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The present paper deals with some mathematical aspects of generalized time-dependent Ginzburg—
Landau theories for the numerical simulation of mesoscale phase separation kinetics of copolymer
melts. We shortly discuss the underlying theory and introduce an expansion of the external potential,
to be used in the dynamics algorithm, which is similar to free-energy expansions. This expansion is
valid for both compressible and incompressible multicomponent copolymer melts using a Gaussian
chain model. The expansion is similar to the well-known random phase approxini&f#) but

differs in some important aspects. Also, the application of RPA like free energy expansions to
dynamics is new. Our derivation leads to simple expressions for the vertex coefficients, which
enables us to numerically calculate their full wave vector dependence, without assuming an ordered
morphology. We find that our fourth-order vertex is negative for some wave vectors which has
important consequences for thienulationof mesoscopic dynamics. We propose a fitting procedure

for the vertex coefficients to overcome the computationally expensive calculation of the linear and
bilinear expansion terms in the expansion. This procedure provides analytically derived parameters
for a gradient free energy expansion, which allows for a whole new class of phase-separation
models to be defined. €997 American Institute of Physids$$0021-96007)50216-9

I. INTRODUCTION It is important to realize how our approach differs from
the usual phenomenological expansion methods; to this end,
we will briefly recapitulate popular expansion models. Re-
The present paper deals with some important mathematgently, Seul and Andelman presented an elegant overview of
cal aspects of generalized time-dependent Ginzburg—Landagurth-order phenomenological free energy expansions, sum-
theories for the numerical simulation of mesoscale phaSﬁ]arizing a |arge Variety of pattern formation models for
separation kinetics of copolymer melts. A few recent refer-many different physical systenisThese expansions contain
ences of groups working in this field are Refs. 1-3; twoonly the bare ingredients necessary to describe the basic
modern reviews of coarse grained time-dependenphysics of competing interactions. Restricted to the special
Ginzburg—Landau and related models are in Refs. 4 and %ase of incompressible copolymer melts, an example of such

The prototype of these types of coarse-grained models is ag simplified fourth-order expansion for the free energy reads
M-component functional Langevin equation for conserved

A. General

order parameters of the following general fotm: 1 1 1
F[¢]=f 5 T¢°+ 7 U+ 5 bVl
M \V; 2 4 2
ap(r) .
e X | Zurr)uy(rydrg )
=1 Jv Iz H(r)p(ry)
] - 7 W drl dr, 2
L [ 8%(rr) voITh
-t 5—(r)dr1+n|(r,t),
=1 Jv. opiity where¢=p,— pg is the order parameter anglu, b, andu
o _v . are phenomenological coefficients. The expansion consists of
Za(nr)=Ve Au(nr) Ve, @ 5 fourth-order(Landay expansion ing, a Cahn—Hilliard

with particle concentration fields,(r)(I1=1,... M), trans- penalty on spatial gradien@s and a term which intr'o.duces ef-
port coefficients Ay, intrinsic chemical potentials fective long-range interactions due to the connectivity of the
w=06F15p,(r) (F is the free energy 8~ t=kgT and noise copolym_er bIocks._Dependlng on the choice of the param-
fields 7,(r,t). The noise has a Gaussian distribution with €t€rs, this expansion may predict the geometry of various
moments dictated by a fluctuation-dissipation theofefn, ~ Kinds of complex patterns in copolymer melts. Some time
In the review papers and references one can find ampl@g0, Oono and Shiwa introduced a time-dependent
examples of computer simulations of time-dependenﬁ"anUfg.—LandaU model to calculate the formation Qf pat-
Ginzburg—Landau models for two-component incompressi€ms, using essentially the same free energy expansion
ible liquids with linear transport coefficients and simple
fourth-order phenomenological expansion models for the J¢

—=LV26—F=LV2(T¢+U¢3—bV2¢)— 2. (3
free energy. at o wP-
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N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts 6731

This model has been thoroughly studied, bothentire frequency domain, in order to ensure that the fourth-
theoretically®'* and numerically>=*# Since the right-hand order free energy expansion is sufficient to describe phase
side of Eq.(3) is explicit in the order parameter and the separation. Second, the expansion must account reasonably
nonlinearity is rather modest, the numerical integration posewell for molecular details of the chain molecules, in particu-
no particular problems and can be accomplished with eithellar chain architecture and composition. Third, the expansion
standard methods, or the so-called cell-dynamical systemsust indeed lead tamuch faster numerical inversion
method®®>~1/ algorithms.

Despite the elegance of the phenomenological approach We conclude that the fourth-order expansion scheme as
and the simplicity of the resulting equations, it also has ardefined in this paper, is not yet suited for our purpose, even
obvious drawback. The method is ill-suited for dealing withif we retain all spatial properties of the second-, third-, and
the enormous variety of different molecular interactionsfourth-order vertex coefficients. The main reason is that in
which are typically found in complex fluids. There is little the block copolymer melt, it turns out that the fourth-order
practicallity in fitting phenomenological parameters to eachvertex is negative for certain wave vectors and hence, a
different system. In addition the limited expansion may notfourth-order free energy expansion is not necessarily suffi-
include the pertinent symmetries of the system under invessient to describe phase separation in these cases.
tigation. However, we also show that the fourth-order vertex co-

In view of the practical importance of working with efficient is positive for most wave vectors, implying that a
more realistic molecular models, an extension of the theorefourth-order free energy expansion is sufficient for studying
ical and simulation methods to general nonlinear transporthe relative stability of most ordered phases in order to de-
models and free energy functionals is clearly needed. rive a mean-field phase diagréf?® depending on which

lattice wave vectors are taken into account. Using the present
o . expansion for dynamics simulations however, requires at
B. Application of free energy expansions least a sixth-order expansion in some cases. The second rea-

