s

q
−

]

q
−

b log[2 + l
q ]

2q
+

b log[ l
q + 2ql

r2 +
2
√

r4+(q2+r2)l2

r2 ]

2q
,

ebφ =
(q−

q
sinh[qH]

)2
,

χ =
2

bq−

(

q coth[qH] − q3

)

.

(B.1)

The sub-extremal solution (−q2 = q̃2 > 0) reads:

a(ρ)2 =
1

2
(−l2 +

√

4l2q̃2 + l4 cosh[
2ρ

l
]),

H(ρ) =
arcsin[ q̃g

b/2
s

q
−

]

q̃
+

b

q̃
arctan[

l2 +
√

4q̃2l2 + l4

2q̃l
] − b

q̃
arctan[

(l2 +
√

4q̃2l2 + l4) tanh[ρl ]

2q̃l
] .

(B.2)

We skipped the expressions for the dilaton and axion since they differ similarly from the

super-extremal solution as in D = 5. The neck of the wormhole is at ρ = 0. This solution

can be Wick rotated, resulting in:

a(τ)2 =
1

2
(−l2 +

√

4l2q̃2 + l4 cos[
2τ

l
]),

H(τ) =
arcsin[ q̃g

b/2
s

q
−

]

q̃
+

b

q̃
arctan[

l2 +
√

4q̃2l2 + l4

2q̃l
]

− b

q̃
arctanh[

(l2 +
√

4q̃2l2 + l4) tan[ τl ]

2q̃l
].

(B.3)

The axion can be truncated as follows:

H(τ) → H(τ) −
arcsin[ qg

b/2
s

q
−

]

q
+

arcsinh[ qg
b/2
s

q
−

]

q
, q3 → −q +

bq+q−
2q

, (B.4)

after which one takes the limit q− to zero to obtain a solution.
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