In our group we are investigating the practical applica-son why expansion methods are not well suited for the dy-
tion of the Langevin equations to the phase separation ofamic simulations is purely on the computational side. The
polymer and surfactant mixtures, using a free energy funcfourth-order expansion is cast in the form of linear, bilinear,
tional derived for a collection of Gaussian chains in a meanand trilinear operators, which are convolutions in direct
field environment. In this approach we try to retain as muchspace in respectively 3, 6, and 9 dimensions. These high-
as possible of the underlying molecular properties, i.e., théimensional convolutions are extremely expensive computa-
architecture and composition of the chains are important pationally and cannot be used as such in numerical simulations.
rameters. In previous papers we have studied the randofor the second- and third-order vertex coefficient we have
term® the numerical calculation of the Gaussian chain densucceeded in implementing a simple and accurate fitting pro-
sity functionat® and we have presented some results of accedure, which reduces the convolution kernels to a general-
tual numerical calculations of phase separation in block coized rotationally symmetric gradient expansion in direct
polymer melts® using a local exchange form for the Space. For the fourth-order vertex coefficients our proposed
transport coefficients. The latter paper also contains a fulfitting scheme is no longer practical. However, our fitting
density functional derivation of the free energy functionalScheme leads to a whole new class of phase-separation mod-
and the Gaussian chain density functional for inhomoge&ls, with nonphenomenological parameters that are based on
neous off-equilibrium copolymer melts. In addition, a study microscopic information.
of appropriate nonlocal transport coefficients is in progress.

During a simulation, the external potential, which can beC. Outline of the paper
derived from the free energy, has to be calculated repeatedly

In Sec. Il we briefly recapitulate the background of the

) L . hod. 1 dv th Gree energy functional and the Gaussian chain density func-
(time-consuminginversion method. Here, we study the pos'tional, in the framework of a highly simplified Langevin

sibility of using more sophisticated explicit fourth-order free model. For sake of argument we limit most of the discus-

energy expansions for speeding up the calculations. Thgions to the case of @lock) copolymer melt. The extension

fourth-order expansion is derived from a functional Taylprof the arguments to more general multicomponent mixtures

expansion of the free energy functional, which differs Nis trivial. In Sec. Il we present the fourth-order expansions,

some subtle bUt i_mportant aspects Eroom the older random, e make some comparison to and show the differences
phase approximatiofRPA) of Leibler™ In our approach, with RPA free energy expansions in Sec. Il A. In Sec. IV

the simple scalar coefficients of the phenomenological frege discuss new properties of the vertex coefficients. In Sec.

energy models thaF were inraduced in Sec. | A, are replape we discuss the fitting procedure, and the transformation to
by compound spatial operators, the so-called second-, th'rdairect space gradient expansions

and fourth-order vertex coefficients.

There are three prerequisites for the practical applicabil-
ity of fourth-order expansion methods as accurate explici
inversion algorithms. First, the expansion must be such that Suppose we have a copolymer melt of volumiecon-
the second- and fourth-order vertices are both positive in th&aining n diblock copolymer chains, each of length

I. THEORY

J. Chem. Phys., Vol. 106, No. 16, 22 April 1997
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N=Np+Ng. We assume that the kinetic coefficients arewhere ./~ is a normalization constant with dimension
constant Aaa=Agg=A\), we neglect any cross kinetic (Length}N. The single chain distribution functiofi and the
terms Aag=Apga=0) and set the noise to zero. In this partition functionald are defined by

highly simplified scheme the Langevin EG) reduce to a set 1 N
of two coupled diffusion equations y=— exp| -8 HGJF;& SRGH) (10)
J
TN, (@) k
J P=Tr, exp| — 8| HC+ >, UJ(R|!. (11)
s=1
Pe —)\VZMB (5 H® is the standard Edwards Hamiltonian for the Gaussian
at chairf*?5
These equations look very simple, but are highly nonlinear 513 N
and strongly coupled through the Gaussian chain density H®= 222 &, (Rs—Rs-1)%, (12
&

functional. The density functional gives a closing set of re-

lations between the chemical potentials and the densitywherea is the Gaussian bond length parameter. Finally, the
fields. The relation can easily be derived from the intrinsicintrinsic chemical potentialg, are related to the external
free energy functional of the system, which(fier details see potentials via

Ref. 192 ~ SF - 5Fnid y (13)
Flpa,pel=—B nIn®+a Lnn! M=~ op,
_ The density functional7) is abijectiverelation between the
—Z JVU|(f)P|(f)dr+ Fnd, (6)  external potentials and the conjugate density fiéfds. our

previous work we inverted the density functional numeri-

@ is the partition functional, the suf, is over component Cally by an iteration tech.niqu’é?,.which is very time consum-
types| (A or B) andU(r) and Ug(r) are external poten- ing. Here, the probllem.|s to find an epr|C|t.exp'reSS|on for
tials, conjugate to the particle density fielgs(r) and the ex'ternal potentials in terms of the dgnsny fields, by an
pg(r). The nonideal free energy functiorfa!™ contains the analytical Taylor expansion method, which can be used in
mean-field(excluded volume and cohesjviateractions be- the dynamics algorithm.

tween the chains. Since in this paper we are only concerned

with the relation between the external potential and the denHl. EXPANSION METHOD

sity fields, and the mean field contains by definition only the
density fields, the precise form of the nonideal interactions is
inconsequential. Notice however that in comparing our re-
sults to Leibler's RPA free energy expressfSnwe must

We consider deviations from the homogeneous state, for
which p|(r)= pI , andU,=0. The fourth order Taylor expan-
sion of the free energy in powers of the external potential is

remember that the RPA results are derived including théC]c Ref. 20

mean field, which adds a Flory—Huggins interaction term to B)k 1 .

the second-order vertex coefficient of the free energy exparF = F"9+Fg+ 21 > J E.}’ colk=1)
sion. It is important to realize that we do not assume incom- T

pressibility at this stage; the expansion is derived for a com-  x Ulo(r)“‘Ulk,l(rkfl)dr‘ Y [ (14

pressible melt.
The Gaussian chain density functional is defined by =~ The summationsZy;, are over all component types, i.e.,
) (Y,=1, {1},=13, {1}5=1JK, and{I},=1JKL, andl=I,
pilUA,Ugl(r)=n Tr¢ ¢py, (7) 3, K, orL. The superscripts indicate the order of the kernels.
The Taylor coefficients of the expansion ardody correla-

wherep,(r) is a single chain microscopic density Operator, s which reduce tm-particle densities in the limih— oo

defined by R
N GV (N =n(p)o=p!, (15)

pIN=2, d53(r—Ry), 8) GiY(r,r)=n(pi(rpy(re))o, (16)
Gi3k(r,r1,r2)=n{py(ps(r1)pr(r2))o, 17

8 is a Kronecker delta function, with value 1 if beads of o A .
typel (A or B) and 0 otherwiseR, is the coordinate of bead Gk (r,r1,72,r3) =n(p(r)p(r1)pr(r2)pL(ra))o-

s. The single chain trace Jiis the integration over the co- (18
ordinate space of one chain only The average$-)o=[® ! Tr.(-)]y—o are single chain en-
semble averages, using the distribution function of the
Tr(-) J (- )H dR., 9) Gaussian chalp in the h_omoge.neou's melt. Since the homo-
geneous melt is translationally invariant, we can set

J. Chem. Phys., Vol. 106, No. 16, 22 April 1997
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Gi3(r,r)=G{3(r-ry), (19
GiSk(r.r1, 1) =Gk(r—ry,r=ry), (20
GikL (1. T1.T2,13) =G (r=rq,1 =151 =r3). (21)

Employing the translational invariance at this stage simpli-

6733
On= GM (Q1+QZ+Q3)F (qlququ)
+Gi(01,02,9) T2 (A1) @ T2 (g) @ Ti2(q3)
+2GH (91,02 92) T} (A1) @ TRy (92,03)
+3G3 (A1 402,02 T (01,02) ®T§2(qa). (28)

fies the derivation of the inverse density expansion compared

to RPA considerably, as can be seen from Eg$§)—(28).
The expansion of the density functional reads

3 k
=3 G-
L (rodry -

XU, (rq)---U
wherep,(r) is the deviation from homogeneous density

(23

Glk+1)

& {l}kﬂ(r—rl,...,r—rk)

-dry, (22)

PiN=pi(r)—p;.

Here ® denotes a Kronecker or direct matrix prodéct
which is defined in the following way: IA is amXxn matrix
and B is a pXq matrix, thenA®B is an mpXxnqg matrix
given by
a,B
A®B=| i o,
amn B annB

a; B

Oy is the zero matrix|y, is the identity matrix. The matrices

Notice that we have as many order parameters as there ag@ntain all expansion kernels in a logical order component

component types, which are retained throughout the calculawise, e.g.,

the{l,J} element of G(*(q) is given by

tions. The inverse expansion for the external potential |sG(2)(q). Then-body correlators can be calculated in Fourier

given by
U,(r)= kBTkz1 i {|§}: f JHED(r=ry,r=ry)
Xpy,(ry)--py (rdry---dry, (24)

space according to the formulas given in Appendix A.

Notice that the expression for relating® to the
n-body correlator$s®, G®), andG is different from the
usual RPA expressiofAppendix B. The relation fod"*) as
obtained from a straightforward application of the one-step
iteration technique, does not necessarily possess all physical

which introduces the second-, third-, and fourth-order verteXdymmetries(such as rotational symmetry in its wave vec-

coefficientsI’(2), T'3) , andI'{}, , respectively. By integra-

tion of the chemical potentiald3) we obtain the free energy

expansion in the density fields

4
f L r=r
k

) . 1
F=F4 Fll+kgTY, = > —Te-1)
k=2 K!' {7

Xpiy(r)=pr,_,(r-p)dre--dry_q, (29

where we have set the average of the external potentials {0

zero[ fyU,(r)dr=0].
The vertex coefficients and the-body correlators are

tors). The relation can easily be symmetrized for a one-order
parameter system as is done in Ref. 20, but symmetrization
of the relations for a multicomponent compressible system
leads to very complex expressiofeee Appendix B for ex-
planation. However, our nonsymmetric relations lead to an
expansion for the external potential of the same accuracy and
can hence be used to study the applicability of fourth-order
expansions to the mesoscopic dynamics algorithms. In that
case, the physical symmetries Bf*) are in principle not
significant, as opposed to the symmetried’gfin the study
of the stability of ordered phases.

convolution kernels in 3, 6, and 9 dimensions, hence the
expansions have a simpler representation in Fourier space.

We define the Fourier transform of a functioh by
f(q)=/ye'%"f(r)dr and the inverse transform by

— 1 —ig-r
f(r)—(ZT)3 fve f(q)dqg.

We then apply a one-step iteration techniqsebstituting
the expansions folJ, in the expansions fop,) to obtain

A. Comparison with RPA

We want to stress that the above analysis contains some
important differences with Leibler's RPA resufSFrom the
onset, we assume that the system is a compressible collection
of Gaussian chains in a mean-field environment, whereas in
Leibler's RPA the system is incompressible, and the Gauss-
ian chain approximation is made only after the expansion.

analytical relations between the vertex coefficients and thehis implies that here we have retained two relations be-
n-body correlators in Fourier space. For simplification, wetween two density fields and two external potentials, rather

can use a matrix notatigindicated with subscrip¥) which
may be compared to formula#ll-14)—(111-16) in Ref. 20,
but is structurally different:

Im=G@ (T2 (q),
Om=G (a1 + )T (a1,02) + G (A1,02) T2 ()
eIy (gy), (27)

(26)

than a single relation between one order parameter and one
effective external potential as in the Leibler RPA. However,
the underlying molecular model of ideal Gaussian chains in a
mean field is the same. In fact, from a technical point of view
we find that the route to the incompressible systemasthe
compressible expansion of Gaussian chain statistical behav-
ior is much easier to handle than solving the RPA set di-
rectly, mainly because we make use of the translational in-

J. Chem. Phys., Vol. 106, No. 16, 22 April 1997
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variance of the meltbefore Fourier transformation. This

: : NI® 900
procedure also leads to different expressions for the free en-
ergy expansion and its vertex coefficients.
For a two-component incompressible system, the sepa- 150
rate vertex coefficients can easily be connected to the vertex
coefficients for a one-order-parameter system. In the incom- 100

pressible system we defing(r)=p(r) as the order param-
eter. By substituting U(r)=U,(r)—Ug(r) and pg(r)

~ 50
=—pa(r) we define

r®=r@-r@3-r@-re, @9 - S

=170 _1® _1®B) 3) _1r® (3)
I )_FAAA Ipae=Tagat Fags—'eaatI'sas
3 3 FIG. 1. NT'® in the limit of very long chains as a function bfa2q?)/6 for
+FgéA—FgéB, (30 different compositions. —f=1/2, ——:f=1/4.

[@=r@ 1@ @ L pE @)
ARRA T AAAB T AABAT T AABE T ABAA calculated before fol’® and I'“. We will now briefly

T8 ast Tilea— ThBes—Tsaant ThAns discuss each of the combined vertex coefficients for the in-
LA @ L@ pd) p@) compres_5|ble system, which is especially important fpr un-

BABA™ ' BABB' ' BBAA™ ' BBAB ' BBBA derstanding how an accurate and calculatable explicit inverse
T . (31) density expansion must be derived that includes all wave-

vector dependencies. Discussing the separate vertex coeffi-
Our combined vertex coefficient&? andI'® may now be  cients is also possible, but is cumbersome and does not allow
linked to the Leibler coefficients of the free energy expan-comparison with low order RPA free energy expansions.
sionI"', andI'; in Ref. 20 in the following manner:

r'®q)=ryaq.-q (x=0), (32 A T®@

r® =T T — O —). _ This coefficie.nt is well known and can be relatedltp
(01,92 =T's(01+ G2, ~ G — G2) 33 i Ref. 20. See Fig. 1 for a few exampld¥? [see Eqs(26)

These relations follow from a direct comparison of Eqgs.and(29)]is singular and scales wit 2, hence density fluc-
111-22 and 111-23 in Ref. 20 to Eqs(26) and (27) keeping tuations on scales larger than the polymer coil size are unfa-
both free energy expressions in mind. Notice that the relavorable. Here we notice an additional property on monomer
tions for '@ andI"® are unique and automatically possesslength scales which is not usually discussed, but is neverthe-
all physical symmetries. We explain hai*) can be sym- less important for numerical applications. We have

metrized in Appendix B. )

lim r<2>(q)=N .
A'NB

g —o

(34)

IV. PROPERTIES OF VERTEX COEFFICIENTS

Hence this limit is finite for any chain length. Physically, the
limiting value indicates that if the external potential has a
period that gradually decreases to monomer length scales,
the response of the chain does not further change. As we will
see in Sec. V A, the behavior ¢f? in general and espe-
cially the influence of the limiting value for largg| cannot

be neglected in a gradient free energy expansion for systems
with widespread density spectra.

For a diblock copolymer compact Debye type formulas
can be derived fo6(3), G3), andG(5), , in terms ofN,
N, andNg by simply writing out all summationésee Ap-
pendix A). We have calculated the-body correlators both
for arbitrary chain length and atf and also for the limit of
very long chains and small (that is, when N—oo,
a’q?/6—0 andNa’g?/6 remains finite, which is the limit
considered by the RPAThe vertex coefficients are obtained
by inserting the formulas for tha-body correlators in the
inversion relations. The formulas can in our approach readily
be calculated by computational algebra methods becaugs I'®)
they do not involve summations over wave vectors. How-
ever, especially the formulas for the higher order vertex co
efficients are unwieldy, and therefore, they will not be in-
cluded here. A Mathematica script for generating the a2 a‘g* abaf

) (8242 g~ aq aq
analytical formulas for th@-body correlators and the vertex e (@6~ q — 6 + 36 216
coefficients is available on request from the authors. As far
as we know, thdull wave vector dependence has not beerEmploying the inversion relation®27) and (30) this yields

Assume first, without loss of generality, thgi=q,
=(. We approximate

(35

J. Chem. Phys., Vol. 106, No. 16, 22 April 1997
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(b)

FIG. 2. NI'® in the limit of very long chains as a function oN&?q?)/6 and Na2q2)/6, q;-q,=0. (a) f=1/4, (b) f=1/8, (c) f=1/16.

N(N3—N2)[6+30N%+NNg(3+23N2—5NNg) ]

lim I'®(q,q) 4NANg(1+2NANg)°

lal—0

. (36)

Hence, we find thal'® is not singular near the origin, in C. '
contrast tol'(?). We may investigate the limit in infinity for
g1=0,=q and check that the result agrees with well-known
results from, e.g., Ref. 21. We find that

First, we again emphasize thBf* is only comparable
to the RPA fourth-order vertex functioh, after the extra
symmetrization steffAppendix B. Here we study the bare
unsymmetricT'®) coefficient which was derived directly

_ @ N3 from the one-step iteration method. In calculatif§’ in the
ll"m I™(q,q)=- NZNZ (Ng—Na)- (37 limit of very long chains and smatj (see Fig. 3q;, g,, and
g|—o

gz are parallel we find that ifg; andqg, or g, andqgs are
small, '™ is negative and ifg; and gz are small,I'® is

Also notice that this limit does not depend on chain length positive. Near the originl'® is positive and singular. From
but only on the ratiof=N,/Ng. In the limit of very long these results we conclude tHalt) is not necessarily positive
chains,I'® strongly depends oh as can be seen in Fig. 2, in the entire Fourier domain. In calculatiig® for other
whereT'®) is plotted for four different values of. We see  orientations of the three frequencies, we find tH#f

that the optimum becomes more distinct if the asymmetry ofhanges sign in many more cases. From Fig. 3 we conclude
the chain increases. Notice that the full wave vector deperthat the area wher&® is negative becomes larger if the
dence ofl'® is depicted. chain becomes more symmetiiim the limit of very long
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(d)

FIG. 3. Isosurfaces oNI'® in the limit of very long chains as a function oN@?q?)/6, (Na%q3)/6, and (Na’g2)/6. q;, q,, andgs are parallel,
0.1s(Na2qi2)/6 < 9.5 (small irregularities are due to the isosurface calculation which is based on 1000 data @ifits 1/2, isosurfaceNT'('=0, (b)
f=1/2, isosurfaceNT'(¥)=550, (c) f=1/2, isosurfaceNT'{¥)=1000, (d) f=1/4, isosurfaceNT'¥=0, (e) f=1/4, isosurfaceNI'¥)=2500, (f) f=1/4,
isosurfaceNT )= 5000.
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chaing. The behavior of ) seems to be singular fop, and ~ The widespread density spectrum in numerical simulations
gs small, but along the other axes the function seems t@f ordering processes in metastable irregular structures, im-
decrease only linearly. plies that there may exist a negative contribution from Eq.
We realize however that these results may be influencef8 now, caused by the Fourier gomponents of the density in
by the particular choice fof ), i.e., which particular sym- the part of the spectrum wheid) is negative. Depending
metry is chosen. We have not performed the calculations of" the balance between positive and negative contributions, a
the symmetrized™®) because of the complexity, but intend fourth-order functional Taylor expansion may no longer be

to do so for a multicomponent compressible system in thsufficient to describe the phase-separated system in a simu-
near future. lation. In these cases, a sixth-order functional Taylor expan-

sion may have to be made to obtain an explicit expression for
the inverse density(external potential expansion. The
fourth-order external potential expansion may however serve
In a Ginzburg—Landau fourth-order model for the freeas a preconditioner in the previously used iterative inversion
energy the second-order term must have a negative sign asghemessee Refs. 19 and 34As mentioned before, we
the fourth-order term must have a positive sign in order tdntend to study the sign of the symmetrizE#) in the near
obtain the two minima that are necessary to describe a phastiture.
separated systeffi.If we translate this concept to the case of
the _copolymer melts, the s_econd- and fourth-order terms ir\1/_ FITTING PROCEDURE
the inverse density expansion must preferably have the same
sign; the second-order term changes sign if the melt is Now we return to the simplified Langevin model)
guenched(which effectively instantaneously increases theand (5). We recall that our main goal is to calculate the
interaction paramete), which shifts part of[?)(q) to V2w, terms as efficiently as possible for numerical simula-
negative values. tions of microphase separation, given the analytical Fourier
Since the expansion we consider here is more completransforms of the vertex coefficients. We do not restrict the
than a simple polynomialbecause the full wave vector de- system to incompressibility, and hence we must examine
pendence is considered and the expansion terms consist e&ch of the individual coefficients(?), T'3)}, I'(}), , sepa-
high-dimensional integralswe must carefully examine the rately. Since the expansion of the external poterifid] con-
consequences of the above remarks in the different limits. Isists of linear, bilinear, and trilinear terms, which are multi-
the weak segregation limit, the density may be approximatedimensional convolutions, one expects the numerical
by a single Fourier component for an ordered structure. Thigsalculations to become easier in Fourier space. This is partly
Fourier component is determined by the optimath of  true. The linear term is simply a multiplication in Fourier

D. Remarks

I'®. In order to describe phase-separation, space, but the bilinear term still involves a complicated inte-
gration in three dimensions. This is not well suited for nu-

f TA(r—r,r—r,,r—=r)d(r)d(ry) d(ry) d(rs) merical integration. This applies even more so to the trilinear
v terms which are six dimensional integrations in Fourier

xdr dry dr, drg space. In this form the external potential expansion is not yet

suited for application in the dynamics algorithms.

The main principle of the method we propose here is that
the vertex coefficients are fitted by well-chosen polynomial
series of wave vectors. The polynomial series can easily be

X $(01) ¢(02) $(ds)dd, dq dgs, (38) inverse Fourier transformed, \F/)vh?::h results in relatively cgm-
must be positivdremember that in the incompressible sys-pact gradient expansions. These gradient expansions can
tem the order parametef(r) =pa(r)]. Since the sign of the then be discretized by traditional methods and calculated nu-
coefficientI'® changes depending agf, the sign of the merically, which allows application of the external potential
integral (38) will depend on the density spectrum. In expansion in the mesoscopic dynamics algorithms. The lin-
the weak segregation limit |gi|=|g,/=|g*| and ear, bilinear, and trilinear terms will now be discussed in
|g—d:—d,/=|g*|, but the angles between these vectors araletail.
still free and are determined by the ordered mesophase undgr
consideration. '

In the strong segregation limit and for nonordered struc- ~ The complexity of the linear terms consists of two parts;
tures, the density spectrum is much more wide spread. In thigll T'{?) scale withq™2 near the origin, and all') have a
case it is a very bad approximation to represent the densitplateau region for large| [see Eq.(34)]. These properties
by a single harmonic or even by multiple harmonics. Manymake it hard to calculate an accurate and compact discrete
authors have mentioned this before in the context of the&epresentation in thentire g domain. We remove the singu-
study of the relative stability of ordered structufesy., Refs. larity by considering the expansion for?U, instead of
22, 23, 29, and 30 Also in self consistent field approxima- U,, i.e., in Fourier space we expand- q2U,(q)
tions it is noted that an increasing number of basis functions= —qZEJF,(JZ)(q)FJ(q)Jr ---. We have found that
is needed in the strong segregation lifitg., Refs. 31-33  q°I'{?)(q) can be approximated by a series expansion of the

! (4)
:(27.,.)5 fv3r (d1,02,93) (— 01— 02— d3)

Linear term
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Ty, (91 +p)T ), are still singular in one coordinate and
(q1+02)?T s and (@;+0,)2T'E), remain singular in both
175} coordinates.
15 Compared td"(2) the number of data points for the least-
squares fit per function now increases from 10 to 180. The
12.5¢ set of data points is chosen such that it represents the char-
10} acteristics of the behavior of each function sufficiently. The

number of fit functions depends on the singularitylif§} .

We find that the bilinear terms may be fitted using the fit
5t functions indicated in Table I.

The accuracy of the fit results is considerable, some ex-

751

2.5¢ @) @) (3) iven in Ei
amples forl' 324, 'azg, andI' 3z are given in Fig. 5. The
0 1 5 3 1 5 results for the otheF (3} are similar. The global behavior of
lq the analytical and fitted results is the same and the range of
the values agrees in all cases. In Fig. 6 we have plotted the
FIG. 4. Analytical(—) and fitted(——) '@ for AgB as a function ofq. analytical and fitted results forg(+q,)I"®)(q,,9,) which

show that even though tH&(3) are fitted independently, the
| i @ ~ combinationd™® agree very well.
form Zi_,c; ,q°'. ForI'j;” we employ a least-squares fitting We can now again inverse Fourier transform the bilinear
procedure, using 10 datapoiritaking into account spherical terms in the approximation of the inverse density expansion.
symmetry and a varying number of fit functions. If the ForI'¢), andI'$); this yields an expansion of the following
length of the chain increases, the optimumIdf) shifts  form:
towards lower frequencies, the optimum becomes more dis-
tinct and the plateau, that was dis_cussed in Sec. IV A, be_VZ ZFS’?(U—rl,f—fz)ZJ(fl)FK(fz)drl dr,
comes a larger part of the fit domain. Because the plateau is /v

harq to flt.WIth a limited nu_mb.er of f|t.funct|o_ns, the numbgr ~Cop Pk + Cipk(V2P,) + Copk (V4D) + Capy(V2Pk)
of fit functions increases with increasing chain length. In Fig. o L
4 we check the accuracy by comparing the analytical and +¢4(V%03)(VZpk) +Cspa(Vpi) + ¢V 2(pap)

fitted combined vertex coefficieft® for the chain ABg for 2 oo 2~ o
the incompressible athermal melt. We see that the accuracy eV pk(Vipa)) eV (pa(Vipk)
is perfect, albeit at the cost of a rather large number of fit +¢oV2(V2p3V2pk) + 1oV 4 (Papk)- (40

functions (eight in this case We can now inverse Fourier As before, the polynomial coefficients are different for

transform the linear term in the inverse expansion and find o (3) ,
the approximation in direct space each combinationJK. For otherI';j; that have been fitted

some extra nonlocal and gradient terms are added to the ex-

5 YR pansion, e.g., V(V%,)-V(V%y), Vz;-Vpx and
v 2 fvr” (r=ropy(rydry Vz,-V(VZpy). Here
pi(ry)
~3 o= Vo= Ve ) Th. @) A=) oy “
J
The coefficients; are different for each combinatids. The use ofz, implies that the singularity has not disappeared

completely. Together this yields a rather complex rotation-
ally symmetric gradient expansion. The coefficierts
strongly depend on the architecture and composition of the

We restrict ourselves to a demonstration of principle anchain. The expansion automatically includes the symmetries
discuss only the fitting oF,(Jg,)< of a single chain architecture: of the system under investigation.

AgBg. Other architectures and longer chains can be treated
using the same fitting procedure. Comparet‘ﬂ‘ﬁ? the num-
ber of functions to be approximated now increases by a fa
tor of 2 (from 4 to §. Because of symmetry, only six func- Initially we devoted a considerable effort into finding a
tions have to be approximated effectively. systematic fitting scheme for tH&3), functions, but unfor-
Although the combined'®) shows rather simple nons- tunately we failed to do so. The reason is simply that there
ingular behavior, the independefif3% show more complex are too many special cases to consider, and all of them need
and even singular behavior, which makes them harder to fitareful evaluation. The magnitude of the problem may be
Again we consideiv?U, which implies that we have to fit appreciated if it is realized that the number of independent
(g, + qz)zl“l(ﬁ’,)((ql,qz). We find that the premultiplication vertex coefficients increases from eight in the bilinear term
removes the singularity in g+ qz)zFf,iA(ql,qz) and  to 16 in the trilinear term in a binary system. Each coefficient
(A1t 92)°TSs(01,05);  but (0, +92)°TSz  and  now depends on three wave vectors. It is also very hard,

B. Bilinear term

&L Trilinear term
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TABLE I. Coefficients times 19in four digits accuracy for fittedd(; + g,)?T'{3) for AgBs.

Fit function I'Aa I'e '3 I§a NP I'ls

1 32720 —588.2 6177 4872 —-961.3 55430
o2 -1071 —-104.4 24.03 33.99 -1275 —-1811
a3 33.45 3.397 —4.438 —3.548 4.061 57.22
a5 —1365 64.89 8.611 18.77 4787  —2305
q3a3 —26.59 —2.409 —4.495 —5.963 -1.148 —46.35
as 34.33 —-0.7804 -3.139 —2.472 —0.09591 58.35
(gy+ )2 —27570 260.0 —406.8 2835 309.1  —49237
o2(0y+ )2 -143.1 -6.717 7.686 4.398 —7.388 —244.1
q3(q:+9)? -127.3 -7.791 6.968 3.963 -8.714 -217.1
q203(gy + 2)? 5.734 0.3438  —0.1505 —0.02024 0.3587 9.789
(91+ )" 0.4985 —-1.670 2.825 2.154 —-2.127 0.8540
010 0.0 149.7 —-219.7 -168.1 194.4 0.0
CHCTD) 0.0 —3.852 8.309 6.954 —5.151 0.0
a2(0y - 0p) 0.0 -2.301 7.301 6.199 —3.735 0.0
(91-92)? 0.0 6.286 —10.76 —-8.129 7.937 0.0
a292(ay - 0p) 0.0 0.1835 —0.7737 —0.6904 0.3123 0.0
01~ 02 /92 0.0 —2247 2996 2247 —2996 0.0
aa(qy- G2)/ 02 0.0 80.66 -107.5 —80.66 107.5 0.0
(a1- 9p) 0.0 8.571 —5.936 —5.352 12.49 0.0
a:-9,/95 0.0 0.0 3139 2354 0.0 0.0
a2(9s - )/ 02 0.0 0.0 -120.1 —90.08 0.0 0.0
(a1- )%/ 2 0.0 0.0 —7.317 —-6.512 0.0 0.0

because of the increased number of degrees of freedomultiple-length scales. The second order vertex coefficient
(from 3 to 6 in comparison td'®), to decide which clearly shows that we must try to account for both density
datapoints and fit functions to use. fluctuations on the polymer coil size length scale as well as

Approximations forl'{}), that can be used in deriving for monomer-scale gradients in the interfacial regions be-
new phase separation models, must be derived in such a wayeen domains. The latter behavior is especially important in
that the combined’ ) is positive in the entire frequency the strong segregation limit and for the irregular metastable
domain. This approach does not contradict the conditionstructures in our simulations, where the density spectrum be-
necessary for a sufficient description of phase separation angmes broad. Hence, for the description of the physics of the

may well be a very practical solution. . complete multiple length-scale problem we really need the
A practical approximation for the trilinear term might be analysis.

a simple factorization of the following form: Next, we ask ourselves if the expansion approach pro-

5 @ vides an accurate and fast dynamical simulation. We recall
A fV3FIJK(r_ Fi,F=rp,r—rs) from the Introduction that there are three prerequisites for the
_ _ _ practical applicability of the fourth order expansidn: The

X py(ry)pk(ra)pL(ra)dry dry drs expansion must be sufficient to guarantee phase separation,

i.e., the fourth-order contribution must be positiv@, it
must take the molecular details of the chain molecules into
+Cl.JKLVZZI(r)ZJ(r)ZK(r)- (42)  account, andiii ) it must lead to faster numerical algorithms.

We have shown that even for a simple linear copolymer melt

The first term replaceB({j) by its average in the nonsingular the fourth-order vertex coefficient as calculated in the present

domain, and the second term is added to capture some of ﬂﬂ%per, is negative for some wave vectors. In a study of the

complex singular behavior df{j), . relative stability of ordered phases in order to derive a mean-
field phase diagram, this need not be consequential, depend-

VI. DISCUSSION AND CONCLUSIONS ing on the lattice vectors that are considered in the analysis.

The first question we must ask ourselves is whether théf the lattice vectors are in the negative part of the frequency
extensive mathematical analysis is really necessary to délomain, the ordered phase is unstable for this particular ap-
scribe the dynamics of phase separation, or if a simple phd2roximation. If the lattice vectors are in the positive part of
nomenological model can be used just as well. We find thathe frequency domain, the ordered phase is stable for this
if we restrict ourselves to the basic physics of the problenparticular approximation. However, in a dynamics simula-
and concentrate on the behaviors on a coarse-grained lendibn the system is in principle free to choose its “own”
scale(e.g., polymer coil sizg the simplified phenomenologi- preferred mesophase structure, which may have a very wide-
cal approaches outlined in the Introduction are sufficientspread density spectrum. In that case, a negative fourth-order
However, phase separation is in principle a process owontribution in the free energy may lead to amplification of

~CO,JKLVZEJ(V)5K(V)5L(")
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3 3
FIG. 5. (0, +0,)2T'® for AgBg as a function of andy. (a) Analytical result ;+0,)?C'$)A, 0;-0,>0, g;=x(1,1,1}, 0,=y(1,1,1,}. (b) Fitted result
(014 02) 2T 2a, Ga-0>0. (0) Analytical result @, +d2) 2T R, 01 9,<0, 4 =x(—1,0,1f, g,=y(1,1,—1,)". (d) Fitted result ¢; +d2)?T" Q. A1+ d<0.
(e) Analytical result ¢, +0,)°T' &g, a1-0,=0, g;=x(1,0,1), g,=y(0,1,0). (f) Fitted result §;+0,)?Ts, 9;-g,=0.
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|| which could provide a first order approximation for biconti-
nuity in simplified phenomenological models. Further work
to verify the conjecture is in progress.

2 3 4 5

-50
—100

-150 ACKNOWLEDGMENTS

—200 The work described in this paper was performed as part

of the CAESAR projectClusters of Computationally Inten-
sive Applications for Engineering Design and Simulation on
Scalable Parallel Architecturesvhich is funded under con-
tract ESPRIT EP8328 of the European Community. The
project is a collaboration between the British Aerospace
(prime partner, DASA, Odense Steel Shipyard and BASF.
We are thankful for the support by the European Commu-
nity. We would also like to thank D. Andelman for stimulat-
ing discussions and Y. Gurovich for kindly providing us with
completely artificial structures. Hence, we must concludesome unpublished results.
that the fourth-order expansion is not sufficient for dynami-
cal simulations.
. There are some practical difficulties in taking moIecuIarAPPENDIX A n-BODY CORRELATORS

etail into account. In principle the vertex coefficients can be
calculated for any architectur@.g., branched or combco- The Fourier forms of the-body correlators read
polymers and chain compositiofr. However, the analytical
formulas for the vertex coefficients become very complex 5
unless the chain has a very high symmesych as a block EJ)( )= 21 121 5i le‘l I, (A1)
copolymey. Their complexity makes the analytical formulas

—250

aQ + q9)°T*

FIG. 6. Analytical(—) and fitted(—-) (g;+0,)T®)(q;,q,) for AgBs as a
function of|q,| whereq,=q,.

rather impractical to use unless severe simplifications are no o o

made. Gi5k(a1,0p) = v Z 21 kzl o Oktik(d1.02),  (A2)
We are not yet conclusive about the increased speed of

the numerical calculations if we employ the fourth-order ex- n

HMZ

N N N

pansion. We must first obtain a free energy expansion thd®!sk.(d1.02.03) = vV Z Z IZ 811015 Sk
guarantees phase separation; either by extending the expan- Thier=
sion to sixth order or by employing a phenomenological X 81 Gijki (01,02, 03), (A3)
(symmetrizedl approximation of the fourth-order vertex co-
efficient. On the other hand, the gradient expansion shows if isjsk or ksj=i
that in direct space the bilinear term becomes more compadt;, (q;,q,) = if isksj or jsk=i, (A4)
than the linear term, and this is rather favorable from a com- ol Tkl if j<i<k or ksi<j
putational point of view.

Returning to the phenomenological free energy modelijki(d1.92.03)
for incompressible systems outlined in the Introduction, our

li=il k=il
R e

k—i| |k—j
w1y W3

[ k S | P —
expansion for the bilinear term may perhaps point to an en- rw‘123”w‘23 ! |3 | if isj<ks=l or Isksj<i
tirely new class of simplified phase-separation models for ol ol ol if isj<i<k or ksl<j<i
bicontinuous systerns. It is known that asymmetnc.chalns w|1k23||w\lk3—j\wg—j\ if i<ksj<l or I<j<k<i
may lead to bicontinuous phases when the interactions are Wil kel D=il e s _ _ _
not too strond>3*~333%rom the data in Table I, we see that wiog'wyg wy ! if isksI<] or jsI<ksi
in case of the asymmetric chain all cross terms have extra ol ekl i<I<j<k or ksj<I<i
inner-product termsy; -, and variants thereof, which are =il k=t k=il i i< <k<i <k<|<i
absent in the pure coefficieni§3) , andT'E)s. From sym- :‘ @iz @12 W1 HIsIsks) or JsksI=l
metry considerations, we expect that the inner-products are ol el Mk i j<i<ks<] or Isk=sisj’
also important for the combined vertex coeffici€t) in the =il li=l k=1l i i<i<|<k or k=|<i<i
incompressible system. For example, if we functionally inte- @1 @23 @2 J=i=l= sIsts]
grate the term containing theg - g, fitfunction over the order wh Moy o™ if 1sj<i<k or k<i<j<l
parameter, we find the integral |k il \J il \Si—ll if Isi<sj<k or ksj<is<lI

“ l " =% if j<I<i<k or ksi<l<]j
_c 2,42 \ =K |' K “*'l if j<ksi<I| or |<i<ks]
Foe 3 L(IW ¢= dr, (43 @3 (A5)
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a2q2

w=ex;( - T , (AG)
a2q2

w; —exp( — TI , (A7)
a2(ar + )2

wijZGX%—% y (A8)
a?(gi+q;+qy?

wijk:eXF{_ —(ql gl qk) } (Ag)

In the calculations we have omitted an unimportant bead

volume parameter and have sgi/=1/N.

APPENDIX B: ONE-STEP ITERATION TECHNIQUE
AND SYMMETRIZATION PROCEDURE

p(@=G?()T"?(a)p(q), (B6)

0= fV[G@(q)F“)(q— 2,92+ G2 (q—0,,02)

XT@(q-0g)T'?(a,)Ip(a—a)p(dz)day,  (B7)

0= UV[G<2>(q)F<4)(q—qz—qa,qz,q3)+G<‘”(q—qz

—03,02,03) T ?(q— 02— 43) ' ?(g) T ?(q3)
+3G®(q—d2— 03,0+ 9x) '@ (q—qy— g3) I'®
X(02,03) + £ G®(q—03,03) ' ®(q— 02— q3,02)

XT@(q3)Tp(q— 02— 03)p(d2)p(gz)dq, das.
(B8)

For a one-dimensional function the one-step iteraton N _ _
technique leads to very simple expressions. Suppose the ongufficientconditions for these integral equations to hold are
dimensional functiony andx are expanded to third order: [cf. Egs.(26) and(B3)]

y=ax+bx?+cx3, (B1) 1=G@(q)Ir'?(q), (B9)

x=dy+ey?+fys (B2)
We can relate the expansion coefficientsxofndy by in-

serting the expression forin y and equating powers gfto
third order. This leads to

0=G2(q;+0d2)I'®(a1,02) + G (a1,0,)T?(ay)
xT'?(qy,), (B10)

l=ad,
O=ae+bd?, (B3)
O=af+2bde+cd?,

0=G?(q;+ 9+ 03) T (91,092,953
+G(01,02,03) T2 (q) TP (g2) 2 (q3)

+3 G®(ay,0,+93) 2 (g3 (0y,03)

if all coefficients commute. These relations are unique. For a +26®(gy+ 0,057 (dy,0) T @ (qa). (B11)
functional expansion to third order however, the relations
need no longer all be unique. This can be illustrated by theJow, the fourth-order relationship is not unique. In any of
one-order parameter density and external potential expanhe integral Eqs(B6)—(B8) we can transform the integration
sions. We now have the following expansions in Fouriervariables before equating the integral kernels. For the
space[cf. Egs.(22) and(24)]: second- and third-order relationships, this does not lead to
B2 different relationships, but it does change the fourth-order
p(q)=—BG2(qU(q)+ = f G®(q—q,,q) relationship. Since the integral E@8) is of the form
\%

xU(g—gz)U(dz)dd, 0=f f kernelq—0,—0s,02,93)p(q— 02— Gs)
vJV

B o
6 fvaGM)(q_qz_qs’qz'qS) X p(d2)p(ds)dd, dgs, (B12)

we can employ either of the following variable transforms
for another sufficient relation:

XU(g—0,—0d3)U(g2)U(g;)dg, das, (B4)

1 1
—— 7@\ _ B—
u(a) ﬂF (@)p(q) 25 VF (9—0d2,02)

q3::aZ= qZ::aS! (813)
- - 1 e g—T.—
Xp(q—qz)p(qz)dqz—@f fﬂ‘”(q—qz—qg, %:=07 %G (B14
vJV

~ ~ o d2:=03, O3:=0—0—7s, (B15)

02,03)p(d— 02— Gg)p(d2)p(ds)dg, das.  (B5) o 2
We now insert the expression far(q) in the expression for 03:=02, 02:=0—0,—0s, (B16)

p(9) and equate integrals of the same powerpin This

yields O3:=0—02—03. (B17)
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